

Offshore Low-Carbon Market Opportunities in India for North East Scotland SME Energy Supply Chain Companies

The landmark signing of the UK-India Comprehensive Economic and Trade Agreement (CETA) on July 24, 2025, represents a transformative moment for bilateral economic cooperation, opening unprecedented market access for Scottish small and medium-sized enterprises (SMEs) in India's rapidly expanding offshore wind and low-carbon energy sectors. With India targeting 30-37 GW of offshore wind capacity by 2030 and positioning itself to capture 10% of global green hydrogen demand, the convergence of policy support, technological readiness, and trade liberalization creates a compelling value proposition for North East Scotland's world-class energy supply chain. This report examines the strategic opportunities, market dynamics, competitive advantages, and implementation pathways for Scottish SMEs seeking to capitalize on India's \$117 billion offshore energy transition investment opportunity.[\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#) [\[5\]](#) [\[6\]](#) [\[7\]](#)

Executive Summary and Key Findings

The UK-India CETA provides Scottish energy supply chain companies with preferential access to one of the world's fastest-growing renewable energy markets, eliminating tariffs on 99% of exports and granting UK businesses "Class 2 local supplier" status in Indian government procurement. India's offshore wind market, valued at USD 1.15 billion in 2024, is projected to reach USD 3.08 billion by 2033, expanding at a compound annual growth rate of 11.52%. The country's 7,600-kilometer coastline offers over 140 GW of technical offshore wind potential, with Gujarat and Tamil Nadu identified as priority deployment zones. North East Scotland, home to the world's first floating wind farm and supported by over five decades of North Sea oil and gas expertise, possesses precisely the capabilities India requires to accelerate its offshore wind deployment. The synergy between Scottish floating wind technology, subsea engineering excellence, and operations and maintenance capabilities with India's infrastructure development needs presents market opportunities exceeding \$62 billion in offshore wind alone, complemented by \$25 billion in green hydrogen development.[\[2\]](#) [\[3\]](#) [\[8\]](#) [\[5\]](#) [\[9\]](#) [\[6\]](#) [\[10\]](#) [\[11\]](#) [\[12\]](#) [\[13\]](#) [\[14\]](#) [\[15\]](#)

India's offshore wind market is projected to grow from USD 1.15 billion in 2024 to USD 3.08 billion by 2033, with installed capacity targeting 37 GW by 2030.

The UK-India CETA: A New Era of Energy Trade Cooperation

Comprehensive Tariff Liberalization and Market Access

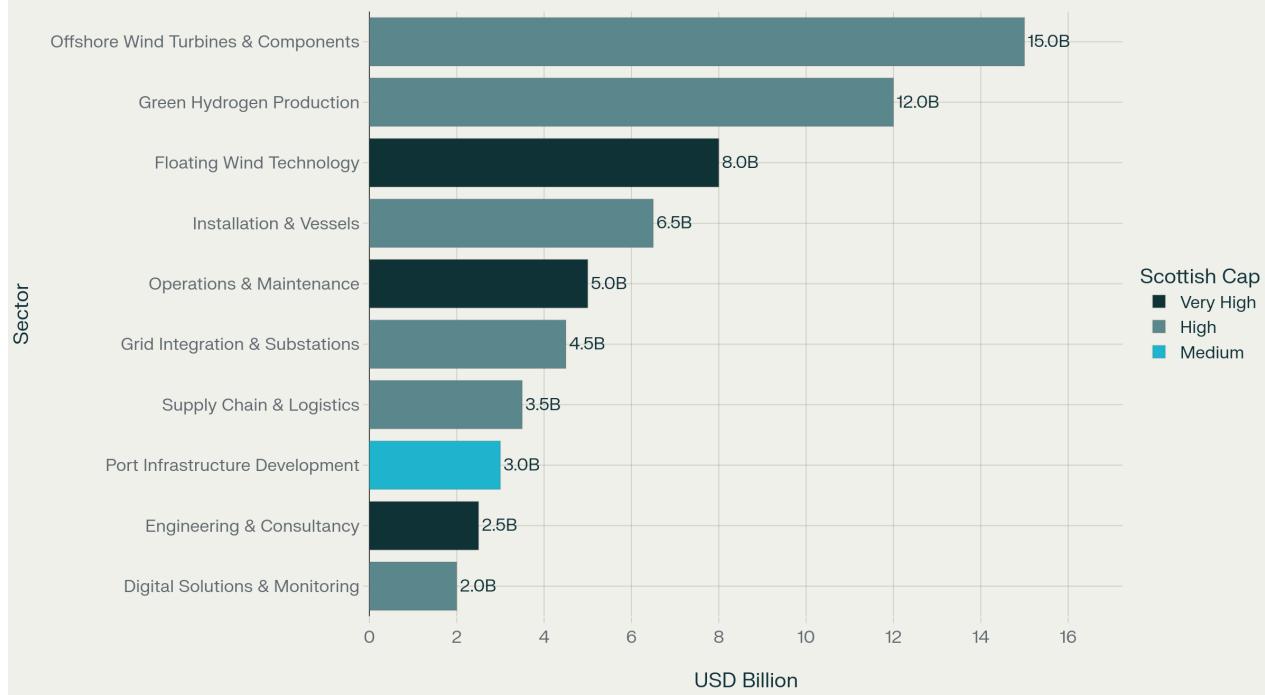
The CETA delivers unprecedented tariff elimination, with India committing to zero-duty access for nearly 100% of UK exports by value, encompassing critical energy sector equipment including wind turbines, solar modules, battery storage systems, and hydrogen production technology. Prior to CETA, Indian customs duties on renewable energy equipment ranged from 25% to 40%, significantly inflating project costs and limiting technology transfer. The agreement phases these tariffs down to zero over a ten-year period, with 64% of UK tariff lines receiving immediate duty-free access upon entry into force. For renewable energy components specifically, this translates to immediate tariff reductions worth £400 million annually, rising to £900 million within a decade. The elimination of these cost barriers enhances the competitiveness of Scottish offshore wind technologies, engineering services, and specialized equipment against alternative suppliers, particularly in high-value segments where Scotland possesses technological leadership.^{[3] [8] [5] [16] [17] [18] [19] [20] [21]}

The CETA's provisions extend beyond tariff reduction to encompass enhanced government procurement access, with UK businesses granted Class 2 local supplier status when at least 20% of their product or service originates in the UK. This designation places Scottish companies on equal footing with Indian suppliers in competitive bidding processes for India's massive offshore wind infrastructure program, representing a fundamental shift in market accessibility. The agreement also incorporates mutual recognition provisions for professional qualifications,

simplified work visa procedures for skilled personnel, and strengthened intellectual property protections that facilitate technology collaboration while safeguarding proprietary innovations. These structural improvements address historical barriers that have constrained UK-India energy sector cooperation, creating a predictable regulatory environment conducive to long-term investment commitments. [\[5\]](#) [\[16\]](#) [\[17\]](#) [\[22\]](#)

Investment Protection and Technology Transfer Frameworks

CETA establishes robust investment protection mechanisms that reduce commercial risk for Scottish SMEs entering the Indian market, including enhanced foreign direct investment provisions, transparent regulatory frameworks, and dispute resolution procedures aligned with international best practices. The agreement facilitates technology transfer through streamlined intellectual property chapters that enable co-innovation partnerships between Scottish and Indian firms, addressing previous concerns about IP security that deterred collaboration. For offshore wind specifically, the treaty supports joint ventures in cutting-edge technologies including floating platforms, advanced turbine systems, and digital monitoring solutions, areas where Scottish companies possess world-leading expertise. [\[10\]](#) [\[11\]](#) [\[17\]](#) [\[18\]](#) [\[19\]](#)


