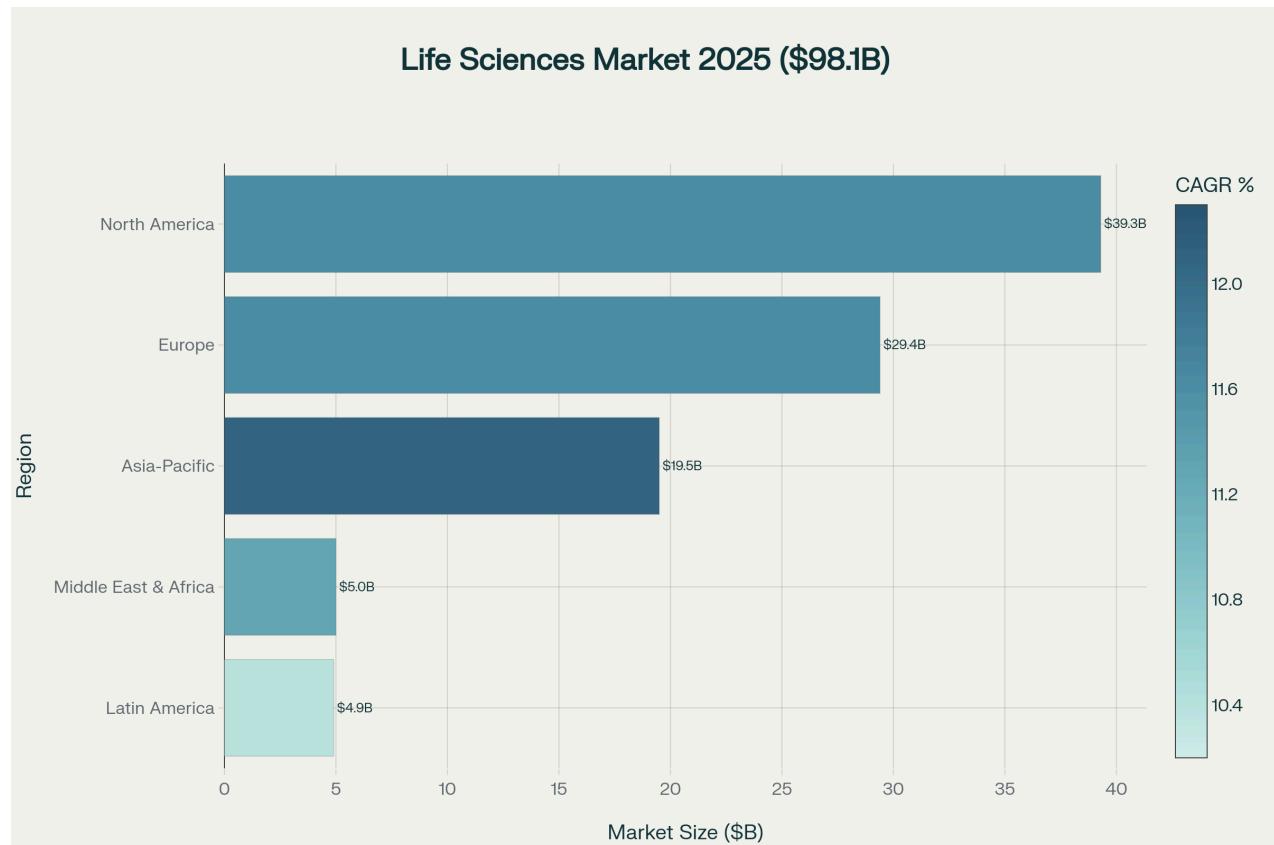


Global Market Intelligence Report: Scottish Life Sciences Sector

Prepared for Scottish-Based Life Sciences Companies

Report Date: November 2025

The Scottish life sciences sector stands at a pivotal moment in its evolution, having exceeded all strategic growth targets years ahead of schedule and positioned itself as one of Europe's most dynamic biomedical clusters. With turnover surpassing £10.5 billion, exports exceeding £4.3 billion, and employment reaching 42,000 professionals, Scotland has demonstrated remarkable capability to compete on the global stage. This comprehensive market intelligence report provides Scottish life sciences companies with detailed insights into global market opportunities, competitive landscapes, regulatory environments, and strategic pathways for international expansion across pharmaceuticals, biotechnology, medical devices, and emerging therapeutic modalities. [1] [2] [3]


Scottish life sciences sector has demonstrated remarkable growth, with turnover reaching £10.5bn in 2022, employment at 42,000, and exports of £4.3bn.

Executive Summary: Strategic Position and Global Opportunity

Scotland's life sciences sector has achieved extraordinary growth, reaching the £8 billion turnover target set for 2025 by 2020—five years ahead of schedule—and ultimately surpassing £10 billion by 2021. The sector comprises over 750 companies employing more than 40,000 people across businesses and higher education institutions, with exports accounting for over 80% of turnover. This export-intensive orientation positions Scottish companies to capitalize on unprecedented global market expansion, with the worldwide life sciences market projected to grow from \$88.2 billion in 2024 to \$269.56 billion by 2034 at a CAGR of 11.82%. [\[1\]](#) [\[4\]](#) [\[5\]](#) [\[2\]](#) [\[6\]](#) [\[7\]](#)

Key Strategic Findings:

- **Global Market Expansion:** The biotechnology market alone is forecast to reach \$5.71 trillion by 2034, growing at 13.9% CAGR, while cell and gene therapy markets will expand to \$187 billion at 24% CAGR [\[8\]](#) [\[9\]](#)
- **Regional Opportunities:** Asia-Pacific represents the fastest-growing region at 12.1-14.8% CAGR, while North America remains the largest market at \$39.3 billion in 2025 [\[7\]](#) [\[10\]](#)
- **Technology Transformation:** AI-driven drug discovery is projected to capture 30% of new drug development by 2025, with the market growing from \$1.5 billion to \$13 billion by 2032 [\[11\]](#) [\[12\]](#)
- **Scottish Competitive Advantage:** World-leading capabilities in contract manufacturing (CDMO), precision medicine, cell and gene therapy, and medical devices position Scotland uniquely for global expansion [\[13\]](#) [\[14\]](#) [\[15\]](#)

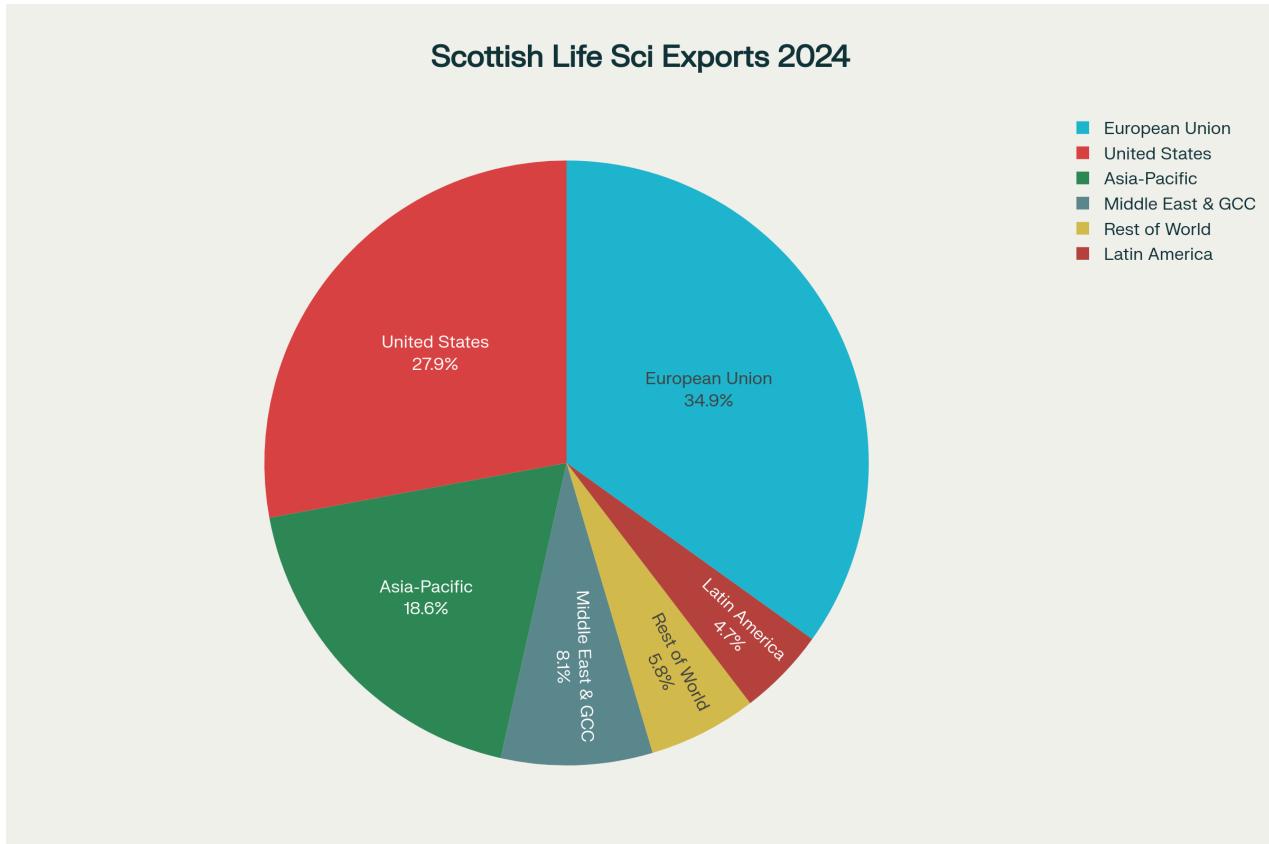
North America leads the global life sciences market in 2025 with \$39.3bn, followed by Europe (\$29.4bn) and Asia-Pacific (\$19.5bn), with Asia-Pacific showing the highest growth rate.

Scottish Life Sciences Sector: Capabilities and Competitive Strengths

Sector Composition and Economic Impact

Scotland's life sciences ecosystem encompasses diverse subsectors with distinct competitive advantages. The sector generated approximately £10.5 billion in turnover in 2022, contributing £4.5 billion to Scottish GVA. The broader life sciences cluster, including supporting services, employs 46,900 people across 972 sites, with an average wage of £40,600—significantly above the Scottish average.^{[1] [16] [17] [18]}

Subsector Breakdown:


Pharmaceutical Services and Contract Manufacturing: Scotland hosts world-class CDMO facilities operated by companies including Symbiosis Pharmaceutical Services, Piramal Pharma Solutions, Sterling Pharma Solutions, and Curia. These facilities provide sterile fill-finish, antibody-drug conjugate (ADC) manufacturing, viral vector production, and API development services to global biotechnology and pharmaceutical companies. Symbiosis, based in Stirling, played a critical role during COVID-19 by supporting vaccine manufacturing for clinical trials and has secured £26 million for facility expansion. Piramal expanded its Grangemouth ADC facility with £45 million investment, increasing capacity by 70-80%.^{[19] [14] [20] [15] [21]}

Medical Devices and MedTech: Scotland's medtech sector comprises approximately 200 companies employing over 9,000 people, with particular strengths in dental and ophthalmologic devices (17%), in vitro diagnostics (12%), and cardiovascular technologies. Vascutek (now part of Terumo) manufactures advanced vascular grafts at its Inchinnan facility, exporting over 90% of products to more than 100 countries and has received £33 million investment for expansion. The sector has shown 8% annual growth over the past decade.^{[22] [23] [24]}

Biotechnology and Cell & Gene Therapy: Scotland's biotech sector includes over 85 companies focused on novel therapeutics, with emerging strength in cell and gene therapy. Edinburgh-based Lentitek recently secured £1 million to advance lentiviral vector manufacturing technology for CAR-T cell therapies. The Cell and Gene Therapy Catapult opened its first Scottish facility at Edinburgh BioQuarter, providing access to manufacturing expertise and development resources. Roslin Cell Therapies, employing over 100 staff, has established itself as a globally recognized player in cell therapy manufacturing.^{[25] [26] [27]}

Digital Health and Precision Medicine: Scotland has established world-leading infrastructure for precision medicine, including the £32 million Imaging Centre of Excellence with Scotland's only 7 Tesla MRI scanner and over £80 million in precision medicine clinical trial infrastructure at Queen Elizabeth University Hospital. The Precision Medicine Scotland Innovation Centre provides industry access to genomic data, healthcare informatics, and clinical expertise. Major collaborations include the Scottish Genomes Partnership (£15 million partnership with Illumina) and AstraZeneca's global genomics initiative.^{[28] [29] [30] [31]}

Scottish Life Sci Exports 2024

The European Union is Scotland's largest life sciences export market at 34.9%, followed by the United States at 27.9% and Asia-Pacific at 18.6%.

