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The ectoenzyme CD73, and its product
adenosine, control cellular homeostasis
and allostasis by integrating extracellular
purinergic signaling with intracellular ki-
nase activities and gene transcription.

CD73 is complex and coordinated at
multiple levels, including transcriptional
(by hypoxia), post-transcriptional (by
production of an alternative splice iso-
form and circular mRNA), and post-
translational (by N-glycosylation and
shedding from the membrane to
produce a soluble form).
Purinergic signaling is a fundamental mechanism used by all cells to control their
internal activities and interact with the environment. A key component of the
purinergic system, the enzyme ecto-5′-nucleotidase (CD73) catalyzes the last
step in the extracellular metabolism of ATP to form adenosine. Efforts to harness
the therapeutic potential of endogenous adenosine in cancer have culminated in
the ongoing clinical development of multiple CD73-targeting antibodies and
small-molecule inhibitors. However, recent studies are painting an increasingly
complex picture of CD73 mRNA and protein regulation and function in cellular
homeostasis, physiological adaptation, and disease development. This review
discusses the latest conceptual and methodological advances that are helping
to unravel the complexity of this important enzyme that was identified nearly
90 years ago.
An oxygen gradient patterns zonal
expression of CD73 to regulate the
long-term metabolic and immune sta-
bility of epithelial cells and tissues.

Multiple CD73 inhibitors are undergoing
clinical development for cancer. Given
the complex regulation and homeostatic
functions of CD73 and adenosine, cau-
tion regarding the long-term safety of
systemic inhibition of CD73 is warranted.
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CD73 is an integral component of the purinergic system
Cells produce and consume ATP in a tightly regulated manner to ensure optimal organismal
function. In addition to being used as fuel for essential activities within the cell, ATP is also released
outside of the cell, where the sequential removal of its phosphate groups results in the formation
of the nucleoside adenosine. Extracellular ATP and adenosine, together with associated synthetic
and catabolic enzymes, receptors, and transporters, are part of the evolutionarily conserved
purinergic system which links cellular metabolism to a myriad of other processes, including
proliferation, differentiation, and cell death [1].

Extracellular ATP is rapidly metabolized by several enzymes collectively known as ectonucleotidases;
these include members of the ectonucleoside triphosphate diphosphohydrolase (ENTPD) and
ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) protein families [2]. ENTPD1 (CD39)
and ENPP1 generate adenosinemonophosphate (AMP) from ATP (Figure 1). Subsequent hydrolysis
of AMP to adenosine is primarily, but not exclusively, carried out by the enzyme 5′-nucleotidase
(CD73) [3] (Figure 1). Extracellular adenosine activates four G protein-coupled adenosine receptors
(ARs) which have different affinities for adenosine (A1R > A2AR > A3R >> A2BR) and activate
numerous signaling pathways to control oxygen supply/demand, inflammation, and other activities,
depending on the cell type and receptor expression pattern [4] (Figure 1). Adenosine can also be
taken up via equilibrative nucleoside transporters (ENTs) and rephosphorylated to AMP inside the
cell [5]. As the major enzymatic source of extracellular adenosine, CD73 is a key regulator of cellular
homeostasis, stress responses, injury, and disease mechanisms across many tissues [6].

Currently, blocking the enzymatic activity of CD73 is regarded as an important avenue for cancer
therapy because adenosine suppresses antitumor immunity [7]. Multiple CD73-targeting
antibodies and small-molecule inhibitors are undergoing clinical testing (Figure 1). However, the
long-term safety of systemic interventions blocking CD73 is an important consideration because
adenosine is crucial for normal physiology, and loss-of-function mutations in the CD73-encoding
gene (NT5E) cause a rare vascular disease in humans [8]. Moreover, studies over the past
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Figure 1. CD73 is an essential component of purinergic signaling and a disease target. CD73 is a ubiquitously
expressed ectonucleotidase of the purine metabolism pathway. As a glycosylphosphatidylinositol (GPI)-anchored
glycoprotein on the plasma membrane, CD73 works in tandem with ectonucleoside triphosphate diphosphohydrolase 1
(CD39) which breaks down ATP to form adenosine 5′-monophosphate (AMP) in a two-step process. Alternatively, AMP
can be generated via direct conversion from ATP by the enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1
(ENPP1). CD73 is the major enzyme that dephosphorylates AMP to generate extracellular adenosine (Ado), but this
reaction can also be carried out by tissue non-specific alkaline phosphatase (TNAP) or prostatic acid phosphatase (PAP).
CD73-generated adenosine directly exerts tissue-specific functions by binding to four different types of G protein-coupled
adenosine receptors (AdoRs) which regulate oxygen supply/demand ratios, inflammation, and angiogenesis in a receptor-
dependent manner. Extracellular adenosine is transported into the cytoplasm through equilibrative and concentrative
nucleoside transporters (ENTs and CNTs). Given its role in inflammatory responses and tumor growth and metastasis,
small-molecule inhibitors and monoclonal antibodies against CD73 are currently being tested in clinical trials for cancer
immunotherapy and COVID-19 therapy.

