- 9. Consider a system with two non-degenerate energy levels with energies ε_0 and ε_1 , where $\varepsilon_1 > \varepsilon_0 > 0$. Suppose that the system contains N distinguishable particles at temperature T, so that the system is described by classical Boltzmann statistics.
 - Show that the average energy per particle in the system is given by the expression

$$\langle u \rangle = U/_N = (\varepsilon_0 + \varepsilon_1 e^{-\alpha})/(1 + e^{-\alpha}),$$

where $\alpha = (\varepsilon_0 - \varepsilon_1)/k_B T$ with k_B denoting Boltzmann's constant.

- b) show that the constant volume heat capacity per particle is given by $\frac{c_V}{N} = k_B \alpha^2 e^{-\alpha} / (1 + e^{-\alpha})^2.$
- c) Show that C_V/N goes to zero as T goes to zero, and that as the temperature becomes very large, $C_V/N \cong \frac{1}{4}k_B\alpha^2$.

CL: Sign error in the expressions for $\langle u \rangle \ \ and \ \frac{c_V}{N}$. It's correct if you make the change $\alpha \to -\alpha$

BONUS: Show why the expression for $\langle u \rangle$ as given gives the wrong answer when $T \to 0$.

a) The partition function for a single particle:

$$z_j = \sum_i e^{-\epsilon_i \beta} = e^{-\epsilon_0 \beta} + e^{-\epsilon_1 \beta}$$

where $\beta = \frac{1}{kT}$. Now the partition function is:

$$Z = \prod_{j=1}^{N} z_{j}$$

$$Z = \left(e^{-\epsilon_{0}\beta} + e^{-\epsilon_{1}\beta}\right)^{N}$$
(1)

Now,

$$U = -\frac{\partial \log Z}{\partial \beta} \tag{2}$$

This follows from the fact that the average energy is:

$$U = \sum_{i} \epsilon_{i} p_{i}$$

Since $p_i = \frac{e^{-\epsilon_i \beta}}{Z}$ (from your statistical mechanics class) then:

$$U = \sum_{i} \epsilon_{i} \frac{e^{-\epsilon_{i}\beta}}{Z}$$

$$= \frac{1}{Z} \sum_{i} \epsilon_{i} e^{-\epsilon_{i}\beta} \qquad \left(use \frac{\partial e^{-\epsilon_{i}\beta}}{\partial \beta} = -\epsilon_{i} e^{-\epsilon_{i}\beta} \right)$$

$$= -\frac{1}{Z} \sum_{i} \frac{\partial e^{-\epsilon_{i}\beta}}{\partial \beta}$$

$$= -\frac{1}{Z} \frac{\partial}{\partial \beta} \sum_{i} e^{-\epsilon_{i}\beta}$$
$$= -\frac{1}{Z} \frac{\partial}{\partial \beta} Z$$
$$= -\frac{\partial \log Z}{\partial \beta}$$

So, by Eq. (1) and (2):

$$U = -\frac{\partial \log Z}{\partial \beta}$$

$$= -\frac{\partial \log(e^{-\epsilon_0 \beta} + e^{-\epsilon_1 \beta})^N}{\partial \beta}$$

$$= -N \frac{\partial \log(e^{-\epsilon_0 \beta} + e^{-\epsilon_1 \beta})}{\partial \beta}$$

$$= -\frac{N}{e^{-\epsilon_0 \beta} + e^{-\epsilon_1 \beta}} \frac{\partial}{\partial \beta} (e^{-\epsilon_0 \beta} + e^{-\epsilon_1 \beta})$$

$$= -\frac{N}{e^{-\epsilon_0 \beta} + e^{-\epsilon_1 \beta}} (-\epsilon_0 e^{-\epsilon_0 \beta} - \epsilon_1 e^{-\epsilon_1 \beta})$$

$$U = N \frac{\epsilon_0 e^{-\epsilon_0 \beta} + \epsilon_1 e^{-\epsilon_1 \beta}}{e^{-\epsilon_0 \beta} + e^{-\epsilon_1 \beta}}$$
(3)