The investment framework is complemented by the UK-India Infrastructure Financing Bridge (UKIIFB), a collaboration between NITI Aayog and the City of London Corporation designed to mobilize private and institutional capital for sustainable infrastructure. British International Investment (BII) has already committed over \$300 million to Indian clean energy platforms, with analysts projecting this could triple by 2027 under FTA-supported incentives. For Scottish SMEs, this financial architecture provides access to project finance, risk mitigation instruments, and co-investment opportunities that reduce capital barriers to market entry, particularly critical for smaller enterprises lacking the balance sheet capacity for large-scale infrastructure projects. [\[18\]](#) [\[19\]](#)

India's Offshore Wind Market: Scale, Trajectory, and Strategic Imperatives

Market Size and Growth Projections

India's offshore wind sector represents one of the most significant renewable energy growth opportunities globally, with the market expanding from a nascent base of zero operational capacity in 2024 to projected installed capacity of 30-37 GW by 2030. The offshore wind power market, valued at USD 1.15 billion in 2024, is forecast to reach USD 3.08 billion by 2033, representing an 11.52% compound annual growth rate. This trajectory significantly understates the full market opportunity when considering the complete value chain encompassing turbine manufacturing, installation vessels, subsea infrastructure, operations and maintenance, and enabling technologies. Independent assessments suggest the total addressable market for offshore wind-related goods and services in India could exceed USD 75 billion through 2030, with an additional USD 42 billion opportunity extending to 2035 as the sector matures. [\[2\]](#) [\[4\]](#) [\[6\]](#) [\[23\]](#) [\[24\]](#) [\[25\]](#) [\[26\]](#)

Market Opportunity Sectors for Scottish SMEs in India (2030 Projections)

Offshore wind turbines & components, green hydrogen production, and floating wind technology represent the largest market opportunities for Scottish companies in India, with strong capability alignment.

The scale of India's offshore wind ambition reflects strategic imperatives beyond renewable energy targets, including energy security considerations, industrial policy objectives, and coastal economic development goals. With India's electricity demand projected to double by 2030 and land constraints increasingly limiting onshore renewable expansion, offshore wind offers a pathway to massive clean power deployment without the land acquisition challenges that have delayed numerous onshore projects. The Ministry of New and Renewable Energy's (MNRE) tender trajectory envisions 4 GW of capacity auctioned annually between 2025 and 2030, creating a predictable pipeline that enables supply chain investment and cost reduction through economies of scale. [\[2\]](#) [\[9\]](#) [\[27\]](#) [\[28\]](#) [\[29\]](#) [\[6\]](#) [\[30\]](#) [\[31\]](#)

Geographic Focus: Gujarat and Tamil Nadu Opportunity Zones

India's offshore wind development is concentrated in two primary geographic corridors that offer distinct technical and commercial characteristics. Tamil Nadu, with an estimated offshore wind potential exceeding 35 GW, benefits from consistent monsoon wind patterns, established port infrastructure, and a mature onshore wind industry providing local supply chain foundations. The state accounts for 11,500 MW of installed onshore wind capacity and has attracted over ₹5,700 crore in recent wind sector investments, creating an ecosystem of skilled labor, component manufacturers, and experienced project developers. Maritime spatial planning studies have identified 14 viable offshore wind zones off the Tamil Nadu coast, with the first 500 MW tender expected by February 2026 following completion of wind resource assessments that indicate capacity utilization factors of 45-50%. [\[9\]](#) [\[23\]](#) [\[24\]](#) [\[32\]](#) [\[33\]](#) [\[34\]](#)

Gujarat's offshore wind potential, concentrated in the Gulf of Khambhat and Gulf of Kutch regions, offers complementary advantages including proximity to industrial load centers, existing transmission infrastructure, and India's most advanced port facilities. The state has been designated for India's first viability gap funding (VGF) supported offshore wind project, a 500 MW demonstration facility designed to establish commercial benchmarks and de-risk subsequent developments. However, Gujarat's offshore zones face technical challenges including shallower waters requiring fixed-bottom foundations and seasonal monsoon impacts that may reduce capacity factors relative to Tamil Nadu. For Scottish companies, these geographic differences create distinct market entry strategies, with Tamil Nadu offering larger-scale opportunities aligned with floating wind expertise, while Gujarat provides near-term demonstration projects requiring fixed-bottom installation capabilities. [\[35\]](#) [\[27\]](#) [\[33\]](#) [\[36\]](#) [\[37\]](#) [\[34\]](#) [\[38\]](#)

Policy Framework and Government Support Mechanisms

India's offshore wind policy architecture has evolved rapidly since 2020, moving from preliminary feasibility studies to concrete deployment mechanisms. The June 2024 Union Cabinet approval of a ₹7,453 crore (approximately USD 895 million) Viability Gap Funding scheme for 1 GW of offshore wind projects, including ₹600 crore for port infrastructure upgrades, represents a pivotal commitment to sector development. The VGF mechanism provides capital subsidies to bridge the cost gap between offshore wind tariffs and grid parity, addressing developer concerns about commercial viability in the absence of established supply chains and installation capabilities. This support framework is complemented by transmission cost socialization, whereby pooling substations and onshore grid connections are provided free of cost for all offshore projects awarded through 2030, eliminating a major financial barrier that has delayed offshore wind in other markets. [\[39\]](#) [\[36\]](#) [\[31\]](#)

The regulatory environment has been further strengthened by the establishment of clear consenting pathways, environmental impact assessment procedures aligned with international best practices, and seabed leasing frameworks administered through transparent competitive bidding. The National Institute of Wind Energy (NIWE) has completed comprehensive wind resource assessments, marine spatial planning studies, and port infrastructure evaluations that provide developers with robust data to support investment decisions. However, significant implementation challenges remain, including the cancellation of two large offshore wind tenders in 2024 due to insufficient developer interest, highlighting concerns about project economics, supply chain readiness, and regulatory risk. The February 2026 relaunch of the Tamil Nadu tender with enhanced VGF support and more favorable risk allocation provisions represents a recalibration of policy settings to stimulate market participation. [\[11\]](#) [\[40\]](#) [\[24\]](#) [\[32\]](#) [\[41\]](#) [\[33\]](#) [\[37\]](#) [\[42\]](#) [\[43\]](#) [\[39\]](#)

North East Scotland's Competitive Advantages and Capabilities

World-Leading Floating Offshore Wind Expertise

North East Scotland's position as the global epicenter of floating offshore wind technology development provides Scottish SMEs with unparalleled competitive advantages in India's offshore wind market, particularly given India's deepwater coastal profile that necessitates floating platforms for much of its 70-140 GW technical potential. The region is home to Hywind

Scotland, the world's first commercial-scale floating wind farm, which has achieved the highest capacity factors of any UK offshore wind installation since commencing operations in 2017, demonstrating the technical viability and economic competitiveness of floating technology. This operational track record, combined with the development of Green Volt (Europe's first commercial-scale floating wind farm) and the concentration of 75% of Scotland's 28 GW ScotWind leasing round capacity within 100 nautical miles of Aberdeen, has created a dense ecosystem of specialized service providers, innovative technology companies, and experienced project delivery teams. [\[10\]](#) [\[44\]](#) [\[45\]](#) [\[46\]](#) [\[30\]](#)