Trends in Cell Biology
2–4 years have illuminated significant biological complexity in human CD73 regulation and
function which needs to be taken into account as the field moves forward. The purpose
of this review is to place the latest discoveries on CD73 biology in a historical context
and highlight CD73 functions that are important for normal cell biology and physiological
homeostasis.

From 5′-NT to CD73: the evolution of CD73 biology and its links to human disease
CD73 is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein that functions as a dimer on
the plasma membrane [9]. Discovered more than 80 years ago as 5′-nucleotidase (5′-NT), it
received the designation 'cluster of differentiation 73' (CD73) immediately before the cloning of
its cDNA in 1990 [3,6]. To distinguish it from functionally similar cytoplasmic enzymes [10], it is
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also called ecto-5′-nucleotidase, abbreviated eN or eNT. Currently, 5′-NT, eN, eNT, and CD73
are all used to refer to the protein product (P21589; NP_002517) of the same gene, which is
NT5E (Gene ID: 4907). The name CD73 is most commonly used in the recent literature (over
the past 10–15 years) and coincides with a shift in focus on immune functions, especially in the
context of cancer. However, CD73 is ubiquitously expressed and is involved in virtually every
aspect of normal physiology and in many disease-associated processes [6]. Moreover, non-
immune cells that normally express high levels of CD73, including fibroblasts and epithelial and
endothelial cells, are epigenetically primed to elicit tissue-specific immune responses [11]. This
is an important consideration, but one that is currently underappreciated.

CD73-generated adenosine controls cellular stress adaptation
Tissues with the highest level of NT5E expression include smooth muscle, the female reproduc-
tive system, liver, and gastrointestinal tract [6,12]. In addition to its abundance on epithelial and
endothelial cells, CD73 is also active on neurons, glia, myocytes, and fibroblasts [6]. Based on
many studies in whole-body Nt5e−/− mice, CD73 activity is important for maintaining tissue
integrity, especially endothelial and epithelial barrier functions, and for facilitating recovery
following hypoxia, ischemia/reperfusion, and inflammatory injury in the brain, heart, lung, kidney,
liver, and digestive tissues [13,14]. A comprehensive description of the cell type- and tissue-
specific functions of CD73 is beyond the scope of the current article, and we refer readers to
previous reviews for more details [6,15]. Of note, there is existing evidence that CD73 also
works non-enzymatically to regulate T cell receptor activation, immune–endothelial interactions,
apoptosis, intracellular kinase signaling, and other cellular functions [6,15]. Nevertheless, most
studies to date have attributed the physiological functions of CD73 to its ability to control the
extracellular ATP–adenosine balance.

The basal release of ATP triggers activation of purinergic signaling to control diverse cellular
processes, including ion transport, cell volume regulation, intercellular communication, blood
flow, and neuronal activity [16]. Adaptability in this pathway is achieved through altered expres-
sion and activity of enzymes and receptors, and it is crucial for regaining homeostasis following
exposure to stress, including mechanical, inflammatory, hypoxic, metabolic, and other types.
For example, the mechanical stress-dependent release of ATP is particularly well documented
across many cell types, such as erythrocytes [17], airway epithelial cells [18], vascular endothelial
cells [19], astrocytes [20], and neurons [21]. Increased ATP release from stressed or dying
cells represents a 'danger' proinflammatory signal, and is terminated upon ATP metabolism to
the anti-inflammatory mediator adenosine to avoid excessive activation of tissue defense
mechanisms [22,23].

