Development of a Diffusive Gradients in Thin-Films Passive Sampling Device for PFAS (ER20-1363) Samuel D. Hodges, Huong T. Pham, Michael B. Howland, and Julian L. Fairey (University of Arkansas)

Introduction

a few weeks, PFAS are extracted from the binding layer. The time-weighted average bulk water concentration of each PFAS, C_{bulk} coefficient in the gel layer, D_{Gel}. For 24 target PFAS, we present D_{Gel} values as a function of pH and temperature, binding layer extraction efficiencies from two resins, and comparisons of grab samples to DGT-PSD box tests with t_D of 2-, 6-, and 11-days.

<u>1. PFAS Diffusion Coefficients: Two-Compartment Diffusion Cell Tests</u>

Scheme 1

Results:

Objective: Determine PFAS D_{Gel} values as a function of PFAS chain length, temperature, and pH.

Background: The diffusive gel restricts PFAS mass transport between the bulk water and the binding layer to molecular diffusion; therefore, D_{Gel} is needed to determine C_{DGT} for each PFAS.

Experimental Method: Diffusion cell tests were conducted to measure PFAS concentration profiles in the source and sink compartments. PFAS diffused across the gel where $\delta_{Gel} = 0.08$ -, 0.12-, 0.16-, 0.20 cm. D_{Gel} was determined using a finite difference model formulated from Fick's first two laws.

Increasing chain length

• D_{Gel} about halved from C4 to C10

Decreasing temperature

D_{Gel} about halved from 25 to 5 °C

C4–C10 PFCAs and C4–C9 PFSAs

2a. PFAS Extraction Efficiencies from SBA Resin

Objective: Determine PFAS extraction efficiencies from SBA Resin.

Experimental Conditions: See section 2b. Utilized strong base anion (SBA) resin.

Results:

- SBA resin had low PFAS extraction efficiencies compared to WAX resin (see section 2b)
- SBA resin was not utilized in further tests

Diffusive gradients in thin-films (DGT) passive sampling devices (PSDs) are kinetic samplers in which target analytes (e.g., PFAS) in the bulk water accumulate in a binding layer following diffusion through (1) a diffusive boundary layer (DBL) of thickness, δ_{DBL} , that can be determined in-situ and (2) a gel layer of known thickness, δ_{Gel} . Following a deployment time, t_D, which ranges from several days to should equal C_{DGT}, which is calculated from the extracted PFAS concentration adjusted for extraction efficiency and the PFAS diffusion

2b. PFAS Extraction Efficiencies from WAX Resin

Objective: Determine PFAS extraction efficiencies from WAX resin and identify extraction solvents to achieve \geq 70 % recovery of at least 12 PFAS.

Experimental Method: Utilized weak anion exchange (WAX) resin and four methanol (MeOH) based extraction solvents: (1) MeOH only, (2) MeOH + 50 μ M NH_4OH , (3) MeOH + 50 μ M NH_4OAc , and (4) MeOH + 50 μ M NH_4OCOH .

Results:

- MeOH only produced PFAS extraction efficiencies between 15–65 %
- Salt addition improved PFAS recoveries, with NH₄OH chosen for Box Tests

3. Assess DGT-PSDs for Determining PFAS Concentrations in Box Tests

vith working liquid Circular cutouts wall faces allow for installation of DG1 PSD (magenta).

Objective: Demonstrate C_{DGT} within 40% of time weighted average C_{bulk} for at least 12 of 24 target PFAS compounds.

Experimental Method: Three box experiments spiked with 24 target PFAS at 5,000 ng·L¹. PFAS extracted using using MeOH + 50 μ M NH₄OH. All tests completed with four DGT-PSDs $(\delta_{Gel} = 0.12 \text{ cm})$ and deployment times, t_D , of **2-**, **6-**, and **11-days**.

Results:

Validated test (± 40%)

- C_{DGT} within 40 % of C_{bulk} at:
 - $t_D = 2$ -days, 5 PFCAs and 5 PFSAs
 - t_D = 6-days, 4 PFCAs and 4 PFSAs
 - $t_D = 11$ -days, 4 PFCAs and 4 PFSAs
- Proof-of-concept for quantifying PFAS with DGT-PSDs

Future Work

- Diffusion cell tests to assess the impact of conductivity on analyte mass transport through agarose gel
- Extraction efficiency tests to quantify PFAS uptake and recovery with WAX resin and determine associated uncertainty
- Box experiments with lower initial PFAS concentrations (100–500 ng•L⁻¹) to assess WAX binding layers

Reference: Fang et al., *Environ. Sci. Technol.*, 2021, 55, 14, 9548-9556.

