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A B S T R A C T

Osteoarthritis (OA), characterized by joint malfunction and chronic disability, is the most common form of
arthritis. The pathogenesis of OA is unclear, yet studies have shown that it is due to an imbalance between the
synthesis and decomposition of chondrocytes, cell matrices and subchondral bone, which leads to the degen-
eration of articular cartilage. Currently, there are many therapies that can be used to treat OA, including the use
of pulsed electromagnetic fields (PEMFs). PEMFs stimulate proliferation of chondrocytes and exert a protective
effect on the catabolic environment. Furthermore, this technique is beneficial for subchondral trabecular bone
microarchitecture and the prevention of subchondral bone loss, ultimately blocking the progression of OA.
However, it is still unknown whether PEMFs could be used to treat OA in the clinic. Furthermore, the deeper
signaling pathways underlying the mechanism by which PEMFs influence OA remain unclear.

1. Introduction

Osteoarthritis (OA) is a very common disease, estimated to affect
one in eight adults, and is a major cause of chronic pain [1,2]. It is one
of the leading contributors to global disability, with the knee identified
as one of the most commonly affected joints [3]. The pathogenesis of
OA is unclear but studies have indicated several factors which include:
articular cartilage degeneration, subchondral bone thickening, osteo-
phyte formation, synovium inflammation (synovitis), degradation of
ligaments and menisci, and joint capsule hypertrophy [4]. Currently, a
variety of therapies are used to treat OA, such as medication (non-
steroidal anti-inflammatory drugs, intra-articular injection of corticos-
teroids, alcohol, etc.), non-pharmacological treatment (sports training,
patient education, etc.) and surgical treatment [5]. Noninvasive ther-
apeutic modalities such as magnetic resonance treatment [6], and
pulsed electromagnetic field (PEMF) therapy have shown positive ef-
fects on OA and consequently, should be highly recommended for
clinical application. It has been demonstrated that PEMF therapy has
greater positive effects in treating various bone disorders, including
fresh fractures, delayed and nonunion fractures, compared to drug
therapy [7,8]. However, the effects of PEMFs on OA patients are still
unclear at present. When properly applied, one group reported that

PEMFs increased chondrocyte proliferation, synthetic activity and
phenotypic maturation [9] without side effects in osteoporotic (OP)
rats. Several papers have reported that PEMF stimulation may cause a
significant reduction in some of the most relevant proinflammatory
cytokines in human chondrocytes [10], while another group reported
no change in pain between a 2-week course of PEMF therapy and a
sham-treated group [11]. However, the underlying mechanism of ac-
tion of PEMFs in OA are not entirely understood (Fig. 1).

In this manuscript, we summarize the influence of PEMFs on OA and
the underlying mechanism, demonstrating that PEMFs are effective in
preventing OA development and progression.

2. PEMFs

2.1. Characteristics

PEMFs utilize frequencies at the lower end of the electromagnetic
spectrum, ranging from 6 to 500 Hz [12]. A higher rate of change
(Tesla/second) is capable of stimulating biological currents in the
tissue, with peculiar biological effects [13]. PEMF treatment is regarded
as a noninvasive physical therapy for treating skeletal diseases. It is
been demonstrated that PEMFs have advantages including rapid effect,
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ease of operation, and lack of adverse effects and thus are suitable for
widespread application [12,13].

2.2. Effects of PEMFs on OA

2.2.1. Clinical experiments
Some articles have comprehensively reviewed recent experiments

regarding the effect of the clinical use of PEMFs on OA [14–16]
(Table1). The effects of PEMFs on pain and functional ability have at-
tracted attention, although controversy remains. The main outcomes of
interest were pain and functional disability as recorded by validated
self-reporting instruments such as the Western Ontario and McMasters
University Osteoarthritis Index (WOMAC), activities of daily living
(ADL), EuroQol, Arthritis Impact Measurement Scale (AIMS) or SF-36
[16]. Recently, it was shown that PEMFs eased the pain of patients
suffering from OA [17]. After 6 weeks of treatment with PEMF and a
12-week follow-up, one study found significant improvements in ADL,
pain and stiffness compared with control groups [18]. Another study
reported that after PEMF treatment, a 50% decrease in maximum visual
analogue scale (VAS) was observed, starting on day 1 and persisting to
day 42 [19]. The positive effects of treatment with PEMF were de-
monstrated by another experiment involving 71 knee OA patients who
experienced an increase in mobility and walking distance after a 6-week
course of PEMF treatment [20]. The persistence of several functional
and analgesic effects was documented after 4 weeks [20]. In addition, 6
weeks of PEMF therapy caused a significant improvement in WOMAC
score in 75 patients suffering from knee OA [21]. Moreover, treatment
with PEMF for 1 month resulted in an improvement in pain and func-
tional performance of patients with knee OA [22].