Adenosine performs life-preserving functions inside and outside the cell
Adenosine has fascinated biologists for decades because it controls virtually every system in the
body. It has been named a 'retaliatory metabolite' because it enables target cells to respond to
stress and adjust their energy supply, thereby retaliating against external stimuli that would
otherwise promote the excessive breakdown of ATP [24]. External stimuli can be physiological
or stress-related, and vary by cell and tissue type (e.g., altered blood flow or tissue oxygenation,
exposure to hormones, neurotransmitters, and inflammatory mediators) [25]. More recently,
adenosine has been called a 'multi-signaling guardian angel' because it restores the oxygen
supply-and-demand balance and exerts potent anti-inflammatory effects to guard against cellular
damage [26]. Adenosine is taken up into the cell and rephosphorylated to replenish intracellular
ATP stores, which is an important mechanism for purine salvage [27]. In addition, transport-
dependent adenosine uptake and phosphorylation by adenosine kinase promote increased
levels of AMP and activation of the master metabolic regulator, AMP-activated protein kinase
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(AMPK) [28], which is important for cellular and tissue homeostasis. For example, mice with a
targeted deletion of Nt5e in hepatocytes exhibit significant hypoactivation of AMPK and develop
spontaneous hepatocyte degeneration and liver injury [29].

The four ubiquitously expressed metabotropic adenosine receptors and their G protein-coupled
activities regulate cardiovascular, respiratory, and immune functions, metabolism, neurological
activity, and gastrointestinal and liver biology [4]. Direct activation of adenosine receptors by
small molecules with selective affinity for each receptor type represents an important avenue in
drug development for cardiovascular diseases, pain, cancer, diabetes, liver disease, and other
disorders [30]. Recently, mice that lack all four adenosine receptors were generated and were
reported to have a significantly shorter lifespan [31]. The decline in survival began at 15 weeks
of age, reaching 50% by the time the mice were 30 weeks old [31]. Although this mouse model
reveals that baseline adenosine signaling via adenosine receptors collectively is crucial for long-
term organismal viability, the mechanisms leading to shortened lifespan are unknown. Going
forward, this mousemodel will be a useful tool to address the role of adenosine receptor signaling
not only in homeostasis but also in allostasis – the process by which regulatory systems adapt
under stress to regain homeostasis [32]. Shifting away from whole-body to tissue-specific
Nt5e−/− mice will provide additional clarity on where CD73 function fits with respect to homeostatic
and allostatic adenosine receptor signaling across different tissues.

CD73-generated adenosine controls cancer progression
Persistent changes in the activation of purinergic signaling pathways can promote the develop-
ment of diseases that are driven by metabolic perturbations and chronic inflammation, such as
cancer [33]. Mechanical forces and other stress-related mechanisms are particularly relevant to
growing tumors because they promote the release of ATP from cancer cells [34]. Pharmacologic
or genetic ablation of CD73 in mice leads to decreased conversion of extracellular ATP to
adenosine and promotes antitumor immunity [7]. The persistence of an immunosuppressive
environment in the presence of active CD73 is largely due to increased A2AR and, to a lesser
extent, A2BR activation on multiple immune cell types, including natural killer (NK) cells, and
effector and regulatory T (Treg) cells. Specifically, A2AR signaling inhibits effector T cell proliferation
and cytotoxic function [35–37], enhances Treg expansion and immunosuppressive activity [38],
and inhibits NK cell maturation and target cell killing [39,40]. Signaling via A2BR facilitates expansion
of myeloid-derived suppressor cells (MDSCs) [41], and CD73 activity on MDSCs inhibits T cells
and NK cells [42]. Persistent hypoxia and inflammation within the tumor microenvironment
boost immunosuppressive responses by elevating extracellular adenosine through modulation
of adenosine-related genes [43,44]. Currently there is a strong emphasis on understanding the
functional role of CD73 as an immune checkpoint modulator [45–48], as well as on testing
whether CD73 inhibitors can provide benefit to cancer patients when used in combinatorial
immunotherapy regimens [7].

