
The Manual
www.admins.com

ADMINS for OpenVMS 
Version 8.4 March 2012

Copyright ©  2012 by ADMINS Inc.

The information in this document is subject to change without 
notice and should not be construed as a commitment by 
ADMINS, Inc. ADMINS, Inc. assumes no responsibility for any 
errors that might appear.

AXP, DCL, DEC, VMS, VAX, VAXCluster, and VT are 
trademarks of Hewlett-Packard Company. IBM and ProPrinter 
are trademarks of International Business Machines 
Corporation. HP and LaserJet are trademarks of Hewlett-
Packard Company.

International CorrectSpell English spelling correction system © 
1991 by INSO Corporation. All rights reserved. Reproduction 
or disassembly of embodied algorithms prohibited.





Chapter 1:Introduction

ADMINS consists of a number of related executable programs ("commands") that 
together form an integrated environment for the development and operation of 
administrative and management information applications. The ADMINS commands 
are usually physically located in the directory identified by the logical name1 
ADM$DIST.

At the most basic level, to execute an ADMINS command, you can type its name2 at 
the system prompt. The ADMINS command then either reads instructions typed by 
the user or reads an instruction file specified by the user.

The ADMINS Data Dictionary, described in Appendix I: “ADD: The ADMINS Data 
Dictionary” is a repository for information about the elements that make up an 
ADMINS-based information system. Using the ADMINS Data Dictionary, while not 
required, provides an enhanced capability for development, maintenance and 
documentation of complex ADMINS applications.

The Data Dictionary, the data management tools, the on-line data entry update and 
query tools, the reporting tools, the file processing commands for sorting, moving, 
and calculating, the relational product command, and the analysis tools - are all parts 
of one integrated system design.

On-line messages, displays, debuggers and test modes-of-operation are used to make 
visible the data operations being performed, and to help developers and users see 
how the ADMINS operations are affecting the data on a step-by-step basis.

ADMINS can be used in a variety of hardware and software environments ranging 
from single-user workstations to networks of mainframe-class processors that 
support entire organizations. ADMINS syntax and application source code is very 
portable across these myriad alternatives, enabling developers to create applications 
that transfer easily to new environments and run efficiently once there.

1.     See Appendix B: “Special Logical Names used by ADMINS” for a list of the logical 
names used to configure ADMINS.

2.    On OpenVMS commands are usually called by typing a symbolic name for the 
command. See Appendix C.4.1 “OpenVMS Symbols for ADMINS commands”
ADMINS User Guide   1-1



Using ADMINS
1.1  Using ADMINS

ADMINS provides a wide range of facilities. The beginner should understand the 
fundamental concepts of ADMINS before pursuing the more advanced facilities.

The major commands in ADMINS are as follows:

Command Name Description

AdmDefine The DEFINE command is used to create a file on a 
disk. The file is organized and formatted to store 
records of a particular structure, as described in the 
file definition instruction text.

AdmMove The MOVE command is used to move records from 
one file to another.

AdmSort The SORT command is used to sort records from 
one file to another.

AdmScreen The SCREEN command is used to compile, i.e. 
prepare and organize, screen descriptions for use by 
the transaction processor.

AdmTrans The TRANS command is used to enter, update, 
and/or display data on the video terminal under 
the control of the screen description compiled by 
the SCREEN command.

AdmReport The REPORT command is used to prepare printed 
reports.

AdmCmp The CMP command is used to compile record 
maintenance procedures which may be used with 
TRANS, MAINT, MOVE, PROD and REPORT. 
Record maintenance procedures contain 
programming logic to calculate, control, and 
otherwise effect record processing.

AdmMaint The MAINT command performs a record 
maintenance procedure on a file, on a record by 
record basis.

AdmProd The PROD command is used for the transfer and 
manipulation of data from records in one file linked 
to records in another file based on the key value 
relationships between the files.

COM The COM command executes a sequence of other 
ADMINS commands to perform an application 
function, e.g. run a payroll.
1-2   ADMINS User Guide



ADMINS Terminal Support
There are many other facilities in ADMINS that are covered in this Manual. Once the 
fundamental concepts of ADMINS are understood, you will see how the advanced 
facilities may be applied to specific application problems.

1.2  ADMINS Terminal Support

ADMINS commands are designed to be run from standard video display terminals. 
However, the only commands which require full screen video display terminals are 
TRANS, the transaction processor, TED, the ADMINS text processor, the test mode 
facility for RMOs, and MANUAL, the on-line version of this procedures manual. All 
other commands may be run from any ASCII terminal.

1.3  ADMINS Manual

The ADMINS Manual provides a complete reference to all of the ADMINS 
commands and facilities, including in each case the purpose and syntax of the 
command, and detailed examples. Generally, each section of the manual corresponds 
to an ADMINS command or major facility.

This Manual is intended as both a guide to the purpose and function of ADMINS 
commands for the beginning or casual ADMINS user, and also as a complete 
reference guide to all the specific and detailed dialogue and syntax as required by the 
experienced ADMINS user.
ADMINS User Guide   1-3



ADMINS Instruction Files
1.3.1  Manual Conventions

The ongoing text of this Manual is presented in the print font and style used in this 
paragraph. Text may be emphasized using bolding or UPPERCASE.

In examples, the characters displayed or printed by ADMINS and the operating 
system are shown as they appear on hard copy or on a video screen. The characters 
which are typed responses by the user to ADMINS and operating system prompts 
are shown in lowercase. For example:

     $ move
     Input file....: telfon.mas
     Output file...: newtel.mas
     # to move / S[kip] # / K[ey_range] / N[o_list]: cr
     16:10:20.68
     ************************************************************
     875 records moved, total 875 records in N2.MAS
     16:10:26.52
     $

Syntax descriptions and examples may contain characters which have a specific 
meaning. These are as follows:

1.4   ADMINS Instruction Files

ADMINS commands are either entirely interactive, i.e. they receive all their 
instructions as direct responses from the terminal, or ADMINS commands may 
utilize an instruction file which has been prepared in advance. The AdmDefine, 
AdmScreen, AdmReport, and AdmCmp commands, among others, use an 
instruction file. AdmTrans, AdmAded, AdmMove, and AdmSort, among others, can 
operate directly on-line. As we shall see, all commands (except AdmTrans) can 
operate from a "higher level" instruction file called an ADMINS command file. Also, 
using advanced techniques such as those described in Appendix H.14.10 “SETKEY - 
Simulate Keystrokes in TRANS” of this Manual, even TRANS can receive its 
keystrokes from sources other than the video display terminal.

Character Description

CR The characters "CR" mean "carriage return" and 
indicates that the user simply presses the RETURN 
or ENTER key. This is illustrated in the above 
example.

[ ] Square brackets, "[ ]", indicate that the enclosed item 
is optional. (Square brackets are not, however, 
optional in the syntax of a directory name in a file 
specification.)

... Horizontal ellipsis indicates that additional 
information may be included on a line, or that not 
all of the lines of an example are included.
1-4   ADMINS User Guide



ADMINS Instruction Files
Instruction files are prepared using a text editor. While the choice of which text editor 
to use is left to the user, the ability to use a text editor to create and modify instruction 
files is a prerequisite to using ADMINS to develop and maintain applications.

The instruction file for a specific command is described in detail in the section for the 
command. However, there are certain general conventions which apply to all 
instruction files.

1.4.1  Comments

Lines in ADMINS instruction files that begin with an asterisk (*) are treated as 
comments and are not processed. Various ADMINS commands also support 
additional methods of adding comments to instruction files. File definitions (.DEF 
files) may include comments at the end of field description lines by enclosing the 
comment in quotation marks (").

The exclamation point (!) can also be used in instruction files as a comment delimiter, 
but not in the SCREEN section of a TRS or in the HEADING, DETAIL, PREVIEW or 
SUMMARY sections of a REPORT instruction file. Exclamation points that are part 
of a constant enclosed in single quotes or part of a parameter prompt (enclosed in 
angle brackets) are also not treated as comment delimiters. In ADMINS command 
files exclamation points are not considered comment delimiters by default,3 but this 
can be enabled by using the COMMENT keyword (see Section 14.1 “Preparing A 
Command File”).

1.4.2  Continuation

In general, continuation lines are not allowed in instruction files. However, there are 
certain statements which, due to their possible length, allow continuation. In these 
cases, the line to be continued ends with a blank followed by a colon (" :") and the 
continued line is indented, i.e. does not begin in column one. Statements which may 
be continued are noted in each application section. Statements within paragraphs of 
an RMS are continued simply by indenting each line after the first line of a paragraph. 
i.e. the colon at the end of the line is not required.

3.    On OpenVMS, the semicolon (;) is the default comment delimiter in ADMINS 
command files. To enable semicolon as a regular character on a given line, use 
two semicolons instead of one for the first occurrence on the line, for example: 
$DELETE A.TXT;;*,B.TXT;*C.TXT;*.
ADMINS User Guide   1-5



ADMINS Instruction Files
1.4.3  Indirect References

All instruction files may include indirect references to other files. When the 
instruction file is used, the indirectly referenced file is substituted for the reference 
itself. Indirect referencing is a way to include common statements in multiple 
instruction files. Indirect references are signaled by beginning the line with a double 
"at" sign (@@) followed by a file name. For example,

     @@heading.inc

would be a way of including a standard page heading in all reports.

Indirect references may be "nested", i.e. indirectly referenced files may contain other 
indirect references, to ten levels of "depth".

1.4.3.1  Passing Parameters in Indirect References
It is possible to pass parameters to indirectly referenced files. On the "@@filename" 
line you may add a number of parameter values to be substituted in the indirectly 
referenced text. The substitution is controlled by a set of parameter names given in 
the PARAMETERS statement of the indirectly referenced file. Each parameter name 
in the file is replaced with a parameter value given on the "@@filename" line, before 
it is read as an instruction by an ADMINS command.

For example, given the following line in an ADMINS instruction file:

    @@NEWCUST.INC AMOUNT CNAME CADDR

if the file NEWCUST.INC includes the line:

    PARAMETERS X_AMT X_NAME X_ADDR

then any subsequent occurrence of X_AMT, X_NAME and X_ADDR in 
NEWCUST.INC would be replaced with AMOUNT, CNAME and CADDR, 
respectively.

If an RMS4 contains the line:

    @@NEWID.INC LASTINV# INV# INVDAT TODAY

and if NEWID.INC contains the following:

    PARAMETERS LASTID THISID DATE1 DATE2
    *
    LASTID = LASTID + 1 ; THISID = LASTID
    DATE1 = DATE2

the compiler (CMP) would receive:

    LASTINV# = LASTINV# + 1 ; INV# = LASTINV#
    INVDAT = TODAY

4.See Chapter 9: “CMP: The Record Maintenance Compiler”.
1-6   ADMINS User Guide



ADMINS Instruction Files
This makes it possible to use NEWID.INC as a "subroutine" or "macro" to calculate 
the next available number for all kinds of id numbers where you want to increment 
the last number used by one and put a date into another field. Another .RMS file 
might include the line:

    @@NEWID.INC LSTREF REF# RDATE 11-OCT-89

in which case the compiler would receive:

    LSTREF = LSTREF + 1 ; REF# = LSTREF
    RDATE = 11-OCT-89

To summarize, in the include file, all occurrences of the first parameter name on the 
PARAMETERS line are substituted by the first parameter following the file name on 
the "@@filename" line, the second parameter name is replaced with the second 
parameter, etc. Up to 9 levels of indirect file references are supported (i.e. included 
files which include other files, to a depth of nine levels).

If more parameter names are found on the PARAMETERS line than there are 
parameter values supplied on the "@@filename" line, a warning message is displayed 
and the extra parameters are ignored.

If fewer parameter names are found on the PARAMETERS line than there are 
parameter values supplied on the "@@filename" line, a warning message is displayed 
and the extra parameters are ignored. To supply a null value for a parameter name, 
enter two consecutive apostrophes on the "@@filename" line. For example, the 
following include file can be used in either the field declaration portion of a TRS or 
the local section of an RMS:

    *
    * OPFIELDS.INC: Including optional fields in TRS or RMS.
    *
    * Parameters:
    *
    * $ER$           the field declaration code, with  
    *                trailing blank, i.e 'ER ' or 'DR '
    *                (used in TRS, null in RMS)
    * $PREFIX$       the field name prefix all  
    *                the optional fields will share.
    * $EXCLAMATION$  value of '!' comments out the rest
    *                of the line in RMS (null in TRS)
    * $LOCATION$     in TRS, precise placement line
    *                "anchor" for 4 fields (null in RMS)
    *
    PARAMETERS $ER$ $PREFIX$ $EXCLAMATION$ $LOCATION$
    *
    $ER$$PREFIX$_IN/D2 $EXCLAMATION$ [$LOCATION$,10,20]
    $ER$$PREFIX$_OUT/D2 $EXCLAMATION$ [$LOCATION$+1,10,20]   
    $ER$$PREFIX$_BEG/D2 $EXCLAMATION$ [$LOCATION$+2,10,20]  
    $ER$$PREFIX$_END/D2 $EXCLAMATION$ [$LOCATION$+3,10,20]
ADMINS User Guide   1-7



ADMINS Instruction Files
Including the file in an RMS, as follows:

    FILE N.MAS
    LOCAL
    .
    .
    .
    @@OPFIELDS.INC '' 'JAN' '!' ''

would cause CMP to process the following lines:

    FILE N.MAS
    LOCAL
    .
    .
    .
    JAN_IN/D2 ! [,10,20]
    JAN_OUT/D2 ! [+1,10,20]
    JAN_BEG/D2 ! [+2,10,20]
    JAN_END/D2 ! [+3,10,20]

(Note how the exclamation point, a comment delimiter, is used to "comment out" the 
last part of each line, which is intended for use only in a TRS.)

Referencing OPFIELDS.INC in a TRS:

    N N.MAS 1 NOMSG
    E N
    .
    .
    .
    @@OPFIELDS.INC 'DR ' 'JAN' '' '12'
    SCREEN
    N: N-----
    .
    .
    .
    END

would cause SCREEN to process the following lines:

    N N.MAS 1 NOMSG
    E N
    .
    .
    .
    DR JAN_IN/D2  [12,10,20]
    DR JAN_OUT/D2  [12+1,10,20]
    DR JAN_BEG/D2  [12+2,10,20]
    DR JAN_END/D2  [12+3,10,20]
    SCREEN
    N: N-----
    .
    .
    .
    END

Parameter values can be passed to another "nested" indirect file. If an instruction file 
contains the line:

    @@INCL1.FIL AMOUNT INVSUM INVDATE

and INCL1.FIL contains

    PARAMETERS X_AMT X_SUM X_DATE
    .
    .
    @@INCL2.FIL X_AMT NAME

This would have the same effect as if the @@ line read:

    @@INCL2.FIL AMOUNT NAME
1-8   ADMINS User Guide



ADMINS Instruction Files
Care should be taken when naming the parameters to make sure that they will not 
cause unwanted substitutions in the include file. Consider the following example:

    PARAMETERS NAME
    NAME = 'NAME IT:' ; STAT = ASKSCR(Y,X,NAME)

If this file was referenced by e.g.:

    @@INCL.FIL MYFIELD

you clearly would like the result to be:

    MYFIELD = 'NAME IT:' ; STAT = ASKSCR(Y,X,MYFIELD)

Instead, since the parameter NAME is replaced with MYFIELD wherever NAME 
occurs, you get:

    MYFIELD = 'MYFIELD IT:' ; STAT = ASKSCR(Y,X,MYFIELD)

To obtain the desired result, you must name the parameters such that they do not 
cause ambiguities, as in the following:

    PARAMETERS X_NAME
    X_NAME = 'NAME IT:' ; STAT = ASKSCR(Y,X,X_NAME)

The best way to avoid such conflicts is to use a simple naming convention for 
parameters: for example, you might append a string such as "&P" or "@P", which 
contains a normally unused character, to the end of parameter names; or you might 
begin every parameter name with an underscore.

1.4.4  Parameterization

A substitutable parameter is a character string enclosed in angle brackets within an 
ADMINS instruction file. These bracketed strings are given special treatment by the 
ADMINS commands that support parameterization, DEFINE, CMP, COM, REPORT, 
and SCREEN. When any of these commands reads an instruction file and encounters 
a string enclosed in angle brackets it will prompt, using the bracketed string, for a 
value to be inserted at that point in the instruction file.

For example, given the following line in an instruction file:

      SELECT TYPE EQ <Enter Type Selection>

The ADMINS command being run will prompt as follows:

      Enter Type Selection:

If no run time string is provided (the user presses RETURN by itself in response, the 
ADMINS command will terminate. However, if the string is enclosed by double 
angle brackets, i.e. "<<Enter Selection>>", the ADMINS command will ignore the 
entire line which contains the bracketed string.

ADMINS REPORT and COM commands provide for "repetitive" parameterization, 
i.e. substitutable parameters can be made to re-prompt repeatedly until the user 
replies with a carriage return.

"Logical" parameterization is also provided. Angle-bracketed strings that begin with 
the characters "L$" or "L_" can be alternatively satisfied with the contents of a logical 
name.

Consult the section for each command for specific details on the use of 
parameterization in that command.5
ADMINS User Guide   1-9



ADMINS Instruction Files
1.4.5  Referencing Data Dictionary Elements

Anywhere the data type of a data field is specified, (e.g. in a DEF, in the local section 
of an RMS, or in a CREATE statement in REPORT) a reference can be made instead 
to a Data Dictionary data element.6 All the attributes of the referenced data element 
will be applied to the field. To do this, substitute the Data Dictionary data element 
name, preceded by the '@' character, for the data type.

For example, the following line in a TRS:

    DR G$PO#/@PO#

would pick up the attributes of the data element PO# at compile time and use them 
for the field G$PO# in the resultant TRO.

This feature could be used to develop applications where the local fields in screens, 
reports and procedures can be maintained utilizing the Data Dictionary.

For example, if you have an application where the field PO# is defined as X999999, 
and PO# is defined in the Data Dictionary, you could write your application such 
that any local field in any .TRS or .RMS that carries a copy of the PO# field makes a 
reference to the Data Dictionary data element instead of stating a data type.

If you later needed to change the PO# field's data type definition from X999999 to 
A12, all you will have to do is change the data type in the Data Dictionary for the data 
element PO# and recompile all your programs.7

This feature also enables the use of automatic Lookup Windows, automatic 
validation against code lists, and automatic User Help with local fields in TRANS.8

5.     See Section 2.11 “Parameterization” for DEFINE, Section 7.14 “Parameterization” 
for REPORT, Section 9.7 “Parameterization” for CMP, Section 14.3 
“Parameterization” for COM, and Section 5.16 “Parameterization” for SCREEN.

6.    See Appendix I: “ADD: The ADMINS Data Dictionary”
7.     You might have to enlarge the display width in screens and reports for fields that 

reference data element PO# to accommodate an A12 field.
8.    See Appendix I: “ADD: The ADMINS Data Dictionary” for details.
1-10   ADMINS User Guide



ADMINS Instruction Files
1.4.6  Conditional Compilation

ADMINS instruction files (e.g. ".COM", ".RMS", ".REP", etc.) and the TRANS and 
MANUAL environment files may contain "C style" #if, #ifdef etc. syntax for 
conditional compilation of code.

All ADMINS commands that read an instruction file "pre-process" the file, 
interpreting lines that begin with one of the "#" keywords described below:9

Keyword Description

#define name [value] Replace name with value where value may be any 
string of text. To include whitespace in value 
enclose it in quotes. The quotes become part of 
value. If no value is provided name will have the 
value 0 (false).

#undef name Undefine name. Removes name from list of defined 
names. Subsequent occurrences of name in the file 
will not be replaced with a value, but rather will be 
read literally.

#ifdef name The lines following will be compiled if name is 
defined. (Only tests whether name is defined, does 
not test value.)

#ifndef name The lines following will be compiled if name is not 
defined. (Only tests whether name is defined, does 
not test value.)

#if name The lines following will be compiled if name has the 
value true (1).

#if !name The lines following will be compiled if name has the 
value false (0).

#if expression The lines following will be compiled if expression is 
TRUE (non-zero). Expression consists of two names 
or strings separated by a comparison operator. If 
both strings are numeric then a numeric 
comparison is performed otherwise a string 
comparison is performed. The list of valid operators 
is:

EQ or ==     LT or <        GT or >
NE or !=     LE or <=       GE or >=

#else The lines following will be compiled if the previous 
#if, #ifdef, or #ifndef evaluated to false.

#endif Terminates an #if or #ifdef block.

#noifdef Disables #ifdef processing until "#setifdef" 
encountered. None of the above commands are 
interpreted by the preprocessor after the #noifdef 
statement.

#setifdef Re-enables #ifdef processing (after a #noifdef).

9.    Comments are not allowed on conditional compilation ("#") command lines.
ADMINS User Guide   1-11



ADMINS Instruction Files
Conditional compilation (#if and #ifdef and #ifndef) statements may be nested up to 
32 levels. The example below shows two levels of nesting.

The names _VMS_ _WIN32_ and _ADMINS_ are always defined.
         #if _VMS_

would be true on a VMS system and false on a WINDOWS system, and

         #if _WIN32_

is false on VMS and true on WINDOWS. The name _ADMINS_ has a value 
corresponding to the version number of the active release of ADMINS, e.g. 
_ADMINS_ is replaced with 61 if you are using release 6.1 of ADMINS.

If the following line appeared in an ADMINS command file:

      DISPLAY ADMINS Version _ADMINS_

The pre-processor replaces _ADMINS_ with its value so NATCOM would receive 
the following line to process:

      DISPLAY ADMINS Version 84

Example:

       #define CAMBRIDGE 1
       FILE N.MAS
       LOCAL
       ...
       PROGRAM
       rms statements
       #if CAMBRIDGE
         Cambridge-specific rms statements
       #if _VMS_
         Cambridge on VMS-specific rms statements
       #endif
       #else
         rms statements if CAMBRIDGE is false
       #endif

1.4.6.1  Defining Names and Values on Command Line
Names can be defined and assigned values at run time using the D (define) command 
line qualifier. In the following examples the name "PHYSICAL" would be defined 
(and have the value "0") for the compilation of LOCATE.RMS, and the name 
CAMBRIDGE would be defined (and have the value "1") for SCREEN's compilation 
of TAXINQ.TRS.10

$ cmp /d "PHYSICAL" locate          

$ scr /d "CAMBRIDGE=1" taxinq

10.   Because OpenVMS converts all non-quoted strings to lowercase you must use 
quotes to define the name "PHYSICAL" and "CAMBRIDGE". Without quotes the 
names defined would be "physical" and "cambridge".
1-12   ADMINS User Guide



Processing Progress of ADMINS Commands
1.5  Processing Progress of ADMINS Commands

The example above in Section 1.3.1 “Manual Conventions” shows a line of asterisks 
displayed by AdmMove to show the user the rate of record movement. Before 
starting to read the input file, MOVE divides the number of records in the input file 
by 60. As each sixtieth of the input file is read, MOVE displays an "*" starting at the 
sixtieth column of the line, and working the display of asterisks back down to the first 
column as the input file is read. In this manner the on-line user is kept informed of 
the progress of the MOVE processing.

This facility is included in the AdmMove, AdmSort,AdmMaint, and AdmProd 
commands to allow the on-line user to follow the progress of the processing.11

It is possible to suppress the line of asterisks. This may be desired when the user's 
terminal is operating at low speed. If the user types "NO *" to the first prompt of the 
command, the command will re-prompt the first prompt and the asterisks will be 
suppressed during processing.

1.6  Logging Interactive Sessions

Interactive command dialogue in all ADMINS commands can be recorded in a text 
editable log file. This log file can also function as an ADMINS command file, so 
dialogue recorded in a log can be edited if desired, and can be run with COM (see 
Chapter 14: “Command Files”).

To log interactive dialogue, assign the name of a log file to the logical name 
ADM$LOGFILE. If a log file with that name does not exist, ADMINS will create it. 
As long as ADM$LOGFILE is assigned, ADMINS will append dialogue lines to the 
log file.

The dialogue which is recorded consists of  command lines which call up ADMINS 
images, and the responses to ADMINS prompts. (In TRANS, only the command line 
is recorded). The log file also contains a heading to identify it, and a date and time 
stamp before each command. The ADM$LOGFILE file only logs interactive sessions, 
and is ignored if ADMINS is running in a command file.

11. REPORT will also display processing progress through the file using the line of 
asterisks, but as an option rather than by default (see Section 7.2 “REPORT 
Statement”).
ADMINS User Guide   1-13



Providing Responses for Command Dialogue on the Command Line
1.7  Providing Responses for Command Dialogue 
on the Command Line

All ADMINS commands will accept responses provided on the command line as 
answers to the prompts that occur in their dialogues.  Providing responses on the 
command line is especially useful when inserting ADMINS command dialogue in 
scripts intended to be run with multiple shells/command line interpreters, but it also 
a convenient technique for testing or repetitious use of complex ADMINS command 
dialogues, as the entire list of responses can be recalled, edited and resubmitted using 
command line editing.

The special option switch, "--" tells ADMINS that the arguments that follow it are to 
be interpreted, in order, as responses to prompts in the command’s dialogue. 
Responses that contain more than one word must be quoted (in general, to preserve 
case and to accommodate special characters, it is good practice to put quotes around 
all responses).

For example, a command file might contain:

 move
 no *
 n.mas
 n2.mas
 CR
 y

This dialogue could be specified in a single line:

move -- "no *" "n.mas" "n2.mas" "CR" "y"

The "--" token must immediately precede the first prompt answer on the command 
line, and must appear after all other normal command line options and arguments. 
For example:

sort -k
 n.mas
 n2.mas i

is written as:

sort -k -- "n.mas" "n2.mas i"

Commands that take their instruction file on the command line, such as MAINT:

maint abc
 n
 y
must be written as:
maint abc -- "n" "y"

1.8  File Specification

File specifications in ADMINS usually consist of a file name plus a file type. In all the 
examples of output in this Manual when a file specification is shown, it is shown in 
the format "filename.type". In actual on-line output displays from ADMINS the 
complete file specification is shown.
1-14   ADMINS User Guide



File Specification
The file specification given to an ADMINS command may not exceed 255 characters. 
Usually the host environment supplies the unspecified parts of a full specification 
using the user's "defaults", e.g. the user's default directory.

1.8.1  ADMINS File Types

Examination of the 3 character file type for an ADMINS file name informs the user as 
to the contents of the file. The following is a list of common ADMINS file types:

File Type Description

COM An ADMINS command file. A text file that contains 
a sequence of operations to be executed. For 
example, "PAYROLL.COM".

DEF A file definition instruction file. This is the input to 
the DEFINE command. For example, “RE.DEF”

FLG A “field log” file as described in Section 2.10 “Field 
Logs”, created by DEFINE and maintained 
automatically by TRANS. For example, “RE.FLG”

HLP A "help" file. Provides immediate explanatory 
information to the users of certain ADMINS 
commands while the command is in use.

IDX An index file as described in Section 4.5 “SORT 
Example Creating an Index File”. Index files are 
created by DEFINE, built by SORT, and maintained by 
TRANS. For example, "STREET.IDX".

LIS A list file. These files are created by commands 
which output print lines such as REPORT. The print 
lines are directed to a list file and subsequently 
directed to a printing device. For example, 
"ADMINSA5.LIS".

MAS A data file. Typically a "master" file. These files are 
usually made by the DEFINE command from a 
"DEF" file. For example, "RE.MAS".

MSG The ADMINS message file. Contains diagnostic 
messages which are called and displayed by 
ADMINS commands.

SAV A "save" file. The ANALYZER saves all the user's 
analysis steps in this disk file. For example, 
"ANALYZB3.SAV".

REP A report instruction file, which is read by REPORT 
to produce a report. For example, "PAYROLL.REP".

RMO A record maintenance object file. These files are the 
result of CMP compiling the RMS file. RMO files are 
used by MAINT, the record maintenance processor, 
or with PROD or TRANS. For example, 
"ADJUST.RMO".
ADMINS User Guide   1-15



File Specification
RMS A record maintenance instruction file. These files 
are "compiled" by CMP, the record maintenance 
compiler. For example, "ADJUST.RMS".

TAB A "table" file. These files too are created by DEFINE, 
but are usually used to hold table data or reference 
data. For example, "OBJECT.TAB".

TAP An instruction file for the ADMINS external files 
commands, ACQUIR, FACQUIR, DATAP, and 
FDATAP, which describes a record layout. For 
example, "PAYROLL.TAP".

TMP Temporary files used by ADMINS. Temporary files 
are created and automatically nameda by ADMINS 
SORT (SORTxx.TMP and OUTPxx.TMP), SCREEN 
(SCRExx.TMP), REPORT (RPxx.TMP), and CMP 
(COMPxx.TMP) commands.

TRO A screen object file. These files are made by 
SCREEN from the TRS file. TRO files are run by 
TRANS. For example, "PAY.TRO".

TRS A screen instruction file. For example, "PAY.TRS".

a. See Appendix C.1.1 “Differences in Print File and Temporary File Nam-
ing”

File Type Description
1-16   ADMINS User Guide



Dynamic Data File Expansion
1.9  Dynamic Data File Expansion

Most of the ADMINS commands which can add records to a file, will automatically 
enlarge the file if an impending overflow condition is detected. The commands 
which support dynamic file expansion are those that add "batches" of records to a file. 
These include AdmMove, AdmSort, AdmProd, AdmMaint, AdmAded, AdmFac, 
AdmIE, ACQUIR, and AdmMrgFil. In AdmProd, both the lookup and output files 
are dynamically enlarged. In AdmMaint, output files are enlarged. In the OpenVMS 
environment AdmTrans does not support automatic file enlargement, and automatic 
file enlargement cannot occur when the file access method allows multiple users to 
concurrently write to the file (“multi-user” access). 12

When AdmMove, AdmSort or one of the other commands listed above detects a file 
overflow condition, the command automatically enlarges the file by 10% of its 
current size, or by at least 10 1024-byte disk blocks, whichever is larger. An 
informational message, "<n> ADMINS blocks added to <file>" is displayed on the 
terminal, and the command continues processing the file. If the enlarging process 
fails (for example, the disk is full), then the file is closed, with the records that were 
added intact.

There is some overhead involved each time a Level 2 file is enlarged. In Level 2 files, 
the index portion of the file (see Appendix E) is copied from its previous position in 
the file down to the new end of file. 

Automatic file enlargement is in effect by default. However, automatic 
enlargement of Level 2 files can be disabled by including a "9" in the string assigned 
to the logical name OPTION.

1.10  Localizing ADMINS

Developers of applications for non-English speaking users can “localize” many 
ADMINS displays, messages and prompts so that users are presented with these 
items in their own language.  ADMINS provides this capability via the logical name 
ADM$LOCALE13, to which should be assigned the path name of a text file that 
contains the localized versions of the messages and prompts.

12.   The ENLARG command described in Section 2.8 “AdmENLARG: Enlarging 
ADMINS Files” may be used explicitly to enlarge a file.

13. The TRANS environment file (TRANS$ENV) can also be used to localize TRANS 
messages (see Section 6.15.15 ““Localizing” Messages and Prompts”). 
ADM$LOCALE is read first and should be assigned at the system level. The 
environment file will override ADM$LOCALE and should be used for 
customization for a particular individual or application.
ADMINS User Guide   1-17



Localizing ADMINS
Currently the following prompts and messages may be localized:

• Month names
• Prompts and messages in TRANS
• Prompts and messages in MANUAL
• Prompts regarding file access and i/o
• Answers to some prompts

The format of the records in the ADM$LOCALE file is:

 aaa###=Message

where: 

Certain14 single character responses to prompts can also be localized:

answer_yes = y
answer_no = n
answer_wait = w
answer_ignore = i
answer_insert = i
answer_exit = e

The file 'adm$dist:admins.msg' contains all the items that currently may be localized 
(except month names and responses), and may be used as a source to create a 
localized version.

aaa is a three character code  identifying the category of 
the message.  Currently, the following categories 
are recognized:

— mth:  Month name (mth001 through 
mth012,  i.e.: 
mth001=january 
and 
mth012=december 
by default)

— tra:  TRANS messages/prompts, 
i.e.:  
tra000= ’Type SCREEN-NAME, 
FILE-NAME, or C.R.”
by default

— io_: File i/o and access messages/
prompts

### is a three digit number identifying a specific 
message/prompt.

14. These responses are only with prompts related to concurrency and i/o for 
ADMINS data files, e.g.: answer_insert is used when TRANS prompts “Enter I to 
insert”.
1-18   ADMINS User Guide



Alternative Collating Sequences
E.g. for Danish users we could create a file called 'dansk.msg' in the adm$dist 
directory as follows:

     ! ADM$LOCALE file for Danish users. 
     mth001=januar
     mth002=februar
     mth003=marts
     mth004=april
     mth005=maj
     mth006=juni
     mth007=juli
     mth008=august
     mth009=september
     mth010=oktober
     mth011=november
     mth012=december
     tra000="Tast skærm-navn, fil-navn eller <CR>."
     tra001="Tryk H for hjælp" tra002="Tryk PREV for forrige 
individ"
     tra003="Tryk NEXT for at gemme dette individ"
     tra004="LFEXIT aktiv, tryk NEXT for at akseptere"
     tra005="Tryk NEXT for at gemme dette individ"
     tra006="Kodeord"
     tra017="Fejl - - - tast (%err)"
     tra029="TRANS FUNKTIONS-NØGLER"
     tra030=Funk
     tra031="Beskrivelse"
     tra032="NØGLE"
     man000="ADMINS Procedures Manual"
     man001="Version %s"
     man002="Tast nøgle for at fortsette..."

and make the following logical name assignment:

      assign ADM$DIST:dansk.msg ADM$LOCALE

and the messages and month names identified in the file will display in Danish.

1.11  Alternative Collating Sequences

ADMINS supports the full 8 bit character set, including any collating sequence for 
printable characters, with the following restrictions.

1. The collating sequence of the characters with an ASCII value of 32 (decimal) or 
less (space and below) cannot be changed.

2. All the 256 possible characters must be assigned unique collating sequence 
values in the "collating table",15 i.e. duplicates are not allowed.

3. All files used within an ADMINS command session must use the same collating 
table (i.e. files using different collating tables cannot be mixed).

15.  The "collating table" is stored in an ADMINS file with a name in the form 
ADM$COLLDIR:xx.COL. See Section 2.12 “Alternative Collating Sequences” for 
a details on how to set up and utilize an alternative collating table.
ADMINS User Guide   1-19



ADMINS Messages Facility
1.12  ADMINS Messages Facility

The ADMINS message facility is designed to display a brief informative message 
when an error condition occurs. Some messages are specific to a particular ADMINS 
command (e.g. DEFINE). Other messages are specific to an ADMINS function (e.g. 
evaluating expressions). Messages are grouped either by particular command (e.g. 
defnnn), or by particular function (e.g. expnnn). If the command is reading an 
ADMINS instruction file, such as DEFINE reading a file definition instruction file 
(DEF), then the line of text in the instruction file which caused the error is also 
displayed where possible.