The National Floating Wind Innovation Centre (FLOWIC) in Aberdeen represents the UK's only dedicated facility focused exclusively on floating offshore wind research and development, providing Scottish companies with access to cutting-edge testing infrastructure, marine engineering capabilities, and collaborative networks that accelerate technology commercialization. Supporting institutions including the Offshore Renewable Energy (ORE) Catapult, which has established a five-year Joint Declaration of Intent with India's National Institute of Wind Energy, facilitate knowledge transfer, supply chain development, and joint innovation programs specifically targeting the India market opportunity. This institutional architecture, combined with Aberdeen's role as operations and maintenance hub for multiple offshore wind farms including the European Offshore Wind Deployment Centre and Moray East, ensures Scottish SMEs can offer proven operational methodologies and performance optimization capabilities critical to India's offshore wind success. [\[11\]](#) [\[47\]](#) [\[48\]](#) [\[49\]](#) [\[10\]](#)

North Sea Oil and Gas Transition: Transferable Expertise

The North East of Scotland's five decades of North Sea oil and gas leadership has generated capabilities directly applicable to offshore wind development, including subsea engineering, marine logistics, deepwater installation, asset integrity management, and harsh environment operations. With over 50,000 workers employed in the region's energy sector and extensive supply chain depth encompassing engineering design, fabrication, construction, and long-term operations, the transition to offshore wind enables capability transfer at scale. Critically, the oil and gas workforce possesses the safety culture, project management disciplines, and complex offshore installation experience that India requires to execute its ambitious offshore wind targets on accelerated timelines. [\[10\]](#) [\[47\]](#) [\[50\]](#) [\[51\]](#) [\[15\]](#) [\[52\]](#)

The Scottish and UK governments have invested significantly in just transition programs designed to reskill oil and gas workers for renewable energy roles, including the £900,000 Oil and Gas Transition Training Fund supporting 200 workers in Aberdeen and Aberdeenshire to access offshore wind, hydrogen, and carbon capture positions. This workforce development infrastructure ensures Scottish companies can deploy skilled personnel to India market projects while simultaneously supporting Indian capacity building through training programs and knowledge transfer partnerships. For Indian offshore wind developers, access to this experienced workforce through Scottish SME partnerships reduces execution risk, accelerates project timelines, and enables technology transfer that builds indigenous capabilities aligned with India's Make in India policy priorities. [\[28\]](#) [\[23\]](#) [\[51\]](#) [\[52\]](#) [\[53\]](#) [\[31\]](#)

Port Infrastructure and Marine Logistics Capabilities

Aberdeen's port infrastructure represents a critical competitive asset for Scottish companies targeting India's offshore wind market, with the £420 million South Harbour expansion creating world-class facilities optimized for offshore renewable energy logistics, component marshalling, and vessel support. The Port of Aberdeen's 7,000 meters of quayside, specialized heavy-lift capabilities, and strategic location serving ScotWind and INTOG leasing rounds position it as a global offshore wind hub that Scottish SMEs can leverage to demonstrate operational competence to Indian partners. Complementary facilities at Peterhead, Fraserburgh (serving as O&M base for Moray East), and Cromarty Firth (£55.7 million investment for floating wind support) create a regional ecosystem capable of supporting every phase of offshore wind project delivery. [\[10\]](#) [\[44\]](#) [\[47\]](#) [\[50\]](#) [\[51\]](#)

This infrastructure advantage is particularly relevant to India's offshore wind challenge, as both Gujarat and Tamil Nadu require substantial port upgrades to support offshore wind installation and operations. Danish-Indian collaboration has identified critical port infrastructure gaps including insufficient quay capacity, limited laydown areas, and inadequate vessel berths necessary for marshalling 15+ MW offshore wind turbines and foundations. Scottish companies with expertise in port development, marine operations planning, and offshore logistics can provide turnkey solutions that accelerate India's infrastructure readiness, positioning themselves as strategic partners rather than merely equipment suppliers. The operational experience gained from supporting multiple offshore wind farms in Scotland's challenging marine environment translates directly to India's monsoon-impacted offshore zones, offering proven risk mitigation approaches and contingency planning methodologies. [\[41\]](#) [\[43\]](#) [\[34\]](#)

Strategic Market Opportunities for Scottish SMEs

Offshore Wind Turbines and Component Manufacturing

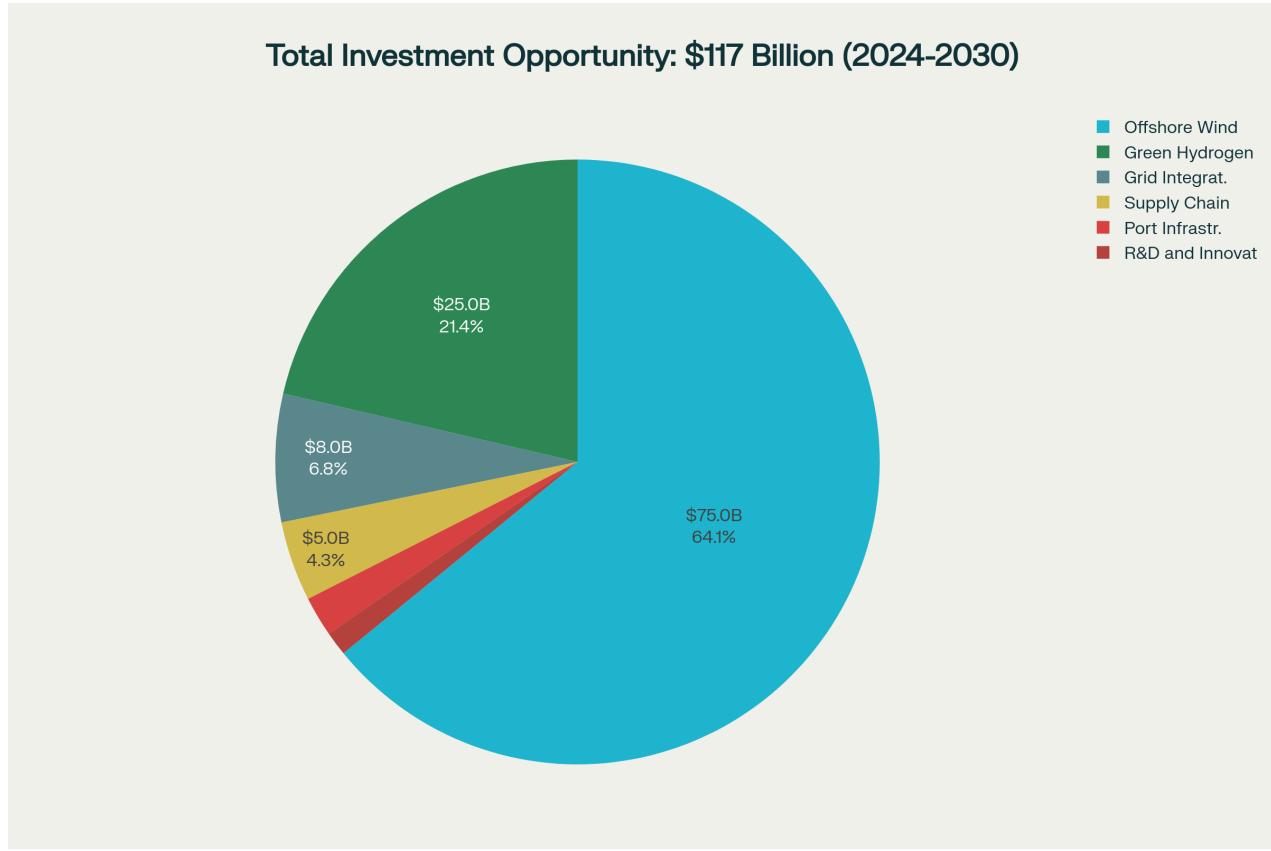
The offshore wind turbine and component sector represents the single largest market opportunity for Scottish companies, with India requiring investment exceeding \$15 billion through 2030 to establish manufacturing capacity for 15+ MW offshore wind turbines, tower sections, blades, nacelles, and associated mechanical systems. Tamil Nadu's existing onshore wind manufacturing ecosystem, encompassing major turbine OEMs and component suppliers, provides a foundation for offshore wind supply chain development but requires technology upgrades, larger fabrication facilities, and quality assurance systems aligned with offshore wind's stringent requirements. Scottish SMEs specializing in advanced materials, precision manufacturing, quality control systems, and component testing can partner with Indian manufacturers to facilitate this capability transition, leveraging CETA's technology transfer provisions and reduced tariffs on manufacturing equipment to structure mutually beneficial joint ventures. [\[3\]](#) [\[23\]](#) [\[17\]](#) [\[26\]](#) [\[54\]](#) [\[55\]](#) [\[20\]](#)