Despite these efforts, we do not yet have a thorough understanding of all of the mechanisms by
which CD73 controls tumor biology, especially in settings where its functions are tumor-
suppressing. It is known that sustained expression of CD73 on epithelial cells is associated
with favorable outcomes in endometrial and bladder cancer patients [49–51]. In endometrial
cancer, epithelial CD73-generated adenosine is necessary for A1R-dependent cortical actin
polymerization and cell–cell adhesion, whereas CD73 loss is protumorigenic because it
compromises epithelial barrier function [51]. Therefore, future studies need to reconcile these
opposing, cell type-specific roles of CD73 in cancer. Particular care should be exercised to avoid
over-emphasis of CD73 function on immune cells over other cell types, given its ubiquitous
expression.
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Genetic deficiency of CD73 alters kinase signaling and gene regulation in a rare
human disease
The crucial role of CD73 in human biology is illustrated by the fact that loss-of-function mutations
in NT5E cause a rare adult-onset vascular disease, calcification of joint and arteries (CALJA;
OMIM: 211800) [52]. Also known as arterial calcification due to deficiency of CD73 (ACDC), the
disease is characterized by painful calcifications that affect the lower and upper extremities
[8,53,54] as a result of diminished CD73 activity on smooth muscle cells. The tissue-specific pre-
sentation of ACDC is in line with recent quantitative profiling studies that revealed highest NT5E/
CD73 expression in human arteries, in a comparison of 32 normal tissues [55].

Mechanisms linking NT5E mutations to clinical presentations are not fully understood, partly
because genetic mouse models of CD73 deficiency do not reflect the human phenotype [52].
To overcome this limitation, ACDC patient fibroblasts and iPSC-derived mesenchymal stromal
cells (MSCs) have been used to study signaling mechanisms altered in the absence of functional
CD73 [56,57]. These studies reveal that ACDC patient fibroblasts have dysregulated transcription
factor Forkhead box O1 protein (FOXO1) activity [57]. Furthermore, ACDC patient MSCs display
increased activation of AKT kinase, mechanistic target of rapamycin (mTOR), and the 70 kDa
ribosomal protein S6 kinase (p70S6K) in the presence of osteogenic stimuli [56]. In the absence
of functional CD73, there is increased phosphorylation of AKT, leading to FOXO1 activation,
which in turn promotes expression of TNAP. Increased TNAP activity is a known factor in promoting
ectopic calcification in ACDC [56]. Moreover, decreased levels of intracellular adenosine as a result of
elevated activity of adenosine kinase, which phosphorylates adenosine to AMP, exacerbate vascular
inflammation inmice via epigenetic reprogramming of histonemethylation [58]. This mechanismwas
shown to be dependent on the uptake of extracellular adenosine, further supporting the hypothesis
that CD73 provides a key link between extracellular purinergic signaling and gene regulation.

It will be important to assess additional stress response mechanisms in ACDC model systems
because CD73 regulates stress recovery of bone marrow stromal cells [59]. Specifically, it was
shown that depletion of CD73 from stromal cells impairs early hematopoietic cell regeneration
following irradiation in mice. Understanding the detailed mechanisms behind these observations
will be important in oncology settings because systemic use of CD73 inhibitors could affect the
ability of cancer patients to recover from cytotoxic stress due to chemotherapy or radiation. As
the natural history of ACDC becomes defined, patient-derived cellular tools to model aspects
of the disease will enable further refinement of the cell-biological consequences of CD73 genetic
inactivation or inhibition.

CD73 is zonally expressed on subsets of cells within epithelial tissues
Despite the noted species differences, animal models will continue to play an important role in
advancing CD73 biology because we are also beginning to recognize the importance of zonal
distribution of CD73 on subsets of cells within a given tissue, in particular the digestive epithelia
(Figure 2). Advances in single-cell sequencing technologies are revealing how spatial dynamics
may play a role in the physiological homeostatic functions of CD73, particularly in response to
tissue oxygenation. Under homeostasis, CD73 defines populations of cells residing in low-oxygen
areas, such as the villus tip enterocytes of the small intestine [60], the pericentral hepatocytes in
the liver [61], and erythropoietin-producing interstitial cells of the kidney [62]. The zonal distribution
of CD73 is consistent with earlier findings that its expression is strongly responsive to hypoxia
because of the presence of hypoxia response element 1 (HIF-1) binding sites in the NT5E promoter
[63]. This regulatorymechanism is similar between human andmouse.Nt5e−/−mice display vascular
leakage in response to normobaric hypoxia in multiple tissues (lung, liver, gut, muscle, heart, kidney,
brain) [13]. Furthermore, Nt5e−/− mice have increased susceptibility to cardiovascular, respiratory,
Trends in Cell Biology, October 2021, Vol. 31, No. 10 833
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Figure 2. Zonal expression of CD73 supports tissue-specific homeostasis. A hypoxic environment inducesCD73 expression on the apical membrane in digestive
epithelia. In the intestinal epithelium CD73 is present on villus tip enterocytes, which are exposed to low-oxygen conditions. The villus tips face the intestinal lumen where
anaerobic bacteria of the microbiome reside. Similarly, CD73 is zonally expressed on pericentral hepatocytes in the liver. In the hepatic lobule, periportal hepatocytes are
located next to the portal triad (encompassing the hepatic artery, vein, and bile duct), while pericentral hepatocytes reside adjacent to the central vein. This arrangement
follows the oxygen gradient: highly oxygenated blood enters the liver via the hepatic artery from the portal triad, mixes with deoxygenated blood through the sinusoids
between hepatocytes, and is returned to the circulation via the central vein.