1.12.1  Operation of the Message Facility

Most messages in ADMINS are included in text files that are separate from the 
command programs themselves.16 When an ADMINS command detects an error 
condition, it displays the error message code and the message. If the error was found 
while parsing a line in an ADMINS instruction file, e.g. a report instruction file (REP), 
then the line number and the content of the line causing the error are displayed. 
Using an editor, you can then easily locate the line causing the error to correct the 
problem.

For example, if you had the following report instruction file called "TOTAL.REP."

****** TOTAL.REP ******
*
REPORT TOTAL
         FILE DETAIL.MAS
HEADING
CE   TOTAL REPORT
END
CREATE TOTAL AMT1 + AMT2 + AMT3
DETAIL TOTAL

Then, attempting to run this report would result in:

$ REPORT TOTAL

rep936 Field type must be specified for a created field
Line 8: CREATE TOTAL AMT1 + AMT2 + AMT3
  

Where appropriate, actual values are inserted into the message text to enhance the 
meaning of the message, as in the following dialogue.

$ REPORT TOTAL XYZ

rep920 REPORT "xyz" not found in REP file "total.rep"
  

16.  The error message files may, if desired, be kept in a different disk/directory 
location than the ADMINS commands. Use the logical name ADM$EMSG to 
designate this alternative location. If ADM$EMSG is not assigned, ADMINS will 
expect the error message files to be in the location assigned to the logical name 
ADM$DIST (the same location as the commands themselves).
1-20   ADMINS User Guide



Logging Fatal Errors
1.12.2  Expanded Message Facility

Users can specify the "level" of ADMINS messages they wish to see displayed, based 
on their level of experience. If the user assigns "1" to the logical name ADM$LEVEL, 
then briefer messages will be displayed as in the examples above. If the user assigns 
"0" to ADM$LEVEL or if ADM$LEVEL is not assigned, then in addition to the display 
above, the full explanation, user action, and Manual reference will be displayed. The 
full text displayed for message rep936 using the example above in Section 1.12.1 
“Operation of the Message Facility” would be as follows:

$ REPORT TOTAL

rep936 Field type must be specified for a created field
Line 8: CREATE TOTAL AMT1 + AMT2 + AMT3
  
Explanation: The syntax of a CREATE statement is:
  
CREATE new-fieldname/type expression
  
The field type is a required element in the syntax. The valid field 
types are integer (I), decimal (Dn), four-word decimal (Fn), date 
(DA), alphanumeric (An),and picture (Xpic).
  
Reference: ADMINS Procedures Manual - 7.13.1
  
User Action: Correct the CREATE statement by insuring the field has 
a field type.
  

1.13  Logging  Fatal Errors

ADMINS commands will log information about the occurrence fatal errors in short 
text files that have names that indicate what time the events occurred.

A value assigned to the logical name ADM$DIR_LOGFATAL tells ADMINS 
commands to log information when a fatal exit occurs, and the value identifies the 
directory where ADMINS will log the information.  ADMINS creates time-stamped 
files that contain the error messages that occurred at fatal exit, along with user name, 
EXE name, and TRO/screen name, or REP/report name.

1.14  Host and Operating System Differences

ADMINS may be used in a variety of environments. CPU architectures and/or 
operating systems may differ from installation to installation, but ADMINS 
functionality, syntax, and use remains essentially the same. There are, however, some 
instances where ADMINS must perform similar functions in differing ways to 
accommodate different hardware/operating system environments. These exceptions 
are explained in Appendix C: “Platform and Operating System Differences”.
ADMINS User Guide   1-21



Host and Operating System Differences
A user of ADMINS must learn some of the characteristics of the hardware/operating 
system environment in order to understand in a general way how to develop and 
operate applications. These skills can usually be learned quite quickly on a cookbook 
basis without requiring any deep understanding on the user's part of the inner 
workings of the CPU or the operating system.

Because ADMINS is also used as a tool by experienced data processing professionals, 
we have included "hooks" for the integration of more advanced and technical 
capabilities in the ADMINS application environment. Descriptions of these more 
technical facilities are generally found in the appendices of this Manual.
1-22   ADMINS User Guide



Chapter 2:AdmDefine: Creating Files

The AdmDefine command is used to create an ADMINS data file. AdmDefine reads 
an instruction file, called a file definition, that describes the record layout for a 
particular file.1 A file definition always has a file type of ".DEF", e.g. from NAME.DEF, 
AdmDefine will create a data file called NAME.XXX, where XXX is the file type 
specified in the NAME.DEF. Each field to be created in the file is named and given a 
data type as specified in the DEF.

2.1  Outline of a File Definition (DEF)

The file definition is made up of three parts: the file description, the field descriptions, 
an optional SELECT statement, and optionally secondary INDEX statements. The 
outline of the file definition is as follows:

File Description
[LOGNAM] FILE_TYPE NRECS [FLGSIZ]
Field Descriptions
FIELD_NAME FIELD_TYPE [KEY/SORT] [DER_OP] [SEC_NAME] ["comment"]
...
SELECT Statement
[SELECT expression]
Alternate Index Descriptions
[INDEX #IDX IDXNAME FIELD1 [FIELD2...]
...

2.2  AdmDefine Dialogue and Example

We wish to create a file to store the social security number, name, birthday, age and 
annual salary of a thousand people. Using a text editor, we create the following file 
definition, called PEOPLE.DEF:

*   people.def
*
mas 1000
ss# x999999999 key1  "social security number"
name a30             "name"
birthday da          "birthday"
age i                "age"
ansaly d2            "annual salary"

1.    Files can also be defined using the ADMINS Data Dictionary, see Appendix I: 
“ADD: The ADMINS Data Dictionary”.
ADMINS User Guide   2 - 1



AdmDefine Dialogue and Example
Use the AdmDefine command and this file definition to create an empty data file:

$ define people
DEFSZ: 50 NF: 5  KEYLEN:3  RECSZ: 23  NRECS: 1000
# OF BLOCKS   DATA: 51  INDEX: 10  TOTAL: 61
people.mas created
Indexed file. Keys are: SS#
$

If the "AdmDefine" command appears by itself on the command line, AdmDefine 
will prompt for the file definition name and will display only a brief confirmation 
message:

$ define
DEF File Name:people
people.mas created
$

2.2.1  AdmDefine Output Messages

The information displayed by AdmDefine when it creates a file includes the 
following:

2.2.2  AdmDefine in Test Mode

If the user wishes to know how much space will be required for a file, but does not 
wish to actually reserve the space, AdmDefine can be executed in test mode as 
follows:

$ define people test
DEFSZ: 50 NF: 5  KEYLEN:3  RECSZ: 23  NRECS: 1000
# OF BLOCKS   DATA: 51  INDEX: 10  TOTAL: 61
PEOPLE.MAS CREATED
INDEXED FILE. KEYS ARE: SS#
$

No file is created. AdmDefine displays the messages so you can tell how much space 
would be required to accommodate the specified file. AdmDefine reports that the 
space required for PEOPLE.MAS would be 61 ADMINS blocks (1024 byte-blocks) or 
122 disk blocks (512 byte-blocks).

Name Description

DEFSZ internal size of the file definition in 16 bit words

NF number of fields defined

KEYLEN number of 16-bit words in the key fields

RECSZ number of 16-bit words required for a physical 
record

NRECS approximate number of records which file can 
accommodate without expanding

DATA number of 1024 byte blocks to be used for data

INDEX number of 1024 byte blocks to be used for the built-
in index

TOTAL number of 1024 byte blocks to be used for the total 
file
2-2   ADMINS User Guide



AdmDefine Dialogue and Example
2.2.3  REDEFINE: Redefine & Convert Existing File

The REDEFINE command line qualifier makes it easier to change the DEF of an 
existing file. Ordinarily, if the file being defined already exists AdmDefine will exit 
with the following diagnostic message:

$ admdefine people
def980 Unable to create output file,
file "PEOPLE.MAS;1" already exists

However, if "REDEFINE" is specified in the command line:

admdefine people /redefine

then if the file already exists AdmDefine renames the existing file to 
<filename>_SAV.<type>, creates the new file, then creates and runs a command file, 
called DEFxxx.COM, that performs a MOVE with CONVERT2 operation to transfer 
the data from the old file to the new one. If MOVE completes successfully, the 
command file deletes the original file and itself. If for any reason MOVE exits with an 
error status, the command file will delete the new file, rename the original file back 
to its original name, and display the message "Nothing done." If the file has a field 
log, the FLG file is renamed to <filename>_SAV.FLG and is not deleted.  The user 
must decide what to do with the data it contains as it may not be valid after the file 
has been redefined.

2.2.3.1  ADDREDEF: Redefine & Convert Existing using DDID
The command line option/ADDREDEF will causeAdmDefine to open the specified 
file and find the Data Dictionary ID of the file it was originally defined from, and get 
its DEF information from that dictionary entry before renaming, defining and 
restoring the records in the file.

Assume dictionary id FI0216 defines the file DATA:Items.mas. At some point this file 
is copied to WORK:WorkItems.mas.  Assume some changes (e.g. new field names) 
has been made to FI0216.  The command:

AdmDefine /ADDREDEF WORK:WorkItems.mas

will find the file DDID, FI0216, in the WORK:WorkItems.mas header, and use this to 
access the new DEF information in the dictionary and then redefine the file.

2.2.4  READONLY qualifier: Block Write Access via GENED

The READONLY command line qualifier sets a flag in the file header that blocks any 
attempt to open a file for write access using GENED mode in TRANS. If the 
"READ[ONLY]" qualifier is specified when a file is defined, attempts to open the file 
for writing in GENED mode result in TRANS immediately closing the file and 
displaying a message that the file is read-only. To view a file defined READONLY in 
GENED, the user must append "-R" or "-RX" to the file name, assign "Y" to the logical 
name ADM$READONLY, or include "H" (uppercase) in the string assigned to the 
logical name OPTION (any of these causes a read-only file open).3

2.See Section 3.2.3 “Move with Generalized Field Type Conversion”
3."-R" and "-RX" file access options are described in Section 19.1 “Modes of File 

Access”. ADM$READONLY is described in Section 6.3 “Entering or Changing 
Fields”. Option "H" is described in Appendix A: “Options”.
ADMINS User Guide   2-3



File Description Line
2.2.5  IXONLY qualifier: Create Index-only file

The IXONLY command line qualifier makes it possible to instruct the ADMINS file 
system to only maintain the index area of a file, and not the data area.4

This option can only be used where all the fields are defined as keys. If this is the case, 
then an index-only file will use only about half the disk space of a regular ADMINS 
data file, because the key values are stored only once, in the index, rather than in both 
the index and in each record.

Warning: Since no data records are written to the file, there is no way to regenerate 
the index from the data records if the index should become corrupted, and 
consequently this option should only be used on files which can be totally derived 
from another file, e.g. a file used as a secondary index into another file, normally 
populated through the TRANS INDEX clause. 

2.2.6  INIT: Initialize File with a Blank Record

Creating a file that is not empty can be useful in a variety of circumstances and 
applications. The INIT command line qualifier tells AdmDefine to initialize the file it 
creates with one blank record:

$ define people/init

2.3  File Description Line

The first line of a DEF instructs AdmDefine what to use as the file type for the data 
file to be created, and how much space to reserve for the records in the file. As well 
AdmDefine can be instructed to place the data file on a specific disk device and/or 
to create a field log file for the data file defined.

The complete file description line layout is as follows:

     [LOGNAM] FILE_TYPE NRECS [FLGSIZ]

The following sections explain the various elements of the file description line, with 
required elements appearing first.

2.3.1  FILE_TYPE Specification

The FILE_TYPE is the three character file type that is part of the file specification. 
AdmDefine will use the file name of the DEF and the FILE_TYPE to create a data file 
name. For example, if NAME.DEF has a file description line as follows:

TAB 100

then NAME.TAB is to be created to hold up to 100 records. NAME.TAB will be 
placed on the default device and directory for the user.

4.If the /IXONLY qualifier is used, a level 2, “single-index” file is always created: 
INDEX statements in the .DEF are silently ignored.

NOTE
2-4   ADMINS User Guide



File Description Line
Any three characters may be used as the FILE_TYPE, but it is recommended that 
standard ADMINS file types be used for clarity of purpose. They are:

•  MAS - A master file.
•  TAB - A table file.
•  IDX - An index file that indexes a master or table file.
•  DER - A file derived from a master or table file.
•  FLG - A field log file.
ADMINS User Guide   2-5



File Description Line
2.3.2  NRECS Specification

The NRECS specification is the number of records to be stored in the file. This 
number determines the disk space that is reserved when the file is defined. A file 
would usually be defined with sufficient disk space for expansion. However files 
may be enlarged as described in Section 2.8 “AdmENLARG: Enlarging ADMINS 
Files”.

The reserved space is for NRECS number of records added to the file in an "optimal" 
fashion, i.e., by appending. If records were added by random insertion additional 
space may be required. These issues are more fully discussed in Appendix E: “File 
Concepts”.

2.3.3  LOGNAM Specification

If LOGNAM is present on the file description line, LOGNAM is used as the logical 
name of the disk device and/or the disk directory on which the file is to be placed. If 
LOGNAM is not present, the file is placed on a device and directory determined at 
the time the file is defined (see Section 2.3.3.1 “Utilizing DEFs in Other Directories”). 
For example, if NAME.DEF has the following file description line:

DATA MAS 1000

then DATA:NAME.MAS is created. The logical name DATA could be assigned to 
any disk device (or disk device and directory) attached to the system, for example:

$ assign _dba1: data

in which case NAME.MAS is created on the actual physical device DBA1  when 
DATA:NAME.MAS is created.

2.3.3.1  Utilizing DEFs in Other Directories
If the DEF of the file to be created is not in the user's current default directory, the file 
is created in the same directory as the DEF, as in the following examples:

$ show default
DUA1:[DEV]
$ assign dua2:[prosys.accounts] accounts
$ define accounts:people
DEFSZ: 50 NF: 5  KEYLEN:3  RECSZ: 23  NRECS: 1000
# OF BLOCKS   DATA: 51  INDEX: 10  TOTAL: 61
DUA2:[PROSYS.ACCOUNTS]PEOPLE.MAS CREATED
INDEXED FILE. KEYS ARE: SS#
$
$ define [inv.oct]south
DEFSZ: 162 NF: 35  KEYLEN:30 RECSZ: 36  NRECS: 3000
# OF BLOCKS   DATA: 168  INDEX: 90  TOTAL: 258
[INV.OCT]SOUTH.MAS CREATED
INDEXED FILE. KEYS ARE: REGION AREA DISTRICT REPID 
$

If, however, lowercase "u" is included in the string assigned to the logical name 
OPTION, AdmDefine will always create the file in the current default disk and 
directory. Using the first of the two above examples again with "u" in OPTION the 
file "people.mas" is not created in the directory DUA2:[PROSYS.ACCOUNTS]but in 
the current default directory.

$ show default
DUA1:[DEV]
$ assign "Vu" option
2-6   ADMINS User Guide



Field Description Lines
$ assign dua2:[prosys.accounts] accounts
$ define accounts:people
DEFSZ: 50 NF: 5  KEYLEN:3  RECSZ: 23  NRECS: 1000
# OF BLOCKS   DATA: 51  INDEX: 10  TOTAL: 61
DUA1:[DEV]PEOPLE.MAS CREATED
INDEXED FILE. KEYS ARE: SS#
$

Note that any logical name or device name specified inside the DEF (see Section 2.3.3 
“LOGNAM Specification”) takes precedence over the disk and/or directory 
specified on the command line, whether or not "u" is in OPTION.

2.3.4  FLGSIZ Specification

If the optional FLGSIZ specification, field log size, is included in the DEF, AdmDefine 
creates a field log file for the file being defined. The field log is made large enough to 
hold FLGSIZ records. TRANS, the transaction processor, may then use this field log 
file to log changes made to fields in the data file. (The field log file layout is described 
in Section 2.10 “Field Logs”. For a detailed discussion of automatic field logging in 
TRANS, see Section 6.4 “Field Logging”) For example, if NAME.DEF had the 
following file description line:

MAS 1000 200

then a field log file will be created. The AdmDefine message will include the field log. 
For example:

$ define
DEF FILE NAME:name
NAME.MAS CREATED
NAME.FLG CREATED
$

2.4  Field Description Lines

Field description lines are used to specify the name and data type of each field to be 
included in the records of the file.5 Field description lines may specify sort control, a 
derivation operator, and/or one or more secondary names; they may also contain 
short descriptive comments. The complete field description line layout is as follows:

FIELD_NAME FIELD_TYPE [KEY/SORT] [DER_OP] [SEC_NAME] ["comment"]

Each of these elements is described in the sections that follow.

2.4.1  Field Names

The first element on each field description line is the name of the field. Each field in 
the record must have a name. When choosing field names the user should be aware 
of the following points.

5.    The field name may be delimited from the data type by either a blank space or 
the slash character, "/". In this document the blank space is used.
ADMINS User Guide   2-7



Field Description Lines
1. Field names may be up to 18 characters in length. However, names should be 
kept as small as is consistent with satisfactory documentation, particularly in 
files with a large number of fields. An average of 6 to 8 characters per name is a 
good size to aim for, as there is a modest overhead associated with large field 
names.

2. ADMINS requires that a field name begin or end with an alphabetic character. 
(This is checked by AdmDefine). That is, #AMT1 is not a valid field name. 
However, “AMT1” or #AMT” are both acceptable.

3. Do not use parentheses or punctuation characters as part of a field name.
4. Try to make field names within a file unique on the first one (or two or three) 

character(s). In report and screen layouts, fields to be printed or displayed may 
be requested by specifying only enough characters to uniquely identify the field. 
For example:
1ADDR A30     "first line of address"
2ADDR A30      "second line of address"

is preferred to:
ADDR1 A30      "first line of address"
ADDR2 A30      "second line of address"

2.4.1.1  Reserved Field Names
A number of field names have specific meanings or uses in certain ADMINS 
commands, and consequently should not be used. A list of reserved field names is 
included in Appendix D: “Reserved Field Names”.

2.4.2  Field Data Types

The second element on each field description line specifies the data type of the field. 
The following list of fields demonstrates the nine possible data types in ADMINS.

     AGE        I          "age"
     ANSALY     D2         "annual salary"
     BALANCE    F          "balance"
     EMPLDA     DA         "employment date"
     NAME       A20        "name"
     ACCT#      XA99999    "account number"
     MATDATE    DT         "maturity date"
     DAYRATE    L2         "distance in meters
     TIMESTAMP  TM         "time received"

The data types are described below.

• I - Integer: The I field type is used for small whole numbers in the range of 
plus or minus 32,767 (2 to the 15th power minus 1). An integer occupies one 
16-bit word or two bytes.

• Ln - Longword decimal: The Ln field type is used for larger numbers, outside 
the range of an integer field type, or when a decimal point is needed. The 
range for a longword field is plus or minus 2,147,483,647 (2 to the 31st power 
minus 1). A longword decimal number occupies two 16-bit words or 32 bits 
or four bytes.
A longword decimal field may have up to nine decimal places. The number 
of desired decimal places is specified by a number after the letter L, e.g., "L2". 
The decimal point is "imaginary", i.e., it is not actually stored in the data.
2-8   ADMINS User Guide



Field Description Lines
• Dn - Decimal: The Dn field type is used for still larger numbers, outside the 
range of longword decimal fields. The range for a decimal field is plus or 
minus 140,737,488,355,327 (2 to the 47th power minus 1). A decimal number 
occupies three 16-bit words or 48 bits or six bytes.
Decimal fields also may have up to nine decimal places. The number of 
desired decimal places is specified by a number after the letter D, e.g., "D3".

• Fn - Four Word Decimal: The Fn field type is used for even larger numbers, 
outside the range of a decimal field type. The range for four word decimal is 
plus or minus 9,223,372,036,854,775,807 (2 to the 63rd power minus 1). A four 
word decimal occupies four 16 bit words or 64 bits or eight bytes.
Four word decimal fields can also have up to nine decimal places. The 
number of decimal places is placed after the "F" as in "F3".

In choosing among L, D or F fields the following points should be taken into account:

(1)  Ignore the decimal point and make a judgment based on the total number 
of digits. The decimal point is only present on external input and output 
representations of the data.
(2)  REPORT totals D fields into D fields and F fields into F fields. Hence in 
choosing whether to use a D or F field, take into account the total value of the 
field for all the records in the file.

• DA/DT - Date: The DA and DT field types are used to store dates. Internally, 
DA fields are coded into one 16-bit word (two bytes), while DT fields are 
stored in two 16-bit words (four bytes). DA fields can handle dates in the 
range January 1, 1901 (1JAN1901) to December 31, 2060 (31-DEC-60). DT 
fields can handle dates for any year in a range from 100 to more than 30000.
The standard format for display and entry of DT fields is DD-Mmm-YYYY, 
e.g. 01-Jun-2015. For DA fields, the standard format is DD-MMM-YY, e.g. 01-
JUN-15 for dates after the year 2000, and DDMMMYYYY, e.g. 14FEB1981, for 
dates before. Alternative date formats are specified by assigning a value to the 
logical name ADM$DATE. (If the logical name ADM$DATE is not assigned, 
then ADMINS uses the standard format.)

Only one format can be active at a time.6 
Note that the value assigned to ADM$DATE is case sensitive.
If the value assigned to ADM$DATE contains the upper case characters "M", 
"D" and "Y" in any order, date fields in ADMINS are to be input and output 
with two-digit values representing the month and day, and a two-digit (2000 
or after) or four-digit (pre-2000) value for the year. Although there are six 
permutations of these three values, and all six are allowed, only the two that 
end in "Y" are supported if pre-2000 dates are used. For example:

     ADM$DATE         2000 or after example   pre-2000 example
     --------         --------------------   --------------------
     (not assigned)   01-JUN-15              01JUN1951
     MDY              060115                 06011951
     MYD              061501                 (not supported)
     YMD              150601                    "
     YDM              150106                    "

6.     TRANS retranslates ADM$DATE at every field to be displayed if "t" (lowercase) 
is included in the string assigned to the logical name OPTION (see Appendix A: 
“Options”). Also, if the TRANS RMO reassigns ADM$DATE (with CRLOG 
subroutine) at the first RMO call in a screen (BEGREC, UX or AX or IX) the new 
date format takes effect immediately in that screen.
ADMINS User Guide   2-9



Field Description Lines
     DYM              011506                    "
     DMY              010615                 01061951

In addition to the six formats above, the following date format options are 
supported:
(1)  If the month indicator is lowercase "m" instead of uppercase "M", then the 
spelling of the month is used in place of the numeric representation. The 
month is spelled with the first letter in upper case and the remaining letters 
in lower case (e.g. "January"). If the "m" is followed immediately by a single 
digit, then only that number of characters of the month is displayed (at least 
three characters of the month should be displayed). On input, the spelling of 
the month is case insensitive, and the user only has to input the first three 
letters of the month. On output ADMINS displays the date with the specified 
number of characters of the month.
(2)  The year indicator "Y" may be followed immediately with a "4" to indicate 
that the four digit representation is to be used (e.g. 2015) at all times 
regardless of whether the date is before 2000 or not. Permutations of the year, 
month and day indicators in which Y4 is not the last argument are allowed, 
but only if the year argument is separated from the other arguments by literal 
text (e.g. punctuation) or a space, for example "Y4 M D".
(3)  If the day indicator is lowercase "d" then the leading zero will be 
suppressed for single digit days of the month, e.g. if ADM$DATE is set to "m 
d, Y4" then "April 6, 2002" is displayed instead of "April 06, 2002".
(4)  All characters other than these indicators, including blanks, are treated as 
literal text on output. On input blanks are ignored, but the literal characters 
must be present.

The following examples show the output produced when various values are 
assigned to ADM$DATE.

     ADM$DATE         2000 or after example     pre-2000 example  
---------            --------------------    --------------------
     m D, Y4          December 10, 2015      December 10, 1947
     M/D/Y            12/10/15               12/10/1947
     M-D-Y4           12-10-2015             12-10-1947
     Y4 M D           2015 12 10             1947 12 10
     Y-M-D            15-12-10               (not applicable)
     D m3 Y           10 Dec 15              10 Dec 1947
     D-m3-Y4          10-Dec-2015            10-Dec-1947

Remember, when assigning a value to the logical name ADM$DATE, to enclose the 
value in quotation marks if it includes imbedded blanks or lower case characters. For 
example:

     $ ASSIGN "m d, Y4" ADM$DATE7

If the standard date format is in use, or any alternative ADM$DATE format, where 
the year is the last element, is in use, dates that are input without a year  default to 
the current year. For example, "1-APR" entered into a date field during the year 2015 
would result in "1-APR-15" being stored and displayed.

7.    When entering a date, ADMINS first tries to interpret that date using the format 
specified by ADM$DATE (or, if ADM$DATE is not assigned, the default date 
format). If ADMINS fails to get a valid date, it checks to see if ADM$DATEIN is 
defined. If ADM$DATEIN is defined, ADMINS tries to interpret the entered date 
according to the format specified. 

        The output (the displayed date format) always appears as specified by 
ADM$DATE (or the default date format if ADM$DATE is not assigned).
2-10   ADMINS User Guide



Field Description Lines
The logical name ADM$CENTURY_CUTOFF_YEAR allows you to control how 
dates entered with only two digits for the year are interpreted and stored. By default, 
as described above, ADMINS interprets a two digit value entered for a year to mean 
a date after the year 2000. That is ‘1-APR-15’ is interpreted and stored as ‘April 1, 
2015’. 

If you assign a two digit value in the range 00 to 99 to the logical name 
ADM$CENTURY_CUTOFF_YEAR that value is used as the cutoff to determine how 
to interpret two digits entered for a year in a date field.

For example:

if you make the following logical name assignment

$ASSIGN 80 ADM$CENTURY_CUTOFF_YEAR

Then any value entered or brought into an ADMINS date field that contains a two-
digit year less than 80 is interpreted as being between the years 2000 and 2079. 
Meanwhile, any value entered or brought into an ADMINS date field that contains a 
two-digit year of 80 or larger is interpreted as being between the years 1980 and 1999. 

The above logical name assignment would allow entry of, for example, a “last 
inspection date” of “23-JUL-97” (meaning July 23, 1997) and a “next inspection date” 
of “1-APR-04” (meaning April 1, 2004) in the same screen

• TM - Time: The time field type is used to store 24-hour time-of-day values 
down to ticks, in the format:
HH:MM:SS.TT
where HH is hours, with a valid range of 00 to 23, MM and SS are minutes and 
seconds, each with a valid range from 00 to 59, and TT is ticks, with a valid 
range of 00 to 99. TM fields are stored in a longword.
TM fields be entered without punctuation.  E.g.

110223 is interpreted as 11:02:23.00
1102 is interpreted as 11:02:00.00
11 is interpreted as 11:00:00.00

Two digits must be entered for all subfields, e.g. 123 will be interpreted as 
12:03:00.00, not as 1:23:00.00.

• An - Alphanumeric: The An field type is used for fixed length strings of text, 
which may contain numeric, alphabetic and punctuation characters. The type 
code ("A") is always followed by the number of characters in the field to a 
maximum of 80, e.g. A20 means a field that can hold 20 alphanumeric 
characters. Data is always left justified in an alphanumeric field. Each ASCII8 
character occupies one byte or half of a 16 bit word. Since fields are aligned 
on word boundaries, A5 and A6 both occupy three words.
(The "^" character in an alphanumeric field is displayed and printed as a 
blank. This special character is useful in placing leading "blanks" into an input 
string which ADMINS always tries to left justify on input. "Hats" (^) are also 
useful in concatenating "blanks" using the concatenation subroutines 
described in Appendix H.3 “Concatenation Subroutines”)

• Xpic - Pictured: The Xpic field type is used for codes containing non-numeric 
characters and numeric digits in fixed positions. The type code X, which 
stands for "pictured", is always followed by a picture of up to 18 positions 

8.  The standard coding for alphanumeric characters on most computers.
ADMINS User Guide   2-11



Field Description Lines
which shows the layout of the non-numeric characters and numeric digits in 
the field. The control characters in a picture are "A" for non-numeric and "9" 
for digit. For example, "XA99999" represents a pictured field containing one 
alpha followed by five digits as in "C04279". Leading zeroes need not be 
present on input, e.g. "C4279" is a legitimate input form for "C04279". In 
general each character position of the picture occupies one byte and each digit 
occupies one half byte. However characters always start at the next byte. The 
actual number of words required for a picture varies according to the pattern 
of "A's" and "9's" in the picture.
There is an option to permit a dash (-) in a digit (9) position. If the logical name 
OPTION includes the character "F", as described in Appendix A: “Options”, 
a dash (-) may be put in a digit (9) position. This feature was implemented to 
support "summary levels" in hierarchical coding systems, and its use should 
be avoided for other purposes.

• TInn - Internal Text: TInn fields store documents directly in the text storage 
file (TSF). Although the size of a text document is limited by physical factors 
such as available disk storage and available memory, ADMINS does not 
limit the size of a document that can be stored in an internal text field. See 
Appendix K: “Using Text Fields” for a discussion of the special 
considerations that are involved when using TInn fields.

• TXnn - External Text: TXnn fields store documents indirectly by storing the 
file specification of a document in the text storage file (TSF). See Appendix K: 
“Using Text Fields” for a discussion of the special considerations that are 
involved when using TXnn fields.

• BLOB - Binary Large OBject: BLOB fields store objects of any type or format 
directly in the text storage file (TSF). BLOB fields may only be accessed using 
the BLOBIO subroutine, described in Appendix H.15.16 “BLOBIO - Access 
Binary Large Object (BLOB) Field”.
The size of a BLOB is not limited by ADMINS, but by physical factors such as 
available disk storage and available memory.

2.4.2.1  Input and Output Representation Options
There are several options in ADMINS which alter the representation of the input or 
output of data fields based on the field type.

1. Negative values in output representation are shown with a leading dash,
e.g. "-345.67". If a "P" is included in the logical name OPTION (see Appendix A: 
“Options”) then parentheses are used for negative values in output 
representation, i.e. "(345.67)". This is applicable to integer (I), longword decimal 
(Ln), decimal (Dn), and four-word decimal (Fn) field types. This setting is 
IGNORED by AdmReport when it is creating CSV or Excel XML format data 
(see Section 7.25 “Report Command Line Options”) 
 Alternatively, negative values can be indicated with characters to the right of 
the number, rather than with a minus sign to the left or parentheses. This is 
accomplished using the logical name ADM$MINUS (see Section 2.4.2.1 “Input 
and Output Representation Options”). For example, if the characters "CR" are 
assigned to ADM$MINUS then "-345.67" is displayed as "345.67CR".

2. The standard input representation of a numeric field includes the comma and 
decimal point as used in the United States, e.g. "123,456.78". If a "J" is included in 
the logical name OPTION (see Appendix A: “Options”) then the input is 
accepted with reversal of the comma and decimal point as used in Europe, e.g. 
"123.456,78". This is applicable to integer (I), longword decimal (Ln), decimal 
(Dn), and four-word decimal (Fn) field types.
2-12   ADMINS User Guide



Field Description Lines
3. The standard output representation of a numeric field includes the comma and 
decimal point as used in the United States, e.g. "123,456.78". If a "K" is included 
in the logical name OPTION (see Appendix A: “Options”) then the output is 
presented with the comma and decimal point reversed as used in Europe, e.g. 
"123.456,78". This is applicable to integer (I), longword decimal (Ln), decimal 
(Dn), and four-word decimal (Fn) field types.

4. Zero values in numeric fields can be suppressed, i.e. displayed as blanks. If a "0" 
(zero) is included in the logical name OPTION (see Appendix A: “Options”) 
then the output representation of a zero value in a numeric field is a blank. This 
is applicable to integer (I), longword decimal (Ln), decimal (Dn), and four-word 
decimal (Fn) field types.

5. Commas can be suppressed when numeric fields are displayed in TRANS. If "," 
(comma) is included in the string assigned to the logical name OPTION (see 
Appendix A: “Options”) then numeric fields are displayed without commas, i.e. 
234,541.98 will display as 234541.98. This is applicable to the integer (I), 
longword decimal (Ln), decimal (Dn), and four-word decimal (Fn) field types.

2.4.2.2  Referencing Data Dictionary Data Elements
The field description line may alternatively reference data elements defined in the 
Data Dictionary9 instead of explicitly specifying a data type, as follows:

FIELDNAME @DD_FIELDNAME

The Data Dictionary data element DD_FIELDNAME is referenced by substituting its 
name, preceded by an '@' character, for the data type specification.

The data type (and all the other attributes, validation and lookup against codelists in 
TRANS, for example) of data element DD_FIELDNAME will then be picked up from 
the Data Dictionary and used for FIELDNAME.

2.4.3  Sort and Access Control

The third element on each field description line is the optional key/sort designation. 
After a field is named and its type is described the user can enter a key/sort 
designation.

FIELD_NAME FIELD_TYPE [KEY/SORT] [DER_OP] [SEC_NAME] "comment"

The possible key/sort designations are KEY[n], DKEY[n], ASC[n], DESC[n], (for 
example, KEY1, DKEY2, ASC3, DESC4, or just KEY, ASC etc.).10

KEYn signifies that the particular field is the nth key field of the file. Key fields are 
used both to order the file and for direct access. For example, if account number is a 
key field in a budget, specified as follows:

ACCT#  X99999999  KEY1

then ADMINS can retrieve a record for a particular account number without reading 
through all the records of the budget file to find the particular account number.

KEYn key fields place the records of the file in ascending order.

Descending key fields11 are specified using DKEYn, as follows:

9.     See Appendix I: “ADD: The ADMINS Data Dictionary”
10.     If the key and/or sort keywords are not numbered AdmDefine will assign the 

proper number.
ADMINS User Guide   2-13



Field Description Lines
     EMPDATE DA DKEY1

A file's key may be made up of multiple fields. For example, the budget account 
number may really consist of three fields: FUND, DEPT and OBJ.

FUND  X99   KEY1   "fund number"
DEPT  X999  KEY2   "department number"
OBJ   X999  KEY3   "object of expenditure"

In this case the file is in sort order on object within department within fund, and can 
be directly accessed by these values in that order.

The fields of the key always appear as the first field descriptions in the file definition, 
that is [D]KEY1 must appear, if it is to appear at all, on the line with the first field 
name. And then [D]KEY2, if it appears at all, on the line with the second field name. 
And so on for [D]KEY3, etc.

KEYn and DKEYn fields can be combined in any way:

EMPDATE DA DKEY1 "employment date
LNAME A20 KEY2  "last name"
FNAME A10 KEY3 "first name"

Files can be sorted12 beyond the extent of their key fields:

LNAME A20 KEY1    "last name"
FNAME A10 ASC2    "first name"

The file is to be keyed by last name only, but within last name the file is to be sorted 
in ascending order of first name.

FUND  X99   KEY     "fund number"
DEPT  X999  KEY     "department number"
APPR  D     DESC    "appropriation"
OBJ   X999          "object of expenditure"

Here we see a file to be keyed by FUND and DEPT and then sorted within 
department in descending order of appropriation.13

The sort control fields should follow directly after the key fields, and be in order.

Sort control, i.e. ASCn and DESCn, should only be used to prepare files for reports, 
as in the above example where we list object of expense per FUND/DEPT in high to 
low order of appropriation. Files that will be accessed directly should only use the 
[D]KEY[n] techniques.