The market opportunity extends beyond turbine components to encompass balance of plant equipment including offshore substations, medium-voltage electrical systems, cable protection systems, and corrosion management solutions where Scottish companies have developed specialized expertise through North Sea operations. India's stated objective of achieving 60-80% local content in offshore wind projects creates strong incentives for technology localization

partnerships, with early entrants positioned to secure long-term supply agreements as India's offshore wind sector scales. For Scottish SMEs, this market entry strategy offers higher margins than pure equipment export models while building recurring revenue streams through ongoing technical support, maintenance parts supply, and continuous improvement collaborations.[\[11\]](#) [\[23\]](#) [\[31\]](#)

Floating Offshore Wind Technology and Engineering

Floating offshore wind represents a \$8 billion market opportunity in India by 2030, with approximately 50% of India's offshore wind potential located in water depths exceeding 60 meters where fixed-bottom foundations become technically or economically impractical. Scotland's global leadership in floating wind technology, demonstrated through Hywind Scotland's operational performance and extensive R&D infrastructure, positions Scottish SMEs to capture significant value in this high-growth segment. Floating platform design, mooring system engineering, dynamic cable technology, and floating-specific installation methodologies constitute core capabilities where Scottish companies possess competitive advantages unavailable from alternative supply sources.[\[10\]](#) [\[44\]](#) [\[46\]](#) [\[56\]](#) [\[30\]](#) [\[57\]](#)


The India market presents distinct technical requirements including deeper deployment depths off Tamil Nadu's east coast, monsoon loading conditions, and integration with India's evolving offshore grid architecture that necessitate adaptation of European floating wind designs. Scottish engineering consultancies, specialized naval architects, and floating wind technology developers can provide these customization services while simultaneously supporting Indian partners in establishing floating wind manufacturing capabilities. The UK-India Offshore Wind Taskforce, announced in February 2025, specifically identifies floating wind as a priority collaboration area, creating institutional channels for Scottish companies to engage with Indian project developers, government agencies, and research institutions.[\[11\]](#) [\[40\]](#) [\[23\]](#) [\[19\]](#) [\[58\]](#) [\[46\]](#) [\[30\]](#) [\[59\]](#)

Operations, Maintenance, and Asset Management Services

Operations and maintenance (O&M) represents a \$5 billion cumulative market opportunity through 2035 as India's offshore wind fleet scales to 37+ GW of installed capacity requiring long-term performance optimization, preventive maintenance, and major component replacement services. North East Scotland's role as O&M hub for multiple offshore wind installations, supported by specialized vessel fleets, advanced diagnostic technologies, and 24/7 remote monitoring capabilities, provides Scottish SMEs with proven operational methodologies directly transferable to India's offshore wind sector. The harsh North Sea operating environment, characterized by challenging weather windows and significant wave heights comparable to India's monsoon conditions, ensures Scottish O&M approaches incorporate robust contingency planning and weather-adaptive execution strategies essential to maintaining offshore wind fleet availability.[\[10\]](#) [\[11\]](#) [\[47\]](#) [\[23\]](#) [\[49\]](#) [\[26\]](#) [\[60\]](#)

Indian offshore wind developers will require international partnerships to establish O&M capabilities, as India currently lacks the specialized vessels, trained technicians, and predictive maintenance systems necessary for offshore wind asset management. Scottish SMEs can structure O&M partnerships combining initial service delivery with phased capability transfer, training Indian personnel in Scottish facilities before transitioning to India-based operations as

the offshore wind fleet expands. This approach aligns with India's employment generation and skills development priorities while enabling Scottish companies to establish long-term market presence through recurring revenue contracts extending 25+ years over offshore wind project operational lifetimes. Digital O&M solutions, including AI-driven predictive maintenance platforms, remote condition monitoring systems, and digital twin technologies where Scottish companies are developing innovative capabilities, offer high-value service opportunities with minimal physical presence requirements. [\[11\]](#) [\[23\]](#) [\[61\]](#) [\[41\]](#) [\[62\]](#)

India's offshore wind and low-carbon transition requires \$117 billion in investment through 2030, with offshore wind projects (64%) and green hydrogen (21%) representing the largest opportunities.

Green Hydrogen Production and Export Infrastructure

India's National Green Hydrogen Mission, targeting 5 million metric tonnes per annum of green hydrogen production by 2030 with associated renewable energy capacity of 125 GW, creates a \$25 billion investment opportunity encompassing electrolysis systems, renewable power integration, hydrogen storage, and distribution infrastructure. Scotland's ambition to become a leading global green hydrogen exporter, supported by the Scottish Government's Hydrogen Assessment projecting £25 billion annual gross value added contribution by 2045, generates complementary capabilities for India market collaboration. Scottish companies developing electrolyser technology, hydrogen compression systems, transport solutions, and industrial application engineering can partner with Indian counterparts to accelerate India's green hydrogen deployment while securing access to India's rapidly growing hydrogen demand from refining, fertilizer, steel, and chemical sectors. [\[63\]](#) [\[12\]](#) [\[13\]](#) [\[14\]](#) [\[64\]](#)

The convergence of offshore wind and green hydrogen creates integrated market opportunities, as India's coastal offshore wind installations can directly power electrolysis facilities for hydrogen production, reducing transmission losses and enabling cost-competitive green hydrogen at scale. Scottish expertise in offshore energy systems integration, including floating platform-mounted electrolyzers and subsea hydrogen transport technologies under development in Scotland's innovation ecosystem, positions Scottish SMEs at the leading edge of this emerging sector. The UK-India Green Strategic Partnership, reinforced through CETA's clean energy cooperation provisions, facilitates joint research programs, pilot project collaborations, and technology demonstration initiatives that accelerate commercial deployment while sharing development risk.^{[65] [17] [19] [12] [14] [66]}

However, India's green hydrogen sector faces significant implementation challenges including high production costs (currently \$4-6/kg versus targets of \$1.5/kg by 2030), inadequate storage and distribution infrastructure, and uncertain demand signals limiting commercial investment. Scottish companies must structure India market entry strategies that account for these barriers, potentially focusing initially on industrial clusters where hydrogen demand is concentrated, export-oriented green ammonia production leveraging India's port infrastructure, or niche applications in heavy transport where hydrogen offers clear advantages over alternatives. Long-term partnerships structured around technology licensing, engineering services, and project development support rather than pure equipment supply may prove more sustainable market entry approaches given the sector's developmental stage.^{[12] [13] [14]}