Trends in Cell Biology
gastrointestinal (GI), and liver injury, in large part because they lack the adaptive mechanisms
afforded by extracellular adenosine in response to hypoxia stress [13,64–67]. Therefore, the
expression of CD73 in low-oxygen environments provides a physiological benefit that is suited to
the architecture of the particular tissue type.

One reason for the preferential localization of CD73 in villus tip enterocytes is to counteract the
ATP released by bacteria in the intestinal lumen and thereby control inappropriate immune
activation by the host microbiome. Other potential functions may include the metabolism of cyclic
dinucleotides to regulate host defense mechanisms at mucosal surfaces, and CD73 may also
serve as a source of antimicrobial adenosine to prevent bacterial colonization and infection [68].
CD73 distribution on pericentral hepatocytes in the mammalian liver likely enables the cells to
calibrate their metabolic activities under physiological low-oxygen conditions because genetic
deletion of hepatocyte CD73 results in metabolic and inflammatory liver injury [29]. Because
pericentral hepatocytes are involved in homeostatic renewal of the liver in response toWnt ligands
[69], it will be of interest to examine in the future whether CD73modulates these pathways as part
of liver mass maintenance.

Given these observations, it will be important to examine how purinergic intermediates in the gut,
liver, and systemic circulation are affected by anti-CD73 interventions because this may affect the
response of patients to, and effects of, immunotherapy. It was shown recently that the nucleoside
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inosine significantly potentiates the anticancer effects of checkpoint inhibitors [70]. Inosine is
derived metabolically from the gut microbiome [70] but can also be produced extracellularly
from adenosine by cell surface-localized adenosine deaminase (ADA) [71]. It was observed that
inosine translocates from the gut lumen to the systemic circulation where it activates T cell-
specific A2AR signaling to promote antitumor TH1 cell activation [70]. This raises a potential concern
that coadministration of CD73 inhibitors (e.g., oleclumab) and checkpoint inhibitors (e.g., the PD-1
inhibitor durvalumab), as is being done in clinical trials, may reduce treatment efficacy by lowering
inosine levels. Moreover, combining CD73 inhibitors with checkpoint inhibitors, which are known to
cause acute hepatitis [72], may lower the threshold for liver injury and result in poor outcomes in the
long-term [73], especially in patients with other predisposing factors for liver disease such as
genetic makeup, age, and biological sex.

Sex and age are important variables in CD73 biology
An important question in moving forward is how biological sex will influence the safety and
effectiveness of CD73-targeted cancer immunotherapies. Although there is some evidence
based on meta-analyses [74] and multi-omic datasets [75] to support sex differences, this is
still a highly debated issue and it remains an open question. At the basic science level, most
in vivo studies on CD73 have been done only in male mice, or biological sex was not explicitly
considered as a potential variable. However, an emerging concept in the field is that there are
crucial hormonal influences, particularly estrogen-derived, in how males and females metabo-
lize extracellular adenosine and cope with deficiency of CD73. Sex differences in adenosine
signaling play a role in neuromodulation within the hippocampus, which has a high frequency
of spontaneous transient adenosine events that regulate synaptic transmission, glia–neuron
interactions, and other important functions [76]. Female Nt5e−/− mice have dramatically lower
numbers of spontaneous transient adenosine events compared to wild-type (WT) mice,
whereas male WT and Nt5e−/− mice have similar frequencies because of compensatory upreg-
ulation in TNAP in the latter [76]. Thus, female mice appear to be more reliant on CD73 for
spontaneous adenosine transients, which is in line with earlier observations that CD73 expres-
sion and activity in the hippocampus are positively regulated by estrogen receptors (ER) α and
β [77,78].