In contrast, Ozgüçlü et al. reported that there were no statistically
significant differences between a group given 2 weeks of PEMF therapy
and a sham group in terms of WOMAC pain, stiffness and physical
function scores [11]. Similarly, Ay and colleagues were unable to find a

beneficial symptomatic effect of PEMF in the treatment of knee OA in
any patients compared to a sham group after five sessions per week for
2 weeks [23].

There are various reasons that might account for these conflicting
results. First, different groups used different clinical designs, different
types of PEMFs and different treatment protocols. For example, two
studies applied low frequency PEMF (3–50 Hz) with a long duration of
treatment (3–10 h a week) [18,21], while another three studies applied
high frequency (75HZ, 110HZ, 27MHZ) PEMF with shorter treatment
duration [24–26]. It has been found that PEMF treatments using low
frequency and long duration produced a greater trend for short-term
improvement in WOMAC function score than the application of high
frequency PEMF treatments or trials with a short treatment duration.
Secondly, the sample sizes of these studies were too small to constitute
a clinical trial.

2.2.2. Animal experiments
A variety of articles have comprehensively reviewed recent experi-

ments regarding the effect of PEMFs in animal models of OA (Table2).
In 12-month-old Dunkin–Hartley guinea pigs (an OA model), it has
been reported that PEMF therapy (75 Hz, 1.6 m T, 6 h per day for 3
months) slows the progression of OA lesions in the knee of aged guinea
pigs and preserves the morphology of articular cartilage [27,28]. Using
15-month-old animals, researchers observed a quantifiable progressive
worsening of OA lesions, compared to animals aged 12 months. The
progression of OA was significantly delayed by over 6-month exposure
to PEMFs, particular in cartilage parameters. The average modified
Mankin score was lower in PEMF-treated animals, in comparison with
control animals. The results demonstrated that PEMFs exerted positive
effects both in cartilage and bone in late-stage lesions [29]. In fact, no
effects of PEMFs on subchondral and epiphyseal bone were evident,
when using 12-month-old animals. It is possible that the OA was not so
advanced and a stimulation time of 3 months was not sufficient to

Fig. 1. PEMFs stimulate proliferation of chondrocytes and exert a protective effect on the catabolic environment through Coll II, PG aggrecan, TGFβ. PEMFs suppress
chondrocyte apoptosis. PEMFs promote matrix synthesis and decrease the levels of inflammatory cytokines, resulting in a beneficial effect on tissue engineering of
cartilage. Furthermore, this technique is beneficial for subchondral trabecular bone microarchitecture and the prevention of subchondral bone loss, ultimately
blocking the progression of OA.
Coll II, type II collagenase; ECM, extracellular matrix; GAG, glycosaminoglycan; OA, Osteoarthritis; PEMFs, pulsed electromagnetic fields; PG, proteoglycan;
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contradict the complex bone remodeling process [27]. Histological
studies have shown that PEMFs decrease inflammatory cell infiltration
of the arthritic rat ankle joint, and reduce hyperplasia and hypertrophy
of cells lining the synovial membrane induced by the adjuvant [30,31].
It has been demonstrated that TGFβ exerts positive effects in cartilage
homeostasis and maintains extracellular matrix (ECM) morphology
[32–34].