Regional Market Entry Strategies and Implementation Pathways

Tamil Nadu Corridor: Primary Market Opportunity

Tamil Nadu represents the highest-priority market entry target for Scottish offshore wind companies, offering a combination of largest offshore wind potential (35+ GW), most mature onshore wind ecosystem, earliest tender pipeline (February 2026 expected award), and established industrial infrastructure supporting renewable energy supply chains. The state government's proactive support for offshore wind development, evidenced by partnerships with Danish agencies for maritime spatial planning and port infrastructure studies, creates a conducive policy environment for international collaboration. For Scottish SMEs, Tamil Nadu's concentration of wind turbine manufacturers, blade fabricators, and component suppliers provides partnership opportunities that leverage existing capabilities while introducing advanced offshore wind technologies through joint ventures and technology transfer agreements.^{[9] [23] [24] [32] [34] [67]}

Market entry strategies should prioritize relationship development with Tamil Nadu's major industrial players including existing wind energy companies, port operators, and state-level agencies responsible for offshore wind implementation. The Tamil Nadu Offshore Wind Manufacturing Supply Chain Investment Study, conducted by Ocean Energy Pathway and Global Wind Energy Council, identifies specific capability gaps where Scottish expertise can add value, including offshore-rated tower manufacturing, foundation engineering, and installation contractor services. Scottish Enterprise and Scottish Development International have established active engagement programs in India, including participation in major industry events and dedicated trade missions, providing institutional support for Scottish companies navigating

market entry. Pilot projects demonstrating Scottish technology in Tamil Nadu's offshore wind zones, potentially structured through the UK-India Offshore Wind Taskforce collaboration framework, can establish track records that position Scottish companies for larger-scale project awards as the market scales. [\[68\]](#) [\[23\]](#) [\[62\]](#) [\[69\]](#)

Gujarat Sector: Near-Term Demonstration Projects

Gujarat's offshore wind opportunity, while smaller in absolute scale than Tamil Nadu, offers near-term market entry potential through the VGF-supported 500 MW demonstration project and industrial decarbonization applications aligned with the state's petroleum refining and chemical manufacturing base. The Gulf of Khambhat's relatively shallow water depths (20-40 meters) favor fixed-bottom offshore wind installations, requiring different technical capabilities than Tamil Nadu's deepwater floating wind focus but creating opportunities for Scottish companies with North Sea fixed-bottom installation experience. Gujarat's port infrastructure, particularly Mundra and Kandla ports with existing heavy-lift capabilities, provides more developed logistics support than Tamil Nadu, potentially accelerating project execution timelines. [\[35\]](#) [\[27\]](#) [\[33\]](#) [\[36\]](#) [\[43\]](#) [\[34\]](#) [\[38\]](#)

For Scottish SMEs, Gujarat offers opportunities to demonstrate capabilities in a lower-risk demonstration environment before scaling to larger Tamil Nadu projects. The state's strong industrial energy demand creates potential for corporate power purchase agreements with credit-worthy industrial off-takers, reducing merchant exposure and supporting project bankability. Scottish companies should explore partnerships with Gujarat's Industrial Extension Bureau and state renewable energy agencies to position for early project opportunities while simultaneously developing relationships with major industrial energy consumers who may procure offshore wind power directly. The Innovation and Targeted Oil & Gas (INTOG) leasing round in Scotland, designed to power offshore oil and gas installations with renewable energy, provides directly relevant experience for Gujarat's industrial decarbonization applications, creating a compelling value proposition for Scottish companies in this sector.

National-Level Market Development and Government Engagement

Successful market entry in India's offshore wind sector requires engagement at multiple government levels, including the Ministry of New and Renewable Energy (MNRE), Solar Energy Corporation of India (SECI) administering offshore wind tenders, National Institute of Wind Energy conducting technical studies, and state-level energy departments responsible for implementation. The UK-India Offshore Wind Taskforce, comprising government officials, industry representatives, and technical experts, provides an institutional platform for Scottish companies to participate in policy dialogue, influence tender design, and access market intelligence. Scottish companies should leverage UK government trade support mechanisms, including Department for International Trade India initiatives, British High Commission commercial services, and UK Export Finance support for project financing, to enhance competitive positioning and mitigate market entry risks. [\[11\]](#) [\[40\]](#) [\[32\]](#) [\[19\]](#) [\[62\]](#) [\[69\]](#)

Strategic partnerships with India's leading renewable energy developers, including ReNew Power, Adani Green Energy, and Tata Power Renewable Energy, offer market access advantages through established project pipelines, government relationships, and financing capabilities that Scottish SMEs typically lack. These partnerships can be structured as technology licensing

agreements, equipment supply contracts with performance guarantees, or joint venture arrangements combining Scottish technical expertise with Indian market access and project development capabilities. Scottish trade associations, including Scottish Renewables and Aberdeen Renewable Energy Group (AREG), provide collective engagement platforms that amplify individual company capabilities and facilitate matchmaking with Indian partners. Participation in major Indian industry events including Windergy India, India Energy Week, and state-level renewable energy conferences creates visibility and relationship-building opportunities essential to market development in India's relationship-oriented business culture. [\[70\]](#) [\[15\]](#) [\[62\]](#) [\[69\]](#) [\[71\]](#) [\[72\]](#)

Critical Success Factors and Market Entry Barriers

Supply Chain Localization and Make in India Alignment

India's offshore wind policy framework incorporates local content requirements intended to stimulate domestic manufacturing and maximize employment generation, presenting both opportunities and challenges for Scottish companies. The Ministry of New and Renewable Energy has indicated expectations of 60% local content in early offshore wind projects, increasing to 80% as the supply chain matures, creating pressure on international suppliers to localize technology or risk market exclusion. However, premature or overly stringent local content mandates in the absence of established Indian offshore wind manufacturing capabilities can increase project costs, delay deployment, and reduce international investment, concerns that contributed to the cancellation of India's initial offshore wind tenders in 2024. [\[23\]](#) [\[33\]](#) [\[37\]](#) [\[31\]](#)

For Scottish SMEs, effective localization strategies must balance India's legitimate industrialization objectives with technical and economic realities of offshore wind supply chains. Optimal approaches include establishing joint ventures with Indian manufacturers combining Scottish design expertise and quality systems with Indian fabrication capacity, licensing Scottish intellectual property to Indian partners with ongoing technical support contracts, and phased localization plans that sequence capability transfer based on supply chain readiness and scale economics. Scottish companies should engage proactively with Make in India policy development, demonstrating commitment to capability building through workforce training programs, technology transfer agreements, and local R&D investments that align with India's strategic priorities while protecting Scottish companies' competitive advantages through retained design authority and proprietary technologies. [\[28\]](#) [\[17\]](#) [\[20\]](#) [\[23\]](#)

Financing Structures and Risk Mitigation

Offshore wind projects require substantial upfront capital investment, with typical project costs ranging from \$3-4 million per MW for fixed-bottom installations and \$4-5 million per MW for floating wind, creating financing challenges particularly acute in India's developing offshore wind market lacking established risk benchmarks. Indian renewable energy project financing historically relies on domestic financial institutions with limited offshore wind experience, creating potential financing gaps that could constrain market development despite robust government policy support. Scottish companies must consider financing structures that facilitate Indian market entry, potentially including supplier credits, equipment leasing arrangements, or partnerships with international development finance institutions including UK Export Finance,

European Investment Bank, and International Finance Corporation that have expressed interest in supporting India's offshore wind sector. [\[2\]](#) [\[11\]](#) [\[17\]](#) [\[18\]](#) [\[19\]](#) [\[46\]](#) [\[31\]](#)

The UK-India Infrastructure Financing Bridge, designed to mobilize private capital for sustainable infrastructure, provides a potential channel for Scottish companies to access project financing while de-risking Indian market entry. Additionally, demonstration projects utilizing Viability Gap Funding support offer lower commercial risk and establish operational track records that facilitate subsequent financing for commercial-scale deployments. Scottish SMEs should structure India engagements to minimize balance sheet exposure, potentially focusing on service contracts with payment upon completion, equipment supply with progress payments, or O&M contracts with performance-based fee structures rather than equity investments in project development that require long-term capital commitment and expose companies to construction, permitting, and merchant revenue risks. [\[23\]](#) [\[19\]](#) [\[36\]](#) [\[31\]](#)

