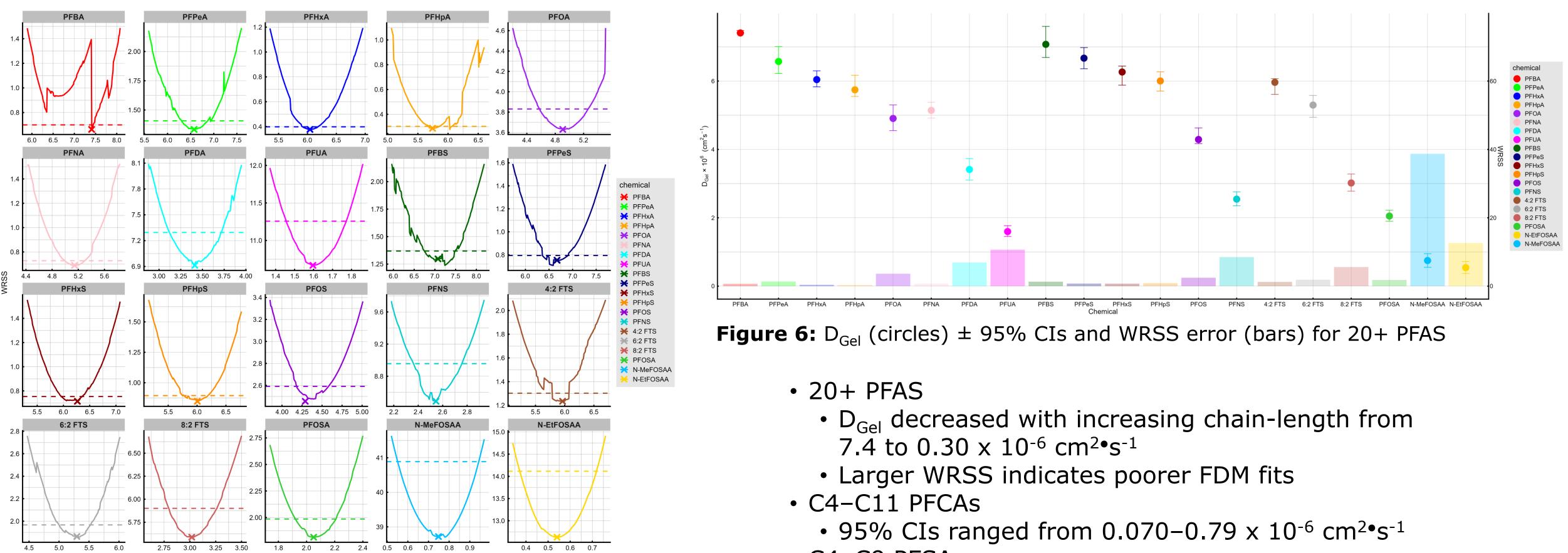

Development of a Diffusive Gradients in Thin-Films Passive Sampling Device for PFAS (ER20-1363) Samuel D. Hodges, Huong T. Pham, and Julian L. Fairey (University of Arkansas)

Introduction:

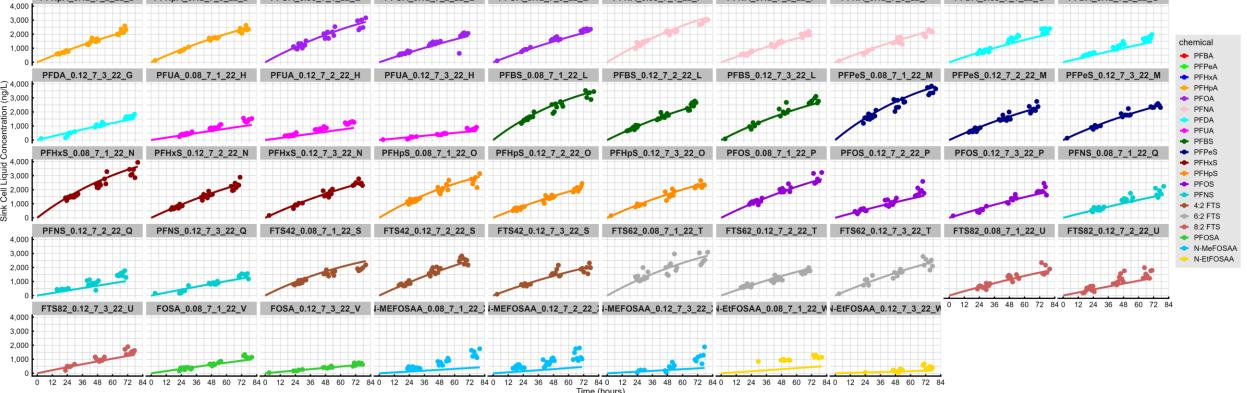
Diffusive gradients in thin-films (DGT) passive samplers are kinetic samplers in which analytes sorb to a binding layer following diffusion through a (1) stagnant diffusive boundary layer (DBL), the thickness of which, δ_{DBL} , varies with local hydrodynamics and (2) hydrogel of known thickness, δ_{Gel} . The hydrogel restricts mass transport to molecular diffusion and, therefore, diffusion coefficients in hydrogels, D_{Gel}, are needed to determine timeweighted-average (TWA) PFAS concentrations.