PEMF therapy also decreases the number of immunopositive cells to
type II collagen (Coll II), matrix metalloproteinases (MMP)s and IL-1β,
while increasing the number of TGFβ-1-positive cells. Enhancement of
TGFβ-1 may account for the reparative mechanism of action [9].
Ciombor et al. [28] have demonstrated that PEMF therapy favorably
affects cartilage homeostasis through targeting TGFβ, which is believed
to upregulate gene expression for aggrecan, downregulate matrix me-
talloprotease and IL-1 activity, and upregulate inhibitors of matrix
metalloprotease. Another study using an anterior cruciate ligament
transection (ACLT) rabbit model, confirmed the down-regulation of
serum tumor necrosis factor-α (TNF-α) levels, preventing cartilage de-
generation after 10-day PEMF therapy (PEMFs for 30min: 8 mw/cm2,
75 Hz) [35]. PEMFs also increased the mRNA expression of inhibitor of
apoptosis protein and decreased Bax mRNA expression in rats, in-
hibiting ovariectomy-induced (OVX) cartilage degeneration [36].
MMPs constitute a group of endopeptidases that degrade the extra-
cellular matrix. Among them, five proteins—MMP-1, MMP-2, MMP-3,
MMP-9, and MMP-13—are closely related to the onset of OA. In the
occurrence and development of OA, elevated levels of MMPs and de-
creased expression of MMP inhibitors result in the degradation of col-
lagen, proteoglycan (PG) and elastin fibers in the ECM of articular
cartilage; thus, MMPs become mediators of OA [37]. Interestingly,
PEMFs are effective in exerting beneficial effects on knee cartilage via
the regulation of catabolic factors, such as decreasing MMP-13 [38],
and in favorably affecting cartilage homeostasis [28].

3. Cellular mechanisms involved in PEMFs-treated OA

3.1. Chondrocytes

Chondrocytes, present within the cartilage matrix [39] are able to
synthesize and secrete Coll II, PG and aggrecan and produce an ex-
tensive ECM. Aggrecan is highly negatively charged and creates a hy-
drated matrix, conferring compressive stiffness on cartilage. In arthritis,
the fibrillar network of collagen, which forms the endoskeleton, is da-
maged and there is loss of aggrecan, leading to joint dysfunction [40].

It has been demonstrated that PEMFs exert effects on chondrocytes
[41–45]. However, the different cell sources as well as the different
protocols of PEMF might result in different outcomes. Multiple ex-
periments have used PEMF therapy to influence cultured human
chondrocyte cells. In these studies, the strength of the magnetic field
varied from 1mT to 2.5 mT, the frequency ranged from 30Hz to 75 Hz
and the duty cycle was approximately 10%. Unsurprisingly, the effects
of PEMFs on chondrocytes were not consistent. It has been demon-
strated that PEMFs exert positive effects on PG synthesis in human OA
chondrocytes [41] and promote development of the chondrocyte phe-
notype in monolayer cultures [42]. PEMFs increase proliferation of
healthy human chondrocytes as well as human OA chondrocytes
[46,47]. Exposure to PEMFs for 24 h results in higher proliferation of
chondrocytes and mRNA expression of aggrecan, type I and X collagen
in porcine chondrocytes, but lower glycosaminoglycan (GAG) produc-
tion compared to controls [48]. In contrast, another study reported no
significant change in proliferation or GAG synthesis of human OA
chondrocytes when treated with PEMFs [44]. Schmidt-Rohlfing et al.
did not find any effect of a PEMF on human OA chondrocytes, such as
no significant differences in gene expression of Coll II and aggrecan
between the treatment and control groups [43]. The deeper mechan-
isms are still unknown but are thought to be exerted, at least partially,
through inhibition of the mitogen-activated protein kinase (MAPK)

signaling pathways [49]. Nitric oxide (NO) might play an important
role in the effect of PEMFs in increasing human chondrocyte pro-
liferation [50]. Moreover, a PEMF might enhance the effects of insulin-
like growth factor I (IGF1) [51], which plays an anabolic role in
chondrocyte metabolism [52].

Esposito et al. reported that PEMFs enhance cell proliferation and
chondrogenic differentiation from stem cells [53]. It has also been es-
tablished that PEMF therapy is beneficial for chondrogenic differ-
entiation from human umbilical cord-derived stem cells [53]. Further-
more, when human adipose-derived stem cells were exposed to a PEMF,
chondrogenic differentiation was stimulated in both two-dimensional
and three-dimensional cultures [54]. The upregulation of chondrogenic
differentiation by PEMFs might be induced through increased TGF-β
[55]. TGF-β plays a role of paramount importance in cartilage healing.
It has been shown that TGFβ-1 stimulates Coll II synthesis and offsets
pro-inflammatory cytokine production [56].

