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Solution 1: CM and Rel. Motion 
The kinetic and potential energy are, respectively: 

𝑇 =
1

2
𝑚1 𝑥̇1

2 +
1

2
𝑚2 𝑥̇2

2 

𝑉 =
1

2
𝑘(𝑥2 − 𝑥1)

2 

Thus, the Lagrangian is: 

𝐿 = 𝑇 − 𝑉 

𝐿 =
1

2
𝑚1 𝑥̇1

2 +
1

2
𝑚2 𝑥̇2

2 −
1

2
𝑘(𝑥2 − 𝑥1)

2 

Use the Euler-Lagrange equations: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕 𝑥̇1
) =

𝜕𝐿

𝜕𝑥1
 

𝑑

𝑑𝑡
(𝑚1 𝑥̇1 + 0 − 0) =

𝜕

𝜕𝑥1
(
1

2
𝑚1 𝑥̇1

2 +
1

2
𝑚2 𝑥̇2

2 −
1

2
𝑘(𝑥2 − 𝑥1)

2) 

𝑑

𝑑𝑡
(𝑚1 𝑥̇1 + 0 − 0) = 0 + 0 + 

𝜕

𝜕𝑥1
(−
1

2
𝑘(𝑥2 − 𝑥1)

2) 

 𝑚1𝑥̈1 = −
1

2
𝑘 (−2)(𝑥2 − 𝑥1) 

Thus, 

𝑚1𝑥̈1 =  𝑘(𝑥2 − 𝑥1) 

The E-L equation for 𝑥2 is the same except on the right-hand side we pick up a negative sign: 

𝜕

𝜕𝑥2
(−
1

2
𝑘(𝑥2 − 𝑥1)

2) = −
1

2
𝑘 (2)(𝑥2 − 𝑥1) = 𝑘(𝑥2 − 𝑥1) 

Therefore, the two equations of motion are: 

𝑚1𝑥̈1 =  𝑘(𝑥2 − 𝑥1) (1) 

𝑚2𝑥̈2 = −𝑘(𝑥2 − 𝑥1) (2) 

 

𝑚1 𝑚2 



This matches with what we would get if we had used 𝐹 = 𝑚𝑎 and Newton’s third law. To solve Eq. (1) 

and (2), it’s convenient to go to the center-of mass and relative co-ordinates: 

𝑟𝑐𝑚 =
𝑚1𝑥1 +𝑚2𝑥2
𝑚1 +𝑚2

              𝑟𝑟𝑒𝑙 = 𝑥2 − 𝑥1 

If we add Eq.(1) and (2), 

𝑚1𝑥̈1 +𝑚2𝑥̈2 =  0 

Divide by 𝑚1 +𝑚2: 

 
𝑚1𝑥̈1 +𝑚2𝑥̈2
𝑚1 +𝑚2

=  0 

Looking at 𝑟𝑐𝑚  we see that this means: 

𝑟̈𝑐𝑚 = 0 

Thus, the center-of-mass moves with constant velocity.  

Sidenote: this is true in general for isolated systems, since if you sum over all 𝐹 = 𝑚𝑎, like we did here, 

you’ll get cancellations of all the forces by the action-reaction pairs with for the Force sides and for the 

other the total mass times the acceleration of the center of mass. The potential usually depends on the 

distances between two objects, 𝑉(𝑥1, 𝑥2) = 𝑉(𝑥2 − 𝑥1), and thus the dynamics is usually associated 

with relative positions. This was the motivation for choosing these two co-ordinates. 

Now,  

𝑟̈𝑟𝑒𝑙 = 𝑥̈2 − 𝑥̈1 

Divide both sides of Eq.  (1) and (2) by their respective masses:  

𝑥̈1 =
𝑘

𝑚1
(𝑥2 − 𝑥1) (3) 

𝑥̈2 = −
𝑘

𝑚2
(𝑥2 − 𝑥1) (4) 

Subtract Eq (3) from (4) 

𝑥̈2 − 𝑥̈1 = −
𝑘

𝑚2
(𝑥2 − 𝑥1) −

𝑘

𝑚1
(𝑥2 − 𝑥1) (5) 

 

Using the definition of 𝑟𝑟𝑒𝑙  in Eq. (5): 