Research Excellence and Innovation Infrastructure

Scotland's research excellence underpins its commercial life sciences strength. In the Research Excellence Framework (REF) 2021, the University of Dundee ranked first in the UK for biological sciences, while the University of Edinburgh placed third in Europe for biological sciences citations. This academic foundation generates substantial spinout activity, with Scottish universities creating internationally competitive companies across therapeutics, diagnostics, and platform technologies.^[32]

Notable Innovation Hubs and Facilities:

- **Edinburgh BioQuarter:** One of Europe's largest integrated healthcare, research and education campuses, hosting companies from early-stage startups to major pharmaceutical operations^[33]
- **ONE BioHub Aberdeen:** £40 million investment providing state-of-the-art laboratory and collaboration spaces, supporting the North East's ambition to double its life sciences sector by 2030^[34]
- **Medicines Manufacturing Innovation Centre (MMIC):** Based in Renfrewshire, this facility brings together CPI, University of Strathclyde, Scottish Enterprise, AstraZeneca, and GSK to revolutionize small molecule manufacturing^[35]
- **Dundee Life Sciences Innovation Hub:** 54,000 square-foot facility opened in 2025, offering flexible laboratory and office space for spinouts, startups, and international businesses^[36]

[37]

Spinout Success Stories: Scottish universities have generated numerous high-value spinouts. Notable examples include Exscientia (AI-driven drug discovery, IPO valuation over \$3 billion), Amphista Therapeutics (protein degradation, raised over \$60 million), Elasmogen (antibody-like "solomers" for autoimmune diseases), and NovaBiotics (infectious disease therapeutics, achieved global commercialization).^[38] ^[34]

Clinical Research and Translational Capabilities

Scotland's integrated NHS system and strong academic-clinical partnerships create exceptional capabilities for clinical research and translation. NHS Research Scotland (NRS) provides a single point of contact for industry, offering coordinated access to clinical investigators, trial-ready populations, and streamlined approvals across Scotland's health boards. Scotland has achieved sustained permissions performance among the best in Europe, with efficient study start-up and delivery.^[39]

The Scottish Government announced in 2024 that Scotland will host four new Commercial Research Delivery Centres (CRDCs) at NHS Lothian, NHS Greater Glasgow and Clyde, NHS Grampian, and NHS Tayside. These centres, funded through the £400 million Voluntary Scheme for Branded Medicine Pricing, Access and Growth (VPAG), will create opportunities for patients to access cutting-edge treatments and clinical trials, with particular focus on cancer, obesity, and infectious diseases.^[40] ^[41]

Scotland's genomic medicine capabilities are advancing rapidly under the 2024-2029 "Building Our Future" strategy. The Scottish Strategic Network for Genomic Medicine reported that 82% of planned deliverables were completed by 2024-2025, including the first validated national genomic test directory and eight of eleven cancer genomic testing pathways now operational. Four regional genomics labs in Aberdeen, Dundee, Edinburgh, and Glasgow are working toward a modernized Target Operating Model.^[29] ^[42] ^[43]

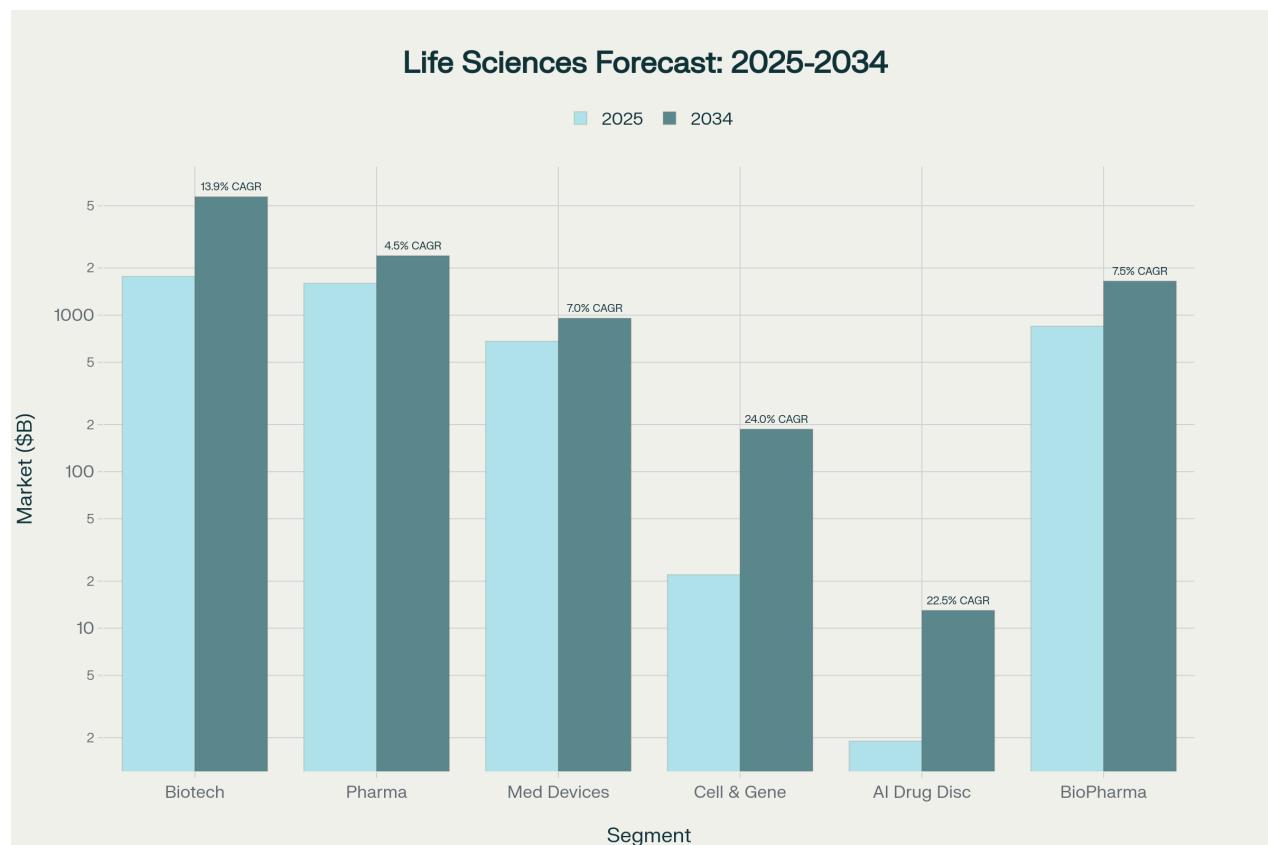
Global Life Sciences Market: Size, Growth, and Segmentation

Market Overview and Growth Projections

The global life sciences market is experiencing robust expansion driven by technological innovation, demographic shifts, and increasing healthcare investment. From a 2024 baseline of \$88.2 billion, the sector is projected to reach \$269.56 billion by 2034, representing a compound annual growth rate of 11.82%. This growth encompasses pharmaceuticals, biotechnology, medical devices, diagnostics, and enabling technologies, with particularly strong momentum in biologics, cell and gene therapies, and AI-enabled drug discovery.^[6] ^[7]

Market Segmentation by Therapeutic Modality:

Biotechnology: The global biotechnology market stands at \$1.77 trillion in 2025 and is forecast to reach \$5.71 trillion by 2034 at 13.9% CAGR. Bio-pharmacy accounts for 42% of the segment, driven by increasing chronic disease prevalence and demand for targeted biologics. Asia-Pacific


is projected to grow fastest at 14.8% CAGR, supported by government initiatives in China, Japan, and India and lower operating costs.^{[8] [9] [44]}

Pharmaceuticals: The pharmaceutical market, valued at approximately \$1.6 trillion in 2024, is expected to grow to \$2.4 trillion by 2030. Growth is driven by aging populations, rising chronic disease burden, and innovations in precision medicine. Specialty pharmaceuticals and biologics represent the fastest-growing segments, with first-in-class products now accounting for 50% of the market compared to 20% in 2000.^{[45] [46]}

Medical Devices: The global medical device market was valued at \$542.21 billion in 2024 and is projected to reach \$886.68 billion by 2032, exhibiting a 6.5% CAGR. North America dominates with 38.17% market share, but Asia-Pacific is growing fastest at 9.23% CAGR, with China's market alone projected to reach \$210 billion by 2025. Connected medical devices represent a particularly high-growth segment, expected to grow from \$75.99 billion in 2025 to \$152.71 billion by 2030 at 14.98% CAGR.^{[47] [48] [49]}

Cell and Gene Therapy: This transformative segment represents one of the highest-growth opportunities, with the market valued at \$21.82 billion in 2024 and projected to reach \$187.44 billion by 2034 at 24% CAGR. CAR-T cell therapies for cancer and gene therapies for rare diseases are driving adoption, though manufacturing complexity and cost remain significant challenges.^{[50] [51] [52]}

AI in Drug Discovery: Artificial intelligence is revolutionizing pharmaceutical R&D, with the market growing from \$1.5 billion to approximately \$13 billion by 2032. AI is projected to generate between \$350 billion and \$410 billion in annual value for the pharmaceutical sector by 2025 through innovations in drug development, clinical trials, and precision medicine. By 2025, an estimated 30% of new drugs will be discovered using AI platforms.^{[11] [12]}

Cell & Gene Therapy shows the highest growth potential with 24% CAGR, followed by AI Drug Discovery at 22.5%, while Biotechnology represents the largest market at \$5.7 trillion by 2034.