2.4.3.1  Sequential Files
A file with no keys is called a sequential file. A file with keys is called a keyed file. A 
sequential file may be sorted or not, i.e. it may have ASCn or DESCn sort 
designations.

11.     Inequality links, i.e.LINKLT, etc. (see Section 7.13.4.5 “LINK Without an Exact 
Match”) always work as follows, regardless of the composition of the file's key: 
"less than" means "toward top of file"; "greater than" means "toward end of file". 
Thus, in the case of a file with a single descending key, LINKLT will find the 
record before the record with the key value specified by the link key field, i.e. the 
record with the next HIGHER key value.

12.Files are "sorted" when the records are in correct ascending or descending order of 
the specified fields. But because these fields are not KEY fields the records cannot 
be directly accessed using the files' internal index.

13.Note that when the key or sort keywords have no numbers AdmDefine assigns 
them in the order the fields are encountered.
2-14   ADMINS User Guide



Field Description Lines
Records can only be appended to the end of a sequential file. Records can be 
appended to the end of a keyed file, but records can also be inserted to and/or 
deleted from anywhere in a keyed file, and also records can be transferred to a new 
position in the file, i.e. by changing a key value.

Records in sequential files can be accessed only by searching the file sequentially, and 
therefore they cannot be used with any ADMINS commands or features that access 
records by key (i.e. by making use of the file's internal index). Sequential files are 
used in a limited set of special situations. Most applications have no need of them.

Sequential files are used to bypass a corrupted built-in index. This technique is 
discussed in Section 13.4 “FILECONVERT - Convert ADMINS datafile attributes”.

2.4.3.2  Sorting On Significant Bytes
At times we wish that only part of the contents of a field be used to sort the records 
in the file. This happens when the sort fields are large (e.g. fields with large 
alphanumeric strings) and we do not wish to exceed the 200 byte key/sort capacity 
of the sort program; when we know that only part of the field is significant and we 
wish to speed up the sort process; or when in fact the sort on a partial field is all that 
the application requires. In these cases we can place a "/n" at the end of the sort 
designation word. If we do this, then SORT only sorts on the n most significant 
characters (bytes) of the particular field. Significance is from the left of the field in the 
case of A and X types, and from the right of the field for D and I types. An example 
that illustrates most of these principles is a sort of a motor vehicle file by CLASS, 
MAKE, MODEL, YEAR and IDENTification.

*      MVSORT.DEF
* sort vehicles by class, make, model, year, identification
*
DER 20000
CLASS  I    ASC1/1   "vehicle class"
MAKE   A10  ASC2/4   "vehicle manufacturer"
MODEL  A10  ASC3/4   "vehicle model"
YEAR   I    ASC4/1   "year of manufacture"
IDENT  A15  ASC5/5   "vehicle identification"
...

As CLASS is a number from 1 to 9 we need only sort on the least significant byte of 
the five digit integer CLASS field.

MAKE and MODEL names that have the same initial four letters are the same make 
and model so we need only sort on the first 4 bytes of these two fields.

YEAR is in the range 0-99 (for 1900 to 1999) so the least significant byte14 is sufficient.

The first five letters of the motor vehicle identification code encodes the 
manufacturers options, and we wish to list cars of similar options within the CLASS, 
MAKE, MODEL, YEAR sequencing.

Note that a potential sort string of 39 bytes was reduced to a 15 byte sort string.

14.    Any byte contains an integer in the range of 0 to 255, unsigned.
ADMINS User Guide   2-15



Field Description Lines
2.4.4  Deriving Aggregates

AdmDefine can also be used to create files that will contain derived aggregations.15 
Deriving aggregates is performed by the SORT command based on the instructions 
in the DEF. This is described in Section 4.4 “Deriving Aggregates (Summarizing 
Sort)”. Derivation instructions are placed in the file definition to instruct SORT as to 
which aggregates are to be derived.

The fourth element on the field description line is the optional derivation operator 
(DER_OP).

FIELD_NAME FIELD_TYPE [KEY/SORT] [DER_OP] [SEC_NAME] "comment"

The derivation operators, and a short description of their functions, are listed here:

15.  The reporting tool (AdmREPORT) contains comprehensive facilities for 
aggregating (i.e. taking sub-totals), re-ordering (sorting on any combination of 
fields), and selecting records and fields, as well as deriving new fields, 
formatting printout and numerous other features. However, the output from the 
AdmREPORT is usually a paper printout that is not further computer-usable. By 
deriving aggregates as files using AdmDefine and SORT, and if necessary 
computing or recoding new fields using the record maintenance procedures 
described in Chapter 9: “CMP: The Record Maintenance Compiler” of this 
manual, the user can produce into files most results that REPORT can produce 
on printout. These derived files can then be manipulated further by the ADMINS 
tools.

Derivation Operator  (DER_OP) Function

VALUES  (/V) Sub-total values

EXISTENCES  (/E) Tally non-null existences

COUNT  (/C) Tally all records

AVERAGE  (/AVG) Average value in run

MAXIMUM  (/MAX) Find largest value in run

MINIMUM  (/MIN) Find smallest value in run

FIRST  (/FI) Take value from first input 
record in this run

LAST  (/LA) Take value from last input record 
in this run

SAME  (/SA) Take value from same record 
selected by previous derivation 
operator (/FI, /LA, /MAX, /
MIN)
2-16   ADMINS User Guide



Field Description Lines
For example, if we had a telephone directory file (TELFON.MAS) which included the 
following fields:

EXCHNG   X999         "telephone exchange"
NUMBER   X9999        "rest of the telephone number"

and we wished to produce a file informing us how many people lived in each 
telephone exchange, we might prepare the following file definition.

*          EXCHNG.DEF
*
* count people per telephone exchange
*
DER 1000
*
EXCHNG  X999 KEY1      "telephone exchange"
#PEOPLE I     -   /E   "number of people in the exchange"

The field #PEOPLE will hold the count of the number of "existences" of EXCHNG. 
The field EXCHNG holds the first 3 digits of the telephone number (the "exchange"). 
EXCHNG is also a "working field" for #PEOPLE. Working fields are discussed in 
Section 2.4.4.1 “Method of Operation”.

EXCHNG.DER is created by using SORT to aggregate the records from TELFON.MAS into 
EXCHNG.DER. A printout of the file EXCHNG.DER after it was aggregated by SORT 
might be as follows.

EXCHNG.DER

EXCHNG         #PEOPLE

233            7,429
529            8,316
563              714
...

The "/FI" and "/LA" derivation operators utilize the order of the records in the input 
file to determine the value to be placed in the derived (output) record. The "/FI" 
operator selects the value of the field it is acting on from the first record in the input 
file with each output file key value. The "/LA" operator selects the last record in the 
input file for each output file key.

The "/SA" operator allows additional fields to be taken from the "same" record 
selected by a derivation operator, e.g. "the name of the student in each class with the 
highest score" could be placed in the output record by including the following in a 
DEF:

SCORE    I       -       /MAX    "highest score"
NAME     A20     -       /SA     "student's name"

"/SA" can be used following the "/FI", "/LA", "/MAX", or "/MIN" derivation 
operators, and always takes values from the same record as selected by the derivation 
operator that most immediately precedes the "/SA" in the file definition.
ADMINS User Guide   2-17



Field Description Lines
Another example. The following aggregation from a detail appropriation file 
(BUDGET.MAS) would contain the total value, number, average, highest and lowest 
appropriation per department/fund, as well as the object code of the highest and 
lowest appropriations in each department/fund.

*       BUDSUM.DEF
*    appropriation summaries per department/fund
*
DER  200
FUND     X99   KEY1
DEPT     X999  KEY2
TOTAPPR  D      -    /V    APPR  "total appropriations"
APPR1    D      -          APPR  "working field"
#APPR    I      -    /E          "number of appropriations"
APPR2    D      -          APPR  "working field"
AVGAPPR  D      -    /AVG        "average appropriation"
MAXAPPR  D      -    /MAX  APPR  "maximum appropriation"
MAXOBJ   X99    -    /SA   OBJ   "object code of max. approp."
MINAPPR  D      -    /MIN  APPR  "minimum appropriation"
MINOBJ   X99    -    /SA   OBJ   "object code of min. approp."

A printout of the file after it was defined and built by SORT might look as follows.

                 BUDSUM.DER

FUND  DEPT    TOTAL  NUMBER   AVG      MAX    MAXOBJ   MIN   MINOBJ
          APPR   APPR    APPR     APPR    CODE    APPR   CODE

01    020    45,000     9    5,000   16,000     08    2,000   53
...
01    530    75,000    10    7,500   44,000     02    4,000   19
...

2.4.4.1  Method of Operation
The way these aggregation operations are used to prepare a derived file from an 
input file is as follows:

1. A derived file definition is created. The key/sort fields in the derived file 
provide the control for the aggregation operations, i.e. the aggregation is 
controlled by all of the KEYn, ASCn, and DESCn fields. If an "N" is included in 
the logical name OPTION (see Appendix A: “Options”) during the execution of 
the SORT, then only the KEYn fields control the aggregation operations.

2. The fields to be operated on from the input file are set up to receive the 
comparable derived fields in the derived file. Since each field in any file 
definition must have a name which is unique to that definition, and derived files 
may aggregate a given input field several ways (e.g. max, min, sub-total), the 
secondary naming tools are used to set up the field relationships. That is, the 
input field is set up to go into a derived field containing the appropriate 
operation code. For example, APPR is moved into MAXAPPR, where APPR is a 
secondary name for MAXAPPR and "/MAX" is the operation code which 
instructs SORT to place the largest value of APPR in MAXAPPR for each control 
break. The operation code is always the fourth element in a field description 
line.

3. In the case of "/E", "/C", and "/AVG", two fields are required in the derived file 
definition. The first field is a "working field" and simply receives the input field, 
i.e. the field which is being counted or averaged. (A key field may be used as a 
working field, but other aggregation fields may not be used as a working field.) 
The second field contains the operation code (/E or /C or /AVG) and will hold 
the result, e.g. the number of non-null appropriation values per department, the 
number of appropriation records per department, the average appropriation per 
department.
2-18   ADMINS User Guide



Field Description Lines
The computation of derived fields is better understood in the context of the operation 
of the SORT command which performs the derivations as the final step in the sorting 
process. The operation of SORT is described in Chapter 4: “SORT: Sorting Records 
Between Files” of this manual. Conceptually, one should imagine file derivation 
occurring in two distinct stages. In the first stage, the records from the input file are 
sorted into the order defined by the output file definition, i.e. in output key order. If 
a SELECT is present in the output file definition it is applied in this stage so that only 
"selected" records are sorted into the output definition order. Then in the second 
stage the particular derivation operations are applied to the newly sorted file to 
produce the derived records for the output file. However the SORT is implemented 
in such a way (as is made clear in  Chapter 4: “SORT: Sorting Records Between Files”) 
that the size of the output file need only be large enough to hold the total number of 
derived records, not the total number of records in the file. For example, suppose we 
have a payroll/personnel file of 40,000 records sorted on employee number that 
includes among its fields the department code and the annual salary. We wish to 
produce a report showing total salary by department. We could derive a file of 
departmental aggregates with a DEF as follows:

DER  100
#DEPT   X999  KEY1        "department code"
ANSALY  D      -    /V    "annual salary"
STATUS  A1                "employee status"
SELECT STATUS EQ 'A'

The size of the output file need only be large enough to hold a record per department 
rather than a record per employee. Note the use of the SELECT statement to only 
include in the aggregation the salary of the active employees (STATUS EQ 'A') in the 
derived file. The field STATUS, which is not an aggregation field, will have a null 
value in the final record. The SELECT statement is described in detail in  Section 2.5 
“Record Selection”.

Another common use of derived files is to prepare a table of standard descriptions 
from a data file. For example, if the payroll/personnel file contained the department 
name as well as the department record, we could derive a standard table file of 
departments as follows:

TAB  100
#DEPT     X999  KEY1        "department code"
DEPTNAME  A20    -    /FI   "department name"

This would give us a list of department names and numbers. We could then edit the 
names to appear exactly as we would wish them to appear in reports. Then via such 
facilities as the LINK statement in SCREEN (see Section 5.4.1 “LINK Paragraph”) and 
the TABLE statement in REPORT (see Section 7.13.5 “TABLE Statement”) we could 
use this standard table of department names in screens and reports.
ADMINS User Guide   2-19



Record Selection
2.4.5  Secondary Field Names

The user has the option of assigning secondary names to fields. The primary name, 
which is the name that appears first on the line describing the field, is always 
required. Secondary names are required if certain commands (i.e. MOVE, SORT) are 
to be used to move data from comparable fields that are stored under different 
names. That is, the data is to be stored under the primary name in the file being 
defined, but will come from differently named primary fields in other (input) files. A 
particular field has one primary name and may have several secondary names. For 
example:

LNAME A20 KEY1 LASTNM       "last name"

TELNO A8 - TELEPHONE TNO    "telephone number"

In the above examples, LASTNM is a secondary name for LNAME, and 
TELEPHONE and TNO are secondary names for TELNO. Presumably the "telephone 
directory" is being created from existing files, which already have data stored by such 
names as LASTNM, TELEPHONE and TNO. (The dash between the picture and 
TELEPHONE in the second example is used to occupy the key/sort designation 
when there is no key/sort field, and other information, e.g. secondary names or 
derivation operations, is to follow on the line.)

2.4.6  Comments

As has been shown in all the examples, comments may be included on all field 
description lines by enclosing the comment in quotation marks (") at the end of the 
line.

In addition, any line with an asterisk (*) in column one is assumed to be a comment 
line in the file definition and is ignored by the AdmDefine command.

2.5  Record Selection

As should be apparent from our discussion of secondary names AdmDefine is often 
used to describe files that are to be derived from existing ADMINS files. (Hence the 
need for secondary names, to relate the new primary field name to other existing, but 
differently named, fields.)

Record selection criteria can be specified for a derived file using a SELECT statement 
in the file's definition. The SELECT criteria is applied to the input records of MOVE 
or SORT operations so that only the specified records are written into the derived 
(output) file. Only one SELECT statement may be used in a file's definition.

Examples:

SELECT TELNO BET 563-0000 AND 563-9999

SELECT OBJ EQ 101 AND APPR GT 10000
2-20   ADMINS User Guide



Level 3 File Structure
These two examples might be the record selection criteria in two derived files. One, 
for those telephone directory entries in exchange "563", and the other for budget item 
lines where "personal services" (object code "101") have an appropriation in excess of 
$10,000. The following shows the definition of the "563 exchange" telephone 
directory, sorted by telephone number.

*          EXC563.DEF
* 563 telephone exchange sorted by TELNO
*
DER 5000
TELNO A8 KEY1      "telephone number"
LNAME A20          "last name"
FNAME A10          "first name"
SELECT TELNO BET 563-0000 AND 563-9999

The SELECT statement always appears at the bottom of the DEF file and contains an 
open-ended logical expression involving field names from the DEF and constants. 
(The rules for forming the logical expressions in ADMINS are described in Section 8 
on Expressions.) The SELECT statement can be in excess of one line using the "colon" 
line continuation convention. That is, to extend the SELECT statement to more than 
one line place a ":" at the end of the SELECT line which instructs ADMINS to read the 
next line as part of the SELECT statement.

 Example:

     *          PSGT10K.DEF
     * personal services greater than $10K appropriated
     *
     DER  1000
     *
     FUND  X99   KEY1     "fund number"
     DEPT  X999  KEY2     "department number"
     OBJ   X999           "object of expenditure"
     APPR  D              "appropriation"
     *
     SELECT OBJ EQ 101 :
      AND APPR GT 10000

2.6  Level 3 File Structure

Over time, the internal structure of ADMINS data files has evolved to accommodate 
new capabilities and increased capacities. With very few exceptions, when we 
introduce a new structure all ADMINS tools built after the new structure is 
introduced continue to recognize the older structures and can use these data files 
seamlessly.

ADMINS tools built before a new structure is introduced, however,  cannot be used 
with the newer data files.

The current data structure for ADMINS is called Level 3. The previous data structure 
is called Level 2. Structure Level 3 files allow current ADMINS tools to support 
multiple indices, as described in Section 2.7 “Multiple Indices”. On OpenVMS 
AdmDefine creates Level 3 files if the file is to have multiple indices, otherwise it 
creates Level 2 files. All ADMINS commands can use (read and write) either Level 2 
or Level 3 files16.

16.See Appendix E: “File Concepts” for details on ADMINS file structures.
ADMINS User Guide   2-21



Multiple Indices
2.7  Multiple Indices

An ADMINS Level 3 file can have one primary index (corresponding to the index in 
pre-level 3 files), and up to 9 alternate (or secondary) indices. To specify alternate 
indices place17an INDEX statement in the .DEF instruction file for each alternate 
index that is needed.  Index  statements have the following syntax:

   INDEX n 'Index name' Field1 [Field 2 …]

where n is a number between 1 and 9 (inclusive), and 'Index name' is the description 
of the index you want users to see when they asks to display the available indices 
(max. 30 characters long, the apostrophes are only necessary if the name contains 
white-space).

Instead of an Index Name, a '-' (dash) may be specified, in which case ADMINS 
automatically “names” the index with a list of its key field names. 

Following the index name is a list of fields that makes up the index key (as in the 
primary index, a maximum of 9 fields totaling a key length of 200 bytes (100 words) 
is allowed). Add “/D” to a field name to indicate that that field is to be a descending 
key field, as described in Section 2.4.3 “Sort and Access Control”.

In the following example four alternate indexes are specified.

MAS 10000
*
CALNUM X999999999 KEY "Call number"
CALTYP A4 "Call type"
PRIOR I "Priority code"
UNIT A6 "Unit dispatched for call"
DISPO A4 "Disposition of call"
1LINE A78 "Line 1 of comments"
STATUS A1 "Call status"
CLOSED A1 "Y = call has been closed"
AREA A4 "Area"
NUM X99999 "Street (house) number"
STREET A30 "Street name"
RECDAT DA "Received date"
RECTIM A8 "Received time"
CLEDAT DA "Clear date"
CLETIM A8 "Clear time"
* Alternate Indexes
INDEX 1 'Call status' CLOSED AREA STATUS PRIOR RECDAT RECTIM
INDEX 2 'Calls by time reported' RECDAT/D RECTIM/D
INDEX 3 'Calls by time cleared'  CLEDAT/D CLETIM/D
INDEX 4 'Calls by street address'  STREET NUM RECDAT/D RECTIM/D  

Any alternate index in a multiple-index file can be active, disabled or dropped.  An 
active index is an index in good standing, containing valid index entries to all the 
records in the file.  A dropped index occurs where the application has positively 
asked to eliminate the index from the file.  The index remains dropped - you have to 
redefine the file to bring it back.  A disabled index is an index that is not being 
maintained -  for example, you may want to disable alternate indexes so records can 
be appended to a file to save time, or you may want to update the file (including 
inserts and deletes) without the overhead of maintaining the alternate indices. 
AdmSORT  automatically regenerates and reactivates disabled indexes.

17.Although the INDEX statement may appear anywhere in the DEF as long as the 
fields contained in the index have been declared above it, it is a good design 
practice to keep the alternate indices together at the end of the DEF (before or 
after a possible SELECT statement).
2-22   ADMINS User Guide



Multiple Indices
2.7.1  Use of Multi-Indexed Files.

Interactive commands like AdmTrans (or AdmAded for that matter) will 
automatically maintain all active indices as records are being added, deleted or 
changed. 

Maintaining all active indexes automatically is the default behavior for all ADMINS 
commands, but this might not be desireable for "batch" type commands, such as 
AdmMaint or AdmMove.  When AdmMove  adds a significant number of records in 
to a moderately sized file it would likely be more efficient to disable the indices, add 
the records, and then regenerate the indices using SORT.  But in a large file where 
only a minor number of records are changed via AdmMaint it may be far more 
efficient to maintain the indices on the fly.  

To provide this needed flexibility AdmMove has a “-SORT” command line option to 
change the behavior of  AdmMove. “-SORT” disables alternate indexes in the output 
file (if it is opened in exclusive mode) before AdmMove starts processing, and 
rebuilds all indexesby calling AdmSort when processing is completed.

A new file open option, “-D”, may be used to disable any alternate indices when a file 
is opened in exclusive mode.   Unlike  the “-SORT” command line switch described 
above,  the “ -D” file option leaves the alternate indices disabled when processing is 
complete. Using “-D” would be more efficient, for example, when doing repeated 
AdmMove steps to add different batches of records to a file. Rather than maintaining 
indexes throughout several intermediate steps, AdmMove would simply append 
records in these steps, and processing would be completed adding an explicit 
AdmSort step at the end of the procedure to rebuild all indexes.  

Multi-indexed files make it possible to access all the records in the file using any 
index with the same efficiency as using the primary key.  Mutiple Index files allow 
ADMINS commands (AdmReport for example18) to present the same data ordered 
in different ways without having to sort or accessing “external” index files.

To specify that an ADMINS command is to use one of the alternate indices to access 
a file, put the index number (1-9) in the file specification as a file access option (e.g. 
N.MAS-M2 means open N.MAS in multi-user mode, and use index 2).  

18.AdmReport TOTAL statements, other than TOTAL EOF,  must be written with 
special care in order to handle all possible alternate indexes use a single report 
instruction file. The solution in these cases will usually involve the use of  
preprocessing instructions (“#ifdef”) and/or cleverly invoked “include” files.

One way to program around the TOTAL on KEY break in REPORT would be to 
use syntax like:

   FILE N.MAS-<Index #>
 …
   @@TOTAL1<Index #>.IND
   …
   @@TOTALn<Index #>.IND
ADMINS User Guide   2-23



AdmENLARG: Enlarging ADMINS Files
2.8  AdmENLARG: Enlarging ADMINS Files

The AdmENLARG command is used to increase the capacity of an ADMINS data file 
to hold additional records. ENLARG is used when automatic file enlargement (see 
Section 1.9 “Dynamic Data File Expansion”) will not be in effect, i.e. when it is not 
supported19 or has been disabled (if "9" is in the logical name OPTION automatic 
enlargement of Level 2 files is disabled). 

ENLARG can operate on a single file, or alternatively, ENLARG can be given a list of 
files to be checked and enlarged if necessary.

The syntax for enlarging a single file is:

$ enlarg [-skip] [-wait] file-name | @list_file [number-of-
additional-records]

For example, to add 5000 records to TELFON.MAS:

$ enlarg telfon.mas 5000
  600 ADMINS blocks added to telfon.mas

By default, ENLARG exits with an error message if the file is already open by another 
user or process:

$ enlarg telfon.mas 5000
opn003 File “telfon.mas” already open
%NONAME-F-NOMSG, Message number 00000004

To prevent this error condition, which could cause command procedures to 
terminate abnormally, ENLARG has two optional qualifiers20:

If the optional "number of additional records" is not supplied ENLARG expands the 
file by 10%.

The syntax for checking a list of files is:

$ enlarg @list-name

Where "list-name" is the name of a text-editable file that contains the list of files to be 
checked. The format of the records in the file check list is as follows:

Filename    Maximum % Full  [ Enlarge by % ]

For each file on the list, the user supplies a maximum percentage full beyond which 
the file should be enlarged (e.g., enlarge STUFF.MAS if it is 80% full or more). 
Optionally, each file can have an expansion percentage (e.g., expand STUFF.MAS by 
20%). The default expansion is 10%. An example of what a ENLARG file check list 
might look like follows:

STUFF.MAS          80    20
ACCTS.MAS          90

19.Automatic enlargement is not supported on OpenVMS when files are being 
accessed by AdmTrans or when files are opened for multi-user writing.

Qualifier Action

-skip Skip enlarge of file if it is already open

-wait Wait for file to become available, then enlarge (same 
as if file-name has “-W” appended to it.)

20.   File access options appended to the file-name take precedence over the skip and 
wait qualifiers. See Section 19.2 “Resolving File Access Conflicts”.
2-24   ADMINS User Guide



MKDEF - Create .DEF file from Data File
INV.MAS            80    
DISK3:VEND.MAS     75    25

The ENLARG command shows how many ADMINS blocks (1024 bytes per block) 
are added to the file to accommodate the new records.

There is some overhead associated with using ENLARG, namely a copying of the 
index part of the data file.

2.9  MKDEF - Create .DEF file from Data File

ADMINS provides a utility , MKDEF.EXE,  to allow creation of .DEF instruction files 
from existing ADMINS data files. MKDEF is especially useful in the circumstance 
where the original instruction file used to create a data file cannot be located.

mkdef [ /c ] [ /n=### | /a ] datafile [ deffile]

By default the output file is created with the same base name and the extension 
“.DEF,” in the same folder as the specified data file. By default the output .DEF will 
specify a file size  sufficient to hold as many records as are currently stored in the data 
file, with a minimum of 100 records. 

These defaults can be modified via the following options:

Some examples:

mkdef emppro.mas
mkdef mydir:empro.mas
mkdef /avail emppro.mas workdir:workempro.def

/c to create the .DEF in the Current Working 
Directory. 

/n[recs]=### Create the .DEF for ### number of records.

/a[vail] Create the .DEF for as many records that are 
currently available in the data file.

datafile The name of the ADMINS data file. If your current 
working directory is where the data file is this can 
be just the data file name, or it can be a pathname 
making MKDEF able to locate the data file, or it can 
be a logical name, e.g. MYDATA:n.mas. If a logical 
is used the logical name will appear in the header of 
the .DEF. 

deffile Optional name of the output .DEF file. By default 
the base name of the .DEF file will be the same as the 
base name of the data file. If this argument is 
specified it must contain the full pathname of the 
output .DEF file, e.g. MYDEF:abc.def, or just 
ABC.DEF to put it in your Current Working 
Directory. 
ADMINS User Guide   2-25



Field Logs
2.10  Field Logs

TRANS, the ADMINS transaction processor, provides for automatic maintenance of 
a log (a "field log") of changes made via TRANS to the fields in a file. The field log is 
an ADMINS file just like any other user created file. AdmDefine creates the field log 
file when a field log size is placed after the master file size in the DEF as we see in the 
following example.

*              TELFON.DEF
*
*  Telephone directory file definition
*
MAS  20000  5000
*
LNAME    A20   KEY1   "last name"
FNAME    A10   ASC2   "first name"
INITIAL  A1           "middle initial"
TELNO    A8           "telephone number"
#STREET  A6           "street number"
STREET   A20          "street name"
CITYST   A30          "city and state"
ZIP      X99999       "zip code"

This DEF requests a 20,000 record master file, TELFON.MAS, and a 5,000 record field 
log file, TELFON.FLG. TELFON.FLG will have the following layout:

*     Layout for TELFON.FLG
*
CHGDAT DA  ASC1  "change date"
TSEQ   I   ASC2  "transaction sequence #"
DLC    DA        "date of last change"
LNAME  A20       "key field from master file"
FLDNAM A8        "name of changed field"
FLDTYP A2        "data type of changed field (I,D,F,DA,A,X)"
TTYP   A2        "transaction type"
SEQ    I         "sequence for multi-line change"
OLD    A16       "old value"
NEW    A16       "new (changed) value"

(If a field log is requested, then the TSEQ, for "transaction sequence number", and 
DLC, for "date last changed", fields required for relating log entries to master file 
records, are automatically added to the file definition.)

The "field log" file TELFON.FLG is maintained by TRANS, the transaction processor, 
when changes are made to the defined file, TELFON.MAS. See Section 6.4 for a 
detailed discussion of automatic field logging in TRANS.

2.11  Parameterization

Parameterization is a feature that permits user-oriented editing of the file definition 
(DEF) as it is being read by the AdmDefine command. When the DEF is prepared, 
strings in the DEF are enclosed in angle brackets to indicate that these names or 
"prompts" are to be typed by the user when the data file is created by AdmDefine. 
When the AdmDefine command is run on a DEF containing these parameters, the 
user is prompted by AdmDefine, as it reads the DEF instruction file, to supply 
responses before the output data file is created.
2-26   ADMINS User Guide



Parameterization
If the parameter is enclosed in single angle brackets, e.g. < >, and the user does not 
supply a run time string, (i.e. the user presses carriage return in response to the 
prompt), then AdmDefine will terminate with an error message. If however, the 
parameter is enclosed in double brackets, as in "SELECT <<type selection>>", and the 
user does not supply a response, then AdmDefine will ignore the entire instruction 
line which contained the double bracketed string.

For example, given the following DEF

*        BUDGETDER.DEF
*  derived budget file
*
DER  1000
*
FUND   X99    KEY1    "fund number"
DEPT   X999   KEY2    "department number"
OBJ    X999           "object of expenditure"
APPR   D              "appropriation"
*
SELECT <ENTER SELECTION>

if we wanted to create a file which selected APPR GT 1000, the dialogue which ensues 
when the AdmDefine command is issued is:

$ define budgetder
ENTER SELECTION: appr gt 1000
DEFSZ: 41 NF: 4  KEYLEN:2  RECSZ: 6  NRECS: 1000
    # OF BLOCKS   DATA: 18  INDEX: 8  TOTAL: 26
BUDGETDER.DER;1 CREATED
INDEXED FILE. KEYS ARE: FUND DEPT 
SELECTION: SELECT APPR GT 1000  

2.11.1  Logical Parameters

If the parameter string contained in the angle brackets begins with the characters 
“L$”,  (e.g. <L$fieldname>), then AdmDefine first tries to translate the prompt as a 
logical name. If the logical name has been assigned in either the process, group, or 
system logical name tables, the user is not prompted for the contents of the 
parameter. Instead the value of the logical name is substituted for the prompt. 
Parameters which begin with the characters “L$” and are assigned as logical names 
are called "logical parameters".

When the logical names exist, the display of logical parameter prompts and their 
values can be suppressed by assigning the lowercase letter "c" to the logical name 
OPTION (see Appendix A: “Options”).

If a parameter beginning with “L$” is not assigned as a logical name, then the user is 
prompted for a value as in standard parameterization (see Section 2.11 
“Parameterization”).

Prompting for values when the logical name is not assigned can be avoided entirely 
by supplying a default value in the parameter string, as follows:

<L$MINIMUM=0>

Specify the default value for the logical name by appending “=value” to the logical 
name inside the angle brackets. In the example above if the logical name 
L$MINIMUM is not assigned, the value “0” will be substituted for the parameter. 
ADMINS User Guide   2-27



Alternative Collating Sequences
2.12  Alternative Collating Sequences

ADMINS supports the full 8 bit character set, including any collating sequence for 
printable characters, with the following restrictions.

1. The collating sequence of the characters with an ASCII value of 32 (decimal) or 
less (space and below) cannot be changed.

2. All the 256 possible characters must be assigned unique collating sequence 
values in the "collating table" (see below), i.e. duplicates are not allowed.

3. All files used within an ADMINS command session must use the same collating 
table (i.e. files using different collating tables cannot be mixed).

The "collating table" is stored in an ADMINS file with a name in the form 
ADM$COLLDIR:xx.COL. where 'xx' uniquely identifies the collating table being 
used. This unique two character identifier for the active collating table must be 
assigned to the logical name ADM$COLLATE whenever ADMINS commands are 
used. The logical name ADM$COLLDIR identifies the disk and directory where the 
table is found. (If ADM$COLLDIR is not assigned, ADMINS will look for the 
ADM$COLLATE collating table in the disk and directory specified by the logical 
name ADM$NAT).

For example, assume "DK" (for Denmark) is assigned to ADM$COLLATE, and 
"XDSK:[COLLATE]" is assigned to the logical name ADM$COLLDIR. ADMINS will 
use XDSK:[COLLATE]DK.COL as the collating table.

Whenever DEFINE creates a file the two character identifier of the active collating 
table is stored in the file header. Whenever ADMINS opens a data file it checks this 
stored identifier and uses the indicated collating table to process the file.

Make sure that the xx.COL files are always in ADM$COLLDIR (or ADM$NAT), and 
that they are protected from alteration, corruption, or deletion.

If the indicated collating table cannot be found, ADMINS will exit with a diagnostic 
message:

col003 Can't open collating table XDSK:[COLLATE]DK.COL

Similarly, ADMINS will exit with a diagnostic message if the collating table contains 
errors, or does not match the current setting of the logical name ADM$COLLATE.

col002 File with DK collating can't be used: DEFAULT collating
        has been set.

 Thus, in any ADMINS session, only one collating table may be used. (In order to 
switch to an application using a different collating table, for instance in TRANS, you 
must exit back to the system prompt, and reassign the value of ADM$COLLATE, 
before calling up the first screen in the new application.
2-28   ADMINS User Guide



Alternative Collating Sequences
To convert an existing file from one collating sequence to another, use the 
FILECONVERT utility (see Section 13.4.3 “Convert Collating Sequence”):

$FILECONVERT DK.MAS C
Converting file from DEFAULT to DK collating.
File converted.
TCOL.MAS will be sorted after FILECONVERT is finished
FILECONVERT finished.
Now executing FCVA3.COM...
SORT 
Input file....: TCOL.MAS
Output file...: IX
Rebuilding index only. OK? Y
11:44:32.00
11:44:33.45 134 records read 8 blocks 1 section(s)
11:44:33.86 Index rebuilt

The file is converted from its current collating sequence to the collating sequence 
indicated by the logical name ADM$COLLATE.

2.12.1  Manipulating the Alternative Collating Tables

The collating table files are ADMINS data files with the following DEF:

ADM$NAT COL 256
POS   I   KEY1      "ASCII position (0-255)"
COL   I             "Collating sequence #"
7BIT  I             "Character to print if 7-bit output"
8BIT  I             "Character to store if 7-bit input"
CHAR  A4            "Characters graphic representation"

The POS field must be consecutive 0 through 255 (one record for each of the 8-bit 
ASCII characters).

The COL field must have a unique value between 0 and 255.

The 7BIT field specifies the ASCII decimal value to display if the output device is 
unable to display 8 bit characters.

The 8BIT field specifies the COLlating value between 0 and 255 to use if the input 
device is unable to input 8 bit characters.

Sample xx.COL files have been included on the distribution tape for the following 
collating sequences:

    DK.COL   Default collating sequence for Denmark
    NO.COL   Default collating sequence for Norway
    SW.COL   Default collating sequence for Sweden

To modify a collating table, use the COLTAB screen (COLTAB.TRO) that comes on 
the distribution tape. (NULL.COL, which should be copied to ADM$NAT, is a 
dummy file for COLTAB.TRO.) Copy an appropriate xx.COL into the 
ADM$COLLDIR (or ADM$NAT) directory, assign the two character identifier you 
choose to the logical name ADM$COLLATE:

$ COPY ADM$DIST:DK.COL ADM$COLLDIR:DK.COL    $ ASSIGN DK 
ADM$COLLATE

then make your changes, if any, to the collating table in the COLTAB screen.

No records should be deleted from or added to a collating table file. 
ADMINS User Guide   2-29



Alternative Collating Sequences
2-30   ADMINS User Guide



Chapter 3:AdmMove: Moving Records 
Between Files

AdmMove is a multi-purpose command used to move records from one data file to 
one or more other data files. The AdmMrgFil command (see Section 3.6 “Merge Files 
(AdmMrgFil)”)  can be used to merge two or more sorted input files with identical 
record formats into one sorted output file.