Apoptosis plays a significant role in the physiopathology of articular
cartilage in the course of OA. It has been demonstrated that PEMFs
suppress chondrocyte apoptosis and MMP-13 expression in knee carti-
lage of ovariectomized rats [38]. Specifically, the application of a
PEMF, as well as the administration of estrogen, may inhibit the
apoptosis of chondrocytes in OVX rats [38]. A PEMF can reverse car-
tilage degeneration caused by lower estrogen levels through modula-
tion of relevant anti-apoptotic proteins. A PEMF can also upregulate the
expression of X-linked inhibitor of apoptosis protein (XIAP) and down-
regulate the expression of Bax. The signal pathways involved in this
mechanism remain to be addressed [36].

3.2. Cartilage

Cartilage is a highly specialized skeletal tissue, which is responsible
for flexibility and durability at sites where a semisolid architecture is
needed to provide shape and form. The components Coll II, PGs and
GAGs are abundant in cartilage ECM. These components are responsible
for the ECM organization and provide shear and tensile properties and
the ability to resist compressive loads to cartilage. Moreover, it has been
reported that for normal cartilage function, extracellular adenosine
levels must be quite tightly regulated since depletion results in up-
regulation of GAG release and the production of MMPs such as MMP-3
and MMP-13, prostaglandin E2 (PGE2) and NO, whilst its increase may
trigger chondrocyte death [57–59].

The effects of PEMFs on cartilage are still controversial. Further,
PEMFs have a protective effect on the catabolic environment. For ex-
ample, after 3 weeks of 2 h per day treatment with a PEMF, GAG and
Coll II both increase [60]. It has been shown that PEMFs increase matrix
synthesis in bovine cartilage explant cultures [61,62]. Various studies
showed that GAGs, Coll II and PG production are all upregulated in
human and bovine cartilage explants, with or without IL1β treatment,
after stimulation [63–65]. Further, the effects of PEMFs on PG bio-
synthesis by articular cartilage is age dependent [61]. The negative
effects of IL1β were partly counteracted by the PEMFs, but this effect
was restricted to cartilage in young subjects [61]. Notably, the chon-
droprotective effects of PEMFs were similar to those of IGF-1 through
increasing PG synthesis, particularly in the early stages of OA, and
might include IRS‐1 phosphorylation [51]. Moreover, the effects of
PEMFs and IGF-1 on PG synthesis in human OA cartilage explants
cultured in the absence or presence of IL1β are additive [51,62,66].

It has also been demonstrated that PEMFs promote matrix synthesis
and decrease the levels of inflammatory cytokines, resulting in a ben-
eficial effect on tissue engineering of cartilage [67]. Other studies have
reported that PEMFs could be considered adjuvant therapy to repress
progression of OA by counteracting the progression increased by high
inflammatory cytokine levels [65]. A large body of evidence supports
the hypothesis that adenosine is able to inhibit the up-regulation of pro-
inflammatory cytokines such as TNFα and IL-1β, which are crucial in
most common inflammatory diseases such as rheumatoid arthritis
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[57,68]. Activation of A2A and A3 adenosine receptors seems to be
associated with inhibition of TNFα, IL-6, IL-8 and elastase release by
activated mononuclear phagocytes [69,70]. Interestingly, it has been
reported that PEMFs up-regulate the expression of A2A and A3 ade-
nosine receptors in bovine chondrocytes and synoviocytes, resulting in
the suppression of the release of pro-inflammatory cytokines [71,72].
Furthermore, PEMFs increase the levels of TGF-β [28,73], which plays a
role of paramount importance in cartilage healing [56], as well as de-
creasing IL-1 levels [51,65,74]. PEMF intervention for 6 months can
significantly reduce MMP-3 and MMP-9 expression, suggesting that
PEMFs can inhibit both cartilage degradation due to enzyme over-
expression and improve the destruction of articular cartilage [28].

Importantly, these results support the positive effect of PEMFs in
preventing articular cartilage degeneration.

3.3. Subchondral bone

The majority of reports regarding PEMF effects are limited to the
study of chondrocytes and articular cartilage. A limited number of
studies have evaluated subchondral bone by means of histological
grading scales or by measuring subchondral bone thickness and epi-
physeal bone trabecular volume.