Regional Market Dynamics

North America: The largest regional market at \$39.3 billion in 2025, North America benefits from advanced healthcare infrastructure, robust reimbursement systems, and concentration of pharmaceutical and biotech companies. The United States specifically offers fast regulatory pathways through the FDA, strong intellectual property protection, and openness to innovation, making it the priority export market for Scottish pharma services, medical technology, and digital health companies. However, the market faces challenges from drug pricing pressures, potential tariff policies, and regulatory volatility. [\[4\]](#) [\[13\]](#) [\[7\]](#) [\[53\]](#) [\[22\]](#) [\[54\]](#)

Europe: Valued at \$29.4 billion in 2025 and growing at 11.6% CAGR, Europe represents Scotland's largest current export market due to regulatory alignment, geographic proximity, and established trade relationships. The EU's centralized approval procedure through the European Medicines Agency enables single marketing authorization valid across all member states. However, post-Brexit complications have introduced additional regulatory requirements, supply chain complexity, and potential market access barriers for UK companies. [\[7\]](#) [\[55\]](#) [\[56\]](#) [\[57\]](#) [\[58\]](#)

Asia-Pacific: The fastest-growing regional market at 12.1% CAGR, Asia-Pacific is valued at \$19.5 billion in 2025 and projected to reach \$54.81 billion by 2034. China, Japan, and India dominate the region, each offering distinct opportunities. China is building a vigorous life sciences ecosystem with improved IP protection and expedited regulatory pathways, with pharmaceutical sales per capita at only 6% of US levels indicating substantial growth runway. Japan offers strong IP protection, high healthcare expenditure, and government support for regenerative medicine under Prime Minister Abe's reforms. India is emerging as a manufacturing hub with expanding healthcare infrastructure and rising biosimilar adoption. [\[59\]](#) [\[10\]](#) [\[60\]](#) [\[61\]](#) [\[7\]](#)

Middle East and GCC: The Middle East life sciences market is projected to reach \$36 billion by 2028, with particularly strong growth in Saudi Arabia and UAE. These countries are investing heavily in healthcare infrastructure under Vision 2030 and similar national transformation programs, with the GCC healthcare innovation market growing from \$121.9 billion in 2025 to \$170.5 billion by 2030. Saudi Arabia and UAE accounted for 92% of nearly 400 healthcare sector transactions between 2021 and April 2025, demonstrating robust investment momentum. [\[62\]](#) [\[63\]](#) [\[64\]](#) [\[65\]](#) [\[66\]](#)

Latin America: The pharmaceutical market in Latin America is projected to grow from \$127.05 billion in 2024 to \$234.17 billion by 2033 at 7.03% CAGR. Brazil dominates as the largest market, followed by Mexico, both benefiting from expanding health insurance coverage, government procurement programs, and increasing adoption of biosimilars. The region shows strong potential for generics, biosimilars, and specialty drugs, though regulatory complexity and import tariffs present challenges. [\[67\]](#) [\[68\]](#) [\[69\]](#)

Key Export Markets: Opportunities and Strategic Considerations

United States: Premium Market with Scale Advantages

The United States represents the world's largest and most lucrative life sciences market, with pharmaceutical sales exceeding \$420 billion and medical device sales reaching \$200 billion in 2025. The US has been identified as a priority export market for Scottish pharma services, medical technology, and digital health based on market scale, ease of doing business, and openness to innovation. [\[4\]](#) [\[13\]](#) [\[47\]](#) [\[45\]](#) [\[70\]](#)

Market Advantages: The US offers faster regulatory approval pathways compared to other major markets, strong intellectual property protection under the Hatch-Waxman Act and Biologics Price Competition and Innovation Act, favorable reimbursement through Medicare and private insurance, and substantial venture capital availability supporting biotech innovation. The FDA's expedited programs including Breakthrough Therapy Designation, Fast Track, and Priority Review enable accelerated market access for innovative therapies. [\[71\]](#) [\[72\]](#) [\[73\]](#) [\[74\]](#) [\[75\]](#)

Scottish Competitive Position: Scottish CDMO capabilities are particularly well-positioned for US market entry, as pharmaceutical companies increasingly outsource manufacturing to specialized providers. Symbiosis, Piramal, and Sterling Pharma Solutions all serve US clients from Scottish facilities. Scottish precision medicine capabilities align with growing US emphasis on personalized therapeutics and companion diagnostics. Medical device companies benefit from the 510(k) clearance pathway for devices substantially equivalent to existing products. [\[76\]](#) [\[74\]](#) [\[14\]](#) [\[20\]](#) [\[15\]](#) [\[28\]](#) [\[30\]](#)

Regulatory Requirements: Importing pharmaceutical products into the US requires compliance with FDA standards for quality, safety, and effectiveness, including facility registration, drug listing, appropriate marketing authorization, proper labeling, and adherence to current Good Manufacturing Practices (cGMP). The Drug Supply Chain Security Act (DSCSA) mandates serialization and traceability for all prescription drugs by 2025, requiring foreign manufacturers to implement FDA-compliant product identifiers. The FDA conducts foreign manufacturing site inspections for GMP compliance and can place facilities on Import Alerts, refusing product admission. [\[72\]](#) [\[73\]](#) [\[77\]](#) [\[71\]](#)

Recent Regulatory Changes: In September 2024, US Customs and Border Protection issued guidance redefining country-of-origin labeling requirements for prescription drugs, requiring pharmacies to label the country of origin on packages given to patients, not just bulk containers. The Automated Commercial Environment (ACE) system enables streamlined import processing for compliant companies with complete data and known-good manufacturers. [\[71\]](#)

Market Entry Strategy: Scottish companies should establish US regulatory expertise, potentially through consultants or US-based regulatory affairs professionals. For CDMO services, demonstrating FDA inspection readiness and GMP compliance is essential. Companies should consider strategic partnerships with US distributors or establishing US subsidiaries for direct market presence. Participation in key industry events including BIO International Convention and specific therapeutic area conferences facilitates business development. [\[78\]](#) [\[79\]](#)

European Union: Established Market with Post-Brexit Complexity

The European Union constitutes Scotland's largest current export market, accounting for 34.9% of life sciences exports (£1.5 billion in 2024). The EU pharmaceutical market exceeds €170 billion, with Germany, France, UK, Italy, and Spain as the largest national markets. Despite geographic and cultural proximity, Brexit has introduced significant new complexities requiring strategic adaptation. [5] [80] [81]

Regulatory Framework: The European Medicines Agency provides centralized marketing authorization valid across all EU/EEA member states, streamlining market access. The Medical Devices Regulation (MDR) and In Vitro Diagnostic Regulation (IVDR) establish harmonized standards for medical devices, with notified bodies conducting conformity assessments and issuing CE certificates. However, the UK's departure from the EU eliminated automatic recognition of UK regulatory approvals, requiring separate submissions and potentially dual manufacturing or batch release arrangements. [55] [82] [83] [56] [57]

Post-Brexit Challenges: The large majority of UK life sciences companies report Brexit has had negative impacts including increased bureaucracy, additional costs for import/export licenses and certifications, cancellation of some international projects and lost business, staffing issues and talent loss, supply chain disruption, reduced investment by multinational companies, and longer lead times for products. Companies must now appoint Qualified Persons in EU/EEA member states for batch release and quality control testing, address supply chain impacts and potentially relocate importation hubs to the EU, and manage dual regulatory pathways for UK and EU markets. [56] [57] [84] [85]

Mutual Recognition Agreements: The EU-UK Mutual Recognition Agreement covers batch testing for certain product categories including vaccines for human use and plasma-derived pharmaceuticals, though Advanced Therapy Medicinal Products (ATMPs) are excluded. This reduces some duplicate testing requirements but does not eliminate the need for separate regulatory oversight. [86]

Market Access Strategies: Scottish companies should consider establishing EU subsidiaries or partnerships with EU-based distributors to simplify regulatory compliance and supply chain management. For medical devices, CE marking through notified bodies remains essential for EU market access. Pharmaceutical companies must navigate national pricing and reimbursement systems, which vary significantly across member states despite centralized marketing authorization. Germany offers the largest market opportunity and can serve as a gateway for broader European expansion, while Scandinavian countries present opportunities for digital health transformation. [82] [22]

Asia-Pacific: High-Growth Markets with Diverse Entry Strategies

Asia-Pacific represents the fastest-growing regional opportunity, with particularly strong potential in China, Japan, India, and Singapore. Each market presents distinct characteristics requiring tailored approaches.

China: The Chinese life sciences market offers enormous growth potential, with pharmaceutical sales per capita at approximately \$80 in 2018—only 6% of US levels—indicating substantial

expansion runway. China is building a vigorous life sciences ecosystem with improved IP protection, expedited regulatory pathways, and significant government investment in biomedical innovation. Beijing, Shanghai, Singapore, and Greater Tokyo represent the largest life sciences markets in Asia-Pacific. [59] [60] [87]

China's National Medical Products Administration (NMPA) has modernized approval processes, though regulatory timelines still range 12-24 months for device registrations. The government is promoting localization of medical technology production and encouraging technology transfer partnerships. Scottish CDMO and biologics capabilities align well with China's emphasis on biotechnology innovation and growing demand for advanced therapeutics. [88] [60] [76] [61]

Market Entry Considerations: Foreign life sciences companies entering China should consider partnership with local Chinese firms, particularly for market access and distribution. Out-licensing arrangements where Chinese partners handle development and commercialization remain common, though increasingly Scottish biotech startups seek to enter directly with local financing support. The Chinese government's public procurement policies for medical devices have come under EU investigation, potentially affecting market access dynamics. [60] [88]

Japan: Japan represents a large, sophisticated market with strong IP protection, high compliance standards, transparent systems, and favorable government policies. The country has identified regenerative medicine as a biopharma specialty, with plans to grow the segment to ¥26 trillion (\$231 billion) by 2020 under Prime Minister Abe's reforms. Japan's regulatory framework through the Pharmaceuticals and Medical Devices Agency (PMDA) is well-established, though cultural and language considerations require careful navigation. [60]

India: India is emerging as an attractive life sciences manufacturing hub, with growing R&D capabilities and expanding healthcare infrastructure. The country has demonstrated rapid growth in pharmaceutical manufacturing, particularly in generics and biosimilars, and is increasingly focusing on innovation in cell therapies, diagnostics, and precision medicine. India offers lower manufacturing costs and skilled scientific workforce, making it attractive for Scottish companies seeking cost-effective production partnerships or clinical trial sites. [10] [61] [59]

Singapore: Singapore serves as a strategic hub for Asia-Pacific market entry, offering strong IP protection, business-friendly environment, excellent infrastructure, and access to regional markets. The country's precision medicine initiatives and digital health adoption create opportunities for Scottish capabilities in these domains. [87] [59] [60]

Regional Strategy: Scottish companies should prioritize markets based on product maturity and resource availability. Japan and Singapore offer easier regulatory environments for initial Asia-Pacific entry, while China and India require more substantial localization efforts but offer greater scale. Participating in regional life sciences events and engaging Scottish Development International's Asia-Pacific support capabilities facilitates market development. [79] [89]

Middle East and GCC: Emerging High-Value Opportunity

The Middle East, particularly Saudi Arabia and UAE, represents a rapidly emerging opportunity driven by economic diversification, healthcare infrastructure investment, and national transformation programs. The region's life sciences market is projected to reach \$36 billion by 2028, with the GCC healthcare innovation market growing from \$121.9 billion in 2025 to \$170.5 billion by 2030. [\[62\]](#) [\[63\]](#) [\[64\]](#)

Investment and Infrastructure Development: Saudi Arabia and UAE accounted for 92% of nearly 400 healthcare sector transactions between 2021 and April 2025. The UAE led with 198 deals, while Saudi Arabia recorded 170 transactions, demonstrating exceptional investment momentum. Saudi Vision 2030 and UAE Ministry of Health and Prevention's 2023-2026 Strategy are actively injecting capital and fostering public-private partnerships. [\[65\]](#) [\[66\]](#) [\[62\]](#)