3.1  Functions of AdmMove

All of the following functions can be performed simultaneously.

1. Add or remove fields from the records of a file.
2. Change the size of alphanumeric or pictured fields. (All other field types are of 

standard length.)
3. Combine, with successive calls of AdmMove, two or more files into a single file. 

The contents of the output file may be different than any or all the files moved 
into it, or the output file may contain fields with different names but comparable 
content. Fields from the input record are written to fields with the same (primary 
or secondary) name in the output record. 

4. Build sub-files. That is, select particular records via logical expressions or key 
values, and place them in a derived file.

5. Move records into several different output files with one call of AdmMove, 
providing an easy and efficient method to split one file into several files.

6. Perform generalized field type conversions, using the AdmMove/CONVERT 
function.

7. Execute procedural logic (i.e. an RMO)1 on the input file. This facility provides 
generalized control of all output file and record selection criteria, while also 
providing update capability on the input file.

Operating system utilities can be used if the user wishes simply to make a duplicate 
copy of a file. These commands, however, do not rebuild the key index and recover 
deleted record slots. AdmMove performs both these functions when being used to 
"copy" a file.

1.  See Chapter 9: “CMP: The Record Maintenance Compiler”
ADMINS User Guide   3 - 1



AdmMove Dialogue
3.2  AdmMove Dialogue

The following dialogue ensues when AdmMove is called:

$ move
Input File....: input-file-spec
Output File...: output-file-spec [I]
# to move / S[kip] # / K[ey_range] / N[o_list]: cr

As is shown, AdmMove asks for input and output file specifications. If "I" is added 
to the output file specification, i.e. "MONTHLY.MAS I" the output file will be 
initialized (emptied) before the input file records are moved into it.

AdmMove uses the internal file definitions of the specified files, and the responses to 
its prompts to determine what actions are to be performed.

There are several possible responses to the third prompt,

# to move / S[kip] # / K[ey_range] / N[o_list]:

1. Move all records.
Press RETURN. All input records will be read and appended to each output file, 
unless this is prevented by SELECT criteria or by W$W control in an input file 
RMO. (If the output file has alternate indexes records are inserted instead of 
being appended to the output file.)

2. Move n records.
Type a number. This number is the maximum number of records that will be 
appended to the output file. This option to move a specific number of records 
cannot be used with AdmMove/MULTIPLE.

3. No list.
The user types the letter N (for "no list"). The list of field names present in the 
input file but not present in the output file(s) will not be printed on the terminal 
(feature described below). After receiving "N" for "no list", AdmMove repeats 
the prompt:
# to move / S[kip] # / K[ey_range] / N[o_list]:

4. Skip n records.
The user types the letter "S" (for "skip") followed by a blank and then a number. 
The specified number of selected records are skipped before appending to the 
output file. This feature combined with (2) allows the user to skip to any 
sequential position in the input file and then only move a specific number of 
records from there into the output file. Here, as in (3), the prompt is repeated. 
This skip option cannot be used with AdmMove/MULTIPLE.
3 - 2   ADMINS User Guide



AdmMove Dialogue
5. Key range.
The user types the letter "K" (for "key range"). The key range specifies the 
records in the input file which are to be read. Therefore only records within the 
specified key range will be moved.2 AdmMove will prompt for the "Start of key 
range", followed by a prompt for the "End of key range". If the input file has 
multiple keys, enter all or some of the key values, separated by a blank. Null 
values are used for minor keys not entered.
If the user responds to the "Start of key range" prompt with a question mark (?), 
AdmMove will display a list of the key fields and their field types, and then re-
prompt for the starting value.
 AdmMove will accept logical names for the key range prompts. If the response 
to either prompt begins with the letters "L$" then AdmMove will attempt to 
translate the response as a logical name. If such a logical name exists, AdmMove 
will use the string assigned to it as the (low or high) key value, otherwise 
AdmMove will use the response directly as it usually does.
When the high key value has been entered, AdmMove repeats the prompt:
# to move / S[kip] # / K[ey_range] / N[o_list]:

3.2.1  AdmMove with Multiple Output Files

If the qualifier "MULTIPLE" appears on the command line AdmMove will prompt 
for multiple output file specifications, as follows:

$ AdmMove/MULTIPLE
Input File....: n.mas
Output File...: n2.mas 
Output File...: n3.mas 
Output File...: cr
# to move / S[kip] # / K[ey_range] / N[o_list]: cr
FLD is not in N2.MAS
N3.MAS has 200 records
M is not in N3.MAS
OK to continue? y 
14:42:33 
100 records moved, total 100 records in N2.MAS
47 records moved, total 247 records in N3.MAS
14:43:04.12

Any of the output files may be initialized by placing "I" after its files specification, i.e. 
"N3.MAS I".

A null (carriage return) response at the "Output File...:" prompt tells AdmMove to 
stop prompting for output files, and the AdmMove dialogue proceeds as described 
in Section 3.2 “AdmMove Dialogue”. If any of the output files already have records, 
the user is notified of each case and there is a single confirmation prompt.

2.    Use of the key range requires that the file be in sort. As explained in Section 3.3 
“Operation of AdmMove”, AdmMove with key range exits as soon as it 
encounters a record with a key that exceeds the high key value of the specified 
range. Any subsequent (out of sort) records with key values in the specified 
range will not be moved to the output file(s).
ADMINS User Guide  3 - 3



AdmMove Dialogue
Files could be split (or records can be duplicated in multiple files) by utilizing the 
different SELECT criteria in different output files.

In the above example, output file N2.MAS is initially empty, but N3.MAS starts out 
with 200 records. N2.MAS and N3.MAS have different SELECT statements, 
consequently different numbers of records are MOVEd into them.

AdmMove with multiple output files is the functional equivalent of separate MOVEs 
to each output file, but is much faster to type and to run.

All the facilities of AdmMove are available for use with multiple output files except 
that:

1. you cannot specify a number of records to move;

2. you cannot use the SKIP records function.

There is a limit of 24 output files (23 if there is an RMO).

3.2.2  AdmMove with RMO

The input file3 for AdmMove can alternatively be specified as an RMO, as in the 
following example:

$ move/multiple
Input File....: customer.rmo w
Operating on CUSTOMER.MAS
Output File...: active.mas
Output File...: inact.mas
Output File...: cr
# to move / S[kip] # / K[ey_range] / N[o_list]: cr
OK to continue? y
10:10:10 
    *********************************************************
111 records moved, total 111 records in ACTIVE.MAS
47 records moved, total 47 records in INACT.MAS
158 records updated in CUSTOMER.MAS
10:10:15

There may be situations where two or more output files contain the same field, or the 
input and output files contain the same field, but you want the RMO to treat the fields 
differently in the different files. The RMO can separately access fields of the same 
name in different files by using unique secondary names for each such field. These 
secondary names are then used for local fields declared in the RMS.

Since the RMO is executed4 before SELECT(s) in the output file(s) are evaluated, the 
RMO can selectively control appending to the output file(s) by setting fields which 
are used in output file SELECT statements.

If you want the RMO to update the input file, specify "W" after the RMO name in the 
AdmMove dialogue, as in the example above.

3.    An RMO is not allowed on the AdmMove output file, but the RMO can have 
access to any field in any of the files. If you want the RMO to set a field in an 
output file, and the field is not in the input file, just declare the field as a local field 
in the RMS. See Section Chapter 9: “CMP: The Record Maintenance Compiler” 
for detailed information on the ADMINS RMO facility.

4.     see Section 3.3 “Operation of AdmMove”
3 - 4   ADMINS User Guide



AdmMove Dialogue
AdmMove supports the following special internal fields5 in the RMO: TODAY, 
NOW, TICKS, Q$Q, E$XIT, W$W, P$P, the lookahead fields, NX$fieldname and 
NX$EOF, and the ADM$RECORDLOCK field for handling locked records.

 If W$W is present in the RMO, it must be set at each record where writeback to the 
input file or output file append(s) are desired.

AdmMove automatically re-sets W$W to zero after processing each record. If W$W 
is zero or 1 (that is, appends to output files are blocked), the record does not count 
toward the "number of records to move" or "number to skip", if those options are in 
use.

3.2.2.1  Test Mode in AdmMove
AdmMove provides a Test Mode for testing RMO steps that operates in exactly the 
same way that Test Mode operates in MAINT (see Section 10.2.2 “Test Mode 
Operation”).6

Test Mode is requested by placing the qualifier "TEST" on the AdmMove command 
line:

$move -test
Input File....:

5.    These special internal fields (except W$W) function in the same way in both 
AdmMove and MAINT. TODAY, NOW, and TICKS are described in Section 10.9 
“Internal Fields: TODAY, NOW, and TICKS”. Lookahead is described in  Section 
10.11 “Look Ahead: NX$fieldname”.ADM$RECORDLOCK is described in 
Section 10.1.1 “ADM$RECORDLOCK”

W$W set to Action

0 no writeback to input
no appends to output(s)

1 perform writeback to input if “W”
no appends to output(s)

2 no writeback to input
append to output(s) if SELECT(s) are passed

3 perform writeback to input if “W” 
append to output(s) if SELECT(s) are passed

6.     As in MAINT or PROD, AdmMove Test Mode does not actually append records 
to output files or update records in input files.
ADMINS User Guide  3 - 5



AdmMove Dialogue
3.2.3  Move with Generalized Field Type Conversion

Generalized conversion7 between field types in AdmMove can be requested by 
including the "CONVERT" qualifier on the AdmMove command line:

$MOVE/CONVERT
Input File....: n.mas
Output File...: dn.mas
# to move / S[kip] # / K[ey_range] / N[o_list]: cr
N/I will be converted to N/A10 in DN.MAS
M/I will be converted to M/X9999999 in DN.MAS
OK to continue? y

As shown in the above example AdmMove/CONVERT displays each field to be 
converted and prompts "OK to continue" for confirmation before processing the file.

An attempt to convert incompatible field types (i.e. D2 to X999) will cause AdmMove 
to exit with a diagnostic error message.

3.2.4  SELECT qualifier: Run Time SELECT Criteria

If AdmMove is called with the "SELECT" qualifier on the command line, AdmMove 
prompts for a record selection expression after opening the input file.

$move -select 
Input File....: n.mas
Select........: amt gt 345
Output File...: dn.mas
# to move / S[kip] # / K[ey_range] / N[o_list]: cr
OK to continue? y

This run time selection criteria will then be applied to the input file record (including 
RMO local fields, if the input file is an RMO). Unless the "OVERRIDE" qualifier is 
used (see Section 3.2.5 “OVERRIDE: Ignore Output File Select Criteria”), the run time 
selection criterion is logically combined with each output file's SELECT statement.8

7.     Changing the size of an alpha (An) field or conversion between compatible 
picture field formats do not require the use of the "CONVERT" qualifier. These 
conversions are always made by AdmMove. Other mismatched field types will 
cause AdmMove to exit with an error message unless "CONVERT" is specified. 
Always use CONVERT when moving data between fields with a different 
number of decimal places.

8.     The run time SELECT criteria is logically "AND-ed" with the SELECT statement 
of the output file, i.e. in order for a record to be moved to the output file it must 
pass both SELECT criteria.
3 - 6   ADMINS User Guide



Operation of AdmMove
3.2.5  OVERRIDE: Ignore Output File Select Criteria

If AdmMove is called with the "OVERRIDE" qualifier on the command line, 
AdmMove will ignore the internal SELECT statement of the output file.

$MOVE/OVERRIDE 
Input File....: n.mas
Output File...: allrecs.mas
Overriding SELECT in ALLRECS.MAS
# to move / S[kip] # / K[ey_range] / N[o_list]: cr
OK to continue? y

The OVERRIDE and SELECT qualifiers may be used in combination, as follows:
$move -override -select
Input File....: n.mas
Select........: n gt 500
Output File...: allrecs.mas
Overriding SELECT in ALLRECS.MAS
# to move / S[kip] # / K[ey_range] / N[o_list]: cr
OK to continue? y

3.2.6  SORT: Rebuild indexes after records moved

By default, if the output file has alternate indices AdmMove maintains all indices (i.e. 
it will do inserts instead of appends). 

The -sort command line switch tells AdmMove to drop all alternate indices are 
before the move starts (thus AdmMove will append records instead of inserting 
them), and all indices are rebuilt using AdmSort after the move finishes.  This will 
normally be the most efficient way to move large numbers of records into a file and 
maintain all indices - provided the output files can be opened in exclusive mode.

3.3  Operation of AdmMove

If an RMO has been specified for the input file AdmMove first loads the RMO into 
memory.

After AdmMove receives a response specifying the number of records to move,9 or a 
carriage return which means move all records, AdmMove sets up the record 
movements it will perform.

1. Setup.
AdmMove compares the primary field names from the input file with both the 
primary and secondary field names from the output file(s). AdmMove copies 
data from the fields in the input file to fields with the same name in the output 
file(s). Unless inhibited by the "N" (for "no list") response described above, 
AdmMove prints out any names in the input file that are not present in the 
output file(s). If there are such "missing" names, AdmMove will prompt "OK to 

9.    With AdmMove/MULTIPLE, you must respond with a carriage return (move n 
records is not allowed)
ADMINS User Guide  3 - 7



Operation of AdmMove
continue?" before proceeding to the next stage. If the user does not respond with 
"Y" (for "yes"), AdmMove terminates without performing any record 
movement.
Next AdmMove inspects the output file(s) to see if they are empty. If any output 
file already contains records, AdmMove prompts "output-file-spec has nnn 
records. OK to continue?". Again, if the user does not respond with "Y" (for 
"yes"), AdmMove terminates without performing any record movement. It 
should be noted that if the user continues, and the output file has no alternate 
indexes, the records are APPENDED to the output file(s) and the resulting file(s) 
may not be in sort order.
NOTE: If the file does have alternate indexes, AdmMove will maintain all 
indexes in the output file. That is, records are inserted instead of being 
appended into the output file.
Finally, AdmMove is ready for the process of record movement. The starting 
time is printed on the terminal and then the following steps are performed for 
each input record.

2. Read input record.
The input record is read into a buffer.

3. Check the key range.
If a key range was specified the records are read beginning directly with the 
starting key value entered. If the record read exceeds the end of key range value 
entered, AdmMove proceeds to step (10).

4. Execute the RMO.
If an RMO has been specified as the input file it is now executed.

5. Check the SELECT criteria (both the run time and the output file criteria).10

If the output file definition contained a SELECT statement, it is now evaluated 
on the data in the input buffer. (Although the field names in the SELECT logical 
expression may be from the output definition, and thus are "compiled" by 
DEFINE without reference to any input file definition, AdmMove "relocates" the 
field references in the compiled expression so it can be evaluated on input 
records.) If the SELECT expression evaluates to "false", then AdmMove 
immediately proceeds to step (2) to read another input record, and does not 
append anything to the output file for this particular input record.

6. Check the skip option.
If the "skip" option was requested and the specified number of records to skip 
has been satisfied, AdmMove proceeds to step (7). Otherwise, AdmMove adds 
to the skip count and immediately proceeds to step (2) to read another input 
record, and does not append anything to the output file for this particular input 
record. If the SELECT check (5) above has been postponed because of 
differences in field type and/or size this "skip" option check is also postponed 
so that it still occurs after the SELECT check. Note that "skip" cannot be used 
with AdmMove/MULTIPLE.

7. Initialize output record.
The output record buffer is initialized to zero or blank depending on the data 
types of the individual output fields.

10.  If AdmMove/MULTIPLE is in use, or if the SELECT statement involves any field 
whose type or size is different in the input file and the output file, the SELECT is 
not evaluated until the data has been moved into the output file buffer.
3 - 8   ADMINS User Guide



AdmMove Example
8. Move data from input to output record.
Data from an input field, if the field name matches a primary or secondary field 
name and field type for an output field, is moved into that output field. Using 
secondary names the same input field can be moved into several output fields. 
Data in a field is moved from left to right. If the output field size is smaller or 
larger than the input field size (possible only with alphanumeric or pictured 
fields) then the output field is truncated or zero/blank filled. Therefore, using 
secondary names one can move both complete and partial versions of codes or 
strings from the input record to the output record. Note that all fields in the 
output record do not need to receive data from the input record and if not will 
contain null values (including key fields).
 AdmMove is a logical rather than an arithmetic operation. Remember that the 
decimal point is not actually present in the internal decimal value. Hence, 
moving a value from a "D2" type field to a "D4" type field moves the same 
binary quantity but results in a different value, e.g. "123.45" results in "1.2345". 
Use AdmMove/CONVERT (see Section 3.2.3 “Move with Generalized Field 
Type Conversion”) to preserve the value in a field of type L, D or F when 
moving it to a field with a different number of decimal places.

9. Write output record.
The contents of the output record buffer are appended (or inserted if the file has 
alternate indexes) into the output file.11 If an end of file indication is not present 
on the input file, or if only a specific amount of records are to be output and 
AdmMove is still within that amount, then AdmMove returns to step (2). 
Otherwise, AdmMove proceeds to step (10).

10. Close files and exit.
Both the input and output files are closed. AdmMove prints the following on-
line message for each output file:
nnnn records moved, total nnnn records in N2.MAS

3.4  AdmMove Example

A telephone directory file was created using the following definition:

* TELFON.DEF
* Company Telephone Directory
MAS 1000
LNAME   A20   KEY1     "last name"
FNAME   A10   KEY2     "first name"
EXT     X9999          "extension"
TERMDA  DA             "termination date"

We wish to expand both the size of the telephone directory file to 5000 entries, and 
the contents of a telephone directory entry to also include title, home telephone and 
address. However, we do not wish to include those entries that contain a termination 
date. (In the SELECT we accept any date "less than" a known low date value.) We 
prepare the following new file definition.

* NEWTEL.DEF
* New Telephone Directory
MAS 5000

11.   If W$W is present in an input file RMO, its value is checked to see if the record 
is to be appended or omitted. See Section 3.2.2 “AdmMove with RMO”.
ADMINS User Guide  3 - 9



VIRTUAL qualifier: Complex Processing Using Instruction File
LNAME     A20   KEY1      "last name"
FNAME     A10   KEY2      "first name"
EXTENSION X999   -   EXT  "extension - renaming EXT"
TERMDA    DA              "termination date"
TITLE     A30             "title"
HFONE     X9999999        "home phone"
ADDRESS   A20             "home address"
CITYST    A20             "city and state"
ZIP       A5              "zip code"
SELECT TERMDA LT 1-JAN-50

We then use DEFINE to create the file NEWTEL.MAS. Then we would use 
AdmMove as follows:

$ move
Input file....: telfon.mas
Output file...: newtel.mas
# to move / S[kip] # / K[ey_range] / N[o_list]: cr
16:10:20.68
     ************************************************************
875 records moved, total 875 records in N2.MAS
16:10:26.52
$

The new fields will be blank or zero. We could now use TRANS to enter the 
additional data into the file.

The line of asterisks displayed by AdmMove shows the on-line user the rate of record 
movement. It is possible to suppress the line of asterisks. If the user types "NO *" to 
the "INPUT FILE NAME:" prompt, AdmMove will re-prompt for the input file name 
and the asterisks will be suppressed during processing.12

3.5  VIRTUAL qualifier: Complex Processing Using 
Instruction File

 If the qualifier "VIRTUAL" (may be abbreviated to "/V") appears on the command 
line AdmMove will accept or prompt for the name of an instruction file:

$MOVE/VIRTUAL SOLICIT.MOV

or

$move -v
Instruction file....: solicit.mov

The VIRTUAL qualifier tells AdmMove to take its instructions from the specified file 
rather than the AdmMove interactive dialogue.

AdmMove VIRTUAL is much more than just an alternative to AdmMove's 
interactive dialogue. AdmMove VIRTUAL has much greater functionality than can 
be called upon from the dialogue, including the following capabilities, some or all of 
which may be used in combination.

1. Links, including "link multiple" as in report. Chain linking (and chaining link 
multiples). Links may be written back.

12.   If the character "*" (asterisk) is included in the string assigned to the logical name 
OPTION, the printing of the line of asterisks to show progress through a file is 
suppressed in all ADMINS "batch" commands. See Appendix A: “Options”.
3 - 10   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
2. Insert, delete or append records in one or more external files (similar to append 
paragraphs in screens).

3. RMO called at points designated in the instruction file. RMO can identify at 
what point it as been called (using "S$S"). RMO control of progress through the 
AdmMove VIRTUAL instruction file. (Can be used to "loop" in the AdmMove 
VIRTUAL instruction file.

4. "Group" portions of the instruction file to more precisely control formation of 
virtual records.

5. Access to all of the regular AdmMove dialogue functionality (via keywords and 
instruction file statements).

To suppress stars, the prompt can be answered "NO *", and AdmMove /VIRTUAL 
will re-prompt for an instruction file name.

$MOVE/V
Instruction file....: NO *
Instruction file....: EXPLODE.VMI

Enable RMO test mode with AdmMove VIRTUAL by placing the qualifier "TEST" 
(which can be abbreviated to "T") on the command line:

$ move -v -t
Instruction file...:

"TEST" is the only other qualifier13 allowed on the command line when AdmMove 
VIRTUAL is in use.

3.5.1  Operation of AdmMove VIRTUAL

The "virtual input record" consists of fields in the main file, local fields from the RMO, 
and the fields linked in via LINK paragraphs.14

All other fields receive data from AdmMove's virtual input record. Output fields 
include: the key fields in LINK paragraphs, the key and W (Write) fields in ADD 
paragraphs, and the fields of the OUTPUT file.

Ignoring GROUP, BREAK, and CHANGE for a moment, AdmMove VIRTUAL 
performs the following basic operations:15

1. Read a record in the input file.

13.   Section 3.5.4 “AdmMove VIRTUAL Processing Options” describes how to 
specify the other AdmMove functions within the AdmMove VIRTUAL 
instruction file.

14.   AdmMove VIRTUAL supports up to 1000 fields in the virtual input record.
15.    Some notes on file access: The first time a file is opened, it must be opened using 

the most restrictive access mode which will be required by any usage. By 
default, AdmMove VIRTUAL opens the input file in the same mode as 
AdmMove's interactive dialogue, in single user mode. But because AdmMove 
VIRTUAL actually opens LINKs first and because LINKs without WRITE are 
opened by default in read-only mode; you may have to override the default 
access modes if you want to LINK to the input file. For the same reasons, if you 
link (without WRITE) to the input file, and the input file is to be written back, the 
links must open the file "-M" or "-RM".
ADMINS User Guide  3 - 11



VIRTUAL qualifier: Complex Processing Using Instruction File
2. Process the statements in the instruction file, performing EXECUTEs, LINKs, 
and ADDs in the order they appear.16 Note: The ADD file appends, inserts, and 
deletes take place at this point, before the LINKs and the main file are written 
back.

3. Write back main file and/or LINKs.
4. Append records to OUTPUT files.

If there are no LINK MULTIPLEs, AdmMove reads the next input record and the 
process continues. If there are LINK MULTIPLEs, AdmMove has work to do before 
it reads the next input record.

LINK MULTIPLEs are examined, from the bottom of the AdmMove VIRTUAL 
instruction file up, to see if there are any more records with the same key in any of 
the LINK MULTIPLE files. If there are more records in a LINK MULTIPLE file with 
the same key, a new virtual record is created using the linked fields from the next 
record in that LINK MULTIPLE file, all LINKs, EXECUTEs and ADDs below that 
LINK MULTIPLE are re-executed and a new record is appended to the OUTPUT file. 
This functionality produces an "explode" or Cartesian product of the files, with the 
last LINK MULTIPLE varying first.

 BREAK can be used in the input file or link file paragraphs to tell AdmMove when 
to generate control breaks and move records to the OUTPUT file. There can be only 
one BREAK (or CHANGE), and it must appear in GROUP 0.17 BREAK means, 
"don't do a control break or output a record until you are about to process the next 
record in this file."

In the following example BREAK is specified on the input file:

FILE N.MAS  BREAK       
*
LINK M.MAS MULTIPLE
*
LINK M2.MAS MULTIPLE
...
OUTPUT J.MAS ZERO

AdmMove will only break once per input file record, and the output file record 
produced at this control break could be a "summary" of the M.MAS vs. M2.MAS 
"explode", i.e. a summary of all the links to M.MAS and M2.MAS generated by the 
input file record.

To produce output records that summarize the multiple links to M2.MAS based on 
each link between the main file and M.MAS, use BREAK on the LINK to M.MAS:

FILE N.MAS
*
LINK M.MAS MULTIPLE BREAK
*
LINK M2.MAS MULTIPLE
...
OUTPUT J.MAS ZERO

CHANGE works exactly like BREAK; but it breaks and outputs a record only when 
the next record in the main file or LINK MULTIPLE file has a different (full or partial, 
as specified) key value.

16.  AdmMove usually processes the instruction file statements in top-to-bottom 
order. There are exceptions. For example, the RMO can intervene to change the 
order of processing; and EXECUTE BREAK occurs only at a control break.

17.  The GROUP statement is explained in Section 3.5.8.2 “GROUP statement”.
3 - 12   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
3.5.2  AdmMove VIRTUAL: Instruction File Outline

AdmMove instruction files have the following general outline. The various 
components are described in detail in the sections that follow.

                Input File Statement

FILE <filename or RMO> [WRITE] [BREAK or CHANGE[=keyfield]]
                AdmMove Processing Options 

[KEY <start_values> TO <end_values>]
[NRECS <n>]
[SKIP  <n>]
[OVERRIDE]
[CONVERT]
[SELECT <expression> [:]
                Output File Statement

[OUTPUT <filename> [ZERO]
                Link File Paragraph(s)

[LINK[LE|GE|LT|GT] <filename> [WRITE] [REQUIRED] [NULL] [INSERT] 
               [MULTIPLE] [BREAK or CHANGE]
[A <fieldname>]
[S <fieldname>]
K <fieldname>
L <fieldname> [<2nd_name>] or <beg_fld> - <end_fld> or *
END]
                Add File Paragraph(s)

[ADD <filename> [INSERT] [UNC_INSERT] [DELETE] [APPEND] [ZERO]
[A <fieldname>]
[S <fieldname>]
K <fieldname>
W <fieldname> [<2nd_name>] or <beg_fld> - <end_fld> or *
END]
               Processing Control Statements

 [GROUP]
 [EXECUTE [S$S]]

AdmMove recognizes "*" and "!" to delimit comments in the instruction file. Blank 
lines are ignored, and tabs or blanks may be used to indent lines in any way you 
want.

3.5.3  The FILE Statement

The FILE statement names the input file, which may be an RMO (this is the only place 
an RMO can be specified in the AdmMove VIRTUAL instruction file). If the input file 
is an RMO, use EXECUTE statements18 to designate the point(s) in the instruction file 
where the RMO should be called. With an RMO, the WRITE keyword in the FILE 
statement enables writing to the input file, controlled by the special local RMO field 
W$W.19

18.  AdmMove/V EXECUTE statements are described in Section 3.5.8.1 “EXECUTE 
statement: RMO Processing”.

19.  W$W controls writing to the input and output files, as described in Section 3.2.2 
“AdmMove with RMO”.
ADMINS User Guide  3 - 13



VIRTUAL qualifier: Complex Processing Using Instruction File
In addition, you may append the keyword BREAK or CHANGE to the FILE 
statement. BREAK tells AdmMove that a "control break" is to be generated, and a 
new record is to be moved to the OUTPUT file(s), only once for each input file 
record encountered. CHANGE tells AdmMove that a control break is to be 
generated, and a new record is to be moved to the OUTPUT file(s), only when the 
key value or the specified partial key value changes in the input file.20 Partial key 
values are specified by identifying the last (lowest) key field to be checked by 
CHANGE. For example, take a file that has the following three keys:

     EMPNO    X99999 KEY1   "Employee Number"
     APPDATE  DT     KEY2   "Date of Appointment"
     APPTIME  TM     KEY3   "Time of Appointment"

You could indicate that control breaks should be generated from this file only when 
the value of APPDAT changes (perhaps to accumulate daily totals for a each 
employee in an OUTPUT file record) with the following file statement:

     FILE EMPLOAD.RMO CHANGE=APPDATE

3.5.4  AdmMove VIRTUAL Processing Options

All of AdmMove's interactive dialogue file processing features can be specified using 
AdmMove VIRTUAL instruction file statements,21 as indicated in the following 
table:

See the outline in Section 3.5.2 “AdmMove VIRTUAL: Instruction File Outline” for 
the syntax to use with these keywords.

20.  Use of the CHANGE keyword requires that the file be in sort.
21.  The only AdmMove VIRTUAL command line qualifier permitted (besides 

"VIRTUAL") is "TEST", which invokes RMO test mode. AdmMove test mode is 
described in Section 3.2.2.1 “Test Mode in AdmMove”.

AdmMove Feature AdmMove VIRTUAL statement

/SELECT (see Section 3.2.4 
“SELECT qualifier: Run Time 
SELECT Criteria”)

SELECT

/OVERRIDE (see Section 3.2.5 
“OVERRIDE: Ignore Output File 
Select Criteria”)

OVERRIDE

/CONVERT (see Section 3.2.3 
“Move with Generalized Field 
Type Conversion”)

CONVERT

Key_range (see Section 3.2 
“AdmMove Dialogue”)

KEY

# recs to move (see Section 3.2 
“AdmMove Dialogue”)

NRECS

# recs to skip (see Section 3.2 
“AdmMove Dialogue”)

SKIP

/MULTIPLE (see Section 3.2.1 
“AdmMove with Multiple Output 
Files”)

OUTPUT (multiple times)
3 - 14   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
3.5.5  OUTPUT Statement

AdmMove moves records to the files22 identified in OUTPUT statements. Data from 
fields in the virtual input record are moved to fields of the same name23 in the output 
record, which is then appended to the output file24. 

The ZERO keyword tells AdmMove to initialize (empty) the output file prior to 
beginning of processing.

3.5.6  Link File Paragraph

Link paragraphs in AdmMove are similar in concept to LINKs in SCREEN (described 
in Section 5.4.1 “LINK Paragraph”) and REPORT (described in Section 7.13.4 “LINK 
Statement”) Fields from the virtual input record (K fields) form key values to identify 
a particular record in a LINK file. The specified fields from the LINKed file (L fields) 
then become part of the virtual input record (along with the fields of the input file, 
"local" fields from the RMO, and any fields from previous LINK statements). Thus 
fields from previous LINKs can be used in forming the key values for subsequent 
LINKs ("chain linking").

Each link paragraph begins with a LINK statement, which specifies the type of 
linking, the file being linked, and options that control several AdmMove VIRTUAL 
link functions, according to the following syntax:25

LINK[LE|GE|LT|GT] <filename> [WRITE] [REQUIRED] [NULL] 
[INSERT][MULTIPLE] [BREAK or CHANGE] [=prefix]

A typical LINK statement might look like this:

LINK EMPLOYEE.MAS M R B

The LINK keyword in the link statement designates a link that must find an exact 
match on the specified keys (if only a partial key is specified, the link is made to 
records that exactly match the partial key).

22.  Note that the AdmMove VIRTUAL instruction file equivalent of the AdmMove's 
interactive dialogue "MULTIPLE" qualifier (see Section 3.2.1 “AdmMove with 
Multiple Output Files”) is simply to name more than one OUTPUT file.

23.  As when using AdmMove's interactive dialogue, the primary names of the fields 
in the input record (with AdmMove VIRTUAL the "virtual input record" consists 
of the input file, the input RMO local fields, and any LINKed fields) are 
compared with the primary and secondary names of the output record.

24. As with "interactive" AdmMove, if the OUTPUT statement file has alternate 
indexes, the record is inserted rather than appended.

25.  Because of its length, the syntax outline extends to a second line, but a LINK 
statement may not be continued to a second line. Note that all the keyword 
options can be abbreviated to their first character.
ADMINS User Guide  3 - 15



VIRTUAL qualifier: Complex Processing Using Instruction File
To specify linking that does not require an exact match, use one of the following 
keywords in place of LINK:

Keyword in place of LINK Description

LINKGT - Link Greater Than Links to the next higher record in the link file even 
if there is an exact match. If there is none higher, 
null values are retured for the link fields. This 
happens when the link key values are equal to or 
exceed those of the last record in the link file.

LINKGE - Link Greater Than 
or Equal to

Links to an exact match, or if one is not found, links 
to the next higher record in the link file. If there is 
none higher, null values are returned for the link 
fields. This happens when the link key values 
exceed those of the last record in the link file.

LINKLT - Link Less Than Links to the next lower record in the link file even if 
there is an exact match. If there is none lower, null 
values are returned for the link fields. This happens 
when the link key values are lower than or equal to 
those of the first record of the link file.

LINKLE - Link Less Than or 
Equal to

Links to an exact match, or if one is not found, links 
to the next lower record in the link file. If there is 
none lower, null values are returned for the link 
fields. This happens when the link key values are 
lower than those of the first record of the link file.
3 - 16   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
AdmMove VIRTUAL's link actions are controlled by the following LINK statement 
keywords:

LINK Statement Keywords Description

WRITE Updates existing records in the LINK file. WRITE 
requires an RMO (to change the value(s) of the L 
field(s) in the linked record). The EXECUTE call for 
changing the value to be written back should 
appear after the LINK paragraph in the MOVE 
VIRTUAL instruction file (or occur after i.e.  
EXECUTE BREAK).

REQUIRED If the link fails, nothing happens.a (The virtual 
record built using this LINK is ignored). If 
REQUIRED is not present, AdmMove VIRTUAL 
builds a virtual record with null values for the 
linked fields of failed links.

NULL Attempt the LINK even if the key value is null. If 
NULL is not present, AdmMove VIRTUAL doesn't 
try LINKs when the key value is null.

MULTIPLE  Process a new virtual record for every recordb in the 
link file that satisfies the link criteria.
AdmMove VIRTUAL may have any number of 
LINKs with MULTIPLE.

INSERT If the LINK record does not exist, insertc a record 
with the specified key values into the link file. If the 
LINK record exists, update it (same action as 
WRITE). As with WRITE, INSERT requires an 
RMO. INSERT cannot be used with inexact match 
links (LINKGT, etc.) or with the MULTIPLE or 
REQUIRED keywords. NULL can be used with 
INSERT to force update or insertion of a record with 
a null key value. INSERT requires that values for all 
the LINK file's key fields be specified in order as K 
fields in the LINK paragraph.

BREAK  Prevents subsequent LINK MULTIPLE paragraphs 
from generating multiple control breaks, and 
consequently appending multiple records to 
OUTPUT files, based in a single record in the 
current LINK. BREAK modifies the operation of 
LINK MULTIPLE so that no control break is created 
until the next record of this LINK file is processed.
Without BREAK, control breaks are generated and 
records are appended to OUTPUT files each time 
any subsequent LINK MULTIPLE paragraph links 
to another record using the same key value, which 
creates a new virtual input record.
ADMINS User Guide  3 - 17



VIRTUAL qualifier: Complex Processing Using Instruction File
After the LINK statement an A (Action) field and/or an S (Status) field may be 
declared. If present, the Action and/or Status fields must be declared first, before the 
K field(s). One or more K (Key) fields and one or more L (Link) fields must be 
declared. The Link paragraph is terminated by an "END" statement.