Two-compartment Diffusion Cell (D-Cell):

- Well-mixed source and sink compartments bridged by diffusive gel
- Source compartment spiked with analytes and measure in source and sink over time
- Sized for DGT Research[®] commercial gels
- Used to determine DGel ± 95% confidence interval (CI) for each analyte


Validated D-Cell and FDM used to Measure D_{Gel} ± 95% CI for 20+ PFAS

• D-Cell tests spiked at C_{Source} of 10,000 ng•L⁻¹ C_{Source} decreased 10–30% over 72 hours Non-steady-state flux required FDM


PFBA_0.08_7_1_22_A	PFBA_0.12_7_2_22_A	PFBA_0.12_7_3_22_A	PFPeA_0.08_7_1_22_B	PFPeA_0.12_7_2_22_B	PFPeA_0.12_7_3_22_B	PFHxA_0.08_7_1_22_C	PFHxA_0.12_7_2_22_C	PFHxA_0.12_7_3_22_C	PFHpA_0.08_7_1_22_D
	- 3								
PFHpA_0.12_7_2_22_D	PFHpA_0.12_7_3_22_D	PFOA_0.08_7_1_22_E	• PFOA_0.12_7_2_22_E	PFOA_0.12_7_3_22_E	PFNA_0.08_7_1_22_F	PFNA_0.12_7_2_22_F	PFNA_0.12_7_3_22_F	PFDA_0.08_7_1_22_G	PFDA_0.12_7_2_22_G
PFDA_0.12_7_3_22_G	PFUA_0.08_7_1_22_H	PFUA_0.12_7_2_22_H	PFUA_0.12_7_3_22_H	PFBS_0.08_7_1_22_L	PFBS_0.12_7_2_22_L	PFBS_0.12_7_3_22_L	PFPeS_0.08_7_1_22_M	PFPeS_0.12_7_2_22_M	PFPeS_0.12_7_3_22_M
• • • •		- \ \		-it to b	* * *	• • • • •	- in is is		
PFHxS_0.08_7_1_22_N	PFHxS_0.12_7_2_22_N	PFHxS_0.12_7_3_22_N	PFHpS_0.08_7_1_22_0	PFHpS_0.12_7_2_22_0	PFHpS_0.12_7_3_22_0	PFOS_0.08_7_1_22_P	PFOS_0.12_7_2_22_P	PFOS_0.12_7_3_22_P	PFNS_0.08_7_1_22_Q
- in si n		· · · · ·			· · · ·		* * *		
PFNS_0.12_7_2_22_Q	PFNS_0.12_7_3_22_Q	FTS42_0.08_7_1_22_S	FTS42_0.12_7_2_22_S	FTS42_0.12_7_3_22_S	FTS62_0.08_7_1_22_T	FTS62_0.12_7_2_22_T	FTS62_0.12_7_3_22_T	FTS82_0.08_7_1_22_U	FTS82_0.12_7_2_22_U
	· ż. " w		· 	- 5. 10 i					***

12 24 36 48 60 72 84 0 Figure 3: Source D-Cell temporal profiles with FDM fits shows C_{Source} decreases 10-30% over 72 hour test indicating non-steady-state flux.

• C_{Source} and C_{Sink} used to determine $D_{Gel} \pm 95\%$ CI for 20+ PFAS with the FDM

Figure 5: Weighted residual sum of squares (WRSS) error between experimental and simulated PFAS concentration profiles vs. D_{Gel}. Minimum WRSS was best fit D_{Gel} and intersection of error space parabola with horizontal line indicates \pm 95% CI for 20 PFAS.