Now, divide both sides of (3) by N:

$$\frac{U}{N} = \frac{\epsilon_0 e^{-\epsilon_0 \beta} + \epsilon_1 e^{-\epsilon_1 \beta}}{e^{-\epsilon_0 \beta} + e^{-\epsilon_1 \beta}} \quad \left(\text{multiply by } \frac{e^{\epsilon_0 \beta}}{e^{\epsilon_0 \beta}} \right)
u = \frac{\epsilon_0 e^{-\epsilon_0 \beta} + \epsilon_1 e^{-\epsilon_1 \beta}}{e^{-\epsilon_0 \beta} + e^{-\epsilon_1 \beta}} \frac{e^{\epsilon_0 \beta}}{e^{\epsilon_0 \beta}}
u = \frac{\epsilon_0 + \epsilon_1 e^{\epsilon_0 \beta - \epsilon_1 \beta}}{1 + e^{\epsilon_0 \beta - \epsilon_1 \beta}} \quad (use \ def. \ of \ \alpha = \frac{\epsilon_0 - \epsilon_1}{kT} = (\epsilon_0 - \epsilon_1)\beta)$$

$$\rightarrow u = \frac{\epsilon_0 + \epsilon_1 e^{\alpha}}{1 + e^{\alpha}}$$

b) Heat capacity per particle is defined as:

$$\frac{C_V}{N} = \frac{1}{N} \frac{\partial U}{\partial T}$$
$$= \frac{\partial u}{\partial T}$$
$$= \frac{\partial \alpha}{\partial T} \frac{\partial u}{\partial \alpha}$$

$$\frac{C_V}{N} = \frac{\partial}{\partial T} \left(\frac{(\epsilon_0 - \epsilon_1)}{k_B T} \right) \frac{\partial}{\partial \alpha} \left(\frac{\epsilon_0 + \epsilon_1 e^{\alpha}}{1 + e^{\alpha}} \right) \tag{4}$$

Let's do them separately:

$$\frac{\partial}{\partial T} \left(\frac{(\epsilon_0 - \epsilon_1)}{k_B T} \right) = \frac{(\epsilon_0 - \epsilon_1)}{k_B} \frac{\partial}{\partial T} \frac{1}{T}$$
$$= -\frac{(\epsilon_0 - \epsilon_1)}{k_B} \frac{1}{T^2}$$

$$\frac{\partial}{\partial T} \left(\frac{(\epsilon_0 - \epsilon_1)}{k_B T} \right) = -\frac{\alpha}{T} \tag{5}$$

As for the other partial derivative in Eq. (4):

$$\begin{split} &\frac{\partial}{\partial \alpha} \left(\frac{\epsilon_0 + \epsilon_1 e^{\alpha}}{1 + e^{\alpha}} \right) = \frac{(1 + e^{\alpha}) \frac{\partial}{\partial \alpha} (\epsilon_0 + \epsilon_1 e^{\alpha}) - (\epsilon_0 + \epsilon_1 e^{\alpha}) \frac{\partial}{\partial \alpha} (1 + e^{\alpha})}{(1 + e^{\alpha})^2} \\ &= \frac{(1 + e^{\alpha}) \epsilon_1 e^{\alpha} - (\epsilon_0 + \epsilon_1 e^{\alpha}) e^{\alpha}}{(1 + e^{\alpha})^2} \\ &= \frac{\epsilon_1 e^{\alpha} + \epsilon_1 e^{2\alpha} - \epsilon_0 e^{\alpha} - \epsilon_1 e^{2\alpha}}{(1 + e^{\alpha})^2} \\ &= \frac{\epsilon_1 e^{\alpha} - \epsilon_0 e^{\alpha}}{(1 + e^{\alpha})^2} \end{split}$$

$$\frac{\partial}{\partial \alpha} \left(\frac{\epsilon_0 + \epsilon_1 e^{\alpha}}{1 + e^{\alpha}} \right) = \frac{(\epsilon_1 - \epsilon_0) e^{\alpha}}{(1 + e^{\alpha})^2} \tag{6}$$

$$\frac{C_V}{N} = -\frac{\alpha}{T} \frac{(\epsilon_1 - \epsilon_0)e^{\alpha}}{(1 + e^{\alpha})^2}$$
$$= \frac{\alpha}{T} \frac{(\epsilon_0 - \epsilon_1)e^{\alpha}}{(1 + e^{\alpha})^2}$$

$$\rightarrow \frac{C_V}{N} = k_B \frac{\alpha^2 e^{\alpha}}{(1 + e^{\alpha})^2} \tag{7}$$

c) As $T \to 0$ we have $\alpha \to -\infty$. Looking at the numerator and denominator in the RHS of Eq. (7),

$$\alpha^2 e^{\alpha} \to 0$$
$$(1 + e^{\alpha})^2 \to 1$$

The first asymptotic follows from the fact that an exponential dominates over the polynomial term α^2 (you can use l'Hopital's rule, formally). Thus,

$$\frac{C_V}{N} \to 0$$
 as $T \to 0$

As $T \to \infty$ we have $\alpha \to 0$. Since:

$$\frac{e^{\alpha}}{(1+e^{\alpha})^2} \to \frac{1}{4} \quad as \ \alpha \to 0$$

Then,

$$\frac{C_V}{N} \to \frac{k_B \alpha^2}{4}$$