Strategic Focus Areas: Both countries are emphasizing biotechnology, digital health, precision medicine, and medical tourism. Saudi Arabia's National Biotechnology Strategy envisions contributing \$34.6 billion to non-oil GDP by 2040, while UAE's digital health market is forecast to grow by over 23% to approximately \$2.65 billion in value by 2030. The region's medical tourism market, valued at \$334.9 million in 2024, is projected to reach \$975 million by 2032. [\[63\]](#)

Genomics and Precision Medicine: Major initiatives include the Emirati and Saudi Genome projects, which are advancing research infrastructure and creating opportunities for precision medicine applications. Abu Dhabi's Department of Health and Abu Dhabi Investment Office signed an MOU with GSK to establish a medical institute focused on integrating genomics data to advance cancer research. [\[64\]](#) [\[63\]](#)

Opportunities for Scottish Companies: Scottish strengths in medical devices, digital health, precision medicine, and contract manufacturing align well with GCC priorities. The region seeks high-quality healthcare solutions for both local populations and international medical tourism. Scottish companies can position themselves as partners for health system modernization, offering innovative technologies with strong quality credentials. [\[22\]](#) [\[62\]](#) [\[64\]](#)

Market Entry Considerations: Success requires understanding local regulatory frameworks, which are evolving rapidly. Building relationships with government health authorities and major healthcare providers is essential. Participation in events such as Saudi Arabia's Global Health Exhibition (which saw \$13.3 billion in announced healthcare investment in 2024) and engaging with regional innovation hubs like Dubai Science Park and Qatar Science and Technology Park facilitates market entry. [\[63\]](#) [\[64\]](#)

Latin America: Growing Market for Affordable Innovation

Latin America's pharmaceutical market is projected to grow from \$127.05 billion in 2024 to \$234.17 billion by 2033 at 7.03% CAGR, with Brazil and Mexico representing over 60% of the regional opportunity. The region presents opportunities particularly for generics, biosimilars, and cost-effective medical technologies. [\[68\]](#) [\[69\]](#)

Brazil: The largest market with pharmaceutical sales exceeding \$48 billion, Brazil benefits from the Unified Health System (SUS) providing free or subsidized medications to millions of citizens. In 2023, over 400 million prescriptions were dispensed under federal health programs,

demonstrating the scale of public procurement opportunities. Brazil's generic market grew 9.67% year-on-year in 2021 to \$5.2 billion, accounting for 29.4% of total pharmaceutical sales. [67] [90] [68]

The country has well-established pharmaceutical manufacturing capabilities and is focusing on biosimilar development to reduce reliance on imported branded pharmaceuticals. Brazil's regulatory authority ANVISA has streamlined approval processes, though timelines of 9-12 months for device registrations remain longer than developed markets. [76] [90] [68]

Mexico: The second-largest market at approximately \$42 billion, Mexico serves as a strategic hub for pharmaceutical trade under the USMCA agreement, benefiting from proximity to the United States. The country has strong industrial base for API manufacturing and contract development, with rising adoption of biosimilars and specialty drugs supported by regulatory modernization. Mexico's Federal Commission COFEPRIS introduced expedited review procedures in 2023, accelerating generic and biosimilar approvals. [91] [68]

Emerging Opportunities: The region is seeing increased demand for specialty and advanced therapies, including cell and gene therapies, regenerative medicine, and targeted biologics. Rising collaborations between biotech firms, hospitals, and research institutions, along with improved reimbursement policies, are accelerating adoption of innovative treatments. In vitro diagnostics represent a significant growth segment, with Brazil exceeding \$1 billion and Mexico approaching \$800 million in annual sales. [69] [67]

Market Entry Strategies: Scottish companies should consider partnerships with local distributors who understand regional regulatory requirements and have established relationships with healthcare systems. For medical devices and diagnostics, positioning products as cost-effective alternatives to premium international brands can facilitate adoption. Generics and biosimilars manufacturers may find opportunities in public procurement programs. Understanding country-specific pricing regulations, reimbursement systems, and local content requirements is essential. [67] [68]

Competitive Landscape and Strategic Positioning

Global Competitive Dynamics

The global life sciences industry is characterized by intense competition among multinational pharmaceutical companies, specialized biotechnology firms, contract service providers, and emerging digital health platforms. Major players including Pfizer, Johnson & Johnson, Roche, Novartis, AstraZeneca, Merck, GSK, and Sanofi dominate pharmaceutical markets, while Thermo Fisher Scientific, Lonza, and Charles River Laboratories lead in life sciences services. [6] [8]

Consolidation and M&A Trends: The industry is experiencing significant M&A activity driven by patent cliffs, pipeline gaps, and need for innovative assets. Large pharmaceutical companies face over \$200 billion in revenue at risk from patent expirations by 2030, creating strong incentives for acquisitions. In 2024-2025, major deals have targeted cancer therapies, ADCs, radioconjugates, and AI-powered drug discovery platforms more than any other therapeutic areas. [75] [92] [93]

Notable recent acquisitions include MSD's £10 billion acquisition of Verona Pharma and Sanofi's acquisition of Vicebio for \$1.15 billion, demonstrating continued appetite for UK and European biotech assets. Eli Lilly's acquisition of Versanis Bio for obesity therapeutics and Recursion-Exscientia merger for AI drug discovery capabilities illustrate strategic priorities.[\[94\]](#) [\[95\]](#)

Licensing and Partnership Models: Licensing deals remain central to industry innovation, with approximately 130 deals expected in 2025. The trend is toward larger upfront payments (growing 22% annually from 2021-2024) but increasingly back-end loaded structures, with development, regulatory, and commercial milestones accounting for 95% of total deal value versus 87% in 2019. Risk-sharing partnerships with equal cost and profit distribution have increased 47% in the past 18 months according to Deloitte's 2025 survey.[\[92\]](#) [\[96\]](#)

Cross-Border Opportunities: China's out-licensing deal value reached \$47 billion in 2024 with 67% three-year CAGR, representing major opportunities for Western companies to access innovative Chinese biotech assets. Scottish companies can potentially partner with Chinese biotechs for worldwide or ex-China rights, accessing novel therapeutics while Chinese partners retain domestic markets.[\[97\]](#)

Scottish Competitive Advantages

Scotland offers several distinctive competitive advantages that position companies favorably in global markets:

Contract Manufacturing Excellence: Scotland has established world-class capabilities in biologics manufacturing, sterile fill-finish, ADC production, and viral vector manufacturing. Companies like Symbiosis, Piramal, and Sterling provide integrated development and manufacturing services that global pharmaceutical and biotech companies increasingly seek. The sector benefits from highly skilled workforce, regulatory expertise, established GMP facilities, and track record of reliable delivery demonstrated during COVID-19 vaccine manufacturing.[\[14\]](#) [\[20\]](#) [\[15\]](#) [\[21\]](#)

Precision Medicine Leadership: Scotland's integrated NHS system, comprehensive genomic datasets, world-leading academic research, and £80 million investment in precision medicine infrastructure create unique capabilities. The Scottish Genomes Partnership, Precision Medicine Scotland Innovation Centre, and four regional genomics laboratories provide industry access to trial-ready populations, biomarker discovery capabilities, and real-world evidence generation.[\[28\]](#) [\[29\]](#) [\[30\]](#) [\[31\]](#)

Clinical Research Infrastructure: Scotland's coordinated approach through NHS Research Scotland, new Commercial Research Delivery Centres, and strong academic-clinical partnerships enable efficient clinical trial delivery. The single point of contact model, streamlined approvals, and permissions performance among Europe's best make Scotland attractive for international clinical studies.[\[40\]](#) [\[41\]](#) [\[39\]](#)

Innovation and Entrepreneurship: Scotland's universities consistently rank among the UK's best for producing successful spinouts, with particular strength in therapeutics and platform technologies. The ecosystem benefits from innovation centres, business support from Scottish Enterprise, venture capital availability, and culture of collaboration between academia, NHS, and industry.[\[98\]](#) [\[99\]](#) [\[38\]](#) [\[100\]](#) [\[32\]](#)

Technology Integration: Scotland has embraced digital transformation with leading capabilities in digital health, AI-enabled healthcare, and data-driven therapeutics. The Digital Health & Care Institute provides demonstration environments for rapid technology validation, while university partnerships in AI and data science support computational drug discovery and precision medicine applications. [\[22\]](#) [\[99\]](#) [\[31\]](#)

Positioning Against International Competitors

Versus Global CDMO Leaders: Scottish CDMO facilities compete against major international players including Lonza, Samsung Biologics, WuXi Biologics, and Catalent. Scottish competitive advantages include specialized capabilities (ADCs, viral vectors), flexible capacity for small to medium batches, established quality reputation, and European manufacturing location with language and time zone alignment for European clients. However, Asian competitors offer cost advantages and scale, while US facilities benefit from domestic market proximity.

Versus European Biotech Hubs: Scotland competes with established European biotech clusters including Cambridge/UK, Basel/Switzerland, Copenhagen/Denmark, and Berlin/Germany. Scotland's strengths include integrated NHS research access, competitive cost structure versus Switzerland and Cambridge, precision medicine infrastructure, and strong government support. Challenges include smaller venture capital pool than Cambridge/London, less multinational pharmaceutical headquarters presence than Basel, and post-Brexit regulatory complexity.

Versus North American Competitors: US and Canadian biotech ecosystems benefit from larger venture capital markets, proximity to major pharmaceutical companies, single large market access, and established innovation clusters (Boston, San Francisco, San Diego). Scotland offers advantages in precision medicine data access, clinical trial efficiency, cost-effective operations, and potential as European market gateway. Canadian similarities (single-payer healthcare, academic strengths, government support) suggest successful positioning strategies.

Technology Trends and Innovation Drivers

Artificial Intelligence in Drug Discovery and Development

AI is fundamentally transforming pharmaceutical R&D, with adoption accelerating dramatically. By 2025, AI spending in the pharmaceutical industry is expected to reach \$3 billion, reflecting surge in deployment to reduce development time and costs. Traditional drug development takes 14.6 years and costs approximately \$2.6 billion, with only 10% of candidates succeeding through clinical trials—metrics AI promises to dramatically improve. [\[11\]](#) [\[12\]](#)

Target Identification and Validation: AI platforms analyze vast biological datasets to identify novel drug targets that traditional methods might miss. Machine learning algorithms can predict target-disease associations, assess druggability, and prioritize targets based on genetic evidence, pathway analysis, and biomarker profiles. Scottish academic institutions including University of Dundee, University of Edinburgh, and University of Glasgow are developing AI capabilities in target identification. [\[38\]](#) [\[32\]](#) [\[101\]](#) [\[11\]](#)

Molecular Design and Optimization: Generative AI models including generative adversarial networks (GANs), variational autoencoders (VAEs), and diffusion models enable de novo drug

design. These systems can generate novel molecular structures with desired properties, predict drug-target interactions, and optimize pharmacokinetic parameters. Exscientia, the Scottish-origin AI drug discovery company now valued at over \$3 billion post-IPO, has demonstrated AI-designed molecules entering clinical trials within 12 months versus traditional 5-year timelines.^[21] [\[101\]](#) [\[11\]](#)

Clinical Trial Optimization: AI enables improved patient selection through predictive biomarkers, optimized trial designs, adaptive protocols, and real-time monitoring. Digital twins and in-silico trials are increasingly used to simulate trial scenarios before initiation, reducing costs and timelines. Scotland's precision medicine infrastructure and genomic datasets position companies to leverage AI for patient stratification and trial optimization.^[48] [\[28\]](#) [\[29\]](#) [\[11\]](#)