ERβ-mediated signaling affects CD73 biology in the GI tract via Tregs, which rely on CD73-
generated adenosine for their immunosuppressive functions [79]. Specifically, estrogen
mediates the differentiation of peripheral Tregs in an ERβ-dependent mechanism, and deletion
of ERβ reduces the numbers of CD39/CD73-positive Tregs in female, but not in male, mice
affected by chronic intestinal inflammation [80]. This finding has potential implications for the
management of female versus male patients with inflammatory GI conditions because ERβ
expression is selectively downregulated in the intestinal mucosa and circulating T cells of
female Crohn’s disease patients [80]. In the liver, hepatocyte-specific genetic deletion of CD73
leads to spontaneous injury characterized by metabolic dysfunction, hepatocyte swelling, and
ballooning, steatosis, and inflammation in middle-aged male mice [29]. Female mice lacking
hepatocyte CD73 are relatively protected, potentially via compensatory upregulation of Entpd1
and all four adenosine receptors [29]. Sex-dependent differences in vulnerability versus resilience
in coping with CD73 deficiency thus appear to be highly tissue-specific, and this will need to be
resolved in future work.

Age and aging-related stress responses will be other important considerations for future studies,
given recent findings that CD73 activity can be beneficial or harmful in atherosclerosis settings,
depending on the age of the mice [81], and that CD73 expression levels change throughout
the human lifespan [82].
Trends in Cell Biology, October 2021, Vol. 31, No. 10 835
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CD73 expression and activity are regulated at multiple levels
Although many studies report that CD73 is altered in stress, chronic diseases, and cancer, few
address the full spectrum of changes at the level of mRNA, protein expression and localization,
or enzymatic activity (Figure 3). The specific mechanism by which CD73 is affected in stress
and disease is an important consideration because upregulation at the mRNA level does not
necessarily result in increased protein expression, and increased protein expression does not
always correlate with increased enzymatic activity [83]. Moreover, the possibility that NT5E
mRNA upregulation in cancer, as has been frequently reported, could act independently of
CD73 activity has not been fully explored. Aside from HIF-1, several other transcription factors
are known to induce CD73 expression, including SP1, SMAD, and c-Jun/AP-1 [84,85].

Recently, a novel tumor-promoting non-coding circular RNA with oncogenic activity, called
circNT5E, was discovered in glioblastoma [86] and non-small cell lung cancer [87] (Figure 3).
The circNT5E mRNA arises from the exon 3–9 region of NT5E through the activity of the
double-stranded RNA-specific editase B2 (ADARB2). The protumorigenic activity of circNT5E
is due to its ability to act as a sponge, or sink, for tumor-suppressor microRNAs (miRNAs), includ-
ing miR-422a [86]. Adding to that complexity, miR-442a, miR-30a, miR-30b, miR-30a-5p, and
miR-340 directly target and inhibit NT5E expression in head and neck, colorectal, gallbladder,
glioma, lung, and pancreas cancer [88–90]. Other ways in which NT5E is dysregulated in cancer
is via alternative splicing of exon 7 to produce a shorter enzymatically inactive intracellular protein
isoform (CD73S), which acts as a dominant negative to the canonical form [91] (Figure 3). CD73S
is a human-specific isoform and its exact functions remain to be determined. Unraveling these
transcriptional mechanisms may open possibilities for selectivity in targeting the protumorigenic
effects of NT5E without interfering with the normal enzymatic functions of CD73.

At the protein level, canonical CD73 undergoes several post-translational modifications (PTMs)
that can significantly impact on its localization and activity, including cleavage from themembrane
to form a soluble enzyme [92–94] (Figure 3). This is a key consideration in studies that involve
tissue digestion because this removes the membrane-bound form of CD73, as was previously
shown to occur immediately following hepatocyte isolation [83]. Another important consideration
is that CD73 is N-glycosylated at four different residues (N53, N311, N333, and N403), and site-
specific changes in the abundance and composition of glycans alter its subcellular localization
and enzymatic activity [94]. Aside from human cirrhosis and liver cancer, presently little is
known about how alternative splicing and glycosylation affect CD73 expression, localization,
and activity in other chronic diseases and in different cancer types. Importantly, the transcriptional
and post-translational CD73 regulation mechanisms operating under homeostatic conditions are
not well defined, but it is likely that they exert significant effects on its function.