LINK[LE|GE|LT|GT] <filename> [WRITE] [REQUIRED] [NULL] 
[INSERT][MULTIPLE] [BREAK or CHANGE]
[A <fieldname>]
[S <fieldname>]
K <fieldname>
L <fieldname> [<2nd_name>] or <beg_fld> - <end_fld> or *
END

CHANGE Works like BREAK; but delays the control break 
and production of the OUTPUT file record until a 
different value of the specified key (full or partial, as 
determined by the K fields in the LINK paragraph) 
occurs in the current LINK MULTIPLE file. If key 
values in the LINK MULTIPLE file are unique, 
CHANGE is functionally the same as BREAK, but 
BREAK should be used because it is more efficient.

=prefix Automatically renames all the fields linked by this 
paragraph. E.g. if field LNAME is linked in by a 
paragraph that has =VENDOR_ on its LINK line, 
then that field is automatically renamed 
VENDOR_LNAME in the AdmMove/V virtual 
record.

a.    This functionality is similar to that of the LOOKUP file in PROD, as 
described in Section 11.3 “Lookup File”.

b.    A AdmMove VIRTUAL LINK statement that includes both REQUIRED 
and MULTIPLE (described below) would function in the exact same way 
as an ordinary PROD operation. I.e. nothing happens if the LINK fails; 
otherwise each record in the LINK file with the specified key value is 
combined with the input file record to form a new virtual record.

c.    LINKs with INSERT function in the same way as a PROD with WI on the 
LOOKUP file (see Section 11.6 “Inserting In The Lookup File”).

A Provides RMO control of WRITE and INSERT in the 
LINK paragraph. If an Action field is declard (field 
type A2) it must be a local field in the RMO. The 
RMO can set it to “W” to enable writing or inserting 
the record, or to blank to prevent writing or 
inserting the record. The Action field is not 
automatically blanked out at every RMO call. (If no 
Action field is declared, the LINK record is always 
written.)

 S If a Status field (field type A2) is declared and is a 
local field in the RMO, AdmMove VIRTUAL sets 
the Status field to "L" if the link is made successfully, 
(i.e. if the specified key values are already present 
in the LINK file), and to blank if the link fails.a

LINK Statement Keywords Description
3 - 18   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
Secondary names cannot be used with the "*" or "-" syntax’s. To rename fields with 
these syntax’s, use the automatic renaming “=prefix” method on the LINK line.

3.5.7  Add File Paragraph

The ADD paragraph is similar in concept to the APPEND paragraph in SCREEN (see 
Section 5.4.2 “APPEND Paragraph”). ADD paragraphs in the AdmMove VIRTUAL 
instruction file specify records made up of fields from the virtual input record (the K 
fields and W fields) that are to be inserted into, deleted from, or appended to the file 
designated in the ADD statement.

The ADD paragraph begins with an ADD statement which identifies the file to be 
accessed and designates options that control several AdmMove VIRTUAL ADD 
functions, according to the following syntax:26

ADD <filename> [INSERT] [UNC_INSERT] [DELETE] [APPEND] [ZERO]

A typical ADD statement might look like this:

ADD JRNLENTRY.MAS U Z

K One or more fields must be designated from the 
virtual input record, in the correct order, to provide 
the key values used to identify records in the LINK 
file. For LINKs with INSERT, K fields must be 
designated to provide values for all the keys of the 
link file. Otherwise, partial keys may be specified. K 
fields must come before L fields.

L Designates the fields from the LINKed file that are 
to be included in the virtual input record. 
Secondary names may be provided for L fields to 
rename them locally in the virtual input record. 
Two optional L field syntaxes are provided for 
convenience:

L * Means use all the non-key fields in the link file.

L <beg_fld> - <end_fld>  is "through" notation (similar to PROD): "-" means 
use all fields which lie between the two fields 
named, in the order of the LINK file definition.

a.    If the specified key value is not already in the file, the Status field will be 
blank even if the LINK paragraph inserts the record.

26.  All the keyword options can be abbreviated to their first character. ADD 
statements may not be continued to a second line.
ADMINS User Guide  3 - 19



VIRTUAL qualifier: Complex Processing Using Instruction File
AdmMove VIRTUAL's ADD actions are controlled by the following ADD statement 
keywords:

Any ADD paragraph can do one or more of these operations, controlled by the RMO, 
as described below.

After the ADD statement the ADD Paragraph may declare an A (Action) field and/
or an S (Status) field, and may declare one or more K (Key) fields and one or more W 
(Write) fields. If present, the Action and/or Status field must be the first fields 
declared in the Add paragraph. The ADD paragraph is terminated by an "END" 
statement.

ADD <filename> [INSERT] [UNC_INSERT] [DELETE] [APPEND] [ZERO]
[A <fieldname>]
[S <fieldname>]
K <fieldname>
W <fieldname> [<2nd_name>] or <beg_fld> - <end_fld> or *

ADD Statement Keywords Description

INSERT Inserts a record with the designated key value into 
the ADD file if it’s not already present. INSERT 
requires that values for all the ADD file’s key fields 
be specified together and in order as K fields in the 
ADD paragraph.

UNC_INSERT Unconditionally inserts a record with the 
designated key value into the ADD file. 
UNC_INSERT requires that values for all the ADD 
files’ key fields be specified together and in order as 
K fields in the ADD paragraph.

DELETE Deletes a record with the designated key value from 
the ADD file. DELETE requires that value for all the 
ADD files’ key fields be specified together and in 
order as K fields in the ADD paragraph.

APPEND Append the specified record to the end of the ADD 
file. K fields need not be specified in ADD 
paragraphs that can only APPEND records.

ZERO Initialize (empty) the ADD file prior to the 
beginning of processing.

=prefix Automatically provides “secondary names” for all 
the fields to be written by this paragraph. E.g. if 
field LNAME is to be written by a paragraph that 
has =VENDOR_ on its ADD line, then that field is 
automatically loaded with the value of the field 
VENDOR_LNAME in the AdmMove/V virtual 
record.
3 - 20   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
END

Secondary names cannot be used with the "*" or "-" syntax’s. To rename fields with 
these syntax’s:

Field Name Description

A Provides RMO control of the ADD paragraph 
action. If the ADD paragraph will always do the 
same operation (e.g., it will always insert a record) 
put the keyword for that action (I, U, D, or A) on the 
ADD line, and the Action field is not needed. If the 
ADD paragraph may do two or more different 
operations or will sometimes do no operation, then 
put all codes for the actions the paragraph can do on 
the ADD line and declare and Action field (field 
type A2) in the ADD paragraph and in the local field 
section of the RMO. The RMO then controls ADD 
operation by setting the Action field to I, U, D, A or 
blank. As for LINKs, the Action field is not 
automatically blanked out.

S If a Status field (field type A2)is declared and is a 
local field in the RMO, AdmMove VIRTUAL 
automatically sets the Status field to the Action 
code of the operation performed by the ADD 
paragraph. If no operation is performed the Status 
field is set to blank. The ADD paragraph Status 
field is useful only for conditional INSERT and 
DELETE because UNC_INSERT and APPEND 
operations are always performed.

K Fields must be designated from the virtual input 
record, in the correct order, to provide key values 
for all the keys present in the ADD file, if the ADD 
file operation is INSERT, UNC_INSERT, or 
DELETE. K fields must be declared before any W 
fields. If the ADD file operation is APPEND then K 
fields need not be specified at all in the ADD file 
paragraph.

W Non-key fields in the ADD file record that are to be 
written from the AdmMove virtual input record are 
designated "W", or "write" fields. Secondary names 
may be provided for W fields to explicitly designate 
the field in the virtual input record from which the 
ADD file field is to receive its data. If no secondary 
name is provided, the W field receives its data from 
the virtual input record field with the same name. 
As in the LINK paragraph, two optional W field 
syntax’s are provided for convenience:

W * Means write all the fields to the ADD file which 
exist in the virtual input record. When "W *" is used 
any fields in the ADD file which are not in the 
virtual input record are given null values.

W <beg_fld> - <end_fld> Is "through" notation. "-" means fields which lie 
between the two fields named, in the order of the 
ADD file definition, are to be loaded from fields of 
the same name in the virtual input record.
ADMINS User Guide  3 - 21



VIRTUAL qualifier: Complex Processing Using Instruction File
use the automatic renaming “=prefix” method on the ADD line.
3 - 22   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
3.5.8  Processing Control

AdmMove VIRTUAL provides two statements for controlling the course of its 
processing.

EXECUTE statements tell AdmMove at what point(s) in the instruction file to call the 
RMO. EXECUTE statements can use labels to uniquely identify themselves to the 
RMO via the "S$S" local RMO field27. Thus, RMO logic can be designed specifically 
for each EXECUTE statement. EXECUTE statement labeling can also be used by the 
RMO to designate at what point in the AdmMove VIRTUAL instruction file 
AdmMove should continue processing after the RMO processing completes (see the 
BRANCH special RMO field description in Section 3.5.8.1 “EXECUTE statement: 
RMO Processing”).

The GROUP statement is a delimiter which breaks up the AdmMove VIRTUAL 
instruction file into groups of statements, allowing more precise control of the 
formation of virtual records when more than one LINK multiple paragraph is 
present.

3.5.8.1  EXECUTE statement: RMO Processing
AdmMove VIRTUAL may call an RMO28 at any number of processing points using 
EXECUTE statements, which work in a manner similar to EXECUTE statements in 
REPORT.29

 Place EXECUTE statements at the desired processing points in the AdmMove 
VIRTUAL instruction file to call the RMO named in the FILE statement. In the 
EXECUTE statement you may provide a value to be put into the local RMO field S$S 
each time the RMO is called by that EXECUTE statement.

As with AdmMove's interactive dialogue,30 RMOs run with AdmMove VIRTUAL 
support TODAY, NOW, TICKS, Q$Q, E$XIT, W$W, and NX$ fields.

In addition, three special RMO fields are supported only by AdmMove VIRTUAL: 
SKIP, ADD, and BRANCH.    

27.  The S$S local RMO field may be up to size A18.
28.  An RMO is a compiled record maintenance procedure, or Record Maintenance 

Object. See Chapter 9: “CMP: The Record Maintenance Compiler” for details on 
RMO syntax and preparation.

29.  See Section 7.19 “EXECUTE Statement: RMO Processing”
30.  See Section 3.2.2 “AdmMove with RMO”

AdmMove VIRTUAL 
Functions

Description

SKIP (field type: I) If set to a nonzero value in the RMO, all processing 
steps in the AdmMove VIRTUAL instruction file 
below the EXECUTE where it is set are skipped. No 
writeback occurs to the input file or to any LINK 
files; no records are appended to output files, and 
no action is taken by ADD paragraphs. SKIP is 
automatically re-set to zero after every RMO call.
ADMINS User Guide  3 - 23



VIRTUAL qualifier: Complex Processing Using Instruction File
If BRANCH is set to the special value 'BEGREC', AdmMove will go to the first 
executable statement in the instruction file (i.e. the first EXECUTE, LINK, or ADD 
statement). If BRANCH is set to the special value 'GROUP', AdmMove will go to the 
first executable statement in the current GROUP (see explanation of GROUP 
keyword below). Otherwise, BRANCH can be set to an S$S value specified in one of 
the EXECUTE statements in GROUP 0 or in the current GROUP, either above or 
below the EXECUTE where the RMO sets BRANCH, and AdmMove will go to that 
EXECUTE statement. Wherever in its instruction file AdmMove returns to, 
AdmMove resumes the normal (top-to-bottom) order of processing starting at that 
point.

If BRANCH is blank, is not present, or is set to some value other than the above (e.g., 
a non-existent value of S$S), AdmMove ignores BRANCH, blanks it out, and 
continues with the next instruction file statement in the normal order of processing.

Whenever BRANCH is set, AdmMove performs any pending writebacks to LINKs 
before continuing to process the instruction file, because the next statement or 
paragraph may cause LINKs to other records (if the LINK keys have been changed). 
For reliability, AdmMove also performs any pending31 write to the main file when 
BRANCH is set. These writebacks, if not needed for your application, can be 
controlled with W$W (main file) and Action fields (LINKs with WRITE).

AdmMove automatically sets BRANCH to blank whenever the RMO has set it.

BRANCH is a powerful facility. Like all "goto" constructs, it should not be used 
unless needed. Over-use and abuse will result in incomprehensible "spaghetti" 
programs.

ADD (field type: I) If set to a nonzero value in the RMO, all ADD 
paragraphs are executed (according to the settings 
of their action fields, if any) immediately after the 
RMO call (see remarks below in the GROUP 
section); and then the RMO is re-called. This process 
repeats itself until the RMO sets ADD to zero.a This 
facility can be used to output any number of records 
to any ADD file(s) with a single EXECUTE 
statement.

BRANCH (field type: Anb) Provides a generalized facility for dynamically 
"branching" and "looping" within the AdmMove 
VIRTUAL instruction file by allowing the RMO to 
change the normal top-to-bottom sequential order 
of processing steps. The value placed in BRANCH 
by the RMO tells AdmMove where in the 
instruction file to go after executing the current 
RMO call: to the first statement in the instruction 
file, or to the first statement in the current 
processing GROUP; or to some other EXECUTE 
statement.

a.     ADD is not automatically re-set.
b.     BRANCH may be up to size A18. If both S$S and BRANCH are used, they 

must be the same size.

31.  A "pending" write is one which is in GROUP 0 or in the current GROUP (LINKs 
in other GROUPs are ignored here).

AdmMove VIRTUAL 
Functions

Description
3 - 24   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
BREAK or CHANGE can also control when the RMO is called. If the special 
EXECUTE BREAK statement is present in the AdmMove VIRTUAL instruction file, 
then the RMO is called with 'BREAK' in S$S whenever a break occurs. EXECUTE 
BREAK calls occur only at a break, i.e.  at the end of processing for the current virtual 
record, irrespective of its position in the instruction file.  Note that by default,  ADD 
paragraphs do not perform any action at BREAK. The special RMO field ADD can be 
used in the EXECUTE BREAK call to output records to ADD files at a break (this 
simulates the action of OUTPUT file(s), but more than one record can be added at any 
break). Writebacks to the input file and to LINKs are also performed after the BREAK 
RMO call. These writebacks, if not needed for your application, can be controlled 
with W$W (main file) and Action fields (LINKs with WRITE).

3.5.8.2  GROUP statement
AdmMove VIRTUAL instruction file may have several LINK MULTIPLE 
paragraphs. Ordinarily each LINK MULTIPLE record is combined with all the links 
of any subsequent LINK MULTIPLE, which is in turn combined with all the links of 
any subsequent LINK MULTIPLE, and so on, to create an "explosion" of the 
combinations of all the LINK MULTIPLEs. For each combination AdmMove would 
create a virtual record, and append a record to the output file(s). Take three simple 
files as follows:

N.MAS                M.MAS             M2.MAS
---------              ---------          ---------                
Key  Data  Data       Key      Data      Key     Data
INT  LOWC  CAPS       LOWC     UPC       UPC     DEC
3    b     B           a       A         A      5.00
.    .     .           a       B         B      2.00
.    .     .           b       B         B      1.25
.    .     .           b       Y         B      2.23
                       b       Y         Y      9.00
                       y       Y         Y      1.00
                      y       Y         Y     4.00

and the following AdmMove VIRTUAL instruction file:

FILE N.MAS           
*
LINK M.MAS MULTIPLE
K LOWC
L UPC
END
*
LINK M2.MAS MULTIPLE
K UPC
L DEC
END
*
OUTPUT Z.MAS Z

The first record in N.MAS links, using field LOWC, to all the records in M.MAS that 
have a key (LOWC) value of "b". Each link to M.MAS loads a new value for UPC into 
the virtual input record. Three records are linked, the first has a value of "B" for the 
data field UPC, and the next two have a value of "Y" for UPC. In turn, all the records 
in M2.MAS that match each M.MAS record's value of UPC are linked to, each link 
loading a new value for DEC into the input virtual record. This action produces an 
"explosion" of all the link multiple combinations, as shown in the following table:
ADMINS User Guide  3 - 25



VIRTUAL qualifier: Complex Processing Using Instruction File
     

Each virtual input record would append a record to Z.MAS.

If you do not want every combination to generate a control break and append a 
record to the OUTPUT file(s), use the GROUP statements to control the 
combinations. The GROUP statement is a delimiter which breaks up the AdmMove 
VIRTUAL instruction file into groups of statements. Anything prior to the first 
GROUP statement is in group 0; anything between the first two GROUP statements 
is in group 1, etc. The number of groups is unlimited.

With GROUP, virtual records are formed by processing the group 0 statements, 
followed by the statements in ONE of the other groups, until there are no more 
LINKs in the last group. For example:

FILE N.MAS           
*
GROUP   
LINK M.MAS MULTIPLE
K LOWC
L UPC
END
*
GROUP
LINK M2.MAS MULTIPLE
K CAPS
L DEC
END
*
OUTPUT Z.MAS Z

First, AdmMove reads a record from the input file, N.MAS, and links to M.MAS 
(group 1) using the value of field LOWC ignoring, for the time being, group 2 (the 
link to M2.MAS) and processes the resulting virtual record. AdmMove then links the 
next record with the same key in M.MAS, processes the resulting virtual record, etc., 
until there are no more records with that same key in M.MAS.

INT LOWC CAPS UPC DEC

3 b B B 2.00

3 b B B 1.25

3 b B B 2.23

3 b B Y 9.00

3 b B Y 1.00

3 b B Y 4.00

3 b B Y 9.00

3 b B Y 1.00

3 b B Y 4.00
3 - 26   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
Then, without reading another FILE record, AdmMove starts group 2, and processes 
virtual records based on all the LINK MULTIPLE links to M2.MAS. (Note that in this 
example the second LINK links using the field CAPS from the main file N.MAS. All 
the records in M2.MAS with a key that matches the CAPS value in N.MAS ("B") are 
now linked to.) During group 2 processing, group 1 LINK fields retain the values 
from the last link to M.MAS.

When there aren't any more LINK MULTIPLE links to M2.MAS, the next input 
record is read (from N.MAS) and the process starts over. Writebacks to the input file, 
as well as LINK W's, EXECUTEs, and ADDs in group 0, are always performed; in 
addition, all operations in the current group are processed.

In the above example, the use of GROUP causes one link to each record in each of two 
LINK MULTIPLE files, instead of the an explosion (cross-product) of the two LINK 
MULTIPLEs.

If LINK MULTIPLE paragraph had also been in group 0 in the example, then the 
whole process would occur for each same-key-value link to that LINK MULTIPLE 
file. One or more LINK MULTIPLEs may occur in any group; thus parallel sets of 
explosions can be specified.

If the special ADD32 field in the RMO is set, the only ADD paragraphs executed are 
those in group 0 and those in the current group.

INT LOWC CAPS UPC DEC

3 b B B -

3 b B Y -

3 b B Y -

INT LOWC CAPS UPC DEC

3 b B Y 2.00

3 b B Y 1.25

3 b B Y 2.23

32.   See Section 3.5.8.1 “EXECUTE statement: RMO Processing”
ADMINS User Guide  3 - 27



VIRTUAL qualifier: Complex Processing Using Instruction File
3.5.9  AdmMove VIRTUAL Example

The sample application described in the instruction files SOLICIT.MOV and 
SELECTION.RMS demonstrates several AdmMove VIRTUAL capabilities and 
features.

The model for this very simplified example is a portion of a fund-raising system. A 
Donor file contains contact information about contributors. The Hobby file lists the 
various hobbies contributors have expressed interest in, while the Profession file lists 
their professions. The Payments file lists pledges and payments for each contributor. 
We wish to add records to a Solicitations file (to be used to contact previous Donors) 
based on a specific combinations of hobby with profession, or based on past 
contributions at or above a specified level. The input "Selection" file is used to flag 
records that have been marked for delete, and should not be used.

* -- solicit.mov ------------------------------------------
FILE SELECTION.RMO BREAK  ! runs on selection file, break
                          ! per input record
EXECUTE PRESEL            ! pre-select vs. selection file
LINK DONOR.MAS            ! donor file information
K ID
L FNAM
L LNAM
L INACTIVE
END
  
EXECUTE SEL2              ! select using donor fields
  
EXECUTE BREAK             ! perform inserts to solicit.mas
                          ! when all links for selection
                          ! record are done
ADD SOLICIT.MAS U Z       ! insert 1 rec per selection
A TRIG                    ! per input file record
K ID
W *
END
* ---------------------------------------------------------
GROUP                     ! Group 1: first link multiple
       LINK HOBBY.MAS M   ! 1 record per donor per hobby
       K ID
       L HOBBY
       END
  
       EXECUTE G1         ! set flag based on hobby
  
 * --------------------------------------------------------
GROUP                     ! Group 2: second link multiple
       LINK PROF.MAS M    ! 1 record per donor per job
       K ID
       L PROF
       END
  
       EXECUTE G2         ! set flag based on job
 * --------------------------------------------------------
 GROUP                     ! Group 3: 3rd link multiple
       LINK PAYMENT.MAS M ! 1 record per donor per payment
       K ID
       L AMT
       L PAID
       END
  
       EXECUTE G3         ! accumulate total paid
  
  * SELECTION.RMS ------------------------------------------
3 - 28   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
 *
 FILE SELECTION.MAS
 *
 LOCAL
 *                    ! Processing control fields
 TRIG/A2              ! Trigger field for ADD paragraph
 SKIP/I               ! Skip input record
 ADD/I                ! Execute ADD paragraph
 S$S/A6               ! Status identifies RMO call
 *
 INACTIVE/A2          ! LINK L fields
 HOBBY/A10
 PROF/A10
 AMT/D
 PAID/A2
 *
 HOBFLG/I             ! Local flags, totals, etc.
 PROFLG/I
 TOTAMT/D
 SELNO/I       
 *
 PROGRAM
 * --------------------------------------------------------
 IF S$S EQ 'PRESEL' THEN GOTO PRESEL END  ! Branch using S$S
 IF S$S EQ 'SEL2' THEN GOTO SEL2 END
 IF S$S EQ 'G1' THEN GOTO G1 END
 IF S$S EQ 'G2' THEN GOTO G2 END
 IF S$S EQ 'G3' THEN GOTO G3 END
 IF S$S EQ 'BREAK' THEN GOTO BREAK END
 STOP
 * --------------------------------------------------------
 PRESEL: IF DEL NE ' ' THEN SKIP = 1 END ; ! Pre-select:
         STOP                              ! skip flagged recs
 * --------------------------------------------------------
 SEL2:   IF INACTIVE NE ' ' THEN SKIP = 1 END ; ! Select using 
         STOP                                   ! donor file
 * --------------------------------------------------------
 G1:     IF HOBBY EQ 'PHOTO' OR HOBBY EQ 'GARDEN' ! Set hobby 
            THEN HOBFLG = 1 END ;                 ! flag
         STOP
 * --------------------------------------------------------
 G2:     IF PROF EQ 'DOCTOR' OR PROF EQ 'DENTIST'  ! Set job 
            THEN PROFLG = 1 END ;                  ! flag
         STOP
 * --------------------------------------------------------
 G3:     IF PAID NE ' ' THEN TOTAMT = TOTAMT + AMT END ; 
         STOP                                  ! Total paid
 * --------------------------------------------------------
 * Selections:
 *   1. Hobby is PHOTO OR GARDEN, 
 *      AND profession is DOCTOR OR DENTIST.
 *   2. Total amount paid is $100 or more
 *
 BREAK:  IF ADD LT 1 AND HOBFLG EQ 1 AND PROFLG EQ 1 THEN 
            SELNO = 1 ;                        ! Select #1
            TRIG = 'U' ;
            ADD = 1 
         ELSE 
            IF ADD LT 2 AND TOTAMT GE 100 THEN  ! Select #2
               SELNO = 2 ;
               TRIG = 'U' ;
               ADD = 2
            ELSE                      ! Finished with this 
               ADD = 0 ;              ! input record
               TRIG = ' ' ;           ! initialize locals
               HOBFLG = 0 ;
               PROFLG = 0 ;
               TOTAMT = 0
            END 
         END ;  
         STOP
 * ---------------------------------------------------------
ADMINS User Guide  3 - 29



VIRTUAL qualifier: Complex Processing Using Instruction File
The RMO first eliminates unwanted input file records (where DEL is not blank) at the 
EXECUTE PRESEL call using SKIP.

Then, at the EXECUTE SEL2 call, the RMO uses information linked in from the 
DONOR file (the INACTIVE status) to further narrow the selection of records to be 
processed.

The BREAK keyword in the FILE statement will cause a special EXECUTE BREAK 
RMO call every time a new record is read in the input file. The ADD statement will 
unconditionally insert a record into SOLICIT.MAS whenever the RMO sets the 
"trigger" field, TRIG.

GROUP 1 allows each (selected) input file record to link with all the "hobby" records 
for that donor's ID. If a donor's hobby turns out to be "photo" (photography) or 
"garden" (gardening) the EXECUTE G1 RMO call will set a flag to indicate that this 
DONOR has one of the hobbies of interest. GROUP 2 and EXECUTE G2 perform a 
similar function for "profession" records, searching for Doctors and Dentists.

GROUP 3 and EXECUTE G3 sum up all the paid-up contributions for each Donor.

When all the LINK MULTIPLE links have been performed, AdmMove is finished 
with the input file record, so it performs the input file BREAK processing. The 
EXECUTE BREAK RMO call evaluates the data developed by processing the three 
GROUPs, inserting records into SOLICIT.MAS by setting the "trigger" field 
whenever either of the following qualifications are met:

1. HOBFLG and PROFLG are both set (the donor has both one of the hobbies and 
the one of the professions specified).

2. TOTAMT (the sum of all paid-up donations) is at least $100.

The special RMO field ADD is used to re-call the RMO to allow checking (and 
possible insertion of a record) for each qualification (Note that ID "7" accounts for two 
of the records that are inserted into SOLICIT.MAS, one because of the hobby/
profession combination (photography/dentist); and the second because total 
contributions are $115.

                 The "DEFS"
     --------------+--------------+-----------
       * HOBBY       | * PROF       | * PAYMENT 
       MAS 100       | MAS 100      | MAS 100   
       ID I KEY1     | ID I KEY1    | ID I KEY1 
       HOBBY A10     | PROF A10     | AMT D     
     --------------+--------------+-----------
       * SELECTION   | * DONOR      | * SOLICIT    
       MAS 100       | *MAS 100     | *MAS 100
       ID I KEY1     | ID I KEY1    | ID I KEY1
       DEL A2        | LNAM A10     | SELNO I
                     | FNAM A10     | LNAM  A10
                     | INACTIVE A2  | FNAM  A10
                     |              | TOTAMT D
          --------------+--------------+-----------
3 - 30   ADMINS User Guide



VIRTUAL qualifier: Complex Processing Using Instruction File
                         The Data 

      Hobbies            Professions          Payments
     ID HOBBY            ID PROF             ID       AMT PAID  
  ----- ----------    ----- ----------    -----  -------- ----  
      1 PHOTO             1 TINKER            1       500 X
      1 GARDEN            1 TAILOR            1        50 X
      2 SNORKLING         2 SOLDIER           1        25 X
      2 TENNIS            2 SPY               2       100 X
      3 PHOTO             3 DOCTOR            2        50
      3 TV                4 CARPENTER         3        10 X
      3 GARDEN            4 DENTIST           3       200 X
      4 CHESS             5 PEST              4        25 X
      4 SLEEPING          5 TEACHER           5       100 X
      5 COOKING           6 COOPER            5        25 X
      5 PHOTO             6 JUNK              6        75
      6 EATING            7 CAR SALES         6        30 X
      6 TV                7 DENTIST           7        25 X
      7 READING           8 POLICE            7        90 X
      7 PHOTO             8 TEACHER           8       125
      8 CHOIR             9 RECEPTION         8        55
      8 SPORTS            9 TYPIST            9        45
      9 COOKING          10 LAWYER            9        30 X
      9 CHESS            10 PILOT            10       100 X
     10 PHOTO                                10        50
     10 TV
                       Donor                    Selection 
                       File                       File
           ID LNAM     FNAM    INACTIVE           ID DEL 
           -- -------- ------- --------          --- --- 
            0 Zero     Zorro                       1
            1 Horton   Natalie  X                  2
            2 Roberts  Tina                        3
            3 Rabbit   Peter    X                  4
            4 Feather  Doug                        5 X
            5 Pacino   Bill                        6
            6 Davis    Avi                         7
            7 Lee      Chuck                       8
            8 Danko    Horace                      9
            9 Spam     Sam                        10 X
           10 Quill    Jan
                       Records inserted into
                            SOLICIT.MAS

                 ID   SELNO LNAM       FNAM  TOTAMT 
                ---   ----- ---------- ----- ------
                  2       2 Roberts    Tina     100
                  7       1 Lee        Chuck    115
                  7       2 Lee        Chuck    115
ADMINS User Guide  3 - 31



Merge Files (AdmMrgFil)
3.6  Merge Files (AdmMrgFil)

 The MRGFIL command will merge two or more sorted input files into a single 
output file with the resulting file in sort order. The following is an example of 
MRGFIL dialogue:

$ mrgfil
Merge file....: in1.mas
Merge file....: in2.mas
Merge file....: in3.mas
Merge file....: out.mas
Merge file....: cr
17:35:04.75  
**********************************************************
17125 RECORDS WRITTEN INTO OUT.MAS  17:38:16.10

Responding to the "Merge file" prompt with just a carriage return indicates that all 
the files have been entered and that the last file entered is the output file. All other 
files are input files.

The following restrictions and options apply to the MRGFIL command.

1. All files involved in a merge must have the same defined fields in the same 
order, i.e., identical file definitions.

2. The output file must be empty at the start of the merge.
3. MRGFIL assumes the input files are "in sort". If the input files are out of 

sequence, then the resulting output file will be out of sequence.
4. All records in all input files are merged. That is, a SELECT statement in the 

output file definition is not applied during merging of files.
5. The merging of records is done based only on KEY fields and does not consider 

sort control fields with ASC or DESC designations.
6. Records with the same key value are output in the order that the input files were 

specified. Using the above example, records with the same key value would be 
output from IN1.MAS, then IN2.MAS, and finally from IN3.MAS.

7. The line of asterisks may be suppressed by typing "NO *" to the first "Merge file" 
prompt.33 MRGFIL will then repeat its prompt.

33.   If the character "*" (asterisk) is included in the string assigned to the logical name 
OPTION, the printing of the line of asterisks to show progress through a file is 
suppressed in all ADMINS "batch" commands. See Appendix A: “Options”.
3 - 32   ADMINS User Guide



Chapter 4:SORT: Sorting Records 
Between Files

SORT is used to sort or sort and aggregate records from one data file into another.

4.1  Functions of SORT

Like MOVE, SORT moves data from fields in the input file to fields of the same name 
(or secondary field name) in the output file. As with MOVE, non-key alphanumeric 
and pic fields in the output file may differ in size from the corresponding field in the 
input file; and SORT uses the SELECT statement in its output file's definition to choose 
which input records to process. But SORT differs from MOVE in one fundamental 
way: the output file is sorted using the key and sort designators from the output file 
definition.

ADMINS is designed primarily to access records in files sorted on their keys (see 
Section 2.4.3 “Sort and Access Control”). Therefore SORT is usually the appropriate 
way to "move" the data when the input and output files don't have the same key 
structure.1 SORT insures that the file is in sort order on the fields designated as keys 
in the output file definition, regardless of the order of the records in the input file.

SORT can be used to derive "aggregate" files using the aggregation operators specified 
in the output file definition.

1.    Move appends the records read from the input file into the output file. Thus the 
sequence of the records in the output file of a MOVE is same as the sequence of 
the records in the input file. If the output file's key structure differs from the input 
file, the records cannot be directly found by key value. See Section E.2.1 “Finding 
Records by Key Value”.
ADMINS User Guide   4 - 1



SORT Dialogue
4.2  SORT Dialogue

When SORT is called, it prompts for the names of the input and output files:

$ sort
Input file....: input-file-spec
Output file...: [output-file-spec] [I]

SORT uses the internal file definitions of the specified files, and the responses to its 
prompts to determine what actions are to be performed. If the input file is empty, 
SORT will call a diagnostic message and terminate.

If no output file specification is given, SORT assumes the input file is to be self-sorted 
and requests a confirmation as follows.

Current input file will be deleted after sort. OK?

If the user responds with a "Y" for yes, SORT continues in self-sort mode. In self-sort 
mode, SORT first checks that it can open the file for exclusive use,2 then SORT creates 
a temporary output file and sorts the input file into the temporary output file. Finally, 
the input file is deleted, and the temporary output file is renamed with the name of 
the input file.

If the user responds to the "Output file" prompt with "IX" or "IX nn" (nn being an 
integer between 50 and 100) then SORT will perform an "Index-only" self-sort of the 
file in place, i.e. no temporary file is created and the input file is not deleted. SORT 
prompts for confirmation as follows:

Rebuilding index only. OK?

See Section 4.2.2 “Index-only Self-Sort Option” for a detailed discussion of the 
"Index-only" self-sort option.

If the user types "NO *" to the "Input file" prompt, the asterisks denoting progression 
through the file will be suppressed and SORT will re-prompt.3

The output file of a sort must be empty. The SORT output file can be "emptied" by 
using the Initialize option of the SORT. If an "I" (for initialize) is placed after the 
output file specification, i.e. "N.MAS I", SORT will initialize (empty) the output file 
before beginning the sort.

SORT checks to see that the output file is empty. If the output file contains records, 
and you have not requested that it be initialized, SORT will exit with a diagnostic 
message.

2.    The requirement that the file being self-sorted can be opened for exclusive use 
cannot be bypassed, i.e. SORT will exit with a diagnostic message if you ask for 
the file to be opened otherwise or if the file is already open by another user. See 
Section Chapter 19: “Concurrency Control: Multi-User Files” for a complete 
discussion of ADMINS file access options.

3.     If "*" (asterisk) is included in the string assigned to the logical name OPTION, the 
printing of the line of asterisks to show progress through a file is suppressed in 
all ADMINS "batch" commands. See Appendix A: “Options”.
4 - 2   ADMINS User Guide



SORT Dialogue
4.2.1  Temporary Files

SORT creates its temporary working file, SORTxx.TMP,4 in the user's current default 
directory. In an ordinary self-sort5, SORT creates its output file, OUTPxx.TMP, in the 
same directory as the input file. When the sort is finished, the original (input) file is 
deleted and OUTPxx.TMP is renamed to the input file's name.6

4.2.2  Index-only Self-Sort Option

There is a SORT option that can be used under certain conditions to achieve marked 
savings in the time it takes to self-sort a file, while also conserving disk space. The 
"IX" (for "index-only") SORT option just rebuilds the index in the existing file, instead 
of moving the data into another file, and thus saves the time and resources SORT 
would normally use in creating a temporary file and transferring data into it.

The SORT dialogue for this option is:

$ sort
Input file....: input-file-spec
Output file...: ix [fill_%]
Rebuilding index only. OK? y

As with any self-sort the IX option requires that the file can be opened for "exclusive" 
use (see Section 4.2 “SORT Dialogue”).