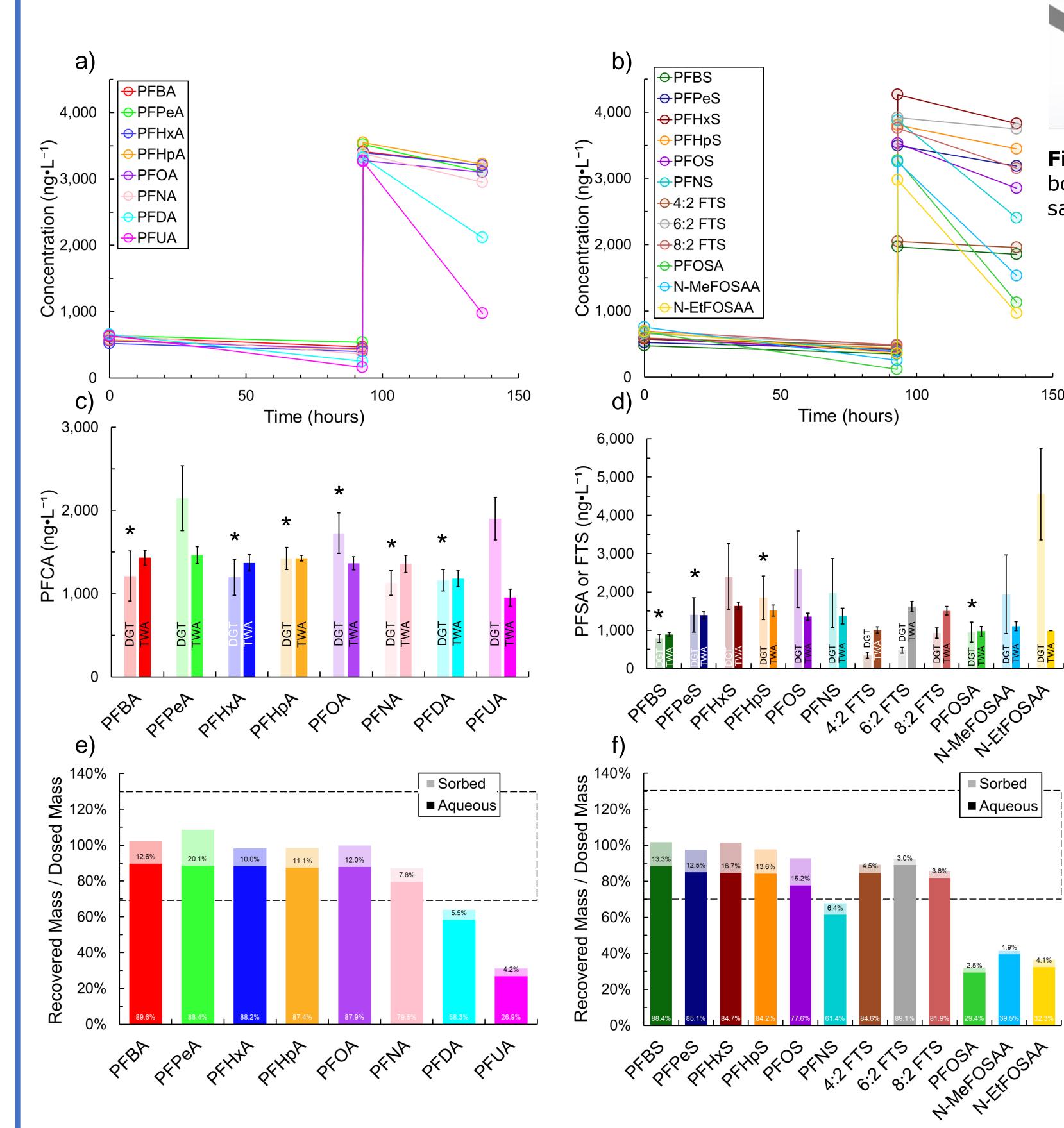


Figure 4: Sink D-Cell temporal profiles with FDM fits shows C_{Sink} increases over 72 hour test with shorter chain PFAS diffusing faster as expected.