Development of CD73 inhibitors and other tools to support further research
Active efforts to block adenosine-producing CD73 activity for the therapeutic purposes of limiting
cancer growth and metastasis include monoclonal antibodies and small-molecule inhibitors [95].
The initial proof-of-concept preclinical study using an inhibitory antibody against CD73 was per-
formed 11 years ago [96], and at least five different anti-CD73 antibodies (BMS-986179, CPI-006,
MEDI9447, NZV930, and TJ004309) and two small-molecule inhibitors (AB122 and LY3475070)
are now in Phase I/II clinical trials [95]. Many similar agents are in early-stage discovery and preclinical
development [95,97–102]. Somewhat surprisingly, some anti-CD73 antibodies are already being
tested for coronavirus disease 2019 (COVID-19) therapy [103,104], despite evidence of clinical
benefits of CD73 and adenosine in lung injury [105], and benefit of adenosine in pneumonia
associated with COVID-19 [106]. CD73 activity on immune cells versus other types of cells (endothe-
lial, epithelial) need to be carefully considered to advance safe and effective treatments for COVID-19.
836 Trends in Cell Biology, October 2021, Vol. 31, No. 10
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Figure 3. Molecular regulation of CD73. The important functions of CD73 across cell and tissue types warran
different levels of molecular regulation. (1) At the transcriptional level, the expression of the CD73-encoding gene
NT5E is upregulated by transcription factors (TFs) such as HIF-1α, SP1, SMAD, and AP1, as well as by severa
microRNAs (miRNAs), as noted in the text. In the context of cancer, NT5E mRNA undergoes (2) post-transcriptiona
splicing to generate an alternative NT5E-2 transcript or the circular RNA circNT5E. Subsequently, NT5E-1 mRNA
is translated into CD73 and NT5E-2 mRNA into CD73S (for CD73 'short'). CD73S is an intracellular enzymatically
inactive isoform that associates with, and promotes the proteasomal degradation of, canonical CD73 proteasoma
degradation. The circNT5E transcript is oncogenic and is expressed in glioma and lung cancer. (3) At the post-
translational level, CD73 protein is modified by the addition of a glycosylphosphatidylinositol (GPI)-anchor and by
asparagine (N)-glycosylation in the endoplasmic reticulum (ER) and Golgi apparatus. The mature CD73 protein
dimerizes and is transported to the plasma membrane facing the extracellular space. CD73 can be cleaved by
phospholipase C (PLC) or matrix metallopeptidase 9 (MMP9) to generate a soluble form of the protein.
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Outstanding questions
Which aspects of CD73 regulation and
function are conserved across species,
and which are unique to humans?

What are the influences of age and
biological sex, including hormones, on
CD73 function, regulation, and roles
in disease?

What is the significance of CD73
metabolic zonation, and how does
CD73 mediate physiological adaptation
in epithelial and non-epithelial tissues?

How are the transcriptional, post-
transcriptional, and post-translational
mechanisms integrated to control
CD73 expression and activity in normal
cells? How are these mechanisms
altered during stress and in disease
conditions?

What are the functions of the circNT5E
mRNA in malignant neoplastic cells?

Which RNA-binding proteins control
NT5E expression and splicing in
homeostasis and stress?

How are major kinase signaling
pathways (e.g., AKT, mTOR, AMPK)
altered in the absence of functional
CD73?

What are the non-enzymatic CD73
functions in different cell types, and
how are they altered by CD73-
targeting antibodies and small-
molecule inhibitors?
Elevating, rather than suppressing, the function of CD73 is likely to be beneficial in many situations
where tissue inflammation needs to be reduced. To that end, bifunctional proteins were
engineered by fusing the extracellular domains of CD39 and CD73 [107]. The fusion proteins
exhibited high phosphohydrolysis activity toward extracellular ATP and antiplatelet activity
in vitro, suggesting that they could potentially be developed to treat inflammatory diseases
[107]. In addition, extracellular ATP release can be directly visualized in live animals using a
newly developed optical sensor (ATPOS) [108], which represents another important methodolog-
ical advance toward understanding the dynamics of the purinergic signaling components in vivo.