AlphaFold and Protein Structure Prediction: DeepMind's AlphaFold achieved breakthrough accuracy in protein structure prediction, with median backbone accuracy of 0.96 Ångströms at CASP14 competition. This capability dramatically accelerates understanding of protein targets and design of binding molecules, particularly for historically "undruggable" targets. Newer models like Genie can design entirely new proteins that don't exist in nature, opening possibilities for customized therapeutics.^[11]

Market Impact: The AI drug discovery market is projected to grow from \$1.5 billion to \$13 billion by 2032, while AI-based solutions in clinical research will exceed \$7 billion by decade's end. Scottish companies should invest in AI partnerships, develop internal data science capabilities, and position AI expertise as competitive differentiator for global clients.^[11]

Cell and Gene Therapy Manufacturing Innovation

Cell and gene therapies (CGTs) represent transformative treatment modalities but face substantial manufacturing challenges limiting widespread deployment. The sector requires innovation in manufacturing processes, supply chain logistics, quality control, and cost reduction to achieve commercial viability.^[51] [\[52\]](#) [\[102\]](#)

Manufacturing Bottlenecks: CGT production differs fundamentally from traditional pharmaceuticals, requiring personalized production systems, patient-specific protocols, and complex viral vector manufacturing. Autologous therapies (derived from individual patients) present particular challenges with batch-of-one manufacturing, logistics precision for chain of identity/custody, and inability to achieve economies of scale. Viral vector production, especially adeno-associated virus (AAV), faces yield limitations, purity challenges, and regulatory compliance complexity.^[52] [\[103\]](#) [\[51\]](#)

Automation and Technology Solutions: Advanced automation is critical for CGT manufacturing viability, reducing operator errors, improving reproducibility, minimizing costs, and enabling scalability. Closed-system manufacturing approaches and single-use bioreactors are replacing traditional methods, reducing contamination risk and improving flexibility. AI-driven analytics enable real-time quality monitoring, identifying deviations before batch failures occur.^[102] [\[51\]](#) [\[52\]](#)

Decentralized Manufacturing: Bringing manufacturing closer to point of care through mobile facilities or "manufacturing-in-a-box" concepts addresses logistics challenges, reduces production time, minimizes supply chain complexity, and enables broader patient access. This

approach is particularly relevant for autologous therapies where time-sensitive patient cell processing is required. [\[52\]](#) [\[102\]](#)

Scottish Capabilities: Scotland's CGT ecosystem includes Lentitek (lentiviral vector manufacturing technology), Roslin Cell Therapies (cell therapy development and manufacturing), Cell and Gene Therapy Catapult facility at Edinburgh BioQuarter, and university research programs at Edinburgh, Dundee, and Glasgow. These capabilities position Scotland to capture growing demand for CGT manufacturing services, projected to reach \$187 billion by 2034 at 24% CAGR. [\[50\]](#) [\[25\]](#) [\[26\]](#) [\[27\]](#)

Strategic Opportunities: Scottish CDMO providers should invest in CGT capabilities including viral vector production, automated cell processing, and quality analytics. Partnerships with academic institutions can access cutting-edge process development research. Positioning CGT manufacturing expertise for global pharmaceutical and biotech clients, particularly those developing CAR-T therapies and gene therapies for rare diseases, represents substantial growth opportunity.

Precision Medicine and Companion Diagnostics

Precision medicine—tailoring treatment to individual patient characteristics based on genetic profile, biomarkers, and medical history—is fundamentally changing therapeutic development. The global precision medicine market is estimated to reach \$134 billion by 2025 from \$43 billion in 2016. [\[28\]](#)

Genomic Technologies: Next-generation sequencing costs have declined dramatically, enabling widespread genomic profiling in clinical settings. Whole genome sequencing, targeted gene panels, and liquid biopsy technologies allow identification of actionable mutations, prediction of treatment response, and monitoring of disease progression. Scotland's genomic medicine strategy, with eight of eleven cancer genomic testing pathways operational and national genomic test directory established, positions companies to develop companion diagnostics. [\[29\]](#) [\[43\]](#) [\[28\]](#)

Biomarker Discovery and Validation: Scottish research institutions and NHS partnerships provide access to well-characterized patient cohorts, longitudinal health data, and biological samples enabling biomarker discovery. The Precision Medicine Scotland Innovation Centre offers industry access to these data assets, clinical expertise, and informatics infrastructure. [\[31\]](#) [\[28\]](#)

Companion Diagnostics Development: Regulatory agencies including FDA and EMA increasingly require companion diagnostics for targeted therapies, creating market opportunity for diagnostic developers. Scotland's capabilities in assay development, clinical validation, and regulatory strategy support companion diagnostic commercialization. Companies can leverage NHS partnerships for real-world evidence generation and healthcare economic assessments. [\[83\]](#)

Strategic Positioning: Scottish companies should develop biomarker-focused drug development programs, partner with diagnostic companies for companion diagnostic development, and leverage precision medicine infrastructure for clinical validation studies. Export opportunities exist in markets emphasizing personalized medicine including United States, Germany, Japan, and Singapore. [\[60\]](#) [\[22\]](#)

Digital Health and Remote Care Technologies

Digital health represents one of the fastest-growing life sciences segments, with market projected to reach \$67 billion and adoption rates exceeding 82%. The COVID-19 pandemic accelerated digital health adoption, creating lasting changes in healthcare delivery models.

Telemedicine and Remote Monitoring: Remote patient monitoring, wearable devices, and telehealth platforms enable continuous care outside traditional healthcare settings. The wearable medical device market is projected to exceed \$66.9 billion by 2030 at 10.1% CAGR. Scotland's Digital Health & Care Institute provides innovation support and validation environments for these technologies.^{[49] [31]}

AI-Enabled Diagnostics: Machine learning algorithms applied to medical imaging, pathology, laboratory data, and patient-reported outcomes are improving diagnostic accuracy and efficiency. GCC countries particularly are investing heavily in AI-powered diagnostics as part of health system modernization.^{[62] [63] [64]}

Software as a Medical Device (SaMD): Regulatory frameworks increasingly accommodate software-only medical devices, creating opportunities for Scottish digital health innovators. The US FDA and UK MHRA have established pathways for SaMD approval, while the EU Medical Device Regulation addresses software safety and effectiveness requirements.^{[76] [83] [22]}

Market Opportunities: The United States represents the priority market for Scottish digital health companies, offering scale, reimbursement availability, and openness to innovation. Germany provides European market gateway with strong digital health adoption, while Middle East countries including Saudi Arabia and UAE are investing substantially in digital transformation.^{[22] [63] [64] [70] [89]}

Regulatory Environments and Market Access Strategies

Navigating Global Regulatory Complexity

Life sciences companies face increasingly complex regulatory environments across major markets, requiring sophisticated strategies for global market access. Over 8,000 new regulations and reference documents are added annually, with 44% of global requirements published in non-English languages.^[76]

Regional Regulatory Bodies: Major regulators include FDA (United States), EMA (European Union), MHRA (United Kingdom), PMDA (Japan), NMPA (China), ANVISA (Brazil), and COFEPRIS (Mexico). Each maintains distinct requirements for clinical development, marketing authorization, manufacturing standards, and post-market surveillance.^{[71] [73] [55] [77] [68] [76]}

Harmonization Efforts: International Conference on Harmonisation (ICH) guidelines provide some alignment in pharmaceutical development and GMP standards across major markets. However, significant differences remain in approval timelines, data requirements, and post-approval obligations. Approval timelines vary from 6-10 months in FDA for priority reviews to 12-24 months in China and Russia.^[76]

Post-Brexit Regulatory Landscape: UK departure from EU eliminated automatic regulatory alignment, requiring separate marketing authorizations for UK versus EU markets. The MHRA has introduced measures to maintain competitiveness including accelerated approval pathways and innovation support, but companies must navigate dual regulatory strategies for UK and European presence.[\[56\]](#) [\[57\]](#) [\[58\]](#)

Scottish Company Strategies: Companies should develop regulatory expertise through internal capabilities or consultancy partnerships, plan for dual submissions in key markets, engage early with regulatory authorities through pre-submission meetings, and consider adaptive trial designs that generate data acceptable across multiple jurisdictions. Participation in regulatory authority innovation programs (FDA Breakthrough Therapy, EMA PRIME) can accelerate market access for novel therapeutics.

Intellectual Property and Patent Strategy

Strong IP protection is fundamental to life sciences value creation, with patents serving as primary mechanism to protect R&D investment and enable commercialization. IP strategies vary significantly across therapeutic modalities, geographic markets, and development stages.

Patent Landscape: The global life sciences IP environment is becoming more complex, with increasing patent thickets in established therapeutic areas, biologics patents with different considerations than small molecules, and emerging challenges around AI-discovered drugs and gene editing technologies. Companies must navigate freedom-to-operate issues, patent linkage systems in various jurisdictions, and data exclusivity provisions.[\[93\]](#) [\[104\]](#)

Geographic Considerations: Patent protection strength varies by country. The United States offers robust IP protection under Hatch-Waxman Act with patent term extensions and exclusivity provisions. Europe provides unitary patent protection through the European Patent Convention, though national variations exist in enforcement. China has strengthened IP protection substantially in recent years, though enforcement challenges remain.[\[86\]](#) [\[60\]](#) [\[87\]](#)

Licensing and Technology Transfer: Out-licensing remains vital strategy for biotech companies to access development resources, commercialization expertise, and geographic market reach. Cross-border licensing between China and Western companies reached \$47 billion in 2024, demonstrating opportunities for Scottish companies to access Asian innovation or license technologies into Asian markets.[\[92\]](#) [\[96\]](#) [\[97\]](#) [\[93\]](#)

Scottish Company Strategies: Companies should develop comprehensive IP strategies early in development, including patent filing in key markets (US, EU, China, Japan) using Patent Cooperation Treaty (PCT) route, trade secret protection for manufacturing processes and know-how, and defensive publications to establish prior art. For spinouts and early-stage companies, engaging university technology transfer offices and IP attorneys with life sciences expertise is essential. Companies should consider IP assets when structuring licensing deals, joint ventures, and M&A transactions.

Pricing, Reimbursement, and Market Access

Achieving reimbursement and favorable pricing is often more challenging than regulatory approval, particularly in markets with government-controlled healthcare systems. Health Technology Assessment (HTA) processes evaluate clinical and economic value to determine reimbursement decisions.