The option to rebuild the index can be used in any self-SORT provided that:

1. you are not aggregating the file
2. you do not need to recover space from deleted records in the file (the data 

portion of the file is not touched!)
3. the file has key fields in its DEF (files that have only ASC or DESC fields, rather 

than KEY or DKEY fields, do not have an internal index).
 

Files that are repeatedly self-sorted with the IX option can get increasingly "out of 
sequence", i.e. the physical order of the records in the file becomes less and less 
related to the indexed, key value order of the records. In extreme cases, i.e. if large 
numbers of records are added to the file without doing a normal, "complete" self-sort, 
this can seriously affect the performance of ADMINS commands that are optimized 
for processing files whose records are physically in sequence (such as MAINT, 
MOVE, the DETAIL file of PROD, REPORT, etc.).

4.     A name in the form SORTxx.TMP is automatically generated by ADMINS (see 
Appendix C.1.1 “Differences in Print File and Temporary File Naming”).

5.     In an index-only self-sort no OUTPxx.TMP file is created.
6.     SORT will build the temporary working file in the directory assigned to the 

logical name ADM$SRTMP if it is assigned, and self-SORT will build its output 
file in the directory assigned to the logical name ADM$SRTOUT, if it is assigned. 
These SORT logical names are normally not needed and should not be assigned. 
If needed, however, they should be set up by the System Manager and assigned 
for the user at login.

NOTE
ADMINS User Guide  4 - 3



SORT Dialogue
Keep this issue in mind when using index-only self-sorts. Its a good idea to self-sort 
files periodically, especially if the number of records added to the file becomes 
significant. One technique might be to do index-only self-sorts on a daily basis as 
batches of records are added to a file, and to do normal self-sorts of the file on a 
weekly basis.

Typical uses are:

1. Sort a file after records have been appended to it, i.e. with MOVE
2. Sort after changing key values have been altered, i.e. with ADED or MAINT
3. Sort after SEQuentializing the file (see Section 13.4 “FILECONVERT - Convert 

ADMINS datafile attributes”)
4. Sort to compress the index, i.e. after large numbers of record deletions and 

insertions
5. Sort to expand the index, i.e. to rebuild the index with partially full index blocks 

(see Section 4.2.2.1 “Rebuilding Index with Partially Full Blocks”)

4.2.2.1  Rebuilding Index with Partially Full Blocks
The IX SORT option includes a capability to fill the index blocks partially, i.e. from 
50% to 100% full, as specified by the user.

Leaving space in the index blocks reduces the number of new index blocks which are 
created by subsequent insertion, i.e. in TRANS or PROD. This feature can be used to 
help manage disk space in large files which undergo random insertion. When this 
option is requested, as in the following example, SORT partially fills the index blocks 
which contain pointers to records.7

$ sort
Input file....: vendor.mas
Output file...: ix 60
Rebuilding index only. OK? y

Index blocks with pointers to lower levels of index are completely filled, as usual. See 
Appendix E for a detailed discussion of ADMINS internal file structure.

4.2.2.2  Rebuilding Indices After Batch Processing
Batch commands that may invalidate indices can be instructed to rebuild those 
indices (using SORT) on normal termination. This is done using the command line 
switch -SORT.

This function is available in both MOVE (see Section 3.2.6 “SORT: Rebuild indexes 
after records moved”) and MAINT (see Section 10.13 “Rebuilding Indices After Batch 
Processing”).

7.    In the example the index blocks of VENDOR.MAS which contain pointers to 
records would be output 60% full. Building index blocks that are less than 100% 
full make it likely that the file will have to be enlarged to accommodate the 
rebuilt index. Note that the IX SORT option, if necessary, will try to enlarge the 
file to accommodate the rebuilt index BEFORE anything else is done, i.e. if the file 
cannot be enlarged it will not be changed at all.
4 - 4   ADMINS User Guide



Operation of SORT
4.2.3  KEEPTEXT: Self-Sort without TSF, TCF processing

If SORT is called with the "KEEPTEXT" qualifier on the command line, files that have 
TInn or TXnn fields will be processed much faster, because SORT will skip the 
reorganization of the TCF and TSF files (see Appendix K.1 “Special Considerations”).

$SORT/K
Input file....: evaluation.mas
Output file...: <return>

Note that "KEEPTEXT" can be abbreviated to "K".

The trade-off for this increase in speed is that "dead" space in the TCF or TSF is not 
reclaimed. "Dead" space results either from making a TInn field shorter than it was 
when it was first created (via editing for example), or from deleting records which 
have non-blank text fields.

4.3  Operation of SORT

Given a usable input file and output file, SORT begins the sorting process. SORT 
operates in three distinct "passes", but before beginning Pass (1), SORT reads the 
input and output file definitions,8 and does some set up and checking.                           

Pre-Pass (1) Set Up and Check
a. If the SORT is an ordinary self-sort, then SORT first creates 

ADM$SRTOUT:OUTPxx.TMP to use as the output file. OUTPxx.TMP is 
created as an identical empty copy of the input file. If the SORT is an index-
only self-sort, no temporary output file is created, but SORT checks 
immediately that sufficient space will be available for the new index 
structure. If the file needs to expand SORT tries to enlarge it immediately. In 
these circumstances if automatic file enlargement (see Section 1.9 “Dynamic 
Data File Expansion”) has been disabled or the disk is full SORT will exit 
immediately.

In self-sorts SORT then skips to pre-pass step (f).

b. Primary names in the input file are compared with primary and secondary 
names in the output file to set up tables for moving input records into output 
records. At this point, SORT checks to see if the input and output fields of the 
same name have the same type. (As with MOVE, alphanumeric and pictured 
fields may have different lengths in their input and output records).9 If the 
same field name has a different type in input from output, SORT will print a 
message as follows and terminate.
field-name is not the same in both files

8.    When we say that an ADMINS command, other than DEFINE, reads a file 
definition, we do not mean that the instruction file XXXXXX.DEF is read. We 
mean the command reads the internal copy of the file definition stored in the 
ADMINS data file itself.

9.    SORT requires that the output file key fields match the corresponding input file 
fields in type and length.
ADMINS User Guide  4 - 5



Operation of SORT
c. SORT checks to see if the output file has a SELECT. If so, SORT relocates the 
references to field names so the SELECT will execute on input records, and 
notes to use SELECT during Pass (1). (Note that SELECT is not applicable to 
a self-sort.)

d. SORT checks that output fields do not receive data from more than one input 
field. If this condition is detected, SORT prints a message as follows and 
terminates.
field-name receives more than one input value

One input field may, however, be directed to two or more output fields.

e. If automatic file enlargement has been disabled (see Section 1.9 “Dynamic 
Data File Expansion”) SORT checks that the size of the output file is 
sufficient to hold all the input records. If the output file is too small, SORT 
prints a diagnostic message and terminates.

This particular check is only performed if the output file neither contains a SELECT 
nor is a definition of a derived aggregate file; because in these two special cases SORT 
expects the output file to be smaller than the input file.

f. In Pass (1) SORT will read the input file, extract the sort keys, sort them in 
sections, and write the sections into a temporary working file, 
ADM$SRTMP:SORTxx.TMP. SORT analyzes its requirements for a 
temporary working file (SORTxx.TMP) and builds the file. If a SORTxx.TMP 
already exists, but is of insufficient size to meet SORT's requirements, then 
SORTxx.TMP is deleted. (Normally, SORTxx.TMP is deleted at the end of the 
sort.) SORTxx.TMP is usually a relatively small file compared to the sizes of 
the input and output files.

After performing these checks SORT begins Pass (1). Pass (1) operates as follows.                                      

Pass (1)
a. An input record is read into a record buffer. If an end of file is read instead, 

then SORT proceeds to step (1c).

b. If a SELECT exists in the output file it is evaluated on the record in the input 
record buffer. If the SELECT evaluates to "false", then SORT goes 
immediately to step (1a) for the next input record. (Note that SELECT is not 
applicable to a self-sort.)

A list of key values and record addresses is built up in memory, and as 
memory is filled, the list is sorted on key value and written out to 
ADM$SRTMP:SORTxx.TMP, making room for more keys in memory. SORT 
continues to read records as per step (1a) until it reaches the end of the input 
file.

c. Pass (1) of SORT proceeds to Pass (2) of SORT.

Pass (2)

Pass (2) of SORT continues automatically after Pass (1) without any user interaction. 
Pass (2) merges the sorted keys produced from Pass (1), placing a list of keys and 
input record disk addresses into ADM$SRTMP:SORTxx.TMP. Then Pass (2) calls 
Pass (3).

In an index-only self-sort the merged keys are written directly to the input file, 
overwriting the old index structure, and Pass(3) is called only to close the sorted file, 
delete the SORTxx.TMP file, and exit.                                      
4 - 6   ADMINS User Guide



Deriving Aggregates (Summarizing Sort)
Pass (3)

Pass (3) of SORT also continues automatically after Pass (2) without any user 
interaction. If SORT is simply sorting (i.e. not aggregating), Pass (3) does more or less 
what the MOVE command does. Only instead of reading the input file in sequential 
order, SORT uses the list of sorted output keys and input record physical addresses 
written by Pass (2) into ADM$SRTMP:SORTxx.TMP to read the input file in the order 
that the output file records are to be produced.

After all the input records have been read, and appended to the (originally empty) 
output file, SORT closes both input and output files. If the output file was 
ADM$SRTOUT:OUTPxx.TMP, i.e. if SORT was being used just to sort an input file 
back into itself, then the input file is deleted and the output file is renamed to the 
input file name. The reason for temporarily building a sort output file when a file is 
being sorted into itself is that if some error condition stops the sort before it is 
finished, then the sort input file is still intact, and the sort can simply be re-started 
when the error condition is corrected.

4.4  Deriving Aggregates (Summarizing Sort)

SORT is also capable of deriving aggregates during Pass (3) of the sort. If the output 
file contains derivation operations (see Section 2.4.4 “Deriving Aggregates”) then 
SORT performs a different set of operations in Pass (3). Rather than appending the 
input records to the output file as they are read in sorted order as per the list in 
ADM$SRTMP:SORTxx.TMP, SORT performs the derivation operations in memory, 
and only appends summary records to the output file.

We recall that the possible operations were subtotaling (/V), counting non-null or all 
existences per run (/E, /C), averaging (/AVG), maximum and minimum (/MAX, /
MIN), first and last value in the run (/FI, /LA), and take another field from the same 
record selected by the previous operator (/SA). An output definition could contain 
several of these operations, applied either to one or several input fields. However, 
each operation is with respect to the same control break, i.e. the sort keys of the 
output file. Fields in the output record without a derivation operator will have null 
values. An example of a derived file of aggregates, showing both file definition and 
output sample, is contained in Section 2.4.4 “Deriving Aggregates”.

4.5  SORT Example Creating an Index File

One use of SORT is for building an index file. Consider the following file definition:

* PROPERTY.DEF
*
MAS  20000
*
ACCT#    XA99999  KEY1  "account number"
OWNER    A30            "owners name"
STREET   A15            "street name for property"
#STREET  I              "street # for property"
ADDRESS  A30            "address of owner"
ADMINS User Guide  4 - 7



SORT Example Creating an Index File
PROPERTY.MAS records a variety of information about properties, e.g. the address, 
owner, owners address, etc. This file is keyed by an account number. Suppose we 
wished to achieve access to the file by the street address for the property. For 
example, to answer the question: "Who owns the property at 115 Main Street?"

To do this, we must build an index file that lets us access the property record account 
number via the street name and number of the property. This index file will let us 
retrieve an account number for a given street address, and that account number can 
be used to take us directly to the property record for the given street address. The 
ADMINS tools that allow usage of such linkages are described elsewhere in this 
manual. (E.g. Cross Reference Screens (see Section 5.7 “Branches”) and the LINK 
paragraph in SCREEN/TRANS (see Section 5.4.1 “LINK Paragraph”), the LINK 
statement in REPORT (see Section 7.13.4 “LINK Statement”)) The creation of the 
linkage is done by building an index file.

* STREET.DEF
*
*  Street Index
*
IDX  20000
*
STREET   A15     KEY1   "street name for property"
#STREET  I       KEY2   "street # for property"
ACCT#    XA99999        "account number"

The above DEF for the index is then defined to create the file STREET.IDX. We then 
use SORT as follows to build the index

 $ sort
     Input File....: property.mas
     Output File...: street.idx
     16:04:45.24
     **********************************************************
     16:04:49.00 261 records read 8 blocks 1 section(s) 
     16:04:49.15 261 pointers merged 
     **********************************************************
     16:04:53.61 261 records sorted
     $

There is still the question of how an index is to be kept up to date as the 
PROPERTY.MAS file is changed, e.g. when new property records are inserted. Aside 
from the obvious but not always satisfactory solution of rebuilding the index file with 
SORT after each set of updates, there are index maintenance facilities in the 
TRANSaction processor. These facilities are described in Section 5.4.3 “INDEX 
Paragraph”.
4 - 8   ADMINS User Guide



Chapter 5:AdmScreen: Compiling 
Screen Forms

AdmScreen, the screen compiler, reads an instruction file containing the description 
of a screen, checks it, and then compiles the description into object form for use by 
TRANS, the transaction processor. The screen instruction file includes the format and 
instructions for using a screen to update, query, and display data. The file type of the 
screen instruction file is always ".TRS" for "transaction source". The object file created 
by the AdmScreen command has the same file name as that of the screen instruction 
file, but the file type is always ".TRO" for "transaction object". For example, if 
AdmScreen is given the instruction file "TIME.TRS" it will compile an object file called 
"TIME.TRO". If the logical name ADM$OBJECT is assigned the TRO is placed in the 
directory ADM$OBJECT, otherwise it is placed in the same directory as the TRS.

5.1  Outline Of The Screen Instruction File (TRS)

This section describes the rules and conventions for writing a screen instruction file 
acceptable to the screen compiler. Chapter 6: “TRANS: Screen Transactions” describes 
the operation of TRANS, which controls the screen according to the "transaction 
object" (TRO) file compiled by AdmScreen.

The description of a specific screen is made up of five components. The screen header 
line, the field names section, and the screen layout section are required for each screen. 
The external files section and the branches section are optional.

A single screen instruction file may contain the descriptions of several related screens. 
For example:

SCREEN-NAME1 ...
...
END
SCREEN-NAME2 ...
...
END
SCREEN-NAME3 ...
...
END
...
ADMINS User Guide   5 - 1



Outline Of The Screen Instruction File (TRS)
The outline of the screen description is as follows:1

Screen Header Line
SCREEN-NAME FILE-NAME [LOG-NAME]RPS[/n][RMO-NAME] [KEYWORDS]
[VIDEO FIELD-CLASS VIDEO_ATTR[ FIELD-CLASS VIDEO_ATTR ]... ]
[TRANS_ENV TRANS-ENVIRONMENT-FILE-NAME]
[APPMENU]
                   External Files Section
  
LINK LINK-FILE-NAME [W] [NULL] [=LINK_NAME]       !link 
K TRS-KEY-FIELD-NAME                              !paragraph
KC TRS-KEY-FIELD-NAME
C TRS-FIELD-NAME
L LINK-FIELD-NAME [TRS-FIELD-NAME]
END
  
APPEND APND-FILE-NAME CONDITION-NAME LETTER    !append
TRS-FIELD-NAME [APND-FIELD-NAME]               !paragraph
END
  
INDEX INDEX-FILE-NAME [NO-NULL]                !index 
TRS-FIELD-NAME [INDEX-FIELD-NAME]              !paragraph
END
                   Field Names Section
  
D FIELD-NAME [PLACEMENT] [%WINDOW] [%VIDEO][%LOOKUP]      !display
DR FIELD-NAME/TYPE [PLACEMENT][%WINDOW][%VIDEO][%LOOKUP]  !local display
                                               
E FIELD-NAME [PLACEMENT] [QUERY-NAME][%WINDOW][%VIDEO][%LOOKUP]

[LOOKUP sub-statements]                             !editable field 

ER FIELD-NAME/TYPE[PLACEMENT][QUERY-NAME][%WINDOW]

[%VIDEO][%LOOKUP]

   [LOOKUP sub-statements]        !local editable
 

L FIELD-NAME [PLACEMENT] [QUERY-NAME][%VIDEO][%LOOKUP]  !loggable
            [LOOKUP sub-statements]                      
LR FIELD-NAME [PLACEMENT][QUERY-NAME][%VIDEO][%LOOKUP]  !loggable 
            [LOOKUP sub-statements]                     !refreshable 
 

V FIELD-NAME/TYPE [PLACEMENT] EXPRESSION    !virtual
  
CAPS FIELD-NAME1 FIELD-NAME2 ...          !CAPS statement
CAP1 FIELD-NAME1 FIELD-NAME2 ...          !CAP1 statement
REQUIRE FIELD-NAME1 FIELD-NAME2 ...       !REQUIRE statement
BOX LINE COLUMN #LINES #COLS [VIDEO_CODE] !BOX statement     
ALLOW FIELD-NAME1 FIELD-NAME2 ...         !ALLOW statement
NOQUERY FIELD-NAME1 FIELD-NAME2 ...       !NOQUERY statement
TIMEOUT Keystroke Macro                   !TIMEOUT statement
C EXPRESSION                              !check statement
CHECK EXPLANATION TEXT
CLF EXPRESSION                            !check (at) NEXT statement
CHECK EXPLANATION TEXT
M FIELD-NAME EXPRESSION                   !message statement
MESSAGE EXPLANATION TEXT

1.    The %WINDOW keyword applies only to the internal text (TInn) (TXnn) and 
external text field types (see Section 5.15 “Text Fields”).
5 - 2   ADMINS User Guide



AdmScreen Command Dialogue
Screen Layout Section

SCREEN [PLACEMENT COORDINATES]
literal text and field names to be displayed

Branches Section

BRANCHES [BRANCH MENU COORDINATES] [BRANCH MENU TEXT]  !switch screens
BRANCH-NAME SCREEN-NAME [BRANCH-FIELDS]
BRANCH EXPLANATION TEXT
  
END                              !terminate each screen description with an END

5.2  AdmScreen Command Dialogue

The following example shows the dialogue of the AdmScreen command. The screen 
instruction file, TIME.TRS, includes two separate screen descriptions, TIME and 
EMPL.

$ screen
Screen file name:time
TIME read and compiled
EMPL read and compiled
2 Screen(s) compiled in time.rmo
$

The screen instruction file name may alternatively be included on the command line, 
as follows:

$ screen time

All the .TRS files in a given directory can be compiled using the following "wildcard" 
syntax:

$ screen *.trs

5.3  Screen Header Line

The first component of a screen description is the screen header line, which must be 
one line only,2 and which specifies the screen's name, the file on which it operates, 
the number of records to be simultaneously displayed, and optionally specifies the 
LOG-NAME, the RMO-NAME, and keywords that control the operations allowable 
on the screen.

The syntax of the screen header line is as follows:

SCREEN-NAME FILE-NAME [LOG-NAME] RPS[/n] [RMO-NAME] [KEYWORDS]

2.     In general, each instruction line in the TRS must be on one line. The only lines 
which may be continued on another line are those lines containing "expressions", 
i.e. virtual fields, check statements, and message statements.
ADMINS User Guide  5 - 3



Screen Header Line
  

SCREEN-NAME The name for this screen description. This SCREEN-NAME 
identifies this particular screen when used in the branch 
paragraphs of other screen descriptions.

FILE-NAME The name of the file on which this screen operates. This file is 
often referred to as the “master file”.

LOG-NAME The name of the field log file in which the field change 
transaction records should be stored. LOG-NAME is optional 
(as indicated by the brackets in the screen outline) and is used 
to override the default field log name obtained by appending 
“.FLG” to the master file name, e.g. “TIME.FLG”. Field 
logging is described in Section 6.4 “Field Logging”.

RPS/n The number of records per screen, i.e. the number of records 
displayed together, using the screen layout that will follow. 
As indicated by the brackets in the screen outline, the “/n” is 
optional and is described below.
The valid range of values for RPS is from 1 to the number of 
lines in the screen displaya

If RPS is greater than 1, then the user is specifying a multi-
record screen. This allows more than one record from the 
master file to be displayed at one time in the same screen. The 
last line of the screen layout contains the field designators 
that will repeat for each record in a multi-record screen. 
Multi-record screens, and the restrictions which apply to 
them, are described later in Section 5.9 “Multi-Record 
Screens”.
If RPS is greater than 1 and is followed by "/n", e.g. 8/2, then 
TRANS is instructed that the last "n" lines of the screen layout 
contain the repeating field designators for each record in a 
multi-record screen. This syntax permits multi-line multi-
record screens.
The value of RPS is also constrained by the limit of 1000 
editable fields per screen. The key fields and all other editable 
fields in each record in a multi-record screen count against 
this maximum.

a.   See Section 5.6 “Screen Layout”

RMO-NAME The name of a record maintenance procedure to be called by 
the screen. The name is of the form "XXX.RMO". As indicated 
by the brackets in the screen outline, an RMO for the screen 
is optional. The RMO can be used to perform complex 
computations or logical processing on the active record, to 
support record selection, to perform automatic branching, to 
prepare values for posting into linked files, and for 
numerous other purposes. The general rules for writing a 
record maintenance procedure are described in Chapter 8: 
“Expressions”and Chapter 9: “CMP: The Record 
Maintenance Compiler”. The specific uses of an RMO behind 
the screen are described in Chapter 15: “Basic RMO 
Functions with TRANS” and Chapter 16: “Advanced RMO 
Functions with TRANS”.
5 - 4   ADMINS User Guide



Screen Header Line
5.3.1  Screen Header Line Keywords

The allowable functions for a screen are set by the keywords which are included on 
the screen header line. The following are examples of the screen header line showing 
various combinations of keywords:

PERSNL [PERSONNEL]PRF.MAS 1 INSERT DELETE APPEND
  
TREV1 [PAYROLL]TIMEW1.MAS 10 NOMSG AUTOCR PASSW BETTY
  
BILLS BILL.MAS CLERK1.FLG 1 QUERY
  
TRANSFER BUDGET.MAS 1 TRANSFER.RMO LFBACK NOMSG

All of the keywords applicable to the screen header line are described below.

5.3.1.1  INSERT, DELETE, or APPEND Records

5.3.1.2  NOMSG: Inhibit On-line Messages

INSERT If the keyword INSERT is included on the screen header line, 
the screen may be used to insert new records into the master 
file. That is, if a record is requested by entering the key(s) of 
the record and the record does not exist, the user will have 
the option to insert the record. Also, the screen will respond 
to the INS keystroke allowing the user to insert another 
record with the same key(s) in the master file. The keywords 
INSERT and MATCH (see Section 5.3.1.8 “MATCH: Require 
Exact Match”) are mutually exclusive.

DELETE If the keyword DELETE is included on the screen header line, 
the screen may be used to delete records from the master file. 
That is, the screen will respond to the DEL keystroke. The 
DELETE keyword also controls the record transfer function, 
described in Section 6.5 “Record Moving and Searching”.

APPEND If the keyword APPEND is included on the screen header 
line, the screen may be used to append new records to the 
end of the master file. That is, the screen will respond to the 
APND keystroke.

NOMSG If the keyword NOMSG is included on the screen header line, 
the messages at the bottom of the screen indicating the field 
name, field contents, and field type of the active field are not 
displayed. The TOF (top of file) and EOF (end of file) 
messages, as well as TRANS mode status messages (AP, UP, 
IN, and ED) in the upper right corner of the screen are also 
suppressed by the NOMSG keyword.
These message displays can always be activated (or 
deactivated) with the MSG keystroke.
ADMINS User Guide  5 - 5



Screen Header Line
5.3.1.3  AUTOCR: Automatic Carriage Return

5.3.1.4  TABBING or QUERY: Field Selection Mode

AUTOCR If the keyword AUTOCR is included on the screen header 
line, then when the user completely fills an editable field on 
the screen with characters, the characters are to be 
immediately examined for acceptance as if ENTER had been 
pressed following the characters. For example, if a field 
called MONTH were allocated two spaces on the screen, then 
the two typed characters are processed as soon as the second 
character is typed into the MONTH field.
TRANS neither waits for, nor expects, the ENTER key. The 
cursor then automatically moves on to the next editable field. 
AUTOCR requires that the enterable field width on the 
screen be exactly equal to the actual number of characters to 
be typed into the field. In the case of small fields, "precise 
placement" (see Section 5.6.1 “Precise Placement of Fields”) is 
used to achieve this exact match.
When AUTOCR is in effect the user may still type ENTER 
before reaching the end of the enterable field width. 
AUTOCR is an option that applies to all the editable fields in 
the screen.

TABBING If the keyword TABBING is included on the screen header 
line, the screen comes up in TRANS using "tabbing" Field 
Selection Mode and the user can move the cursor from 
editable field to editable field by pressing the RETURN or 
ENTER key, or the directional arrows.
The Field Selection Mode can not be changed in TRANS from 
"tabbing" to "query" with the FSM keystroke when the 
TABBING keyword is used. Hence TABBING is used to 
restrict a particular screen to "tabbing" only.
Note, if neither TABBING nor QUERY is specified, TRANS 
uses "tabbing" but allows the user to switch back and forth 
between "tabbing" and "query" using the FSM keystroke.

QUERY If the keyword QUERY is included on the screen header line, 
the screen comes up in TRANS using "query" Field Selection 
Mode. In query field selection mode, the user must type the 
initial letters of a field name (or its query name, if provided 
in the field names section, see Section 5.5.2 “Editable”) to 
move the cursor to that editable field for data entry. Query 
field selection mode is not applicable with multi-record 
screens.
If QUERY is not included on the screen header line, the 
screen comes up in TRANS using "tabbing" Field Selection 
Mode.
If QUERY is included on the screen header line (or if 
TABBING is not included) the Field Selection Mode can be 
changed from one mode to the other with the FSM keystroke 
in TRANS.
5 - 6   ADMINS User Guide



Screen Header Line
5.3.1.5  BREAK On A Multi-Record Screen

5.3.1.6  PASSW: Password Protect the Screen

5.3.1.7  Screen Size

5.3.1.8  MATCH: Require Exact Match

BREAK key If the keyword BREAK followed by a key field name is included 
on the screen header line of a multi-record screen, the display page 
will contain only records with the same full or partial key value(s). 
This feature is described in detail in Section 5.9.2 “BREAK In a 
Multi-Record Screen”.

PASSW xxx If the keyword PASSW followed by a password is included 
on the screen header line, TRANS will require the user of the 
screen to provide the password before activating this screen. 
PASSW should only be used on the screen header line for the 
first screen description in a screen instruction file, and 
applies to that particular screen only.

132 If the keyword 132 is included on the screen header line, 
TRANS will use the full 132 character width of the terminal. 
This assumes that the terminal supports 132 characters per 
line.

MATCH The presence of the MATCH keyword on the screen header 
line instructs TRANS that when the user requests a record by 
entering the key value(s), an exact key match between what 
the user has entered and some record in the master file is 
required. If an exact match is made, TRANS proceeds to 
display the desired record. However, if TRANS fails to match 
on an exact key, TRANS goes into Error Mode. When Error 
Mode is cleared by the user via the ERR keystroke, TRANS 
moves to the top of the file and displays the first record.
MATCH also affects screens that are targets of branches (see 
Section 5.7 “Branches”). If the user branches on a key whose 
value is not in the target file, MATCH will cause TRANS to 
display the record at the top of the target file. To request this 
result, the MATCH keyword is included on the header line of 
the target screen. MATCH and INSERT are mutually 
exclusive (see Section 6.5 “Record Moving and Searching”).
Section 16.7.1 “Example Using F$F To Secure Student 
Records” shows an example of the use of MATCH to create a 
secure screen where a student can only examine his/her own 
grades in a file of all student grades.
ADMINS User Guide  5 - 7



Screen Header Line
5.3.1.9  SPn or TTn: Print Device Specification

5.3.1.10  NOP or SCALE n: Scaling

SPn or TTn The contents of the screen can be queued for printing to any 
print queue (see Chapter 21: “Printer Queues”), or directly 
printed to a physical device.
 Queuing: Screen printouts are always queued when the PRT 
keystroke (see Section 6.7 “Control Functions”) is pressed. 
The printout is sent to the print queue assigned to the logical 
name ADM$SPOOL0, unless the screen header line contains 
either the "SPn" or "TTn" keyword. If "SPn" or "TTn" is 
present, PRT sends the printout to the print queue assigned 
to the logical name ADM$SPOOLn. For example, if you want 
to print via the print queue assigned to ADM$SPOOL6, then 
include "SP6" on the screen header line.
All screen copies requested are usually queued together (one 
per page) when the user exits TRANS. However, if the value 
assigned to the logical name OPTION (see Appendix A: 
“Options”) includes the letter (uppercase) "S", each PRT 
keystroke sends a separate copy immediately to the specified 
print queue.
Printing directly to a device: The RMO behind a screen can 
be used to print messages directly to a hard copy printing 
device by setting the local RMO field P$P (see Section 16.6 
“Printing Messages: P$P”). These messages are printed on 
the device assigned to the logical name ADM$PRT0, unless 
the screen header line contains either the SPn or TTn 
keyword. If "SPn" or "TTn" is present, P$P sends the 
messages to the print queue assigned to the logical name 
ADM$PRTn. For example, if you want to send messages to 
the device assigned to ADM$PRT5, then include "SP5" on the 
screen header line.
The CTRLP subroutine (see Appendix H.14.3 “CTRLP - Print 
All or Part of a Screen in TRANS”) combines the features of 
P$P and the PRT keystroke, i.e. it can send the screen 
contents to a print queue (in which case it utilizes the SPn or 
TTn keyword to identify the "ADM$SPOOLn" print queue) 
as well as print the screen contents directly to a hard copy 
device (in which case it uses the SPn or TTn keyword to 
identify the "ADM$PRTn" print device).

NOP This is used to suppress the display of decimal places for 
non-virtual Dn type fields. When "NOP" is present as a 
keyword then all non-virtual Dn fields on the screen are 
displayed as rounded whole numbers.

SCALE n All non-virtual Dn type fields are to be scaled when 
displayed on the screen. Scaled values are rounded. The 
SCALE keyword is followed by a number, n, which 
represents the power of ten by which the field is to be 
divided. For example, "SCALE 3" would display each value 
rounded to the nearest thousand, i.e. "1,234" as "1", "23,642" as 
"24", and "14,483.45" as "14".
5 - 8   ADMINS User Guide



Screen Header Line
5.3.1.11  NOLOG: Suppress Field Logging

5.3.1.12  NOWRITE After Each Field Change

5.3.1.13  PREV, NEXT: Record to Display if Key not Found

NOLOG If the keyword NOLOG is included on the screen header line, 
no log files are to be maintained for the master file when 
under control of this screen. If NOLOG is absent, then all 
changes to loggable fields are written into the field log file 
specified on the screen header line or into the default field log 
file for the master file if no field log file was specified. 
NOLOG suppresses the field logging for "L" fields and "LR" 
fields (see Section 5.5.3 “Loggable”). When NOLOG is 
present, L fields are treated like E fields and LR fields are 
treated like ER fields (see Section 5.5.2 “Editable”)

NOWRITE The active record is normally written back to the master file 
when any field in the active record is changed by the user 
manually entering or overwriting a field on the screen. If 
NOWRITE is included on the screen header line, then the 
active record is not written back to the disk after each manual 
field change, but rather the active record is written only 
whenever the RMO requests it. This could be after all 
changes have been made to the active record. NOWRITE 
requires an RMO behind the screen to write updates to the 
disk, and is described fully in Section 16.1.1 “High Volume 
Update: NOWRITE”. NOWRITE only applies to Update 
Mode. (In Insert and Append Modes, fields are always 
written back to the disk by pressing NEXT.)
NOWRITE is incompatible with LFEXIT control, whether 
explicitly specified with the LFEXIT or LFBACK keyword 
(see Section 5.3.1.18 “LFEXIT or LFBACK: Update Mode 
Control”), or implicitly requested via the REQUIRE statement 
(see Section 5.5.5 “REQUIRE Statement”).

PREV and NEXT When a partial or non-existent key value is entered in update 
mode, TRANS, by default, displays the last record whose key 
value is less than the key value that was entered. If "k" 
(lowercase) is included in the string assigned to the logical 
name option (see Appendix A: “Options”), TRANS' default 
action in this circumstance is changed so that the record 
displayed is the first record whose key value is greater than 
the key value that was entered.
The keywords PREV and NEXT are used to modify the 
default action for the current screen, so that when a partial or 
non-existent key is entered, TRANS will always display the 
"previous" record, if PREV is present in the screen header 
line, or always display the "next" record, if NEXT is present 
in the screen header line, irrespective of the option "k" 
setting.
For example, to find names beginning with "C" in a name 
index a user enters "C", but TRANS displays the last "B" name 
instead of the first "C" name. If NEXT is on the screen header 
line then TRANS will always display the first "C" record, 
whether or not OPTION "k" is in effect.
ADMINS User Guide  5 - 9



Screen Header Line
5.3.1.14  NOBR: Inhibit Manual Branching

5.3.1.15  NOXR: Prevent Return to Screen by Browsing Keys 

5.3.1.16  NOEX: Inhibit Screen Exit

5.3.1.17  NOTR: Inhibit Manual TRANS Entry

NOBR If the application designer wishes to control all branching via 
automatic branching,a manual branching can be inhibited 
with the NOBR keyword. Manual branching (i.e. via the 
BRNC keystroke) will not be allowed from the screen even 
though the screen does contain a BRANCHES paragraph.

a.    see Section 16.2 “Automatic Branching: B$B and R$R”

NOXR The NOXR keyword prevents the user from returning to the 
screen via the XRET or XFWD keystrokes. Ordinarily these 
keystrokes allow the user to browse back and forth through 
the screens that have been visited in the current TRANS 
session. A screen that has the NOXR keyword present is 
simply not included in the “stack” the supports this 
browsing capability. 

NOEX The NOEX keyword prevents the user from exiting the 
screen via the EXIT keystroke. This feature is usually used in 
conjunction with other related features (automatic 
branching, see Section 16.2 “Automatic Branching: B$B and 
R$R”, and automatic exit from TRANS, see Section 16.2.4 
“Automatic Exit From TRANS: B$B = 'CB'”) to cause the user 
to exit TRANS via a prescribed method.

