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Inside the box: 

0 ≤ 𝑥 ≤ 𝑎,        0 ≤ 𝑦 ≤ 𝑎, 0 ≤ 𝑧 ≤ 𝑎 

The boundary conditions from the six faces of the cube are: 

𝑉(0, 𝑦, 𝑧) = 𝑉(𝑎, 𝑦, 𝑧) = 0  (𝐵𝐶1 𝑎 &𝑏) 

𝑉(𝑥, 0, 𝑧) = 𝑉(𝑥, 𝑎, 𝑧) = 0  (𝐵𝐶2     𝑎 &𝑏) 

𝑉(𝑥, 𝑦, 0) = 0,   𝑉(𝑥, 𝑦, 𝑎) = 𝑉0  (𝐵𝐶3    𝑎   &𝑏)  

 

The potential satisfies Laplace’s equation: 

∇2𝑉(𝑥, 𝑦, 𝑧) = 0 

Note that the trivial solution 𝑉(𝑥, 𝑦, 𝑧) = 0 is not a solution since it doesn’t satisfy BC3 b.  

To solve, we’ll use the method of separation of variables:  

𝑉(𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧) 

Then  

∇2𝑋(𝑥)𝑌(𝑦)𝑍(𝑧) = 0 

(
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+
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Divide by 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧): 
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+
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𝑑𝑧2
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𝑑2𝑋(𝑥)
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1
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      (𝑚𝑜𝑣𝑒𝑑 𝑍(𝑧) 𝑡𝑒𝑟𝑚 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑑𝑒) 

The left-hand side (LHS) depends on 𝑥, 𝑦 while the right-hand side (RHS) on 𝑧. Since these are all 

independent variables, this can only happen if both sides are constant. Therefore: 

1

𝑋(𝑥)

𝑑2𝑋(𝑥)

𝑑𝑥2
+

1

𝑌(𝑦)
 
𝑑2𝑌(𝑦)

𝑑𝑦2
= 𝑐𝑜𝑛𝑠𝑡.      

→  
1

𝑋(𝑥)

𝑑2𝑋(𝑥)

𝑑𝑥2
= 𝑐𝑜𝑛𝑠𝑡. − 
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𝑌(𝑦)
 
𝑑2𝑌(𝑦)

𝑑𝑦2
    

The same logic can be applied here: the LHS depends on 𝑥 and the RHS on 𝑦. Therefore, it must by 

constant. So, we get: 

1

𝑋(𝑥)

𝑑2𝑋(𝑥)

𝑑𝑥2
= 𝜆𝑥  (2) 

1

𝑌(𝑦)
 
𝑑2𝑌(𝑦)

𝑑𝑦2
= 𝜆𝑦 (3) 

1

𝑍(𝑧)

𝑑2𝑍(𝑧)

𝑑𝑧2
= 𝜆𝑧 (4) 

Where the 𝜆′𝑠 are constant. Plugging this into Eq. (1): 

𝜆𝑥 + 𝜆𝑦 + 𝜆𝑧 = 0 (5) 

Thus, the 𝜆′𝑠 cannot have all the same sign. The solutions to Eq. (2)-(4) will be sinusoidal or hyperbolic 

functions, depending on the sign of the 𝜆′𝑠 (negative in the former, positive in the latter). We’ll first 

solve Eq. (2) subject to BC1: 

𝑋(0)𝑌(𝑦)𝑍(𝑧) = 0 = 𝑋(𝑎)𝑌(𝑦)𝑍(𝑧) 

This is true for all 𝑦, 𝑧 in the box. Since the trivial case of 𝑉(𝑥, 𝑦, 𝑧) = 0 cannot be a solution then 

𝑌(𝑦)𝑍(𝑧) can zero for all y,z, then this can only hold when: 

𝑋(0) = 0 = 𝑋(𝑎) (6) 

Since 𝑋(𝑥) crosses the 𝑥 axis twice, it cannot be hyperbolic. The best way to see this is that 𝑋(0) = 0 

implies that 𝑋(𝑥) is hyberolic sine. But the sinh(𝑎) = 0 condition cannot be met (prove it). Therefore, 

𝜆𝑥  cannot be positive. 