Value Demonstration: Payers increasingly require evidence of real-world effectiveness, cost-effectiveness versus existing treatments, budget impact analysis, and patient-reported outcomes. Scottish companies should plan health economic evidence generation during clinical development, conduct early engagement with HTA bodies, and develop value propositions tailored to different healthcare systems. [\[82\]](#) [\[76\]](#)

Regional Approaches: United States operates primarily through private insurance with Medicare/Medicaid for specific populations, offering potentially higher prices but complex reimbursement navigation. European countries maintain national pricing and reimbursement systems despite centralized marketing authorization, requiring country-by-country negotiations. Reference pricing between European countries means launch sequence decisions significantly impact achievable prices. [\[71\]](#) [\[86\]](#) [\[82\]](#)

Value-Based Pricing: Outcomes-based contracts, indication-specific pricing, and risk-sharing arrangements are increasingly common, particularly for high-cost therapies including cell and gene therapies, oncology treatments, and rare disease drugs. Scottish companies developing premium-priced innovations should prepare for value-based contracting discussions. [\[96\]](#)

Orphan Drug and Fast Track Designations: Regulatory incentives for rare disease treatments and unmet medical needs include market exclusivity periods, reduced regulatory fees, protocol assistance, and potential premium pricing. Scottish companies in these areas should pursue applicable designations early in development. [\[73\]](#) [\[71\]](#)

Supply Chain Resilience and Manufacturing Strategy

Global Supply Chain Challenges

The COVID-19 pandemic, geopolitical tensions, and Brexit have exposed significant vulnerabilities in pharmaceutical supply chains, prompting industry-wide focus on resilience, redundancy, and risk mitigation. [\[56\]](#) [\[105\]](#) [\[106\]](#) [\[107\]](#)

Key Vulnerabilities: Pharmaceutical supply chains face concentrated manufacturing in China and India for APIs and key starting materials, single-source suppliers for critical components, complex multi-country manufacturing networks, limited inventory buffers due to cost pressures, and temperature-sensitive product requirements. Medicine shortages have become increasingly common across UK and EU, with 90% of UK pharmacists reporting treatment interruptions due to supply issues in recent surveys. [\[108\]](#) [\[105\]](#) [\[106\]](#)

Post-Brexit Impacts: UK life sciences companies report Brexit has caused increased border delays and customs complexity, supply chain reconfiguration requiring new importation hubs, loss of some EU suppliers unwilling to navigate new requirements, duplicate testing and batch

release requirements, and transfer of Qualified Person activities to EU facilities even for UK-bound products. The Border Target Operating Model introduced additional paperwork and inspection requirements for laboratory reagents and pharmaceutical materials.^{[57] [84] [85] [56]}

Mitigation Strategies: Industry is responding through supply chain diversification across multiple geographic regions, near-shoring or reshoring of critical manufacturing, increased inventory buffers for essential medicines, investment in supply chain visibility technologies including blockchain and IoT tracking, and supplier relationship management with redundancy planning.^{[105] [106] [109]}

Scottish Company Implications: Scottish manufacturers should emphasize supply chain reliability and risk mitigation as competitive advantages, develop redundancy in raw material sourcing, invest in digital supply chain visibility, and communicate transparently with customers about supply security. For export-focused companies, establishing appropriate inventory and distribution arrangements in key markets (EU, US, Asia) reduces delivery risk.

Manufacturing and Quality Excellence

Manufacturing capability and quality management are fundamental competitive advantages, particularly for CDMO businesses and companies commercializing their own products.

GMP Compliance: All pharmaceutical manufacturing must comply with Good Manufacturing Practice standards, with regulatory inspections verifying adherence. Scottish facilities benefit from MHRA's strong reputation for regulatory rigor, with MHRA approvals generally recognized globally as high-quality certification. However, companies must prepare for inspections from FDA, EMA, and other authorities when supplying those markets.^{[71] [72] [77] [85]}

Advanced Manufacturing Technologies: Continuous manufacturing versus batch processing, Process Analytical Technology (PAT) for real-time quality monitoring, automation and robotics reducing human intervention, and single-use systems minimizing changeover time are transforming pharmaceutical production. Scottish companies should invest in modern manufacturing capabilities to remain competitive with global CDMO leaders.^{[105] [106]}

Technology Transfer: Successfully transferring manufacturing processes from development to commercial scale or between sites requires comprehensive documentation, validation studies, and risk assessment. Scottish academic spinouts and technology companies should plan for eventual manufacturing scale-up from project inception, considering commercial manufacturing requirements in process development.^[85]

Quality by Design (QbD): Regulatory agencies increasingly expect QbD approaches incorporating risk assessment, design space definition, and process understanding. This enables more flexible manufacturing with reduced batch failures and faster regulatory approval.^{[51] [52]}

Investment Landscape and Funding Opportunities

Venture Capital and Private Equity Trends

Life sciences investment has shown resilience despite economic headwinds, with venture capital activity rebounding in 2024-2025 after 2023 slowdown. Global biotech VC funding reached \$42 billion in 2025, up from \$37 billion in 2024 and \$30 billion in 2023. [\[75\]](#) [\[110\]](#) [\[54\]](#)

Investment Focus: Later-stage investments (Series C, D, and beyond) have increased relative to early-stage, reflecting investor preference for de-risked assets with clinical validation. Average Series A deal sizes have grown substantially, with some companies raising \$100+ million Series A rounds for AI-enabled drug discovery or novel therapeutic modalities. However, early-stage deal flow has slowed, with fewer companies graduating from Seed to Series A. [\[110\]](#) [\[54\]](#) [\[75\]](#)

AI and Technology Premium: Companies leveraging AI have secured more than half (\$1.1 billion) of life sciences investment in 2025 UK market, marking 97% increase versus prior period. AI drug discovery platforms, computational biology, and digital health solutions command premium valuations and investor interest. [\[54\]](#) [\[111\]](#) [\[75\]](#) [\[110\]](#)

UK and Scottish Investment: UK life sciences venture capital reached £1.23 billion in first half of 2025, putting sector on track to match or exceed 2024's £2.3 billion total. Scotland has attracted significant investments including Lentitek's £1 million, Symbiosis's expansion funding, and various university spinout financings. However, Scottish and UK venture capital markets remain smaller than US counterparts, creating challenges for later-stage growth funding. [\[19\]](#) [\[26\]](#) [\[112\]](#) [\[95\]](#) [\[113\]](#)

Strategic Recommendations: Scottish companies should develop relationships with UK and international investors early, demonstrate clear value inflection points justifying staged investment, consider US expansion to access larger venture capital pools, and engage Scottish Enterprise and UK innovation agencies for co-investment and grant funding. Companies should prepare for increased due diligence focus on IP quality, clinical development strategy, and commercial pathway.

Government Support and Innovation Funding

Scottish and UK governments provide substantial support for life sciences innovation through grants, tax incentives, and infrastructure investment.

Scottish Enterprise: Offers account management for high-growth companies, R&D grants and proof-of-concept funding, internationalization support through Scottish Development International, business incubator and accelerator programs, and co-investment through Scottish Investment Bank. Recent examples include funding for Symbiosis expansion (£45 million project with Scottish Enterprise support) and support for ONE BioHub Aberdeen (£40 million). [\[19\]](#) [\[99\]](#) [\[34\]](#) [\[79\]](#)

Innovate UK: Provides competitive R&D grants for innovative projects, Knowledge Transfer Partnerships connecting companies with universities, innovation loans for late-stage development, and sector-specific programs including industrial strategy challenge funds. The

ICURe program in North East Scotland is preparing academic teams for spinout formation.^[26]
^[34]

UK Research and Innovation (UKRI): Supports translational research bridging academic discovery and commercial application, infrastructure investments including Medicines Manufacturing Innovation Centre, and collaborative R&D through Catapults including Cell and Gene Therapy Catapult.^[25] ^[35]

Tax Incentives: R&D tax credits provide significant incentives for UK companies conducting qualifying research, with SMEs claiming up to 230% deduction on eligible R&D expenditure and large companies claiming 130%. Patent Box regime allows 10% corporation tax rate on profits derived from patented innovations, enhancing returns on successful commercialization.^[112]

Strategic Utilization: Scottish companies should engage with funding ecosystem early in development, apply for competitive grants to validate technology and attract private investment, leverage tax incentives to extend capital runway, and participate in collaborative programs connecting to academic expertise. Companies should maintain awareness of funding cycles and program eligibility criteria to maximize available support.

Strategic Recommendations for Scottish Life Sciences Companies

Market Prioritization and Entry Strategies

Scottish companies should adopt systematic approaches to international market selection and entry, balancing opportunity size, competitive positioning, resource requirements, and strategic fit.

Tier 1 Priority Markets: **United States** should be primary international focus for pharma services, medical devices, and digital health, offering largest market, fastest approval pathways, and highest prices. Companies should establish regulatory expertise, build relationships with US partners and customers, and consider US physical presence for business development.

Germany provides optimal European entry point with largest EU market, strong innovation adoption, and potential for broader European expansion. **United Kingdom** remains important market despite Brexit, with MHRA innovation programs and established commercial relationships.

Tier 2 Growth Markets: **China, Japan, Singapore** in Asia-Pacific offer substantial growth opportunities requiring localization strategies, partnership approaches, and patient capital.

Saudi Arabia, UAE in Middle East present emerging opportunities aligned with Scottish capabilities, requiring relationship development with government health authorities. **Brazil, Mexico** in Latin America offer scale opportunities for cost-effective products with appropriate local partnerships.

Market Entry Sequencing: Companies should sequence market entry based on product maturity (regulatory approval in home market before international expansion), resource availability (focus on markets with highest ROI given resource constraints), strategic partnerships (leverage distributor/partner capabilities in new markets), and regulatory efficiency (enter markets with fastest approval timelines first to generate revenue and validation).

Competitive Positioning and Value Propositions

Scottish companies must articulate clear value propositions differentiating from international competitors while leveraging distinctive Scottish capabilities.

For CDMO Services: Emphasize specialized capabilities (ADCs, viral vectors, complex biologics), quality reputation and regulatory standing, flexible capacity for emerging biotech clients, and European manufacturing location with global expertise. Target mid-sized biotech companies requiring specialized services rather than competing on cost with Asian manufacturers or scale with major global CDMOs.

For Medical Devices: Position innovation and clinical evidence, cost-effectiveness versus premium alternatives, strong quality and safety record, and responsive customer service. Target markets valuing quality over lowest cost, including United States, Germany, and GCC countries. Leverage CE mark and MHRA approvals as quality signals.

For Biotechnology and Therapeutics: Highlight strong scientific foundation from world-class research institutions, precision medicine and biomarker-driven approaches, efficient clinical development in integrated NHS system, and partnership orientation for co-development. Pursue out-licensing or partnership strategies for markets requiring substantial commercialization investment (US, China), while considering direct commercialization in smaller European markets.

For Digital Health: Emphasize real-world validation in NHS settings, integrated care pathway expertise, data security and regulatory compliance, and evidence of health economic value. Target US market through advisory panel and specialized support programs outlined in Export Plan. Engage with GCC countries' digital transformation initiatives.^[89]

Operational Excellence and Capability Development

Sustained competitive advantage requires continuous capability enhancement across key operational dimensions.

Regulatory Excellence: Invest in internal regulatory affairs expertise or strong consultancy partnerships, maintain awareness of evolving regulatory requirements across key markets, engage proactively with regulatory authorities through pre-submission meetings, and develop regulatory strategies supporting multiple market submissions efficiently.

Quality Management: Implement robust quality management systems exceeding minimum compliance requirements, prepare for inspections from multiple authorities (FDA, EMA, MHRA, others), document processes comprehensively supporting technology transfer and scale-up, and foster quality culture throughout organization.

Commercial Capabilities: Develop market intelligence capabilities tracking customer needs and competitive developments, build business development expertise for partnership and licensing negotiations, establish marketing and sales capabilities appropriate to business model (direct, distributors, partners), and invest in customer relationship management supporting long-term partnerships.

Technology and Innovation: Embrace digital transformation including AI, automation, and data analytics, partner with Scottish universities accessing cutting-edge research and talent, participate in industry collaborations and innovation networks, and maintain awareness of emerging technologies potentially disrupting existing business models.

