Problem A2: Consider a quantum system with the Hamiltonian

H=(] )

where Ej is a positive real number.
a. What are the eigenvalues of H?
b. What are the eigenvectors (normalized, matrix form) of H?
¢. What is the expectation value of H when the system is in the state
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Bonus (CL): what’s wrong with H?
a) To find the eigenvalues solve:
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Therefore,

A= 3E0, 4E0

b) We need to solve for:

HY = Ey

For both eigenvalues
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One can easily verify that H (1) =3 (1) Now,
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where 4, is a normalizing constant. Its value is:
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From first row:
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Again, you can see H (2) =4 (2) . So,

Normalizing:
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¢) The expectation value is given by:
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Bonus: As we see, the eigenvectors are NOT orthogonal despite the eigenvalues being different. This is
due to the fact that H is not Hermitian. Thus, this Hamiltonian is non-physical.

The Hamiltonian needs to Hermitian for the evolution operator:
U(t) — e~ iHt/h

to be unitarian. This is needed for the probabilities to sum up to 1.