It has been demonstrated that subchondral trabecular bone micro-
architecture participates in changing microarchitectural properties
[75,76]. The subchondral bone plate could influence cartilage de-
gradation because it is in direct contact with the cartilage. However, no
significant differences have been observed in epiphyseal trabecular
bone remodeling processes, such as bone volume (BV/TV), trabecular
number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation
(Tb.Sp) measurements between PEMF- and sham-treated animals.
When extended to the study of PEMF intervention in advanced OA, the
results show that PEMFs can not only reduce soft subosseous bone
thickness, but also can reduce all histomorphometric indicators. Re-
garding health effects, PEMFs increase the Tb.Sp of most knees, and
reduce BV/TV, Tb.Th and Tb.N to improve subchondral bone trabecular
structure [29]. These findings mean that alterations in epiphyseal tra-
becular bone metabolism in OA joints seem to be quite complex, for
instance, a mixture of thickening and increased porosity. One possible
explanation is that a 3-month treatment duration is not sufficient to
influence the complex bone-remodeling process [27]. When the effects
of 75 Hz and 37 Hz PEMFs on cartilage thickness were compared, re-
sults showed that both frequencies had the ability to prevent deleter-
ious changes in both cartilage and bone structural parameters in late-
stage knee OA [77]. PEMF therapy thus mediates subchondral trabe-
cular bone microarchitecture, at least partially, potentially through
Wnt/β-catenin signaling and OPG/RANKL/RANK signaling [78].

Moreover, it has been found that preemptive PEMF treatment is
more beneficial for subchondral trabecular bone microarchitecture and
prevention of subchondral bone loss. Early PEMF therapy prevented
changes to subchondral Tb.N and Tb.Sp, while delayed PEMF treatment
maintained subchondral BV/TV, Tb.N and Tb.Sp [79]. When applying
PEMF in OA treatment, it is thus crucial to apply it at the right time.

4. Discussion

4.1. Evidence for therapeutic effects

At present, various research groups are focusing on the potential
therapeutic effects of PEMFs in OA, but the findings are still incon-
sistent. The clinical use of PEMF to treat patients with OA is con-
troversial because studies have produced conflicting results, due to
differences in study design and small sample sizes. Whether application
of PEMFs with different parameters (treatment starting point and
duration, daily exposure time, PEMF waveform and subject-related
factors) exert positive effects on OA are still controversial. After a 6-
week PEMF treatment and a 12-week follow-up, significant

improvements were found in ADL, pain and stiffness compared with
control groups [18]. Another study reported that there were no statis-
tically significant differences between 2 weeks of PEMF therapy and the
sham group in terms of WOMAC pain, stiffness, and physical function
scores [11]. There are various possible explanations for these different
outcomes. First, different clinical designs and parameters were chosen
by different groups. Also, many groups used small sample sizes, which
were not accurate enough for a clinical trial. For example, two groups
applied low frequency PEMF (3–50 Hz) with long durations of treat-
ment (3–10 h a week) [18,21], while another three studies applied high
frequency PEMF with shorter treatment durations [24–26]. It has been
found that PEMF with low frequencies and long treatment durations
reflect a greater trend for short-term improvement in WOMAC function
score than high frequency, low duration treatments. However, there is
an equivocal lack of benefit in pain relief.

Long-term PEMF treatments have the ability to stimulate cellular
proliferation and DNA synthesis through opening of voltage-sensitive
calcium channels [80], while shorter therapy exerts no effect on DNA
synthesis [46]. Different PEMF parameters (e.g., field intensity, fre-
quency, exposure time) may result in controversial effects on chon-
drocyte activity. PEMF therapy has been demonstrated to stimulate
proliferation of healthy human chondrocytes [50] as well as human OA
chondrocytes [46,47]. Moreover, exposure to a PEMF for 24 h increased
porcine chondrocyte proliferation and enhanced mRNA expressions of
aggrecan, type I and X collagen, while decreasing GAG production [48].
It has also been reported that PEMFs increase the beneficial effect of
chondrogenic differentiation from stem cells. PEMFs increase TGF-β
secretion and enhance chondrogenic differentiation through the TGF-β
pathway [55]. Moreover, PEMFs are known to enhance IGF-1 expres-
sion [51], which participates in chondrocyte metabolism [52]. PEMFs
can suppress cartilage degeneration via the inhibition of chondrocyte
apoptosis by increasing the expression of anti-apoptotic proteins.

