6. A cubical box (sides of length a) consists of five metal plates, which are welded
together and grounded (see figure below). The top is made of a separate sheet of
metal, insulated from the other sides, and held at constant potential Vo.
Determine the electric potential inside the box.

Inside the box:
0<x<aq, 0<y<aq 0<z<a

The boundary conditions from the six faces of the cube are:

V(0,y,z) =V(a,y,z) =0 (BC1 a &b)
V(x,0,2) =V(x,a,z) =0 (BC2 a&b)
V(x,y,0) =0, V(x,y,a) =V, (BC3 a &b)

The potential satisfies Laplace’s equation:
ViV (x,y,z) =0
Note that the trivial solution V(x,y, z) = 0 is not a solution since it doesn’t satisfy BC3 b.
To solve, we'll use the method of separation of variables:
V(x,y,2) = X(0)Y (¥)Z(2)
Then
VZX(x)Y(y)Z(z) =0
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Divide by X(x)Y (v)Z(2):

1 d?X(x) 1 d?Y(y) 1 d?Z(z) _
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X(x) dx2 + Y(y) dy? + Z(z) dz? @
1 d?X(x) 1 d?Y(y) 1 d?Z(2) )
X0 dx? Yoy dy? = _Z(Z) 772 (moved Z(z) term to other side)
The left-hand side (LHS) depends on x, y while the right-hand side (RHS) on z. Since these are all
independent variables, this can only happen if both sides are constant. Therefore:
1 d?X(x) N 1 d*Y(y) _ .
X(x) dx? Y(y) dy? conse.
1 d%X(x) 1 d*Y (y)
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The same logic can be applied here: the LHS depends on x and the RHS on y. Therefore, it must by
constant. So, we get:
1 d?X(x)
v o = M (2)
X(x) dx
1 d?Y(y)
2~y (3)
Y(y) dy
1 d?Z(2)
s = A @
Z(z) dz
Where the A's are constant. Plugging this into Eq. (1):
A+ 4y, +4,=0 (5)

Thus, the A's cannot have all the same sign. The solutions to Eq. (2)-(4) will be sinusoidal or hyperbolic
functions, depending on the sign of the A's (negative in the former, positive in the latter). We'll first
solve Eq. (2) subject to BC1:

X(O)Y)z(2) = 0=X(@)Y()Z(z)

This is true for all y, z in the box. Since the trivial case of V(x, y, z) = 0 cannot be a solution then
Y(y)Z(z) can zero for all y,z, then this can only hold when:

X(0)=0=X(a) (6)

Since X (x) crosses the x axis twice, it cannot be hyperbolic. The best way to see this is that X(0) = 0
implies that X (x) is hyberolic sine. But the sinh(a) = 0 condition cannot be met (prove it). Therefore,
A, cannot be positive.

If A, = 0 then the solution X (x) is linear. The BC’s from Eq. (6) imply the function must be X(x) = 0,
again not allowed.



Therefore
A, <0
and the solution Eq. (2) is:
X(x) = a,4sin(k,x) + a,, cos(k,x)
Where:
—kZ =2,
and a, ;/a, , are constants. From X(0) = 0:
X(0) = ay1sin(k,0) + a, , cos(k,0)
0= ay,
From X(a) = 0:
X(a) = 0 = a,q sin(k,a)
This can only occur if
k.a =mn (m an integer)
The logic here is similar to the quantum mechanics problem of a particle in a 1D box.
Therefore, k, = % and:
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X(x) = ay 4 sin (T) 7

This forms a complete set to the possibilities for X (x).

Now, the Y (y) has the analogous conditions to X (x), therefore the solution is the same:

Y(y) = ay sin (?) (8)

Here, n is some integer. From Eq. (5) then:
A+ Ay +4,=0
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It will be useful to define:

A i O
2 = |y (2
Therefore, 4, is positive and the solution to Z(z) is hyperbolic:

Z(z) = ay, sinh(k;"" z) + a,, cosh(k;"" z)



From the condition Z(0) = 0:
0=0+a,;,—~a,,=0
Therefore,
Z(z) = ay, sinh(k}"" z) (9)
Note: the boundary condition V(a, y, z) = V, cannot be used here because then we would have:
X@YWz(a) =V,
Unlike before where the RHS was zero, here it’s not. Thus, we cannot use the same logic as before and
say something about Z(a).
From Eq. (7), (8) and (9) then a particular solution is:

XY (Z@) = e sin (7

) sin (?) sinh(k.*" z)

Here we have absorbed all the constants into ¢, ,. These form a complete set of solutions. The general
solution is thus obtained by summing over all possibilities:
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Vix,y,z) = Z Cmn SIN (_a )sm (_a ) sinh(k;"" z)
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To solve for ¢, ,, we invoke the above boundary condition V(x,y,a) = Vj:

Vo = 2 Cmon SIN (m;rx) sin (%) sinh(k]"™ a) (10)

mmnez

We can now use the orthogonality of the sine function from Fourier analysis:

f‘ld _ (mnx) _ (lnx)_a5
; x sin(——) sin{——) = &

f dy sin (nzy) sin (r Zy) = 621 Snr

Therefore, multiplying both sides of Eq. (10) by sm( )sm( ) integrating fromx = 0 tox = a and

invoking orthogonality:

ltx . Ty a a i
Vof dx sm( " )fo dy sin (T) = Z Cmny 6ml§ 8pr sinh(k;"" a)
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sinh(k." a) lrm?

We see that if [ is even then ¢;,- = 0 and similarly for r. Therefore,

! 16V I,r both odd
,7 botho
¢,y = ysinh(k;"a) lrm?
0 otherwise

Using this and our earlier definition of ké’r :
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Vix,y,z) = 2