Talent Development: Attract and retain top scientific, technical, and commercial talent, provide professional development opportunities, foster entrepreneurial culture supporting innovation, and leverage Scottish Enterprise and university programs for talent access.

Ecosystem Engagement and Collaboration

Success in global life sciences markets requires active participation in Scottish, UK, and international ecosystems.

Scottish Ecosystem: Engage with Life Sciences Scotland Industry Leadership Group shaping sector strategy, participate in industry events and networking opportunities, collaborate with Scottish universities on research partnerships and talent pipelines, utilize Scottish Enterprise and Scottish Development International support services, and contribute to development of next generation of life sciences talent. [\[98\]](#) [\[79\]](#) [\[89\]](#)

UK and International Networks: Join industry associations including BioIndustry Association, Association of British Pharmaceutical Industry (Scotland), and ABHI (medical technology), participate in international conferences and trade missions, engage with UK government on regulatory and industrial strategy issues, and build relationships with international partners, customers, and investors. [\[114\]](#) [\[78\]](#)

Academic-Industry Partnerships: Establish sponsored research agreements with universities, engage in Knowledge Transfer Partnerships, participate in innovation centres and Catapults, and support PhD students and postdoctoral researchers building future talent pipeline. [\[35\]](#) [\[34\]](#) [\[31\]](#)

Export Plan Implementation

The Scottish Government's Export Plan for Life Sciences outlines nine key actions supporting international growth: [\[70\]](#) [\[78\]](#) [\[79\]](#) [\[89\]](#)

- 1. Market research and visits:** Pilot support mechanism helping SMEs undertake market research, market visits, and attendance at specialist in-market events
- 2. Digital health advisory panel:** Design and pilot advisory panel for early-stage companies refining commercialization and market entry strategy (US-focused)
- 3. Cross-sector collaboration:** Promote collaboration across life sciences, technology, and food/drink sectors exploring opportunities in animal health, aquaculture, and agritech
- 4. Emerging market monitoring:** Leverage relationships in emerging markets monitoring opportunities and building awareness of changing global landscape
- 5. Regulatory navigation:** Work with enterprise agencies developing approaches supporting companies navigating regulatory frameworks in international markets
- 6. Skills development:** Identify skills and capabilities needed for international growth and connect companies with appropriate expertise

7. **Peer-to-peer learning:** Deliver networking events focusing on peer learning and sharing export experiences
8. **US market presence:** Recruit additional Scottish Development International specialist in US market
9. **International events:** Re-establish Scotland's presence at BIO International Convention and explore AdvaMed opportunities

Companies should engage proactively with these initiatives, providing feedback on effectiveness and identifying additional support needs. The Export Plan will be reviewed annually and adapted to market developments and emerging opportunities.^[89]

Conclusion: Pathway to Global Leadership

The Scottish life sciences sector stands at an inflection point. Having exceeded initial strategic targets and established world-class capabilities across pharmaceuticals, biotechnology, medical devices, and precision medicine, Scotland is positioned to capture substantial opportunities in rapidly expanding global markets. The sector's success will depend on executing sophisticated international strategies, maintaining operational excellence, embracing technological transformation, and leveraging distinctive competitive advantages.

Global market expansion projected to reach \$269 billion by 2034 creates unprecedented opportunities, particularly in high-growth segments including cell and gene therapy (\$187 billion at 24% CAGR), AI drug discovery (\$13 billion at 22.5% CAGR), and precision medicine (\$134 billion). **Regional dynamics** favor Scottish capabilities, with Asia-Pacific growing at 12.1% CAGR, Middle East markets expanding dramatically under national transformation programs, and Latin America offering opportunities for affordable innovation.^{[61] [50] [7] [62] [68] [65] [28] [11]}

Technology transformation through AI, automation, and digital health is reshaping competitive landscapes. Scottish companies embracing these technologies, partnering with world-class universities, and investing in advanced capabilities will capture premium value. **Regulatory evolution** post-Brexit requires sophisticated strategies but also enables differentiation through quality, compliance excellence, and regulatory expertise.^{[75] [111] [56] [11] [12] [57] [58]}

Scottish companies should pursue **focused internationalization strategies**, prioritizing United States, Germany, and selected high-growth markets based on product fit and resources. **Partnership approaches** including licensing, co-development, and strategic alliances enable market access while managing investment requirements. **Ecosystem engagement** with Scottish Enterprise, Scottish Development International, universities, and industry associations provides critical support infrastructure.^{[98] [99] [92] [93] [96] [79] [97] [89]}

The pathway to global leadership demands ambition, strategic sophistication, operational excellence, and persistent execution. Scottish life sciences companies possessing these attributes, leveraging distinctive competitive advantages, and capitalizing on unprecedented global opportunities can achieve the sector's next ambitious target: **£25 billion turnover by 2035**, positioning Scotland among the world's elite life sciences clusters and delivering transformative impact for patients worldwide.^[3]

1. <https://thepioneerroup.com/scotlands-thriving-life-sciences-sector-defies-predictions/>
2. <https://healthandcare.scot/stories/3761/life-sciences-scotland-growth-economy>
3. <https://www.holyrood.com/inside-politics/view,growth-target-can-scotlands-life-sciences-sector-hit-25.bn-by-2035>
4. <https://edinburghbioquarter.com/export-plan-for-life-sciences-announced-by-scottish-government/>
5. <https://www.lifesciencescotland.com/about-life-sciences-scotland>
6. <https://www.globenewswire.com/news-release/2025/09/09/3147025/0/en/Life-Science-Market-Size-to-Soar-USD-269-56-Bn-Rising-at-11-8-CAGR-by-2034.html>
7. <https://www.towardshealthcare.com/insights/life-science-market-sizing>
8. <https://www.precedenceresearch.com/biotechnology-market>
9. <https://www.biospace.com/press-releases/biotechnology-market-size-expected-to-surpass-usd-5-71-billion-by-2034-biologics-regenerative-therapies-chromatography-and-tissue-engineering-in-focus>
10. <https://www.towardshealthcare.com/insights/apac-life-science-market-sizing>
11. <https://www.coherentsolutions.com/insights/artificial-intelligence-in-pharmaceuticals-and-biotechnology-current-trends-and-innovations>
12. <https://blackthorn.ai/blog/ai-in-biotech-trends-discoveries-and-game-changing-technologies/>
13. <https://www.sdi.co.uk/buy-from-scotland/science-and-technology-companies/pharma-services-and-biotech-companies>
14. <https://www.europeanpharmaceuticalreview.com/news/190365/cdmo-expands-adc-facility-in-scotland/>
15. <https://symbiosis-pharma.com>
16. <https://www.skillsdevelopmentscotland.co.uk/media/tluj4jex/sectoral-skills-assessment-life-sciences.pdf>
17. <https://www.gov.scot/policies/science-and-research/life-sciences/>
18. https://www.gov.scot/binaries/content/documents/govscot/publications/statistics/2019/07/industry-statistics/documents/life-sciences/life-sciences/govscot:document/Life%2BSciences%2B-%2BSector%2BBriefing_Oct25.docx
19. <https://www.scottish-enterprise-mediacentre.com/news/scottish-enterprise-celebrates-record-results-for-scottish-economy>
20. <https://www.sterlingpharmasolutions.com>
21. <https://www.srgtalent.com/blog/meet-5-life-science-companies-in-scotland-pioneering-the-future-of-health>
22. <https://www.scottish-enterprise.com/media/xvfdy00i/dh-and-medtech-exec-summary-final-24-02-2025.pdf>
23. <https://terumoaortic.com/33m-investment-in-scottish-medical-device-factory/>
24. <https://thisiscodebase.com/resources/scotlands-medtech-sector-innovation-growth-and-the-future-of-healthcare/>
25. <https://edinburgh-innovations.ed.ac.uk/news/cell-and-gene-therapy-catapult-opens-at-bioquarter>
26. <https://www.scottish-enterprise-mediacentre.com/news/scottish-biotech-company-lentitek-secures-total-of-gbp-1m-funding-to-advance-next-generation-cancer-treatments>
27. <https://www.roslininnovationcentre.com/news/life-sciences-scotland-awards-2023-winners>
28. <https://www.lifesciencescotland.com/pharmaceutical-innovation-supply/precision-medicine>

29. <https://frontlinegenomics.com/world-of-genomics-scotland/>
30. <https://www.gla.ac.uk/research/beacons/precisionmedicine/>
31. <https://www.lifesciencescotland.com/connect/to-the-ecosystem/innovation-centres>
32. <https://scottishcities.org.uk/dundee-life-sciences-biotech/>
33. <https://edinburghbioquarter.com/biolife/companies/>
34. <https://rarerevolutionmagazine.com/rare-insider/aberdeens-life-sciences-ecosystem-building-innovation-in-scotlands-north-east/>
35. <https://www.uk-cpi.com/about/national-centres/medicines-manufacturing-innovation-centre>
36. <https://www.pickeverard.co.uk/insights/life-sciences-innovation-hub-opens-at-the-university-of-dunder>
37. <https://www.dundee.ac.uk/industry/spin-outs>
38. <https://www.universities-scotland.ac.uk/case-studies/etndundee/>
39. <https://www.nhsresearchscotland.org.uk/industry>
40. <https://healthandcare.scot/stories/4028/clinical-trials-access-patients-research-centres>
41. <https://www.nhsresearchscotland.org.uk/news/scotland-will-be-home-to-four-new-commercial-research-delivery-centres-crdcs-as-part-of-100-million-public-private-health-research-boost>
42. <https://www.bowelcanceruk.org.uk/news-and-blogs/news/scottish-government-publishes-five-year-genomic-medicine-strategy/>
43. <https://healthandcare.scot/stories/3793/genomic-medicine-diagnostics-treatment>
44. <https://www.grandviewresearch.com/industry-analysis/biotechnology-market>
45. <https://intuitionlabs.ai/articles/pharmaceutical-market-analysis-trends>
46. <https://www.bcg.com/publications/2025/biopharma-trends>
47. <https://www.fortunebusinessinsights.com/industry-reports/medical-devices-market-100085>
48. <https://www.mordorintelligence.com/industry-reports/global-medical-device-technologies-market-industry>
49. <https://www.medicalmicromolding.com/medical-device-market-growth-outlook-2025-2030/>
50. <https://www.biospace.com/press-releases/life-science-market-size-surges-usd-998-63-billion-in-2025-forecasted-to-grow-at-11-82-cagr-through-2034>
51. <https://www.pharmafocusamerica.com/articles/challenges-opportunities-cell-gene-therapy-manufacturing>
52. <https://www.nnit.com/insights/articles/overcoming-manufacturing-challenges-cell-gene-therapies>
53. <https://www.whitecase.com/insight-alert/market-context-regulatory-volatility-meets-deal-resilience>
54. <https://european-biotechnology.com/latest-news/vc-investments-rise-nearly-71-in-q3-2025/>
55. <https://www.bma.org.uk/media/1346/bma-brexit-briefing-medicines-and-medical-devices-regulation-2017.pdf>
56. <https://www.bioindustry.org/resource/post-brexit-border-paperwork-and-inspections-postponed-for-life-sciences-sector.html>
57. <https://www.woodleybioreg.com/wp-content/uploads/2022/09/Whitepaper-The-impact-of-Brexit-on-the-UK-life-sciences-and-pharmaceutical-sector-1.pdf>
58. <https://kriosbio.com/how-post-brexit-regulatory-landscape-impacts-life-science-rd>