If 𝜆𝑥 = 0 then the solution 𝑋(𝑥) is linear. The BC’s from Eq. (6) imply the function must be 𝑋(𝑥) = 0, 

again not allowed.  



Therefore 

𝜆𝑥 < 0 

and the solution Eq. (2) is: 

𝑋(𝑥) =  𝑎𝑥,1 sin(𝑘𝑥𝑥) + 𝑎𝑥,2 cos(𝑘𝑥𝑥) 

Where:  

−𝑘𝑥
2 = 𝜆𝑥 

and 𝑎𝑥,1/𝑎𝑥,2 are constants.  From 𝑋(0) = 0: 

𝑋(0) =  𝑎𝑥,1 sin(𝑘𝑥0) + 𝑎𝑥,2 cos(𝑘𝑥0) 

0 =  𝑎𝑥,2 

From 𝑋(𝑎) = 0: 

𝑋(𝑎) = 0 = 𝑎𝑥,1 sin(𝑘𝑥𝑎)  

This can only occur if  

𝑘𝑥𝑎 = 𝑚𝜋                 (𝑚 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) 

The logic here is similar to the quantum mechanics problem of a particle in a 1D box.  

Therefore, 𝑘𝑥 =
𝑚𝜋

𝑎
  and: 

𝑋(𝑥) = 𝑎𝑥,1 sin (
𝑚𝜋𝑥

𝑎
) (7) 

This forms a complete set to the possibilities for 𝑋(𝑥). 

Now, the 𝑌(𝑦) has the analogous conditions to 𝑋(𝑥), therefore the solution is the same: 

𝑌(𝑦) = 𝑎𝑦,1 sin (
𝑛𝜋𝑦

𝑎
) (8) 

Here, 𝑛 is some integer. From Eq. (5) then: 

𝜆𝑥 + 𝜆𝑦 + 𝜆𝑧 = 0 

− (
𝑚𝜋

𝑎
)

2

− (
𝑛𝜋

𝑎
)

2

+ 𝜆𝑧 = 0 

𝜆𝑧 = (
𝑚𝜋

𝑎
)

2

+ (
𝑛𝜋

𝑎
)

2

≥ 0 

It will be useful to define: 

𝑘𝑧
𝑚,𝑛 = √(

𝑚𝜋

𝑎
)

2

+ (
𝑛𝜋

𝑎
)

2

 

Therefore, 𝜆𝑧 is positive and the solution to 𝑍(𝑧) is hyperbolic: 

𝑍(𝑧) = 𝑎𝑧,1 sinh(𝑘𝑧
𝑚,𝑛 𝑧) + 𝑎𝑧,2 cosh(𝑘𝑧

𝑚,𝑛 𝑧) 



From the condition 𝑍(0) = 0: 

0 = 0 + 𝑎𝑧,2 → 𝑎𝑧,2 = 0 

Therefore, 

𝑍(𝑧) = 𝑎𝑧,1 sinh(𝑘𝑧
𝑚,𝑛 𝑧) (9) 

Note: the boundary condition 𝑉(𝑎, 𝑦, 𝑧) = 𝑉0 cannot be used here because then we would have: 

𝑋(𝑥)𝑌(𝑦)𝑍(𝑎) = 𝑉0 

Unlike before where the RHS was zero, here it’s not. Thus, we cannot use the same logic as before and 

say something about 𝑍(𝑎).   