- C4–C9 PFSAs
- 95% CIs ranged from 0.41–0.91 x 10⁻⁶ cm²•s⁻¹ • X:2 FTSs, PFOSA, FOSAAs
- 95% CIs ranged from 0.32–0.64 x 10⁻⁶ cm²•s⁻¹

Box Tests with Mixture of 20+ PFAS:

- Batch experiments with four DGT passive samplers
- Aqueous phase sampled at beginning, mid-point, step-change, and end of
- test to determine time-weighted-average (TWA) PFAS concentrations. • DGT binding layers extracted at end of test, adjusted for extraction efficiency, and averaged.
- Errors propogated from binding layer extraction and D_{Gel} to determine DGT 95% CIs

Figure 8: DGT Box test for a step-change at 96 hours. (**a & b**) Aqueous phase PFAS concentrations, (c & d) time-weighted-average (TWA) aqueous phase concentrations with 95% CIs and the average of four DGT passive sampler concentrations adjusted for extraction efficiencies (not shown) with 95% CIs which includes errors propogated from D_{Gel} and DGT binding layer extraction, and (**e & f**) mass balances of 20 PFAS with the dashed box indicating \pm 30% threshold for completion.

Ongoing Work:

- D-Cell lining with stainless steel to decrease sorption of long-chain and hydrophobic PFAS
- Reducing uncertainty in DGT binding layer extraction efficiencies using mass-labeled PFAS
- Continuous flow box tests to assess hydrodynamics and measure method detection limits (MDLs)

Acknowledgements:

The authors thank David G. Wahman (USEPA, Cincinnati, Ohio) who is a technical advisor on ER20-1363 and Levi M. Haupert (USEPA, Cincinnati, Ohio) for help with the numerical modeling.

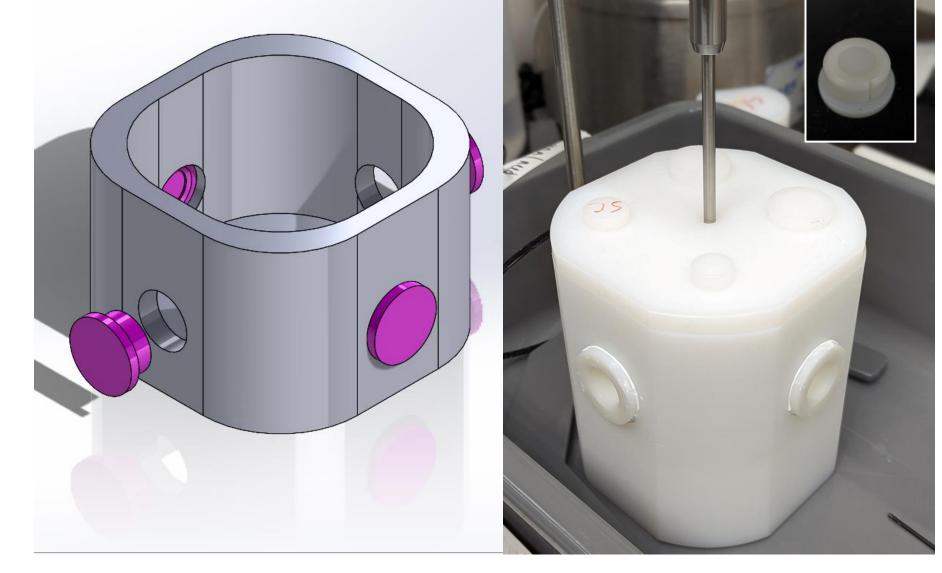


Figure 7: Digital rendering of a DGT Box (left), photo of a box experiment (right), and an assembled DGT passive sampler (inset).

DGT Box test with C_{in} step-<u>change:</u>

- C_{in} initially 500 ng•L⁻¹ and step increased to about 3,700 ng•L⁻¹ at 96 hours (Figure 8a & 8b).
- Aqueous phase sampled at beginning, step-change, and end of test to determine time-weighted-average (TWA) PFAS concentrations (TWA, Figure 8c & 8d).
- DGT binding layers extracted after 138 hours (DGT, Figure 8c & 8d).
- 10 of 20 PFAS had $C_{DGT} \pm 30\%$ of C_{TWA} as indicated by the asterisk (Figure 8c & 8d)
- DGTs captured TWA of C_{in} stepchange
- 14 of 20 PFAS have complete mass balances as indicated by total mass recovered of $100\% \pm 30\%$ (Figure 8e & 8f)
- Long-chain and hydrophobic PFAS losses attributed to sorption to Box walls

Sorbed

Aqueous