Technical Adaptation and Standards Harmonization

India's offshore wind operating environment presents distinct technical challenges requiring adaptation of Scottish technologies and methodologies, including monsoon loading conditions creating extreme weather events during June-September periods, cyclone risks in Bay of Bengal zones necessitating enhanced structural design standards, and tropical marine conditions causing accelerated corrosion and biofouling effects. Scottish engineering companies must demonstrate capability to customize designs for Indian conditions while maintaining cost competitiveness against alternative suppliers. Collaboration with Indian research institutions including NIWE, Indian Institute of Technology campuses, and National Institute of Ocean Technology can support technical adaptation while building relationships with Indian technical authorities responsible for certification and approval processes. [\[11\]](#) [\[23\]](#) [\[34\]](#) [\[31\]](#) [\[73\]](#)

Standards harmonization represents both a challenge and an opportunity, as India is developing offshore wind technical standards potentially diverging from European norms familiar to Scottish companies. Proactive engagement in Indian standards development through industry associations and technical committees enables Scottish companies to influence specifications aligning with Scottish technologies while ensuring interoperability and safety. The UK-India Offshore Wind Taskforce provides a forum for addressing standards issues collaboratively, potentially facilitating mutual recognition agreements that streamline certification and reduce duplicative testing requirements. Scottish companies should position technical adaptation and standards compliance as value-added services demonstrating commitment to Indian market success rather than obstacles requiring costly re-engineering. [\[40\]](#) [\[61\]](#) [\[41\]](#) [\[19\]](#) [\[31\]](#)

Competition from Established Asian and European Suppliers

Scottish SMEs entering India's offshore wind market face significant competition from established European offshore wind suppliers including Danish turbine manufacturers, German engineering firms, and Spanish installation contractors with existing India market presence and decades of offshore wind operational experience. Asian suppliers, particularly Chinese manufacturers offering aggressive pricing on turbines and components, and regional players from Japan, South Korea, and Taiwan with growing offshore wind capabilities, present additional competitive pressures. For Scottish companies, competitive differentiation must emphasize

unique capabilities unavailable from alternatives, including floating wind technology leadership, harsh environment operational expertise, and integrated solutions combining multiple supply chain elements through Scottish cluster partnerships.[\[10\]](#) [\[11\]](#) [\[44\]](#) [\[23\]](#) [\[55\]](#) [\[31\]](#) [\[60\]](#)

The UK-India CETA provides Scottish companies with specific tariff advantages over non-UK competitors, creating cost competitiveness that can be leveraged particularly in price-sensitive segments. However, tariff advantages alone are insufficient, requiring Scottish companies to articulate clear value propositions addressing Indian developer priorities including technology performance guarantees, lifecycle cost optimization, local capability building commitments, and flexibility to adapt to India's evolving regulatory and commercial frameworks. Strategic positioning as technology partners rather than merely equipment suppliers, combined with willingness to structure innovative commercial models including performance-based pricing, shared risk arrangements, or long-term service partnerships, can differentiate Scottish companies from transactional competitors focused primarily on equipment sales.[\[3\]](#) [\[8\]](#) [\[23\]](#) [\[20\]](#) [\[31\]](#)

Long-Term Strategic Considerations

Building Sustainable Market Presence Beyond Initial Projects

Successful India market entry requires long-term strategic commitment extending beyond individual project opportunities to establish sustainable market presence through local offices, Indian subsidiary companies, and permanent in-country personnel. Scottish SMEs should develop phased market entry strategies that sequence investments based on demonstrated market traction, potentially commencing with representative offices supporting business development before establishing full operational capabilities as project pipeline materializes. Partnerships with Scottish Development International, Scottish Enterprise, and Scottish trade associations provide cost-effective market presence through shared facilities, collective marketing initiatives, and coordinated government engagement that reduce individual company resource requirements.[\[68\]](#) [\[62\]](#) [\[67\]](#) [\[69\]](#)

Building local teams combining Scottish technical expertise with Indian market knowledge, regulatory understanding, and language capabilities is essential to sustained competitiveness, as purely Scotland-based operations face limitations in responsiveness, cultural alignment, and relationship development that India's business environment demands. Scottish companies should invest in training Indian nationals in Scottish facilities, creating career pathways that retain talent while building organizational capacity to scale India operations as the market expands. Additionally, strategic philanthropic initiatives supporting Indian renewable energy education, skills development, or community engagement demonstrate corporate citizenship that enhances brand reputation and facilitates relationship building with government stakeholders and local communities affected by offshore wind projects.[\[28\]](#) [\[62\]](#) [\[74\]](#) [\[67\]](#) [\[69\]](#)

Leveraging India Success for Third-Country Market Expansion

India's emergence as a major offshore wind market creates potential for Scottish companies to leverage India-developed capabilities for expansion into other emerging offshore wind markets in Asia-Pacific, Middle East, and Africa regions where India has established trade and investment relationships. Joint ventures with Indian partners combining Scottish technology with

Indian cost competitiveness and project execution capabilities can create formidable competitors in price-sensitive markets where purely Scottish offerings may face cost disadvantages. India's growing offshore wind manufacturing base, if effectively developed through Scottish partnerships, can serve as export platform for regional markets reducing landed costs and accelerating project delivery compared to Scotland-manufactured alternatives. [\[68\]](#) [\[23\]](#) [\[30\]](#) [\[75\]](#) [\[67\]](#) [\[55\]](#)

The Scottish Government's Framework for Growing Scotland's Renewables Exports identifies India as a priority market for strategic partnerships that enhance Scottish companies' competitiveness in third markets, recognizing India's scale as both direct opportunity and platform for broader international expansion. Scottish companies should structure India market strategies that retain intellectual property control, design authority, and high-value engineering services in Scotland while leveraging India's manufacturing cost advantages and regional market access for volume production, creating complementary rather than substitutive relationships that maximize long-term value capture. [\[70\]](#) [\[17\]](#) [\[20\]](#) [\[68\]](#)

Contributing to India's Net-Zero and Energy Security Objectives

Successful market entry in India requires alignment with India's strategic priorities including net-zero emissions by 2070, energy security through reduced fossil fuel imports, and inclusive economic development benefiting rural coastal communities where offshore wind projects are located. Scottish companies should articulate their offerings in the context of these national objectives, demonstrating how Scottish technologies and partnerships accelerate India's energy transition while generating employment, building indigenous capabilities, and supporting regional development. Engagement with India's climate action frameworks, including Nationally Determined Contributions under the Paris Agreement and state-level renewable energy policies, positions Scottish companies as contributors to India's sustainability goals rather than merely commercial suppliers seeking profit extraction. [\[65\]](#) [\[76\]](#) [\[77\]](#) [\[28\]](#) [\[17\]](#) [\[19\]](#)

The UK's net-zero by 2050 target and Scotland's even more ambitious 2045 timeline create shared climate commitments that can underpin UK-India clean energy collaboration as partnership among nations addressing global challenges rather than traditional trade relationships. Scottish companies should emphasize this values alignment in government engagement, investor communications, and public positioning, differentiating Scottish offerings from suppliers from nations with weaker climate commitments or fossil fuel-dependent economic models. As India increasingly integrates environmental, social, and governance criteria into procurement decisions and project evaluations, Scottish companies' strong sustainability credentials and commitment to just transition principles provide competitive advantages that complement technical and commercial capabilities. [\[28\]](#) [\[17\]](#) [\[19\]](#) [\[51\]](#) [\[65\]](#)