ECM degradation is regarded as another main characteristic of OA.
PEMFs increase A2A and A3 adenosine receptor expression, con-
tributing to suppression of pro-inflammatory cytokine release, such as
TNFα and IL-1, which are harmful to cartilage homeostasis [71,72].
PEMFs also stimulate matrix synthesis and, at the same time, suppress
inflammatory cytokines [67]. Moreover, effects of PEMFs on ECM
component synthesis, such as collagen II, have been reported [48].
Others also analyzed the effect of PEMFs on porcine chondrocytes and
reported that 3 weeks of 2 h per day PEMF therapy increased the ex-
pression of GAG and Coll II [60]. The beneficial effects of PEMFs on the
ECM are exerted through regulation of catabolic factors, such as
MMP13. Inhibition of the MAPK signaling pathway might be involved
in these effects [49].

It has been shown that various experimental parameters such as cell
viability, ECM production, and cell cycle progression, result in different
effects [46]. For example, several studies reported that the PEMF-in-
duced proliferative and differentiative effects are dependent on the cell
type [81,82], the differentiation stage [83], and the culture conditions
[46,81,84]. Moreover, the time–response curves of PEMF biological
effects were investigated [81,85–87]. Over-confluence of chondrocytes
would minimize the contact inhibition which causes changes in bio-
chemical status, resulting in dedifferentiation [81,85–87]. Thus, the
longer-duration designs of PEMF therapy should utilize collagen matrix
in three-dimensional cultures, and overcome the limitation of ded-
ifferentiation.

PEMF therapy has been demonstrated to improve bone and cartilage
turnover in an animal model of OA [28]. Further work is needed to
study the beneficial effects of PEMF treatment in patients with knee OA.
Part of the pre-clinical work is to study the PEMF parameters and ex-
posure conditions, which optimize the effects on cartilage. Further in-
vestigation is needed to investigate the specific mechanism and identify
the most effective treatment regimens for cartilage protection.
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4.2. Limitations and adverse effects

The number of clinical studies on this topic is limited. Most of the
trials we summarized had small sample sizes. Moreover, clinical ex-
periments are different from animal experiments. For example, animals
commonly used as naturally occurring OA models are studied by sur-
gical methods, which cannot mimic the occurrence of slowly progres-
sing OA in humans [88]. Moreover, the parameters of PEMFs are
varied, resulting in different outcomes. Furthermore, it is challenging to
ensure blinding between the treatments, which is a basic requirement in
studies of PEMF treatment. Several studies have reported little in-
formation of how treatment blindness was achieved. Therefore, un-
blinded studies may have been included, which may have produced
false results.

None of the trials reported any adverse effects. However, PEMF
therapy is not recommended for patients with cardiac devices [89]. It
has also been reported that magnetic fields may increase the risk of
cancer in children [90,91]. However, exposure to PEMFs might impair
cancer cell viability [92–94]. These controversial results might be de-
pendent on differences in study design. Moreover, the use of electric
devices, such as heating blankets, hairdryers or electric razors, causes
higher risks of cancer in adults [95,96].

Overall, it has been demonstrated that PEMFs have an effective
influence on oogenesis using animal models and cells. However, the
role of PEMFs in OA patients is not well explored, and more reliable
evidence from high-quality, randomized controlled trials, with large
sample sizes and long-term follow-up is required to validate these
findings. Furthermore, it will be important to take contraindications of
long-term PEMFs into account in further studies.

5. Conclusions

Based on recent studies of PEMFs and their potential role in med-
iating OA, PEMFs might be regarded as a valuable treatment for OA.
Few studies have reported adverse effects of long-term application of
PEMFs because of the small number of samples, meaning that the evi-
dence regarding usage of PEMF devices is not sufficient. Therefore,
more reliable evidence from high-quality, randomized controlled trials,
with large sample sizes and long-term follow-up, is needed to validate
these findings and to evaluate the possible health benefits or risks of
PEMF therapy. Furthermore, gene-knockout mice should be used to
identify the specific target genes involved in the treatment of OA by
PEMFs, such as TGF-β, which is beneficial in cartilage homeostasis and
in maintaining extracellular matrix (ECM) morphology, as well as A2A
and A3R receptors, which are activated in relation to inflammation.
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