59. <https://www.cbre.com/press-releases/rapid-expansion-of-international-life-sciences-markets-with-strong-growth-in-china>
60. <https://www.lek.com/sites/default/files/insights/pdf-attachments/Expanding-into-Asia-Pacific.pdf>
61. <https://www.kenresearch.com/industry-reports/asia-pacific-biotechnology-market>
62. https://www.linkedin.com/posts/karimbenhameurlaine_gcc-ksa-saudiarabia-activity-7375770856834191360-EluB
63. <https://orfme.org/expert-speak/biotechnology-and-digital-health-in-saudi-arabia-and-the-uae/>
64. <https://www.arabianbusiness.com/abnews/middle-east-pharma-market-to-hit-36bn-by-2028-as-gcc-accelerates-innovation-and-manufacturing>
65. <https://www.zawya.com/en/press-release/research-and-studies/significant-transformations-in-gccs-healthcare-landscape-boost-investor-confidence-driving-momentum-across-the-value-chain-jll-bn02ggc8>
66. <https://www.wamsaudi.com/news-articles/saudi-arabia-uae-dominate-healthcare-deals-gcc-jll>
67. <https://www.towardshealthcare.com/insights/latin-america-pharmaceutical-market-sizing>
68. <https://www.marketdataforecast.com/market-reports/latin-america-pharmaceutical-market>
69. <https://kaloramainformation.com/blog/brazil-and-mexico-lead-ivd-investments-in-latin-america/>
70. <https://voicentric.co.uk/scottish-government-sets-out-life-sciences-export-plan/>
71. <https://www.eawlogistics.com/how-u-s-import-regulations-are-changing-for-pharma-and-biotech-in-2025/>
72. <https://gandlscientific.com/knowledge-hub/understanding-the-role-of-the-fda-in-the-importation-of-pharmaceutical-biological-products>
73. <https://www.fda.gov/drugs/guidance-compliance-regulatory-information/human-drug-imports>
74. <https://gotomarket.global/content/mastering-the-fda-comprehensive-guide/>
75. <https://www.goodwinlaw.com/en/insights/publications/2024/12/insights-lifesciences-six-hot-trends-in-life-sciences-for-2025>
76. <https://www.iqvia.com/blogs/2025/03/comprehensive-market-access-in-medtech>
77. <https://www.fda.gov/industry/importing-fda-regulated-products/importing-human-drugs>
78. <https://www.abhi.org.uk/resource-hub/file/13918>
79. <https://www.scottish-enterprise-mediacentre.com/commentary/new-export-plan-to-support-international-ambitions-of-life-sciences-businesses>
80. <https://www.gov.scot/publications/export-plan-scotlands-life-sciences-sector/pages/3/>
81. <https://www.medtecheurope.org/datahub/market/>
82. https://www.hoganlovells.com/-/media/hogan-lovells/pdf/2025-pdfs/market-access_reimbursement-and-pricing-in-europe_august-2025.pdf
83. <https://www.ema.europa.eu/en/human-regulatory-overview/medical-devices>
84. <https://www.pwc.co.uk/pharmaceuticals-life-sciences/assets/brexit-for-pharma-and-is-global-flyer.pdf>
85. <https://www.medicinesuk.com/uploads/UK-Exiting-from-EU-LIFE-Science-industry-coalition-position-paper.pdf>
86. <https://www.medicinesforeurope.com/wp-content/uploads/2024/10/Market-Access-barriers-30-10-2024-final-revs.pdf>
87. <https://www.bain.com/about/media-center/press-releases/sea/apac-biotech-report-2025/>

88. <https://goodlifesci.sidley.com/2024/07/02/eu-investigation-into-prc-public-procurement-for-medtech-may-impact-eu-market-access-for-prc-companies/>
89. <https://www.gov.scot/binaries/content/documents/govscot/publications/strategy-plan/2022/11/export-plan-scotlands-life-sciences-sector/documents/trading-nation-export-plan-scotlands-life-sciences-sector/trading-nation-export-plan-scotlands-life-sciences-sector/govscot:document/trading-nation-export-plan-scotlands-life-sciences-sector.pdf>
90. <https://tannerpharma.com/the-brazilian-pharma-market-key-information-and-what-may-change/>
91. <https://www.dcatvci.org/features/beyond-brazil-latin-america-pharmaceutical-manufacturing-continues-to-expand/>
92. <https://gowlingwlg.com/en-gb/insights-resources/articles/2025/licensing-partnerships-in-the-life-sciences>
93. <https://www.businessweekly.co.uk/posts/ip-licensing-and-m-a-in-life-sciences-2025-trends-shaping-the-future-of-biotech>
94. <https://www.mordorintelligence.com/industry-reports/biotechnology-market>
95. <https://www.bioindustry.org/resource/uk-biotech-holds-firm-in-the-first-half-of-2025-bia-report-finds.html>
96. <https://www.laboratoriosrubio.com/licensing-trends-2025-pharma/>
97. <https://www.cooley.com/news/insight/2025/2025-08-01-key-trends-and-considerations-in-cross-border-life-sciences-partnering-licensing>
98. <https://www.scottish-enterprise.com/insights-and-events/research-evaluation-and-insight/2021/life-sciences-in-scotland-industry-leadership-group-digital-data-subgroup-opportunities-and-priorities-final-report>
99. <https://www.scottish-enterprise.com/insights-and-events/research-evaluation-and-insight/2025/industry-deep-dive-research-digital-health-medical-technology>
100. <https://www.abdn.ac.uk/news/23661/>
101. <https://pubmed.ncbi.nlm.nih.gov/40740484/>
102. <https://ct.catapult.org.uk/news/manufacturing-challenges-for-cell-and-gene-therapies>
103. <https://www.paconsulting.com/newsroom/supplychainbrain-five-key-manufacturing-challenges-in-autologous-commercial-cell-and-gene-therapies-5-february-2024>
104. <https://www.morganlewis.com/blogs/asprescribed/2025/01/ip-licensing-and-m-a-in-the-life-sciences-industry-trends-to-watch-in-2025>
105. <https://geodis.com/blog/vertical-logistics-expertise-and-special-events/strengthening-resilience-pharmaceutical-supply>
106. <https://www.leading-minds-network.com/en/article/2025-supply-chain-resilience-for-global-health>
107. <https://tenthpin.com/insights/blog/global-pharma-trends-shape-future-supply-chain-organisations/>
108. [https://www.nuffieldtrust.org.uk/sites/default/files/2024-04/Health after Brexit WEB.pdf](https://www.nuffieldtrust.org.uk/sites/default/files/2024-04/Health%20after%20Brexit%20WEB.pdf)
109. <https://www.kearney.com/industry/health/article/-/insights/three-ways-to-build-resilience-into-pharmaceutical-supply-chains>
110. <https://www.grantthornton.com/insights/articles/life-sciences/2025/life-sciences-vc-market>
111. <https://www.londonandpartners.com/newsroom/news-and-communications/london-surges-ahead-as-europe-s-life-sciences-capital>
112. <https://www.kilburnstrode.com/knowledge/european-ip/uk-european-life-sciences-investment-trends-strate>

113. <https://edinburgh-innovations.ed.ac.uk/news/edinburgh-innovations-reports-record-breaking-innovation-stats>
114. <https://www.abpi.org.uk/publications/abpi-scotland-a-manifesto-for-health-and-growth/>
115. <https://www.abpi.org.uk/media/news/2023/february/pharmaceutical-industry-a-key-player-in-scotland-s-life-sciences-sector/>
116. <https://www.getreskilled.com/scotland-pharmaceutical-industry/>
117. <https://www.lifesciencescotland.com/vision-for-2025>
118. <https://www.skillsdevelopmentscotland.co.uk/what-we-do/scotlands-careers-services/education-team/shaping-futures/industry-insight/life-and-chemical-sciences/>
119. <https://www.labiotech.eu/best-biotech/top-biotechs-scotland/>
120. <https://builtinedinburgh.uk/articles/pharmaceutical-companies-edinburgh>
121. <https://www.bgateway.com/assets/market-reports/Market-Report-Chemical-and-Life-Sciences-January-2025.pdf>
122. <https://www.precedenceresearch.com/life-science-market>
123. <https://kpmg.com/us/en/articles/2023/medical-devices-2030.html>
124. <https://www.deloitte.com/us/en/insights/industry/health-care/life-sciences-and-health-care-industry-outlooks/2025-life-sciences-executive-outlook.html>
125. <https://www.towardshealthcare.com/insights/biotechnology-and-pharmaceutical-services-market-sizing>
126. <https://www.marketsandmarkets.com/Market-Reports/global-medtech-industry-outlook-64921163.html>
127. <https://finance.yahoo.com/news/life-science-consulting-market-reach-150000501.html>
128. <https://www.zionmarketresearch.com/report/life-science-products-market>
129. <https://www.grandviewresearch.com/horizon/outlook/life-science-analytics-market/asia-pacific>
130. <https://www.aoshearman.com/en/insights/life-sciences-and-healthcare-insights/drug-and-medical-device-regulation-under-the-trump-administration>
131. <https://www.medtecheurope.org/news-and-events/press/eu-regulation-on-health-technology-assessment-hta-medtech-europe-remains-highly-sceptical-about-the-added-value-for-health-systems-and-citizens/>
132. <https://www.gov.uk/government/publications/medical-technology-strategy/medical-technology-strategy>
133. <https://app.biopharmiq.com/company-lists-all/list-of-gene-therapy-companies-in-united-kingdom>
134. <https://www.bioscience-valuation.com/news/latinamerican-potential>
135. <https://www.towardshealthcare.com/insights/middle-east-and-africa-life-science-market-sizing>
136. <https://gccbusinesswatch.com/news/saudi-arabia-and-uae-dominate-gcc-healthcare-investments-driving-sectors-170b-growth-by-2030/>
137. <https://www.grandviewresearch.com/horizon/outlook/biotechnology-market/latin-america>
138. <https://www.gla.ac.uk/colleges/mvls/research-innovation/cetc/networking/>
139. <https://www.nhsresearchscotland.org.uk/uploads/tinymce/Session B - website file.pdf>
140. <https://www.gov.scot/publications/common-understanding-2025/pages/4/>
141. <https://www.strath.ac.uk/workwithus/spinouts/>
142. <https://www.genengnews.com/multimedia/summits/the-state-of-ai-in-drug-discovery-2025/>

143. <https://PMC10961620/>
144. <https://blog.crownbio.com/crowncast/exploring-ai-in-drug-discovery>
145. <https://aidrivendrugdevelopment.com/events/ai-drug-discovery-development-summit>
146. <https://www.cellgenetherapyreview.com/3975-Featured-Articles/617533-2025-cell-and-gene-challenges-Scalability-supply-chain-and-manufacturing/>
147. <https://www.birmingham.ac.uk/research/perspective/brexit-medicine-shortage>
148. <https://www.sciencedirect.com/science/article/abs/pii/S0031699725075118>
149. <https://pharmaphorum.com/rd/supply-chain-resilience-pharma-delivering-consistency-amidst-global-events>
150. https://www.ey.com/en_gl/insights/life-sciences/digital-supply-chain-visibility-is-a-pharma-priority
151. <https://www.jpmorgan.com/insights/markets-and-economy/outlook/biopharma-medtech-deal-reports>
152. <https://www.gov.uk/government/publications/managing-a-robust-and-resilient-supply-of-medicines/managing-a-robust-and-resilient-supply-of-medicines>