NOTR If the application designer wishes to access a TRO file only 
via a branch from another TRO file, TRANS can be inhibited 
from activating a screen directly by placing the NOTR 
keyword on the screen header line of the first screen 
description in the TRS.
5 - 10   ADMINS User Guide



Screen Header Line
5.3.1.18  LFEXIT or LFBACK: Update Mode Control 

LFEXIT The LFEXIT keyword increases control of data entry in 
Update Mode. LFEXIT prevents the user in Update Mode 
from filing a record, into which at least one non-key field has 
been entered, by any means other than pressing NEXT.a 
LFEXIT control is activated when the user enters or alters 
data in any non-key field in the screen in Update Mode. If the 
user tries to leave the record by any means other than the 
NEXT key, TRANS gives the message "LFEXIT ACTIVE, USE 
NEXT TO FILE RECORD". TRANS does not call the RMO, or 
write the record to the disk, or go to the next record. The user 
must press the ERR key to clear the error condition and then 
must press NEXT to file the record.
When LFEXIT control is active, TRANS will not branch to 
another screen. However, because TRANS HELP can be 
obtained by pressing BRNC H (an alternative to the HELP 
keystroke), if the user presses the BRNC key in Append 
Mode, Insert Mode, General Editor Mode, or in Update Mode 
when LFEXIT is active, TRANS prompts "PRESS H FOR 
HELP" rather than "BRANCH TO".
LFEXIT control represents an alternate mutually exclusive 
functionality to the NOWRITE screen header keyword. 
Therefore, the keywords LFEXIT and LFBACK, as well as the 
REQUIRE statement, are considered syntactically 
incompatible with NOWRITE. Also, when LFEXIT control is 
active, setting the W$W field is usually unnecessary (see 
Section 16.1 “Controlling Changes Written To Disk”)

a.    The RMO behind the screen can simulate the user pressing NEXT, by 
setting the local field B$B to 'LF'. Other uses of B$B are ignored when 
LFEXIT control is active. (See Section 16.2 “Automatic Branching: B$B and 
R$R”.)

LFBACK The LFBACK keyword indicates LFEXIT control in Update 
Mode and also enables a "backout" key, PREV, to allow the 
user to leave a record intact in a screen in which LFEXIT 
control has been activated. When LFBACK is specified, and 
the user has entered or altered fields on the screen but cannot 
or does not want to complete entry into the record via NEXT, 
the user can press PREV to back out of the record. This causes 
TRANS to prompt for confirmation ("PRESS PREV TO 
CONFIRM BACKOUT"). The user must press PREV again to 
confirm the back out of the changes to the record. Then 
TRANS restores the original values in the record, and returns 
to the beginning of the record. (The EOFREC RMO call does 
NOT occur; the BEGREC RMO calls occur; links are re-
executed; and the cursor goes to the first editable field. See 
Section 15.1 “Communication with TRANS”.)
LFBACK is not a way for the user to circumvent the 
validation logic in a screen. When the user backs out of a 
record the changes are not written back to the disk. Instead, 
LFBACK simply provides an escape hatch to prevent users 
from becoming locked into a record which they are unable or 
unwilling to complete. 
See Section 6.2.1.1 “Update Mode Under LFEXIT Control” 
for additional information on Update Mode under LFEXIT 
control, including a discussion on field logging with LFEXIT.
ADMINS User Guide  5 - 11



Screen Header Line
5.3.1.19  SHORT: Conserve MD Array Space

5.3.1.20  COMMA/NOCOMMA

5.3.1.21  NOTMO

5.3.2  TRANS_ENV Statement

A statement of the form:

TRANS_ENV pathname

can be included in the TRS to specify a particular TRANS Environment File (see 
Section 6.15 “The TRANS Environment File”) to use for all the screens in this TRO.3

SHORT  In very large screens, MD ("meta data") array space can be 
conserved by using the screen header line keyword SHORT. 
SHORT prevents TRANS from storing the names of fields in 
LINK files in the MD array unless the fields are referenced in 
the TRS. SHORT cannot be used in conjunction with the 
following subroutines which need access to all field names in 
an external file
MOVFLD, see Appendix H.14.11 “MOVFLD - Move Fields 
Among Files Accessed via TRO” 
FNDTAB, see Appendix H.11.3 “FNDTAB - Set Up Data for 
LODTAB” 
LODTAB, see Appendix H.11.4 “LODTAB - Load Data Into 
An Array Based On FNDTAB”
SHORT can be specified for individual LINK paragraphs, to 
conserve MD array space in screens where SHORT cannot be 
applied to all LINKs (see Section 5.4.1 “LINK Paragraph”).

COMMA
NOCOMMA

Controls whether AdmTrans displays thousands separators 
for numerical fields at the screen level. 

COMMA inserts thousands separators (e.g. 12,345.77)

NOCOMMA suppresses the thousands separators (e.g. 
12345.77)

If no COMMA or NOCOMMA keywords are present the 
insertion of thousands separators is governed by the 
presence or absence of “,” (comma) in the string assigned to 
the logical name OPTION (described in  Section 2.4.2.1 
“Input and Output Representation Options”).

NOTMO Prevents a screen from timing out because of the global 
timeout feature (see Section 6.15.8 “Global Timeout”). 
Normally this should only be used for a timeout holding 
screen to prevent that screen from repeatedly branching to 
itself.
5 - 12   ADMINS User Guide



External Files
The file named in the TRANS_ENV statement overrides the setting of the logical 
name TRANS$ENV.  The TRAN_ENV statement should appear between the screen 
header line and the external file section.

5.3.3  ADM_DD Statement

A statement of the form:

ADM_DD pathname

can be included in the first screen of the TRS to specify an alternative ADMINS Data 
Dictionary  (see Appendix I: “ADD: The ADMINS Data Dictionary”) to use for all the 
screens in this TRO.

The Data Dictionary files in the folder specified in the ADM_DD statement will be 
loaded and used if the specified path resolves to a different location than is specified 
by the logical name ADM$DD.  The ADM_DD  statement should appear between the 
screen header line and the external file section.

5.4  External Files

 The second component of the screen description, external files, is concerned with the 
relationship of the active record on the screen to records in other (external) files. 
There are many kinds of operations that can be specified in the external files section: 
linking to existing records in another file, appending, inserting, or deleting records 
in another file to reflect user actions, and maintenance of another file as an index to 
records in the master file.

5.4.1  LINK Paragraph

The LINK paragraph is used to include fields from files other than the screen's main 
file in the active (virtual) record being displayed. Each LINK paragraph names the 
link file, the fields from the active record that form a key into the link file, and the 
names of the fields in the link file to be included in the screen's virtual record. These 
fields to be used through the link may be called by their link file names or may be 
"renamed" in the virtual record. The syntax of a LINK paragraph is as follows:

LINK LINK-FILE-NAME [W] [SHORT] [NULL] [=LINK_NAME]
K   TRS-KEY-FIELD-NAME
KC  TRS-KEY-FIELD-NAME
C   TRS-FIELD-NAME
...
L   LINK-FIELD-NAME [TRS-FIELD-NAME]
L   ...
...
END

3.Only one TRANS_ENV statement is allowed per TRS. If you want  another screen 
to utilize a different TRANS_ENV file, you must place that screen in another TRS. 
ADMINS User Guide  5 - 13



External Files
LINK-FILE-NAME is the file that contains the records to which the linkage is made. 
The "W", which is optional, means that the screen may be used to alter fields in the 
link file. Linked fields that are altered in the virtual record are usually "written back" 
when TRANS leaves the currently active virtual record.4

If necessary, link writing can be controlled more precisely via a record maintenance 
procedure running with TRANS, as described in Section 16.1 “Controlling Changes 
Written To Disk”.

As is described in Section 5.3.1.19 “SHORT: Conserve MD Array Space”, the TRS 
header line keyword SHORT prevents TRANS from storing the names of fields in 
LINK files in the DA array unless the fields are referenced in the TRS. This saves DA 
array space which can become scarce in complex screens.

When it is not be possible to use SHORT for an entire screen, you can specify SHORT 
for individual LINK paragraphs. As with SHORT on the TRS header line, SHORT 
must not be used when the LINK file is used with the MOVFLD, FNDTAB, or 
LODTAB subroutines.

 NULL is an optional keyword that tells TRANS to try the link even if the key values 
it has to make the link are all null (i.e. blank for alphas, zero for numerics). NOTE: 
Unless NULL is the last item on the first line of the LINK paragraph, or 
immediately before the "=LINK_NAME" link field renaming string, TRANS does 
not try or retry a link when the key values it has to search for are all null.

 =LINK_NAME5 is an optional syntax for automatically renaming all the fields 
linked in by a LINK paragraph. For example:

LINK COURSE.TAB W =CRS_
KC CID
L INSTRUCTOR
L CNAME

will automatically rename all the fields linked by the LINK paragraph by prefixing 
"CRS_" to the name of the field in the link file (i.e. linked in fields named 
"INSTRUCTOR" and "CNAME" would be renamed to "CRS_INSTRUCTOR" and 
"CRS_CNAME" for the remainder of the screen). =LINK_NAME must be the last 
item on the first line of the LINK paragraph, or immediately before the NULL 
keyword.

4.    By default in single-record screens links are written back when the active record 
is cleared from the screen, i.e. when the user presses the NEXT keystroke, or at 
other end-of-record processing points as described in Section 15.2.3 “End of 
Record Processing: S$S = 'EOFREC'”. Multi-record screens, by default, write back 
links whenever TRANS leaves the currently active record (e.g. via UP or DOWN 
arrows, or the PREV, NEXT, EXIT, BRNC, HOME, or NREC keys, etc.)

5.    This same syntax is used to identify particular links for the ADM$NLREC special 
RMO array, which is used to identify which files in a screen are currently 
ignoring record lockout, as described in Section 16.21.2 “Multi-Record Summary 
Screens”. If you wish to utilize ADM$NLREC without automatically renaming 
the link fields, use a dash (-) in place of the equal sign (=) in the syntax, i.e. -
LINK_NAME.
5 - 14   ADMINS User Guide



External Files
K in column 1 means that the named field (TRS-KEY-FIELD-NAME) is to be used as 
a key into the link file.

KC means the named field (TRS-KEY-FIELD-NAME) is to be used as a key, and that 
the link fields should be fetched whenever this particular field is changed on the 
screen.

C means that the link fields should be fetched whenever this particular field (TRS-
FIELD-NAME) is changed6 on the screen.

The TRS-KEY-FIELD-NAMES which are used as keys to match a record in the link 
file must be presented in the LINK paragraph in the order in which the keys are 
defined in the link file.

Next the field names in the linked record (LINK-FIELD-NAME) that are to be 
obtained via the linkage are listed. These field names are presented on "L" lines in 
terms of the name used in the link file, but they may be optionally renamed (TRS-
FIELD-NAME) for use in the remainder of the screen description. (You must rename 
the link fields if a field with the same name already exists in the active record).7

Both the field(s) used as the key(s) for the link, and the linked-in fields themselves, 
are restated in the field names section if they are to be included in the screen display. 
They may be D (display only) or E (editable) fields. The cursor movement sequence 
between editable fields is determined by their position in the field names section of 
the screen description. (Fields used as the keys in the LINK paragraph may also be L 
(loggable) fields or they may be "DR" or "ER" "local" fields. See Section 15.1.3 “Local 
Fields in the RMO” for an explanation of the "local" fields in the RMO.)

There may be many LINK paragraphs in a screen description. Also there may be 
several LINK paragraphs to the same external file in the same screen description. 
(Several LINK statements invoking the same file name cause that file to be opened 
only once by TRANS.)

Let us look at an example. The active record concerns a student registering for a 
course, i.e. there are fields called STUDENT and COURSE. There is also a master 
course file that contains descriptive information about each course, such as the course 
name (CNAME), the instructor (INSTRUCTOR), the meeting place (PLACE), the 
number of students (NSTDTS), etc. The LINK paragraph relating the student record 
(i.e. the active record) to the course record would look as follows.

LINK COURSE.TAB W
KC CID
L  CNAME
L  INSTRUCTOR TEACHER
L  PLACE
L  NSTDTS
END

6.    TRANS can alternatively re-read linked data directly from the disk whenever a 
KC or C field is entered, whether or not the value in the field is actually changed. 
This feature also overrides the buffering of linked data that is normally done in 
TRANS, and ensures that TRANS has access to absolutely up-to-date data as it 
exists on disk. This is enabled by including "s" (lowercase) in the string assigned 
to the logical name OPTION (see Appendix A: “Options”).

7.    All the fields linked by a LINK paragraph can be renamed automatically via the 
"=LINK_NAME" syntax on the first line of the LINK paragraph, as described 
earlier in this section.
ADMINS User Guide  5 - 15



External Files
The name of the master course file is COURSE.TAB. The linked course record may be 
modified by the user and consequently the course records are written back to the 
course master file when a student record is cleared from the screen, i.e. at end-of-
record processing (explained more fully in Section 15.2.3 “End of Record Processing: 
S$S = 'EOFREC'”). This is signified by the "W" following the course file name.

The course id (CID) field is used to form the link. Whenever a student record appears 
on the screen with a non-null CID value, or whenever the user changes the value in 
the CID field, then the student record is linked to the course record, and the fields 
called CNAME, INSTRUCTOR, PLACE and NSTDTS, are filled in on the screen. In 
the sample screen description containing the LINK paragraph above, the field called 
INSTRUCTOR in COURSE.TAB is renamed TEACHER in the screen.

TRANS treats errors entered into KC fields in a special way. When an entry error is 
detected TRANS enters Error Mode, which is cleared by pressing the ERR keystroke 
(see Section 6.2.4 “Error Mode”). Then the original value of the field whose entry 
triggered the error condition is redisplayed. If, however, the field triggering the error 
was a KC field in a LINK paragraph, then all the key fields (K and KC) in the LINK 
paragraph are reset to the original values that were in those fields before the link was 
executed. (If the logical name OPTION (see Appendix A: “Options”) includes the 
letter "L", only the actual field being entered is reset and the other K and KC fields are 
not reset.)

5.4.1.1  Chain Linking
It is possible that a linked field in one link paragraph is the key field in a subsequent 
link paragraph. That is, the second link should be re-executed whenever the KC field 
in the first link paragraph is changed. This is requested by placing the letter "C" (for 
link when changes) along with the KC (key and link when changes) fields in the 
second dependent link paragraph. The "C" next to a field name in a link paragraph 
causes reevaluation of the pertinent link when the field changes, even though the "C" 
field is not part of the key in the link being reevaluated. For example:

LINK ADDRESS.TAB
KC SS#                 "social security number"
L STREET               "link the address and ZIP for a SS#"
L ZIP
END
*
LINK ZIP.TAB
KC ZIP                 "ZIP is the key to link the town name"
C SS#                  "retry this link when SS# is changed"
L TOWN
END

5.4.1.2  Linking Without an Exact Match
The LINK function will either find an exact match in the link file or, if no match is 
found, will return with null values for the link fields. Four alternative linkage 
operations are also available in situations when an exact match may not be found but 
when an actual link is desired. These operations compare the link key values to the 
key values in the link file and link to the next higher or lower record in the link file, 
when there is no exact match, or even if there is an exact match.

1. LINKGT - Link Greater Than: Links to the next higher record in the link file 
even if there is an exact match. If there is none higher, null values are returned 
for the link fields. This happens when the link key values are equal to or exceed 
the last record in the link file.
5 - 16   ADMINS User Guide



External Files
2. LINKGE - Link Greater than or Equal to: Links to an exact match, or if one is not 
found, links to the next higher record in the link file. If there is none higher, null 
values are returned for the link fields. This happens when the link key values 
exceed the last record in the link file.

3. LINKLT - Link Less Than: Links to the next lower record in the link file even if 
there is an exact match. If there is none lower, null values are returned for the 
link fields. This happens when the link key values are lower than or equal to the 
first record of the link file.

4. LINKLE - Link Less than or Equal to: Links to an exact match, or if one is not 
found, links to the next lower record in the link file. If there is none lower, null 
values are returned for the link fields. This happens when the link key values 
are lower than the first record of the link file.

In this withholding table example, a SALARY is compared to a LO amount to 
determine a base tax amount plus a percentage to be applied to the difference 
between the SALARY and the LO amount.

*    WITHOLD.DEF
TAB 100
MARITL A1 KEY1      "Marital Status"
LO D2 KEY2          "Low Side of Salary Range"
AMT D2              "Base Tax Amount for Low"
PERCENT D2          "Percent Applied to Difference Over Low"

A link to a record in this table with an exact match or less than an exact match extracts 
the suitable value for computing the withholding.

...
LINKLE WITHOLD.TAB
KC MARITL
KC SALARY
L AMT
L PERCENT
END
...

The withholding table includes the following data:

MARITL         LO       AMT       PERCENT
...
S           4,000       150          0.12
S           6,000       275          0.14
S           8,000       400          0.17
...

If the link keys are "S" and "6,400", the linked fields AMT and PERCENT will contain 
the values "275" and "0.14" respectively. Note that if a LINK statement was used 
instead of the LINKLE statement, null values would have been returned for the link 
fields because an exact match of key values is not found in the link file.
ADMINS User Guide  5 - 17



External Files
5.4.2  APPEND Paragraph

The APPEND paragraph is used to instruct TRANS to  append a record consisting of 
fields from the active record into an external file.8 The active record consists of actual 
fields or virtual fields or fields calculated by a record maintenance procedure (RMO) 
operating behind the screen. (The APPEND paragraph should not be confused with 
the APPEND keyword in the screen header line which enables Append Mode 
described in Section 6.2.2 “Append Mode”. The APPEND paragraph pertains to 
adding records to an external file, whereas Append Mode pertains to adding records 
to the master file.)

The syntax of the APPEND paragraph is as follows:

APPEND APND-FILE-NAME CONDITION-NAME LETTER 
TRS-FIELD-NAME [APND-FIELD-NAME]
TRS-FIELD-NAME [APND-FIELD-NAME]
...
END

The paragraph instructs TRANS that when the user at the terminal (or the RMO) sets 
the field called CONDITION-NAME to the single character LETTER, then those 
fields in the active record called TRS-FIELD-NAME should be used to set the fields 
called APND-FIELD-NAME to make a new record for the APND-FILE-NAME file, 
and then that newly formed record should be appended to that file. Then TRANS 
resets the CONDITION-NAME field to blank. The CONDITION-NAME field, which 
may be an actual field in the file or a local ER (or DR) field, must have the field type 
A1.

(As with LINK, the active fields (TRS-FIELD-NAME) in the APPEND paragraph may 
be virtual fields (see Section 5.5.4 “Virtual Fields”) or local fields in a record 
maintenance procedure (RMO) behind the screen (see Section 15.1.3 “Local Fields in 
the RMO”). If any of these fields are local in an RMO they must also appear in the 
field names section of the screen.)

For example, the following APPEND paragraph is used to append a record to a 
payment file (PAYM.MAS) from a purchase order screen running on a purchase 
order master file. When the condition name ACTION is set to "P", then the fields 
#VEND, PDATE, #INVOICE, AMOUNT, #PO from the purchase order master file 
are appended as a record to PAYM.MAS.

APPEND PAYM.MAS ACTION P
#VEND
PDATE
#INVOICE #INV
AMOUNT AMT
#PO
END

Notice that the fields in the purchase order master file record called #INVOICE and 
AMOUNT are called #INV and AMT in PAYM.MAS.

When the user enters the letter "P" in the field "ACTION", the record is added to the 
external file immediately, and the CONDITION-NAME field (ACTION) is cleared. 
Thus several records can be added to the external file from one active record on the 
screen. (Section 15.4.2 “Example of Appending Via the RMO” describes a more 
automatic method of appending records to external files.)

8.    Generally the APPEND paragraph can add records to any ADMINS data file, 
including the main file of the screen. However, if the screen is a multi-record 
screen (see Section 5.9 “Multi-Record Screens”), the APPEND paragraph file 
cannot be the main file of the screen.
5 - 18   ADMINS User Guide



External Files
5.4.2.1  APPEND Paragraph INSERT and DELETE
The APPEND paragraph can also support inserting and deleting records in the file 
called APND-FILE-NAME. The insert and delete functions are enabled only if the 
letter "V" is present in the logical name OPTION (see Appendix A: “Options”).

The syntax of the APPEND paragraph is the same. However the choice of the 
"LETTER" in "CONDITION-NAME" invokes additional logic. If the insert and delete 
functions are enabled then any LETTER in the CONDITION-NAME field invokes 
execution of the paragraph. That is, the value of the CONDITION-NAME field does 
not have to equal the value specified on the APPEND paragraph line, to trigger the 
action. Instead, the choice of letters will direct TRANS to perform different functions.

There are three condition letters reserved for special functions, which therefore 
should not be used to instruct appends.

All letters other than I, A or D instruct appending, i.e. adding the record to the end of 
the file.

5.4.3  INDEX Paragraph

ADMINS data files maintain an internal index of key values that allows records to be 
accessed directly (see Appendix E: “File Concepts”). Finding a record directly 
(without doing a sequential record-by-record search) using any other combination of 
fields requires an external index to the file. An external index must be built and 
maintained for each additional index criterion (combination of fields) by which you 
want direct access to information in the master file. External indexes provide quick 
access to the data by various index criteria while the bulk of the data is kept in a single 
file.

To illustrate:

A real estate tax assessment file is ordered as follows:

*
MAP         X99       KEY1      "Map number"
PARCEL      X9999     KEY2      "Parcel number"
UNIT        A10       KEY3      "Unit ID for multi-unit"
*

Condition Letter Description

I Insert whether or not this key is already present.

A Add, i.e. insert only if this is a new record.

D Delete the record with this key.
ADMINS User Guide  5 - 19



External Files
Each record contains information about a property, including the information about 
who owns the property:

*
OLASTNAME   A20                 "Owner's last name"
OFIRSTNAME  A20                 "Owner's first name"
OMI         A20                 "Owner's middle init."
*

Records in the assessment file can be directly accessed via the key fields, i.e. in 
TRANS you can enter MAP, PARCEL, and UNIT to find a record. If, however, you 
want to find assessment data using the property owner's name, you can build an 
index file that cross-references the MAP/PARCEL/UNIT combination for each 
owner's name (OLASTNAME/OFIRSTNAME/OMI). Screens (and reports, see 
Chapter 7: “AdmREPORT: Creating Reports”) can then use the owner's name to look 
up MAP/PARCEL/UNIT in the index file, and then LINK using that value to the 
assessment file.

External index files are simply ADMINS files created with DEFINE. The fields you 
want indexed are keys in the index file. The key fields of the master file are data fields 
in the index file. The index file is loaded by SORTing the records of the master file 
into the index file (see Section 4.5 “SORT Example Creating an Index File”).

The file definition for the index file in our above illustration may look as follows:

IDX  10000
LAST        A20       KEY1      "Owner's last name"
FIRST       A20       KEY2      "Owner's first name"
MI          A20       KEY3      "Owner's middle init."
MAP         X99                 "Map number"
PARCEL      X9999               "Parcel number"
UNIT        A10                 "Unit ID for multi-unit"

In screens, the INDEX paragraph maintains an external index file for the master file 
by inserting and/or deleting records in the index file when the values of the non-key 
fields being indexed are entered or changed in the main file.

Continuing the above property tax assessment illustration, if a property changed 
hands, the MAP/PARCEL/UNIT record for that property might be edited in a 
screen, with the new owner's name substituted for the old. An INDEX paragraph 
would automatically delete the old owner's record from the index file, and insert a 
new record for the new owner of that MAP/PARCEL/UNIT. The INDEX paragraph 
maintains the index file as if it had just been sorted from the master file.

The INDEX paragraph has the following format:

INDEX          INDEX-FILE-NAME      [NO_NULL] 
TRS-FIELD-NAME [INDEX-FIELD-NAME]
TRS-FIELD-NAME [INDEX-FIELD-NAME]
...
END

After the INDEX keyword, the index file is named (INDEX-FILE-NAME). Then the 
fields in the active record that are the index criteria (the keys in the index file) are 
named, followed by the key fields in the active record (TRS-FIELD-NAME). The 
fields must be fields in the active record, not local fields or link fields in the screen. 
When the TRS-FIELD-NAME for a field differs from the name of the corresponding 
field in the index file (INDEX-FIELD-NAME), both names are stated.
5 - 20   ADMINS User Guide



External Files
The index paragraph and field names section for a screen that displays property 
assessment records might be as follows:

...
INDEX OWNER.IDX
OLASTNAME LAST  
OFIRSTNAME FIRST
OMI MI        
MAP         
PARCEL      
UNIT
END
...
E MAP
E PARCEL
E UNIT
...
E OLASTNAME
E OFIRSTNAME
E OMI
...

Note that in the INDEX paragraph, both the field name in the master file and the field 
name in the index file ("OLASTNAME LAST") are given when they are different.

When the user clears a tax assessment record from the screen, TRANS will check if 
any index criterion field has been altered, namely OLASTNAME, OFIRSTNAME, or 
OMI. If so, TRANS automatically updates the index file.

If a record is deleted from the master file, TRANS updates the index by deleting the 
corresponding index record. If a record is added to the master file, TRANS inserts a 
corresponding index record in the index file.

Index files are updated during "end of record" processing, as described in Section 
15.2.3 “End of Record Processing: S$S = 'EOFREC'”.

5.4.3.1  NO_NULL: Suppress Null Keys in Index File
The NO_NULL keyword after the filename on the first line of the INDEX paragraph 
instructs TRANS not to insert records in the index file with null key values.

INDEX FILE-NAME NO_NULL

In the example from the previous section, if the master file record for a MAP/
PARCEL/UNIT was updated and the fields for the owner's name were all changed 
to blank, the INDEX paragraph would normally delete the record for the old owner 
in the index file and insert a new record with null (blank) keys. With NO_NULL in 
effect records with null keys are not inserted in the index file, If NO_NULL was in 
effect, the INDEX paragraph would remove the record for the old owner but would 
not insert a record with a null key.

NO_NULL also prevents records with null keys from being inserted into the index 
file when new records are added to the master file that have null values for indexed 
fields.
ADMINS User Guide  5 - 21



Field Names
5.5  Field Names

The third component of a screen description, the field names section, identifies the 
fields to be displayed or referenced by the screen. The field names section may also 
contain:

1. Message statements to be displayed on the screen
2. Check statements for validating data entry
3. REQUIRE statements which set out the required fields
4. BOX statements which define graphic display boxes and lines
5. ALLOW statements that identify fields for special entry processing
6. NOQUERY statements that exclude fields from Query Mode processing.
7. CAPS (case-insensitive entry) and CAP1 (capitalize each word) statements.
8. PushButtons

The order of the fields in the field names section determines in what order the cursor 
will move from field to field. The field names are placed one to a line.

Non-key fields in the master file which are not to be displayed need not be included 
in the list, but all the key fields must appear in order, together, in the list even if they 
are not actually displayed on the screen.

The name of each field is preceded by a code which controls the role of that field 
name on this particular screen.

These codes are as follows:

5.5.1  Display

D D stands for display. D fields are only displayed, and cannot 
be changed via this particular screen. D fields are fields from 
the master file or fields that have been linked via a LINK 
paragraph. The cursor skips over D fields when the user 
presses a directional arrow or the ENTER keystroke, unless 
the field is a text field or has a  window.a For example:

D NAME
D PAYCODE
5 - 22   ADMINS User Guide



Field Names
DR DR also stands for display; DR fields cannot be changed 
directly by the user at the terminal. The cursor skips over 
these fields. The "DR" designation is usually used for fields 
which are "local", i.e. are not in an actual record, and are 
usually associated with a record maintenance procedure 
(RMO) behind the screen. The DR designation may also be 
used on actual fields that will be changed by the RMO, and 
need to be refreshed (redisplayed) by TRANS. A more 
complete discussion of "local" fields is in Section 15.1.3 “Local 
Fields in the RMO”. For DR fields which are local, the syntax 
must include the field type. For example:

DR CODE/A2
DR AMOUNT/D2
DR COUNT/I

 For DR fields which have already been encountered in the 
TRS by AdmScreen (i.e. fields in the master file or in link 
files), the field type specification is optional. For example:

DR ENCUMB
DR BALANCE

 When the field type is included for DR fields already 
encountered in the master file or link file, AdmScreen verifies 
that the specified field type matches the field type defined in 
the file, and exits with an error message in case of a field type 
mismatch.
A reference to a Data Dictionary element may be substituted 
for the field type specification as described in Section 1.4.5 
“Referencing Data Dictionary Elements”, e.g.

DR LASTPO#/@PO#

a.    The cursor stops at a D field if it is a text field (field types TInn and TXnn) 
so that you can view (only) its contents. See Section 5.15 “Text Fields”. The 
cursor will also stop at a D field if a LOOKUP window is specified for that 
field, so that you can display the  window. See Section 5.11 “LOOKUP 
Window”.
ADMINS User Guide  5 - 23



Field Names
5.5.1.1   Restrict TRANS to Key Range

5.5.2  Editable

DL DL stands for Display and Lock. DL fields restrict TRANS to 
a key range, starting with the highest key, KEY1. If the screen 
contains "DL KEY1_FIELD", then KEY1_FIELD will not be 
editable, and need not even appear on the screen. If TRANS 
branches to this screen and KEY1_FIELD has a value of 500, 
then TRANS will only access records where KEY1_FIELD is 
500.a

TRANS will not allow deletion of the last record in a locked 
range. Record transfer operations (the TRF key), and record 
insertions will only insert records in the locked range, as only 
the unlocked keys are prompted for. Append mode is not 
allowed on screens that have DL fields. If APPEND is present 
on the screen header line, a warning message is issued and 
the APPEND keyword is ignored.
The following field declarations would restrict TRANS to 
only those records with the values of FUND (KEY1), DEPT 
(KEY2), and OBJ (KEY3) used to enter the screen.

DL FUND
DL DEPT
DL OBJ

a.     It is the responsibility of the application developer to ensure that a branch 
is made to the intended range. DL locks TRANS to the key range defined 
by the record it lands on after the branch, which will be the NEXT record 
in the file after the branch key values specified, if no record matches the 
branch key values.

E E stands for editable. E fields from the master file can be 
changed on the screen by the user. Changes to E fields are not 
logged into the field log (see Section 5.3 “Screen Header 
Line”). Rather, L for loggable, should be used if logging is 
desired.
The field name can be followed by a "query" name. The query 
name, if present, is used to perform the initial letter matching 
search during query mode described in Section 5.3.1.4 
“TABBING or QUERY: Field Selection Mode”; a match on 
the query name moves the cursor to the field to be entered. 
Otherwise the name from the file definition is used for initial 
letter matching. For example:

E NAME
E NAME LASTNAME

 If the editable field is a text field (field types TXnn and TInn) 
you must open the TED window on the file in order to edit it, 
as described in Section 5.15 “Text Fields”.
5 - 24   ADMINS User Guide



Field Names
ER ER also stands for editable. The relationship of an ER field to 
an E field is the same as described above for a DR versus a D 
field. For local ER fields the syntax must include the field 
type and may have a query name (see Section 5.3.1.4 
“TABBING or QUERY: Field Selection Mode”).
ER fields are typically used for editable local fields displayed 
on the screen, actual fields in the file which are change by the 
RMO behind the screen (see Section 15.1.3 “Local Fields in 
the RMO”) and need to be refreshed by TRANS, editable link 
keys or link fields which are either local fields or are being 
changed by the RMO. For example:

ER CODE/A2
ER AMOUNT/D2 AMT
ER COUNT/I

For ER fields which have already been encountered in the 
TRS by AdmScreen (i.e. fields from the master file or link 
files), the field type specification is optional. For example:

ER ENCUMB
ER BALANCE

When the field type is included for ER fields already 
encountered in the master file or link file, AdmScreen verifies 
that the specified field type matches the field type defined in 
the file, and exits with an error message in the case of a field 
type mismatch.
A reference to a Data Dictionary element may be substituted 
for the field type specification as described in Section 1.4.5 
“Referencing Data Dictionary Elements”, e.g.

ER LASTPO#/@PO#
ADMINS User Guide  5 - 25



Field Names
5.5.3           Loggable

5.5.4   Virtual Fields

L L stands for loggable. L fields are fields from the master file 
that operate as E fields, except that changes to L fields are 
logged in the field log file. L fields may have a query name. 
For example:

L HOURS
L PAYRATE RATE

LR LR stands for loggable and refreshable. The LR designation 
allows editable fields from the master file to be changed by 
the RMO and refreshed on the screen, and logged in the field 
log file. LR fields operate only when LFEXIT control is active 
(see Section 5.3.1.18 “LFEXIT or LFBACK: Update Mode 
Control”). That is LR fields operate when the keyword 
LFEXIT or LFBACK is included in the screen header line, 
and/or there is at least one REQUIRE statement (see Section 
5.5.5 “REQUIRE Statement”).
The syntax for LR fields may include a query name. The field 
type specification is optional. When the field type is 
included, AdmScreen verifies that the field type matches the 
field type in the master file and exits with an error message 
in the case of a field type mismatch.

LR HOURS
LR PAYRATE RATE
LR TOTAMT/D2

A reference to a Data Dictionary element may be substituted 
for the field type specification as described in Section 1.4.5 
“Referencing Data Dictionary Elements”, e.g.

LR LASTPO#/@PO#

V V stands for virtual. V fields do not exist in the data record, 
whereas D, E and L field names are all from the data record. 
Rather V fields are computed for each record for display 
only. For example:

V XFUND/X9999 0100
V MSG/A7 'Overdue'
V TAXAMT/D2 6.75
V GROSS/D HOUSE + OUTBLDG + LOT + FARM
V RETIREMENT/D IF GROSS - PAY LE 6600 :
THEN GROSS - PAY * .025 :
ELSE GROSS - PAY * .05 END

The rules for computing V fields are identical to the rules for 
the CREATE statement in AdmREPORT. These rules are 
discussed in Chapter 8: “Expressions”.
Note in the example that the "colon" continuation applies to 
the virtual statement, i.e. to continue the current line end the 
line with a colon preceded by a space and indent the next 
line.
5 - 26   ADMINS User Guide



Field Names
5.5.5  REQUIRE Statement

The REQUIRE statement is used to specify fields in the master file record and local 
fields which must be non-null9 before the user can file the record to the disk. 
REQUIRE may apply to ER, DR, and link fields as well as fields in the active file.

REQUIRE is effective in three modes: Update, Insert, and Append. The presence of 
REQUIRE statements automatically invokes LFEXIT control in Update Mode even if 
the keyword LFEXIT or LFBACK is not on the screen header line (see Section 5.3.1.18 
“LFEXIT or LFBACK: Update Mode Control”). Thus, in Update Mode, as well as 
Insert and Append Modes, REQUIRE ensures that the user can only write the record 
to disk via NEXT, and cannot leave the record until all required fields are entered.

In Update Mode, the LFBACK keyword (see Section 5.3.1.18 “LFEXIT or LFBACK: 
Update Mode Control”) can be used to provide a way to leave the record without 
filing the current record. For example, if the user is unable to enter all of the required 
fields and therefore wants to backout of any changes to the record.

In Append Mode the user can always leave the record without writing anything to 
the file by pressing APND. However, to file the record in Append Mode the required 
fields must be non-null before the user can file the record with NEXT.

In Insert Mode, there is no way to leave the record except by pressing NEXT, which 
files the record.

Note that, as with LFEXIT control, REQUIRE is only activated after the user types 
into a non-key field on the screen. In Update Mode the user is not kept in a record 
with null required fields unless a non-key field in the record was typed into.10 In 
Append or Insert Modes, or when the user enters any non-key field in Update Mode 
activating LFEXIT control, and then presses NEXT while any required field is null, 
TRANS displays the message "<field> IS REQUIRED". TRANS does not call the 
RMO, file the record, or go to the next record: the user must press the error key 
clearing the error condition to continue (when the error condition is cleared the 
cursor is placed at the REQUIRED field that caused the error condition.)

The REQUIRE statement is placed in the TRS field names section. If a REQUIRE 
statement refers to a field that is not in the active file, the field name must be defined 
in the field names section before that REQUIRE statement.