Conclusion: Seizing a Generational Opportunity

The convergence of the UK-India CETA, India's ambitious offshore wind and low-carbon energy targets, and North East Scotland's world-class capabilities creates a generational market opportunity for Scottish SME energy supply chain companies exceeding \$117 billion in total addressable market through 2030. India's 7,600-kilometer coastline, 140+ GW offshore wind technical potential, and strategic commitment to renewable energy-led industrialization position

the country as one of the world's most significant clean energy growth markets over the coming decade. North East Scotland's unique combination of floating wind technology leadership, North Sea operational expertise, established offshore wind supply chain depth, and institutional support infrastructure provides Scottish companies with competitive advantages precisely aligned with India's technical requirements and capability development priorities.[\[2\]](#) [\[3\]](#) [\[35\]](#) [\[9\]](#) [\[10\]](#) [\[11\]](#) [\[12\]](#) [\[15\]](#) [\[26\]](#)

However, market success requires more than technical competence, demanding strategic market entry planning, patient capital commitment, cultural sensitivity, and willingness to structure partnerships that balance Scottish commercial interests with India's legitimate industrialization and employment objectives. The CETA provides essential tariff elimination and market access provisions, but Scottish companies must complement these structural advantages with proactive relationship building, technology adaptation, and demonstration of long-term commitment to India's energy transition success. Early movers establishing market presence during 2025-2027 as India's offshore wind tenders accelerate can secure strategic positions and operational track records that provide enduring advantages as the market scales toward 37 GW deployment by 2030.[\[3\]](#) [\[6\]](#) [\[23\]](#) [\[24\]](#) [\[17\]](#) [\[19\]](#) [\[62\]](#) [\[31\]](#) [\[2\]](#)

The pathway forward requires coordinated action by Scottish companies, government trade promotion agencies, financial institutions, and industry associations to translate strategic opportunity into commercial reality. Scottish Enterprise, Scottish Development International, and Scottish Renewables have established frameworks supporting India market development that individual SMEs should leverage while simultaneously forming collaborative clusters that amplify collective capabilities and reduce individual market entry risks. With India's first major offshore wind tenders anticipated for 2026, the immediate priority is capability demonstration, partner identification, and positioning for award opportunities that establish operational presence supporting long-term market development. For North East Scotland's energy supply chain companies, India represents not merely an export opportunity but a strategic partnership that can sustain Scottish offshore wind excellence for decades as North Sea oil and gas production declines and the global energy transition accelerates.[\[68\]](#) [\[70\]](#) [\[24\]](#) [\[32\]](#) [\[33\]](#) [\[51\]](#) [\[15\]](#) [\[66\]](#) [\[62\]](#)

**

1. https://en.wikipedia.org/wiki/India–United_Kingdom_Comprehensive_Economic_and_Trade_Agreement
2. <https://www.imarcgroup.com/india-offshore-wind-power-market>
3. <https://www.ibef.org/blogs/india-uk-comprehensive-economic-and-trade-agreement-ceta-a-historic-milestone>
4. <https://bvgassociates.com/realising-indias-offshore-wind-potential/>
5. <https://www.pib.gov.in/PressNoteDetails.aspx?NotId=154945&ModuleId=3>
6. <https://powerline.net.in/2025/09/15/new-avenues-cost-economics-challenges-and-opportunities-in-the-offshore-wind-segment/>
7. <https://hydrogenindustryleaders.com/india-poised-to-capture-10-of-global-green-hydrogen-market-by-2030/>
8. <https://www.britishchambers.org.uk/policy-campaigns/global-britain/our-solutions/uk-india-trade-deal-explainer/>

9. <https://www.ceew.in/publications/assessing-offshore-wind-power-development-for-indias-power-system-in-2030>
10. <https://investaberdeen.co.uk/uploads/North East Scotland Offshore Wind.pdf>
11. <https://ore.catapult.org.uk/press-releases/ore-catapult-and-niwe-announce-uk-india-offshore-wind-cooperation>
12. <https://uk.finance.yahoo.com/news/india-green-hydrogen-market-outlook-080500354.html>
13. <https://ieefa.org/resources/enabling-sustainable-demand-green-hydrogen-india>
14. <https://rmi.org/insight/from-promise-to-purchase/>
15. <https://aberdeenrenewables.com/renewable-sectors/onshore-wind/>
16. <https://taxscape.deloitte.com/article/the-uk-india-fta--what-s-in-it-for-business-.aspx>
17. <https://www.argus-p.com/updates/updates/redefining-historic-ties-the-india-uk-free-trade-agreement-and-indias-global-trade-aspirations/>
18. <https://www.pv-magazine-india.com/2025/08/12/how-the-india-uk-fta-can-turbocharge-clean-energy-cooperation-and-investment-between-the-two-nations/>
19. <https://www.e3g.org/news/taking-the-uk-india-clean-energy-partnership-to-the-next-level/>
20. <https://assets.kpmg.com/content/dam/kpmgsites/in/pdf/2025/08/india-united-kingdom-uk-bilateral-trade.pdf>
21. <https://www.cooperparry.com/news/uk-india-free-trade-agreement-a-new-era-for-uk-trade-customs/>
22. <https://indiajuris.com/library/2025/07/Impact-of-India-UK-Trade-Agreement-on-Energy-Sector.pdf>
23. https://oceanenergypathway.org/wp-content/uploads/Tamil-Nadu-Offshore-Wind-Manufacturing-Supply-Chain-Investment-Study_Feb-2025_FINAL.pdf
24. <https://www.newindianexpress.com/states/tamil-nadu/2025/Oct/31/centre-to-invite-bids-for-offshore-wind-projects-in-tamil-nadu-gujarat-by-february>
25. <https://bridgetoindia.com/report/harnessing-indias-offshore-wind-opportunity/>
26. <https://uk.finance.yahoo.com/news/india-wind-power-market-report-102400443.html>
27. <https://uk.finance.yahoo.com/news/india-wind-power-industry-report-152400914.html>
28. <https://eeist.co.uk/indias-energy-sector-transition-to-meet-the-2070-net-zero-target/>
29. <https://windinsider.com/2025/08/28/indias-wind-energy-outlook-2023-2027-signals-growth-with-policy-push-and-emerging-opportunities-gwec-report/>
30. <https://energy.economictimes.indiatimes.com/news/renewable/floating-offshore-wind-indias-next-renewable-energy-technology-frontier/99091249>
31. <https://renewablewatch.in/2025/07/16/harnessing-wind-market-trends-challenges-and-outlook/>
32. <https://timesofindia.indiatimes.com/business/industry-news/india-business/offshore-wind-tender-for-tamil-nadu-likely-by-february-2026-mnre/articleshow/124989148.cms>
33. <https://www.windtech-international.com/industry-news/india-prepares-new-offshore-wind-tender-for-tamil-nadu>
34. <https://ens.dk/en/press/indian-danish-collaboration-launches-conceptual-plan-15-indian-offshore-wind-parks>
35. <https://kpenergy.in/blog/the-role-offshore-wind-energy-meeting-india-energy-demands>
36. <https://www.gwec.net/gwec-news/india-sets-course-for-new-era-of-wind-energy>
37. <https://reglobal.org/india-cancels-two-offshore-wind-tenders/>