𝑟̈𝑟𝑒𝑙 = −
𝑘

𝑚2
𝑟𝑟𝑒𝑙 −

𝑘

𝑚1
𝑟𝑟𝑒𝑙 

Thus,  



𝑟̈𝑟𝑒𝑙 = −𝑘 (
1

𝑚1
+
1

𝑚2
 ) 𝑟𝑟𝑒𝑙 

The differential equation for simple harmonic motion is: 

𝑧̈ =  −𝜔2 𝑧 

We then have: 

 

 

 

 

Solution 2: Getting Eigenvalues 
Up to Eq. (1) and (2) the procedure is the same.  

Now, let’s use matrix notation to re-express Eq. (3) and (4): 

(
𝑥̈1 
𝑥̈2
) =

(

 
 
−
𝑘

𝑚1

𝑘

𝑚1
𝑘

𝑚2
−
𝑘

𝑚2)

 
 
 (
𝑥1
𝑥2
) (6) 

 

Let  

𝑊 =  

(

 
 
−
𝑘

𝑚1

𝑘

𝑚1
𝑘

𝑚2
−
𝑘

𝑚2)

 
 

 

Diagonalizing W can help us solve the equations. Why? If 𝑊 = 𝑂−1𝐷𝑂 where 𝐷 is a diagonal matrix and 

we let: 

𝒓 =   (
𝑥1
𝑥2
) 

then Eq. (6) can be expressed as: 

𝒓̈ = 𝑊𝒓 

𝒓̈ = 𝑂−1𝐷𝑂𝒓     (𝑚𝑢𝑙𝑡𝑖𝑙𝑦 𝑏𝑦 𝑂 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠) 

𝑂𝒓̈ = 𝑂𝑂−1𝐷𝑂𝒓 

𝑂𝒓̈ = 𝐷𝑂𝒓 

If we let 𝒚 =  𝑂𝒓 then: 

𝜔 = √𝑘 (
1

𝑚1
+
1

𝑚2
 ) 



𝒚̈ = 𝐷𝑦 

 

Since D is a diagonal matrix of the form: 

𝐷 = (
𝜆1 0
0 𝜆2

) 

Then: 

𝑦1̈ = 𝜆1𝑦1 

𝑦2̈ = 𝜆2𝑦2 

Diagonalizing thus decouples the two components. Simple harmonic motion is of the form: 

𝑦̈ =  −𝜔2 𝑦 

Thus,  

𝜔1,2 = √−𝜆1,2. 

Note: if we have oscillatory motion the eigenvalue should be negative, hence the value under the square 

root should be positive. 

Now, we diagonalize W: 

det(𝑊 − 𝜆𝐼) = 0 

||
−
𝑘

𝑚1
− 𝜆

𝑘

𝑚1
𝑘

𝑚2
−
𝑘

𝑚2
− 𝜆
|| = 0 

 

(−
𝑘

𝑚1
− 𝜆)(−

𝑘

𝑚2
− 𝜆) −

𝑘

𝑚1

𝑘

𝑚2
= 0 

(
𝑘

𝑚1
+ 𝜆)(

𝑘

𝑚2
+ 𝜆) −

𝑘

𝑚1

𝑘

𝑚2
= 0 

𝑘

𝑚1

𝑘

𝑚2
+ 

𝑘

𝑚1
𝜆 + 

𝑘

𝑚2
𝜆 + 𝜆2 −

𝑘

𝑚1

𝑘

𝑚2
= 0 

 
𝑘

𝑚1
𝜆 + 

𝑘

𝑚2
𝜆 + 𝜆2 = 0 

(
𝑘

𝑚1
+ 

𝑘

𝑚2
+  𝜆)𝜆 = 0 

We have two eigenvalues: 



𝜆 = 0,−(
𝑘

𝑚1
+ 

𝑘

𝑚2
) 

The first corresponds to the center-of-mass motion, which is constant. The second is the oscillations 

frequency and is given by 𝜔 = √−𝜆: 

 

 

 

This method of finding the eigenvalues of a matrix is 

used when looking for the frequencies of the normal modes in general.  

𝜔 = √𝑘 (
1

𝑚1
+
1

𝑚2
 ) 