From Eq. (7), (8) and (9) then a particular solution is: 

𝑋(𝑥)𝑌(𝑦)𝑍(𝑧) = 𝑐𝑚,𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
) sinh(𝑘𝑧

𝑚,𝑛 𝑧) 

Here we have absorbed all the constants into 𝑐𝑚,𝑛.  These form a complete set of solutions. The general 

solution is thus obtained by summing over all possibilities: 

𝑉(𝑥, 𝑦, 𝑧) = ∑ 𝑐𝑚,𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
) sinh(𝑘𝑧

𝑚,𝑛 𝑧)

𝑚,𝑛∈ℤ

 

To solve for 𝑐𝑚,𝑛, we invoke the above boundary condition 𝑉(𝑥, 𝑦, 𝑎) = 𝑉0: 

𝑉0 = ∑ 𝑐𝑚,𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
) sinh(𝑘𝑧

𝑚,𝑛 𝑎)

𝑚,𝑛∈ℤ

 (10) 

We can now use the orthogonality of the sine function from Fourier analysis: 

∫ 𝑑𝑥 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑙 𝜋𝑥

𝑎
)

𝑎

0

=
𝑎

2
 𝛿𝑚𝑙  

∫ 𝑑𝑦 sin (
𝑛𝜋𝑦

𝑎
) sin (

𝑟 𝜋𝑦

𝑎
)

𝑎

0

=
𝑎

2
 𝛿𝑛𝑟 

Therefore, multiplying both sides of Eq. (10) by sin (
𝑙 𝜋𝑥

𝑎
) sin (

𝑟 𝜋𝑦

𝑎
), integrating from 𝑥 = 0 to 𝑥 = 𝑎 and 

invoking orthogonality: 

𝑉0 ∫ 𝑑𝑥  sin (
𝑙 𝜋𝑥

𝑎
)

𝑎

0

 ∫ 𝑑𝑦  sin (
𝑟 𝜋𝑦

𝑎
)

𝑎

0

 = ∑ 𝑐𝑚,𝑛

𝑎

2
 𝛿𝑚𝑙

𝑎

2
 𝛿𝑛𝑟  sinh(𝑘𝑧

𝑚,𝑛 𝑎)

𝑚,𝑛∈ℤ

 

 

𝑉0 (− 
𝑎

𝑙𝜋
cos (

𝑙 𝜋𝑥

𝑎
)  |0

𝑎  ) (− 
𝑎

𝑦𝜋
cos (

𝑟 𝜋𝑦

𝑎
)  |0

𝑎  )  =
𝑎2

4
 𝑐𝑙,𝑟 sinh(𝑘𝑧

𝑙,𝑟 𝑎)  

𝑉0

𝑎2

𝑙𝑟𝜋2
(− cos(𝑙 𝜋) + 1)(− cos(𝑟 𝜋) + 1)  =

𝑎2

4
 𝑐𝑙,𝑟 sinh(𝑘𝑧

𝑙,𝑟 𝑎)  



𝑐𝑙,𝑟 =  
1

sinh(𝑘𝑧
𝑙,𝑟 𝑎)

 
4𝑉0   

𝑙𝑟𝜋2 (− (−1)𝑙 + 1)(− (−1)𝑟 + 1) 

We see that if 𝑙 is even then 𝑐𝑙,𝑟 = 0 and similarly for r. Therefore,  

𝑐𝑙,𝑟 =  {

1

sinh(𝑘𝑧
𝑙,𝑟 𝑎)

 
16𝑉0   

𝑙𝑟𝜋2
                   𝑙, 𝑟  𝑏𝑜𝑡ℎ 𝑜𝑑𝑑

0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Using this and our earlier definition of 𝑘𝑧
𝑙,𝑟 : 

𝑉(𝑥, 𝑦, 𝑧) =
16𝑉0   

𝜋2
∑

1

𝑚𝑛
sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑎
)

sinh (𝑧√(
𝑚𝜋
𝑎

)
2

+ (
𝑛𝜋
𝑎

)
2

)

sinh (𝑎√(
𝑚𝜋
𝑎

)
2

+ (
𝑛𝜋
𝑎

)
2

)𝑚,𝑛  𝑜𝑑𝑑

 

 

 

 

 

 

 

 

 

 

 