38. <https://www.nortonrosefulbright.com/zh-hk/knowledge/publications/bbbb6e0c/developing-offshore-wind-energy-in-india>
39. <https://www.nortonrosefulbright.com/en-419/knowledge/publications/bbbb6e0c/developing-offshore-wind-energy-in-india>
40. <https://economictimes.com/industry/renewables/india-uk-announce-offshore-wind-taskforce-to-focus-on-ecosystem-development/articleshow/118124847.cms>
41. <https://www.pfie.com/pfi-yearbooks/1491871/harnessing-indias-offshore-wind-potential>
42. <https://www.offshorewind.biz/2025/08/13/india-cancels-two-offshore-wind-tenders/>
43. <https://coe-osw.org/port-infrastructure-study-of-selected-ports-in-gujarat-and-tamil-nadu/>
44. <https://aberdeenrenewables.com/member-news-new-floating-wind-test-rig-project-to-break-new-ground-in-aberdeen/>
45. <https://www.offshorewindscotland.org.uk>
46. <https://www.futuremarketinsights.com/reports/floating-offshore-wind-energy-market>
47. <https://www.portofaberdeen.co.uk/news/a-transition-losing-its-energy>
48. <https://www.offshorewind.biz/2022/04/22/ore-catapult-and-niwe-form-uk-india-offshore-wind-partnership/>
49. https://www.scottishrenewables.com/assets/000/001/905/NE_factsheet_A4_2PP_MSP_-_WEB_original.pdf?1633508805
50. <https://www.gov.uk/government/news/173-million-uk-government-funding-for-energy-transition-zone>
51. <https://www.gov.uk/government/news/tailored-support-for-aberdeen-oil-and-gas-workers>
52. <https://www.skillsdevelopmentscotland.co.uk/news-events/2025/july/oil-and-gas-transition-training-fund-offers-pathway-to-clean-energy-jobs/>
53. <https://www.scottishconstructionnow.com/articles/pilot-to-support-north-east-oil-and-gas-workers-transition-to-sustainable-energy-sector>
54. <https://www.gwec.net/gwec-news/indias-wind-capacity-expected-to-reach-107-gw-by-2030-gwec-india-wind-report-2025>
55. <https://www.mandg.com/investments/professional-investor/en-gb/insights/mandg-insights/latest-insights/2025/11/india-energy-transition-is-gaining-momentum>
56. <https://mobilityforesights.com/product/india-offshore-wind-energy-market>
57. <https://www.nortonrosefulbright.com/en-in/knowledge/publications/292a783d/floating-offshore-wind>
58. <https://www.energetica-india.net/news/gautam-solar-sees-india-uk-fta-as-strategic-opportunity-to-expand-global-footprint->
59. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Jul/IRENA_G7_Floating_offshore_wind_outlook_2024.pdf
60. <https://energydigital.com/articles/itpenergiseds-top-3-challenges-in-offshore-wind-development>
61. <https://www.nortonrosefulbright.com/en-gb/knowledge/publications/bbbb6e0c/developing-offshore-wind-energy-in-india>
62. <https://www.energyconnects.com/videos/video-interviews/2025/february/scotland-and-india-partnering-for-a-clean-energy-future/>
63. https://www.scottishrenewables.com/assets/000/003/473/Scottish_Renewables_-_Scottish_Budget_202425_Briefing_original.pdf?1701269666
64. <http://gh2.org/countries/india>

65. <https://climateactiontracker.org/countries/india/>
66. <https://www.justtransition.scot/publication/a-just-transition-for-aberdeen-and-the-north-east/>
67. https://www.cgiedinburgh.gov.in/content/new_1.pdf
68. <https://www.gov.scot/publications/renewables-exports-action-plan/>
69. <https://www.youtube.com/watch?v=LKlcUZOpuYU>
70. https://www.scottishrenewables.com/assets/000/002/337/SR_SUPPLY_CHAIN_2PP_v7_original.pdf?1652708284
71. <https://aberdeenrenewables.com/events/unlocking-opportunities-in-india-advanced-manufacturing-and-engineering/>
72. <https://www.aberdeeninvestments.com/en-gb/anii/about-us/investment-case-studies/renew-energy-global>
73. <https://engineeringx.raeng.org.uk/programmes/transforming-systems-through-partnership/grants-and-programmes/jordanthailandssouth-africa-grant-call/india/tsp-india-awardees/>
74. https://edinburghcentre.org/case_studies/scene-connect
75. <https://fowcoe.co.uk/industry-insights/reports/fow-coe-international-market-opportunities-summary-report/>
76. <https://moef.gov.in/uploads/2022/11/Indias-LT-LEDS.pdf>
77. <https://www.ukpact.co.uk/country-fund/india>
78. <https://www.sciencedirect.com/science/article/pii/S2665972719300030>
79. https://www.scottishchambers.org.uk/press_policy/scottish-chambers-of-commerce-strengthens-relationship-with-india/
80. <https://papers.ssrn.com/sol3/Delivery.cfm/5321730.pdf?abstractid=5321730&mirid=1>
81. <https://www.ey.com/content/dam/ey-unified-site/ey-com/en-in/alerts-hub/2025/07/india-uk-comprehensive-economic-and-trade-agreement.pdf>
82. <https://www.energy-transitions.org/publications/roadmap-to-indias-2030-decarbonization-target/>
83. <https://www.gov.uk/government/collections/comprehensive-economic-and-trade-agreement-between-the-united-kingdom-of-great-britain-and-northern-ireland-and-india>
84. <https://ember-energy.org/countries-and-regions/india/>
85. <https://www.gov.uk/government/collections/uk-india-trade-deal>
86. <https://ore.catapult.org.uk/media-centre/press-releases/a-dozen-north-east-businesses-chosen-for-a-award-winning-offshore-renewables-supply-chain-programme>
87. <https://www.scottish-enterprise.com/media/euyp2hd5/et-economic-impact-annex-a-scottish-company-capability.pdf>
88. <https://www.offshorewindscotland.org.uk/news/2025/april/24/prime-minister-launches-300m-boost-for-offshore-wind-industry/>
89. <https://www.climateexchange.org.uk/wp-content/uploads/2024/03/CXC-Economic-Opportunities-in-Scotland-Net-Zero-and-Climate-Adaption-Economy-March-2024.pdf>
90. <https://evidencehub.northeast-ca.gov.uk/downloads/588/north-east-offshore-wind-supply-chain-final-report-april-2020.pdf>
91. <https://www.forthandtayoffshore.co.uk/go.php?id=2539>
92. <https://www.constructionworld.in/energy-infrastructure/power-and-renewable-energy/india-to-invite-offshore-wind-tenders-in-tamil-nadu-gujarat/80936>

93. <https://www.gov.uk/government/publications/uk-india-trade-deal-conclusion-summary/uk-india-trade-deal-conclusion-summary>
94. <https://bvgassociates.com/unlocking-indias-offshore-wind-potential/>
95. <https://www.pib.gov.in/PressReleasePage.aspx?PRID=2189126>
96. <https://www.reuters.com/sustainability/climate-energy/india-could-miss-2030-green-hydrogen-production-goals-top-official-says-2025-11-11/>
97. <https://www.sdi.co.uk/business-in-scotland/success-stories>
98. <https://www.foundocean.com/news-resources/news/14322510/focus-on-india/>
99. <https://www.brutimes.com/news/business/partner-with-scotlands-most-reliable-green-energy-specialist-to-drive-your-renewable-energy-projects-to-success>
100. <https://www.gov.uk/government/speeches/green-growth-green-jobs-the-success-of-renewables-in-scotland>
101. <https://www.investindia.gov.in/sector/renewable-energy>
102. <https://www.windpowermonthly.com/article/1929972/analysis-indias-first-offshore-wind-tenders-doomed-fail>
103. <https://www.tandfonline.com/doi/abs/10.1080/15567249.2022.2118403>