Radiolabeled antibodies [109] and fluorescent probes [110] are among the latest tools that have
been developed to monitor CD73 distribution and regulation in various settings. An Nt5e reporter
mouse was also generated, and it appears to be a useful tool for studying CD73 on multipotent
stromal cells and sinusoidal endothelial cells [111]. The availability of multiple approaches to
target, manipulate, and track CD73 will undoubtedly open new opportunities to understand its
biology and regulation during physiological adaptation.

Concluding remarks
Decades of research breakthroughs on the release and metabolism of ATP to adenosine
outside the cell have revealed crucial functions that are independent of essential metabolic
activities occurring within the cell. Adenosine controls numerous homeostatic processes
and stress-adaptation mechanisms, which would be rendered ineffective in the setting of
chronic CD73 inhibition, an effort currently being undertaken in clinical research [7]. To
successfully advance therapies around CD73, now is the time to take a step back and
understand the fundamental biology behind this fascinating molecule (see Outstanding
questions). Priorities for future work include the generation of additional human-specific
tools to study CD73 regulation – such as iPSC-derived cells and tissue organoids [52].
These tools can help to resolve species-specific mechanisms such as alternative splicing
[91], and help to streamline the process of translating preclinical discoveries to the clinic. It
will be important for future studies to carefully consider the mechanisms by which CD73
expression and activity are altered in disease, such as mRNA expression and processing,
protein expression, localization, and enzymatic activity, because these are often discordant
under pathological conditions. The current anti-CD73 targeting strategies rely on the
presence of the cell surface-expressed, enzymatically active form of CD73 but do not
address alternative splice isoforms and PTM variants that can affect the localization and
activity of the enzyme. Ideally, CD73 targeting in disease and cancer should be tailored to
specific cell types to avoid untoward effects. The whole-body knockout mouse model has
been instrumental in understanding CD73 function and for disease modeling [13] but,
given the ubiquitous expression and complex interplay between CD73 on different cell types
[6], it is crucial to move forward using tissue-specific knockout models, as has already been
done in intestinal [112], kidney [113], and liver models [29]. All of these questions are address-
able with the availability of new iPSC technologies, genetic mouse models, highly selective and
potent inhibitors, and imaging probes, which are creating new opportunities to monitor, target,
and manipulate CD73 (Figure 4). Future studies aimed at unraveling the biological complexity of
CD73 regulation and functions will help to guide translational and clinical efforts for cancer and
other human diseases.
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Figure 4. New tools to study CD73 regulation and function. The ubiquitous nature of CD73 and the purinergic signaling complexity conceal important tissue-
specific mechanisms, which warrants development of new tools to study this ectoenzyme. (Top row) Fluorescent probes and small-molecule inhibitors were recently
designed based on the lead structure of the most common CD73 inhibitor, adenosine 5′-(α,β-methylene)diphosphate (APCP). These newer probes exhibit higher
potency while also enabling visualization and monitoring of CD73. In addition, studies demonstrating protumorigenic functions of CD73 led to the advent of new
monoclonal antibodies that are being tested in clinical trials. By contrast, promoting CD73 activity may alleviate inflammation and platelet aggregation. To that end, a
CD39–CD73 fusion protein was shown to sequentially hydrolyze proinflammatory ATP to anti-inflammatory adenosine. (Middle row) To interrogate relevant disease
mechanisms, patient-derived iPSCs have become a robust model system. For example, fibroblasts derived from patients with a rare genetic mutation in NT5E can be
reprogrammed to generate iPSCs. These, in turn, can be differentiated into affected cell types to study the pathological mechanisms of the rare disease ACDC (arterial
calcification due to deficiency of CD73). (Bottom row) To elucidate the tissue-specific functions of proteins, reporter mouse lines and targeted gene deletion have been
instrumental. A new reporter mouse line called CD73–EGFP enables cell lineage tracking and the identification of CD73+ cells. Another useful model is the floxed CD73
mouse line, which enables targeted deletion of Cd73 in specific tissues when mated with Cre recombinase mice. Specifically, deletion of Cd73 in the liver, intestine,
and kidney demonstrated tissue-specific protection under physiological and pathological conditions.
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