The REQUIRE statement has the following syntax:

REQUIRE field_1 field_2 ...

There may be any number of REQUIRE statements in a TRS, and each REQUIRE 
statement can specify up to 29 required fields.

REQUIRE statements may be used with single record screens only.

9.    A non-null field is one that has a non-zero or non-blank value.
10.    Fields identified in the ALLOW statement also do not activate LFEXIT control 

(see Section 5.5.15 “ALLOW statement”).
ADMINS User Guide  5 - 27



Field Names
The "<field> IS REQUIRED" messages occur in the order of the fields in the REQUIRE 
statements. This is not necessarily the same as the order of the fields in the field 
names section. For example, FLD1 might be the first editable non-key field on the 
screen and FLD6 might be the sixth. If the TRS contains the statement "REQUIRE 
FLD6 FLD1", and both of these fields are blank when the user presses NEXT, then 
TRANS displays the message "FLD6 IS REQUIRED". Then if the user enters a value 
in FLD6 but FLD1 is still blank, TRANS displays the message "FLD1 IS REQUIRED". 
Thus the screen designer can control the order in which the user is reminded to fill in 
required fields.

5.5.6  Check Statement

A Check statement is used to specify conditions under which the data being typed 
should be considered erroneous. There are two types of Check statements which may 
be used in a TRS for validating data entry. (1) The "C" Check statement which is 
evaluated each time data is entered into any field. And (2) the "CLF" Check statement 
which is only evaluated when the user presses NEXT to file a record. In Update 
Mode, the CLF Check statement is only evaluated when LFEXIT control is active (see 
Section 6.2.1.1 “Update Mode Under LFEXIT Control”).
5 - 28   ADMINS User Guide



Field Names
 

C C stands for check and is used to check for errors whenever 
data is entered into any field. C is followed by a conditional 
expression on the same line and an error message on the next 
line. For example:

C NET LT 0
NET NEGATIVE. EXEMPTIONS EXCEED 
ASSESSMENTS.

 This example considers it an entry error when entered data 
causes the value of NET to be less than zero. The error 
message "NET NEGATIVE. etc." is displayed when this 
occurs.
Any data entered at the terminal which causes a C 
conditional expression to be evaluated to "true" is considered 
an entry error. The entered data is not accepted, the error 
message is displayed at the bottom of the screen, and TRANS 
enters Error Mode which can only be cleared by the user 
pressing the ERR keystroke.
When a value is entered it is tested for all the intrinsic format 
checks, (i.e. does a decimal value contain alphabetic 
characters?). Then all the virtual fields and check expressions 
are evaluated. (A check expression may reference any virtual 
field name that precedes it in the field names section. 
Computed virtual fields need not be displayed on the screen; 
that is, virtual field names need not be included in the layout 
section.) If any of the check expressions are evaluated to be 
"true" then the entered data is rejected and all the virtual 
expressions are re-computed using the previous (correct) 
value. If, on the other hand, an entered value does not cause 
any check expression to evaluate to "true", then the value is 
accepted, and all the virtual fields are "refreshed" on the 
screen to reflect the newly entered value. (A more detailed 
discussion of the sequence of events that occurs when a value 
is entered can be found in Section 15.2.2 “Field by Field 
Processing: S$S = 'fieldname'”.)
Note that every C Check statement is evaluated each time 
data is entered into any field. Therefore C Check statements 
must take into account the possibility that the user has not yet 
gotten to the particular field on which the Check statement is 
operating. For example, if we are checking that amount paid 
(AMTPD) is not greater than amount due (AMTDUE), we 
should also check that these values are non-null, i.e. their 
data has been entered. For example:

C AMTPD GT AMTDUE AND AMTPD NE 0 :
AND AMTDUE NE 0 PAID EXCEEDS DUE

Note that the colon continuation is applicable to the 
expression portion of the Check statement.
ADMINS User Guide  5 - 29



Field Names
CLF CLF means "check at NEXT". CLF is usually used to validate 
data entry where checking relationships involves more than 
one field. CLF Check statements are not evaluated until the 
user presses NEXT to file the record.
CLF Check statements have the same syntax as C Check 
statements, except that the statement starts with the 
designator "CLF" instead of "C".
For example:

CLF APPR EQ '1' AND (DIST NE '1' AND 
'2' AND '9')
DISTRIBUTION CODES ARE 1, 2 OR 9 FOR 
APPROPRIATION CODE 1

 In this example, a user might enter an appropriation code of 
'1' while the distribution code in the record is blank, without 
triggering the Check statement. The user continues to enter 
fields in the record, including the distribution code. The CLF 
Check statement is not evaluated until the user signals that 
all fields have been entered by pressing NEXT.
CLF Check statements can be used in screens with the 
APPEND, INSERT, LFEXIT, or LFBACK screen header 
keywords, and in screens which include REQUIRE 
statements (see Section 5.5.5 “REQUIRE Statement”). That is, 
the CLF Check statement operates in situations where the 
NEXT key is the only way to file the active record. If the 
screen does not have the APPEND, INSERT, LFEXIT, or 
LFBACK keywords but has only REQUIRE statements, then 
the first REQUIRE statement must precede the first CLF 
Check statement in the field names section of the TRS.
In Update Mode, CLF Check statements are ignored unless 
LFEXIT control is active. Note that if CLF Check statements 
are used in a screen in Append Mode, they will be ignored 
when the screen is in Update Mode unless LFEXIT, LFBACK, 
or REQUIRE is used to invoke LFEXIT control in Update 
Mode.
CLF Check statements may be used in conjunction with the 
table driven error message facility described in Section 5.5.6.1 
“Table Driven Check Statement Error Messages”.
C Check statements and CLF Check statements can be 
combined in a screen.
In applications with complex validation checking, the use of 
REQUIRE statements and CLF Check statements often 
allows screen designers to achieve a high degree of control 
with virtually no RMO programming. A very simple 
example is shown below. Note that LFEXIT control is implicit 
in this TRS example since the TRS contains a REQUIRE 
statement.

PO PO.MAS 1 NOMSG
*
LINK FUND.TAB
KC FUND
L DESC FDESC
END
...
5 - 30   ADMINS User Guide



Field Names
                 

*
E PO#
E FUND
E OBJECT
E APPR
E DISTRIB
E ITEM#
E QUANTITY
D AMT
E TOTAMT
D FDESC
...
 *
REQUIRE FUND OBJECT APPR ITEM# QUANTITY 
TOTAMT
*
C QUANTITY LT 0
Quantity must be a non-negative value
*
* If the APPR (appropriation) code is 
set to 1, then 
* the DISTRIB (distribution) code must 
be 1 or 2 or 9.
*
CLF (APPR EQ '1') AND (DISTRIB NE '1' 
AND '2' AND '9')
Valid Distribution Codes are 1, 2 or 9 
for Appropriation Code 1 
*
CLF QUANTITY * AMT NE TOTAMT
Incorrect Order Total
*
C FUND NE 0 AND FDESC EQ ' '
Invalid fund code
PO PO.MAS 1 NOMSG
*
LINK FUND.TAB
KC FUND
L DESC FDESC
END

SCREEN
CE PURCHASE ORDER SCREEN
       PO#: PO------
        Fund: FUND-     FDESC---------
        Object: OBJ----   ODESC-------
Appropriation Code: AP-
Distribution Code: DIST-
Item: ITEM#-----  IDESC---------------
Quantity: -------QUAN
Amount: --------AMT
Total Amount: -----TOTAMT
END

This kind of error checking can also be achieved using an 
RMO behind the screen and the RJ$RJ local field (see Section 
16.1.2 “Reject APPEND, INSERT, UPDATE, DELETE, or 
Transfer”). However, the CLF Check statement technique is 
preferable to the RJ$RJ technique both for the simplicity of 
CLF and because the CLF Check statement error message is 
situation specific.
ADMINS User Guide  5 - 31



Field Names
5.5.6.1  Table Driven Check Statement Error Messages
The error message displayed when a Check statement condition is evaluated as true 
can be taken from an error message file, rather than including the error messages in 
the TRS instruction file. In order to do this, the first link paragraph in a screen must 
be to an error message file.

The error message table is an ADMINS data file keyed on an integer error message 
code number, with an alphanumeric message field. The message field may be of any 
length up to A80. (TRANS will display up to 72 characters on the error message line.) 
In addition, the error message table may contain any other fields required for 
documentation and control.

The first LINK paragraph in each screen links error messages from the table. The 
LINK paragraph must be in the following format:

LINK ERROR-MESSAGE-FILE-NAME
KC E$RR
L  E$RRMSG 
END

E$RR and E$RRMSG are special reserved field names. E$RR must be an integer DR 
field in the TRS field names section. If the field containing the error message has a 
name other than E$RRMSG in the link file then it must be renamed to E$RRSMG in 
the link paragraph. For example if the message field is named MSG in the link file 
ERRMSG.TAB, the following link paragraph syntax should be used:

LINK ERRMSG.TAB
KC E$RR
L MSG E$RRMSG
END

There are two different ways to use Check statements to activate the link to the error 
message table. The method described below uses Check statements in the TRS to set 
the error code. Section 16.18 “Using the RMO with Table Driven Error Messages” 
describes the use of an RMO behind a screen to set the error code.

Check statements used for triggering table driven error messages are similar to other 
Check statements, and have the following format.

C CONDITIONAL EXPRESSION
ERR=n

CLF CONDITIONAL EXPRESSION
ERR=n

The Check statement uses the same syntax as described in Section 5.5.6 “Check 
Statement”, i.e. it begins with the letter "C" (check) or the letters "CLF" (check at 
NEXT) followed by a conditional expression. The second line of the Check statement, 
however, must begin with the 4 characters "ERR=" followed immediately by an error 
code value, with no embedded spaces. The error code value is a one to five digit 
number in the range of 1 to 32767, and should not contain a comma, or any other text. 
For example,

C EMPL# NE 0 AND LASTNAME EQ ' '
ERR=1201
5 - 32   ADMINS User Guide



Field Names
If the condition is evaluated as true (e.g. the user enters an employee number and a 
last name is not found), TRANS uses the error code number as the link key to the 
error message file. If a record with that key value (e.g. 1201) is found in the link file, 
the field E$RRMSG is displayed at the bottom of the screen where error messages 
typically appear. If no such record exists in the error message table with that error 
code, or if E$RRMSG is blank in that record, then the message "ERR=n" is displayed.

This kind of table driven Check statement, as well as standard Check statements 
(both C and CLF), may be mixed within a screen.

5.5.7  Message Fields

 

5.5.8  Internal Fields

An internal field is a field maintained by TRANS to provide the active screen with 
information about current activity. Internal fields should be placed in the field names 
section as "DR" (display only "local" fields) if they are to appear on the screen. 
Internal fields are usable even if there is no record maintenance procedure behind the 
screen. However they are also accessible, via a local field definition, to the RMO.

The following internal fields are available in TRANS.

M M stands for message. M fields are used to display text 
messages on the screen when some condition exists in the 
active record. The field name specified after M is not from the 
record. Rather it is the name of a field which will appear in 
the screen layout section described below. For example:

M CRSTAT BALANCE - PRICE LT 0
CREDIT OVERDRAWN

 This example says that when the credit balance value minus 
the price value is less than zero, display the message "credit 
overdrawn" in the display field called CRSTAT ("credit 
status") that will appear in the screen layout.
The general syntax for the M code is "M field-name 
conditional expression" on one line and the message of the 
text on the next line. A particular message field, e.g. CRSTAT, 
can be used in several Message statements, each with 
different messages for different conditions. That is, the 
Message statement is provided to allow the user to place one 
of several data dependent messages anywhere on the display 
screen.
The colon continuation is also applicable to the expression 
portion of the message statement.
ADMINS User Guide  5 - 33



Field Names
5.5.8.1  TODAY: Current Date
 The field TODAY contains the current date11. (See Section 2.4.2 “Field Data Types” 
for a discussion of ADMINS date formats.) TODAY is included in the field name 
section as follows:

DR TODAY/DA
        
or

DR TODAY/DT

 (If TODAY is used as a "local" field in the RMO running with the screen (as described 
in Section 15.1.3 “Local Fields in the RMO”) it must be included in the field 
declaration section of the screen description.)

5.5.8.2  NOW: Current Time
The field NOW is set with the current system time whenever a value is entered into 
any field on the screen. NOW is displayed in military time, i.e. HH:MM:SS if it is 
declared as field type A8 and HH:MM:SS.TT (TT is hundredths of a second) if it is 
declared as field type TM. NOW is included in the field name section as follows:

DR NOW/A8

or 
  
DR NOW/TM

(If NOW is used as a "local" field in the RMO running with the screen (as described 
in Section 15.1.3 “Local Fields in the RMO”) it must be included in the field 
declaration section of the screen description.)

5.5.8.3  Terminal Number
The field T$T is loaded with the contents of the logical name ADM$TERM (see 
Appendix C.1.1 “Differences in Print File and Temporary File Naming”) which is 
usually the last two or three digits of the terminal number. For example, if the value 
of the logical name ADM$TERM contained the string "B2" for a user at a particular 
terminal, then T$T would contain "B2". T$T is included in the field name section as 
follows:

DR T$T/A4

 (T$T is shown as an A4 type field. It may be also be an A2 or I type field.)

11.You can use the logical name ADM$TEST_TODAY to set “test values” for the 
TODAY and NOW fields. Set ADM$TEST_TODAY to a date in the format YYYY-
MM-DD (this format is always used when assigning this logical regardless of the 
ADM$DATE setting). ADMINS will convert the specified value  to the current 
date format (using ADM$DATE if assigned),  E.g.

ASSIGN 2009-12-24 ADM$TEST_TODAY
will set the internal field TODAY to 12/24/2009 instead of the current date, and 
set the internal field NOW to 23:23:23 instead of the current time of day (NOW is 
always automatically set to this value when this logical is assigned).

ADM$TEST_TODAY is supported in all commands that support TODAY and 
NOW
5 - 34   ADMINS User Guide



Field Names
5.5.8.4  D$IR: Default Directory
The D$IR field is an A24 field which is set to the user's default directory. For example, 
if the user's current default directory is [ACCTG], then D$IR would be set to 
"[ACCTG]". D$IR is included in the field names section as follows:

DR D$IR/A24

The D$IR subroutine returns both the device and directory specification as follows:

DISK: [DIR]

5.5.8.5  G$RP: UIC Group Number
The field G$RP12 is an integer field containing the group number of the UIC under 
which the user is currently operating. For example, if the user's UIC is [65,30] then 
G$RP would be set to 65. G$RP is included in the field names section as follows:

DR G$RP/I

5.5.8.6  U$SER: UIC User Number
The field U$SER is an integer field containing the user number of the UIC under 
which the user is currently operating. For example, if the user's UIC is [65,30] then 
U$SER would be set to 30. U$SER is included in the field name section as follows:

DR U$SER/I

5.5.8.7  ADM$SCRNAM
If the reserved field ADM$SCRNAM/An is present, TRANS places the current 
screen name in it, and also assigns the current screen name to the process logical 
name ADM$SCRNAM. For example, if the current screen name is VEND_ENTRY 
then ADM$SCRNAM would be loaded with the value "VEND_ENTRY", and the 
string "VEND_ENTRY" would be assigned to the logical name ADM$SCRNAM in 
the process logical name table. ADM$SCRNAM is included in the field name section 
as follows:

DR ADM$SCRNAM/A16

5.5.8.8  ADM$TRONAM
The reserved field ADM$TRONAM/An works the same way as ADM$SCRNAM 
(see Section 5.5.8.7 “ADM$SCRNAM”), but for the TRO name. TRANS puts the 
current TRO name into ADM$TRONAM/An, and assigns the TRO name to the 
process logical name ADM$TRONAM. ADM$TRONAM is included in the field 
name section as follows:

DR ADM$TRONAM/A16

5.5.8.9  ADM$CHKLCK: Check record locked status
If the special field ADM$CHKLCK is present in the TRO, and the screen has an RMO 
associated with it, then ADM$CHKLCK indicates if the current record is locked by 
another user.  This check can be used when the main file is  being accessed “read-
only“ or “multi-user13” (-R, -RX or -M).

12.    G$RP is a global field (see Section 5.5.9 “Global Fields”).
ADMINS User Guide  5 - 35



Field Names
If ADM$CHLCK is specified as an integer, the field is set to 1 if a record is locked and 
zero otherwise.

If ADM$CHLCK is specified as an alpha field, the field is loaded with the nodename 
and username (e.g. \\nike\bobama) of the user who is locking the record, and is set 
to ‘ ‘  (blank ) if the record is not locked.  It is the responsibility of the developer to 
specify the size of the field sufficient to accomodate the largest string that could be 
loaded.

ADM$CHKLCK can be used, for example, in read-only screens to indicate to the user 
which records are locked by other users, so they can see which records are available 
for them to update or otherwise process.

5.5.9  Global Fields

Global fields allow the screen developer to hold information in TRANS as the user 
branches from screen to screen.

Global fields can be thought of as the "DEF" of a 1,024 16 bit word record that is 
constantly kept in memory. This record is only erased when the user exits TRANS 
completely. (Even the EXIT keystroke, see Section 6.7 “Control Functions”, does not 
erase the global record.)

13.If the current record is being accessed multi-user (-M) in a single-record screen 
using this check may not make sense. If the record you are trying to access is 
locked you would be prompted “wait or ignore” before TRANS can evaluate 
ADM$CHKLCK.  In multi-record screens however, ADM$CHKLCK can be used 
to display the lock status of all the displayed records, not just the current record.
5 - 36   ADMINS User Guide



Field Names
TRANS treats field names that start with "G$" as global fields. TRANS maps these 
fields onto the global array in the order in which these fields appear in the screen 
description. Each global field occupies the number of words in the global record 
required to accommodate the ADMINS data type of the field. Every screen in an 
application which uses these global fields should contain the global field names in 
the same order.14 The following example describes several global fields in a screen's 
field declaration section:

DR G$OPER/X9999           "word 1 of the global area"
DR G$BRANCH/A24           "words 2 thru 13"
DR G$BCH/I                "word 14"
DR G$TOTAL/D2             "words 15 thru 17"

It is important to understand how values in global fields are retained as TRANS 
branches from screen to screen. The contents of the global record is never altered in 
any way by TRANS itself. Only manual entry into a global field or an RMO behind 
the screen can actually change values in the global record.

As each screen is activated, TRANS sets a pointer to the first word of the global 
record. Then TRANS examines the field names in the screen in the order they appear. 
If a field name starts with "G$" TRANS sets that field name to point to the current 
word (as indicated by the pointer) of the global record, and increments the pointer to 
the global record by the number of words required to store that field, i.e. 1 word for 
an integer, or 10 words for an A20 field.

There may be occasions when part of the global area is not used by a particular screen 
description. There is a special notation used to bypass part of the global area, 
G$+nnn/I, where nnn is the number of words to bypass in the mapping process. For 
example, the first 200 words of the global area might be reserved for a special use and 
the application screen is to start using word 201 as follows:

DR G$+200/I               "skip the first 200 words"
DR G$OPER/X9999           "word 201 of the global area"
DR G$BRANCH/A24           "words 202 thru 213"
DR G$BCH/I                "word 214"
DR G$TOTAL/D2             "words 215 thru 217"

Therefore, if two screens contain the same global fields in the same order, these global 
fields will point to the same part of the global record as TRANS branches to each 
screen.

Since global fields are most commonly used with an RMO behind the screen, an 
example using global fields is in Section 15.4.3 “Example Using Global Fields”.

14.  To insure that all screens in the application that utilize the global record use the 
same global fields in the same order, use a STRUCTURE paragraph (see Section 
5.5.9.1 “STRUCTURE: Lay out global fields section”). For example, global field 
names used to rename a linked field in a LINK paragraph (see Section 5.4.1 
“LINK Paragraph”) would be the first fields in the global record because they are 
encountered first (LINK paragraphs come before the field declaration section in 
the TRS). The sometimes tricky task of managing the order of global fields from 
screen to screen is completely eliminated by the use of a STRUCTURE paragraph.
ADMINS User Guide  5 - 37



Field Names
5.5.9.1  STRUCTURE: Lay out global fields section
The STRUCTURE paragraph is used to impose a specific structure on the global 
record. As is explained in the previous section, global fields are mapped to the global 
record in the order that they are encountered in the screen description. The 
STRUCTURE paragraph is simply a means of making global fields known to TRANS 
in a specific order that is independent of how, in what order, or even if a field actually 
is used in a screen or its associated RMO. STRUCTURE paragraphs also allow the 
global record to be explicitly specified without having to declare each global field in 
the field declaration section, saving resources against TRANS' virtual record limits 
for maximum number of fields and maximum record size. (Global fields that are 
actually referenced in the current screen or RMO must still be declared as a DR or ER 
field for that screen, or declared as a local field in the RMO.)

Including an identical STRUCTURE paragraph15 in the descriptions of all screens 
that use the global record insures that the same global fields will be mapped in the 
same way throughout the application. 

The STRUCTURE paragraph must appear immediately after the header line in each 
field description.16 

The syntax of the STRUCTURE paragraph is as follows: 

STRUCTURE
G$fld1name/type     
G$fld2name/type     
G$fld3name/type     
etc.
END 

5.5.10  Group Shared Area Fields 

Group shared area fields are designed to allow the ADMINS developer to hold 
information that is accessible by all users of ADMINS in the same group. A complete 
discussion of the group shared area including an example of its use is in  Chapter 20: 
“Shared Memory Emulation”. 

The group shared area fields can be thought of as the "DEF" of a 2,048 16 bit word 
record that is constantly kept in the memory of all ADMINS users in the same group. 

The rules for how fields are mapped into the group shared area is the same as just 
described for global fields except that the group shared area field names begin with 
the characters "SH$". The SH$+nnn/I notation is also used to bypass portions of the 
group shared area. 

15.  We recommend using "@@" indirect referencing to include the same 
STRUCTURE paragraph in each screen of an application. See Section 1.4.3 
“Indirect References”.

16.   If a VIDEO statement is present, the STRUCTURE paragraph follows the VIDEO 
statement.
5 - 38   ADMINS User Guide



Field Names
5.5.11  BOX statement 

The BOX statement provides an easy way to place graphics boxes and horizontal or 
vertical lines on the TRANS screen. The syntax is: 

BOX  TOP_LINE  LEFT_COL  HEIGHT  WIDTH  [VIDEO_CODE] 

All of the items in the BOX syntax are required, except VIDEO_CODE.  

BOX can be used to produce vertical and horizontal graphics lines. For a vertical line, 
specify a width of one column; for a horizontal line, specify a height of one line. 

TRANS displays boxes and lines in the order of the BOX statements, before it 
displays literals or data. Take note of the following when designing screens that use 
BOX statements: 

1. A box will overlay an earlier box or line if it should overlap.
2. Each successive box blanks out whatever was previously inside it. 
3. When boxes or lines intersect, TRANS joins them with corner, tee, or cross 

characters. 
4. Literals and fields on the screen should not overlap with the boundaries of a 

box, or with a line, because the characters will overwrite the image. 

TOP_LINE

LEFT_COL The first two items in the BOX statement provide the line/
column coordinates of the upper left corner of the box 
TRANS is to display.

HEIGHT The third and fourth items provide the vertical and 
horizontal dimensions of the box. HEIGHT is specified as the 
number of lines. WIDTH as the number of columns.WIDTH

VIDEO_CODE The optional BOX video code enables you specify video 
attributes for the box. BOX video codes are taken from the 
sum of four settings:a 

1 bold 

2 underscore 

4 blink 

8 reverse video 
For example, video code 9 produces both bold and reverse 
video.
Reverse video boxes without border lines can be created by 
making the video code negative (for example, the video code 
-8 creates a rectangle entirely of reverse video, with no 
graphics line around it). 
If high intensity (bold) highlighting is used, the borders of 
the box are displayed in high intensity. Whatever is inside 
the box is displayed in normal video. 
If reverse video is used for the box, the entire box appears in 
reverse video. Literals and fields inside the box appear in 
normal video.

a.    These video codes are also used with the H$CODE highlighting facility 
(see Section 16.5 “Highlighting Fields”)
ADMINS User Guide  5 - 39



Field Names
When the PRT keystroke is used to print a screen which has graphics generated by 
BOX, the horizontal and vertical graphics characters are translated into printable 
characters ('-' and '|') in the printed output. Graphics intersections (corners, tees, 
crosses) are represented by a star. 

Up to 250 BOX statements are allowed per screen. 

5.5.11.1  Drawing BOXes in the screen layout 
AdmScreen also allows the developer to "draw" boxes and lines in the SCREEN 
layout section, instead of specifying them using coordinates and dimensions. 

To draw boxes in the screen layout, you use three reserved characters. These 
characters can be anything you want (explained below), but by default AdmScreen 
recognizes the following characters for drawing boxes: '=' for horizontal lines, '!' for 
vertical, and '+' for any type of intersection. For example: 

+===============+
!               !
! Hi There      !
!               !
+================+ 

The intersection character is used for any type of intersection between two lines, 
whether it is a corner, a T junction, or a cross junction. 

There is also a default video attribute setting for BOXes drawn in the screen layout. 
The built-in default video attribute is normal video. 

In the layout, you can put special BOX characters right next to literals and field 
descriptors. The following layout would work: 

+===============+
!               !
!FIELD-  LITERAL!
!               !
+================+ 

To activate this feature using the built in defaults, you must put the statement BOX 
DEFAULT above the SCREEN statement. This tells AdmScreen to give a special 
interpretation to the three reserved characters when it parses the layout. If BOX 
DEFAULT (or another special BOX statement as described below) is not present, then 
all characters in the layout are interpreted in the normal way. 

Notes on “drawing” boxes:

1. You can draw boxes in the layout, and also use standard BOX statements with 
coordinates, in the same screen. These two ways of boxing are compatible and 
have no effect on each other. 

2. All boxes drawn on a given screen layout will have the same video attribute: if 
you need boxes with different video attributes on the same screen, you must use 
standard BOX statements, or a mixture of standard BOX statements and drawn 
boxes. 

3. AdmScreen transforms the box layout into a series of coordinates and 
dimensions, and the result is exactly the same as a set of standard BOX 
statements. Boxes drawn on the screen count against the limit of 250 BOXes per 
screen. 
5 - 40   ADMINS User Guide



Field Names
To override the built-in defaults globally, you can make an assignment to the logical 
name ADM$SCR_VIDEO (which is used for a similar purpose by the VIDEO 
feature).17 ADM$SCR_VIDEO takes effect only at screen compile time (not at run 
time in TRANS). ADM$SCR_VIDEO options for BOX defaults are: 

HORIZONTAL=h
VERTICAL=v
INTERSECT=i
VIDEO=<video attribute keyword(s)> 

These options can be combined in ADM$SCR_VIDEO with the options for the 
VIDEO feature. The HORIZONTAL, VERTICAL, INTERSECT, and VIDEO 
keywords can all be abbreviated to two characters and they are case blind. Any or all 
of these four options can be used and they can be in any order. There cannot be any 
embedded blanks in a keyword string (i.e., no blanks around the '=' signs). The three 
BOX characters represented above as 'h', 'v', and 'i' can be any printable characters, 
except you cannot use '-' or '*'; and the three characters must be different after all 
defaulting occurs. The video attribute keywords are the same as for the VIDEO 
feature: BOLD, UNDERLINE or UL, REVERSE, BLINK, NORMAL, and FULL, and 
they can be combined with '+' as for VIDEO (no blanks around the '+'). Here, FULL 
means don't draw a border around the box (same as using a negative video code in a 
standard BOX statement). 

You can also change the BOX defaults on a per-screen basis. To do this, instead of the 
BOX DEFAULT statement, put the new defaults in a special BOX statement: 

BOX HORIZONTAL=h VERTICAL=v INTERSECT=i VIDEO=<keywords> 

Syntax rules for this BOX statement are the same as for ADM$SCR_VIDEO. 

Defaulting work as follows. 

1. Built-in defaults are assumed. 
2. Built-in defaults are modified by the ADM$SCR_VIDEO assignment. 
3. The result of 1 and 2 is modified by special BOX statements for a specific screen. 

5.5.12  CAPS statement: Convert entry to all uppercase 

The CAPS statement causes specified editable fields to be converted to uppercase as 
each character is entered. 

The CAPS syntax is: 

CAPS FLD1 FLD2... 

where FLDn are editable fields which appear above the CAPS statement in the field 
names section of the screen. There can be any number of CAPS statements. 

17.  See Section 5.10 “Video Highlighting Facilities” for a discussion of the VIDEO 
highlighting facilities, and the logical name ADM$SCR_VIDEO)
ADMINS User Guide  5 - 41



Field Names
5.5.13  CAP1 statement: Capitalize each word in entry 

The CAP1 statement causes specified editable fields to be converted so that 
beginning letter of each word in the entry is converted to uppercase upon completion 
of the entry. 

Except that CAP1 conversion does not occur until the entry into the field is complete, 
CAP1 syntax and use is identical to CAPS, described in the previous section: 

CAP1 FLD1 FLD2... 

5.5.14  NOECHO

The keyword NOECHO in a TRS allows you to list one or more fields in which the 
content displays as a string of asterisks.  The syntax is:

NOECHO FIELD1 [ FIELD2 …]

As you type a new value into the field each character echos as an asterisk (the actual 
characters you type are stored in the field).  Useful when entering secure items such 
as passwords.

5.5.15  ALLOW statement 

The ALLOW statement identifies fields where typing is to be allowed in those 
circumstances when field entry would normally be restricted or prevented, as 
follows: 

1. When the value "Y" has been assigned to the logical name ADM$READONLY 
(see Section 6.3 “Entering or Changing Fields”).
With ADM$READONLY set all files are opened "read-only". Nothing can be 
changed in any of the files. The cursor normally goes only to KEY fields. In this 
case, the cursor will also go to ALLOW fields to allow entry (nothing is actually 
written to disk). 

2. When LFEXIT (see Section 5.3.1.18 “LFEXIT or LFBACK: Update Mode 
Control”) or REQUIRE (see Section 5.5.5 “REQUIRE Statement”) is used in a 
screen, ALLOW fields may be changed without activating LFEXIT control. 

In general, ALLOW fields should be used only to cause TRANS to perform some 
action, such as an automatic branch. When the ALLOW feature is used to override 
ADM$READONLY or LFEXIT processing, values typed into ALLOW fields are not 
written to disk.18 

The ALLOW statement syntax is: 

ALLOW FIELD1 FIELD2.... 

where the FIELDn is the name of a field in the active file, or the name of a field that 
has been declared for the screen prior to the ALLOW statement. 

18.  A value typed into an ALLOW field could be written to disk if normal LFEXIT 
processing is used to subsequently write the record.
5 - 42   ADMINS User Guide



Field Names
5.5.16  TIMEOUT statement

TRANS’ time-out facility allows the application developer to set a maximum amount 
of time that a particular screen session19 can remain inactive, i.e. with TRANS 
waiting for the user to type another character.

This feature is implemented via an integer field called "G$TMO20". G$TMO is set21 
to the number of seconds TRANS should wait for a character to be typed before 
timing out.

When TRANS "times out" the screen, TRANS will generate the keystrokes specified 
in the TIMEOUT statement, if one exists. Otherwise, TRANS issues a call to the RMO 
with S$S set to 'G$TMO'. The TIMEOUT statement  or the RMO can then take an 
appropriate action, e.g., execute a branch or exit (see the example below).

The TIMEOUT statement consists of the keyword TIMEOUT followed by 
specification of the keystroke macro that is to be execute at time-out. Macro syntax is 
identical to that used in the define statement in the TRANS environment file, 
described in Section 6.15.2 “Define Macro Function”.

If G$TMO is reset to zero then the time-out facility becomes inactive.

19.Timeout can be implemented globally, via the global.timeout setting in the 
TRANS Environment File (see Section 6.15.8 “Global Timeout”).

20.  Because "G$TMO" starts with "G$" it will map into TRANS' global fields area (see 
Section 5.5.9 “Global Fields”) if it appears in the TRS as a DR field. In this way it 
can be set in one screen and then remain active in subsequent screens.

21.  G$TMO can be set via the RMO or be declared as a Virtual Field (see Section 5.5.4 
“Virtual Fields”).
ADMINS User Guide  5 - 43



Field Names
5.5.16.1  Time-out Examples
The following examples specify that if TRANS has waited for 5 minutes (300 seconds) 
for the user to type another keystroke, then TRANS will exit.. 

Implementing time-out via the RMO: TRANS is to exit via B$B= ‘CB’ (see Section 
16.2.4 “Automatic Exit From TRANS: B$B = 'CB'”).

...
S$S/A6
B$B/A2
G$TMO/I 300 ! if TRANS waits 300 sec ‘G$TMO’ RMO call is issued
PROGRAM
IF S$S EQ 'G$TMO' THEN B$B = 'CB' ; GOTO OUT END
...
OUT: STOP

Implementing time-out entirely within the TRS, using the TIMEOUT statement: 
TRANS exits via keystroke macro that consists of the TRANS EXIT key and the 
RETURN key.

...
V G$TMO/I 300     ! if TRANS waits 300 sec TIMEOUT macro executes
TIMEOUT %exit CR  ! exit followed by return to take user to DCL 
prompt
...

5.5.17  Button Objects in TRANS

AdmTrans supports PUSHBUTTON and LABELBUTTON objects. PUSHBUTTONs 
and LABELBUTTONS can be specified completely in the TRS, or may be created 
and/or modifed by the BUTTON subroutine, as described in Section H.14.2 “Button 
- Creating and Modifying Buttons in TRANS”

5.5.17.1  PushButton Object 
PushButtons in TRANS place labeled "buttons" on the screen that may be mouse-
clicked22 on by the user to initiate a specified TRANS keystroke macro.  PushButtons 
may be located at specific screen coordinates or they may be placed relative to 
another button or field.  A PushButton initiates the same series of keystrokes every 
time it is clicked on. 

The PUSHBUTTON keyword may be written as BP.

The syntax for a PushButton is:

PUSHBUTTON Button_name [ %videocodes ] ['Label text' ]
 
NOTE: all following must be on new lines, indented
--------------------------------------------------
[ ROW=row# ]             ! Must be present if no
                         ! ATTACH or Layout placement
[ COLUMN=column# ]       ! Must be present if no
                         ! ATTACH or Layout placement
[ ATTACH_TOP=Button or Field ]
[ ATTACH_LEFT=Button or Field ]
[ ATTACH_RIGHT=Button or Field ]
[ ATTACH_BOTTOM=Button or Field ]
 
[ VIDEO=Video-attributes ]
 
[ LABEL=Label_string ]   ! Literal label to be placed on

22.   See Section 6.16 “Mouse Support in TRANS”
5 - 44   ADMINS User Guide



Field Names
                         ! the Button. If not present, the
                         ! Button name will be used

[ ACTION=Actions... ]    ! Keyboard actions to perform
                         ! when pressed

ROW =

COLUMN = The row and column number for the PushButton's upper left 
corner. ROW and COLUMN cannot be used if any ATTACH 
statement is used.  Instead of using ROW/COLUMN, 
buttons may be placed in the layout section of the screen like 
a field, using the button name as a "field" name, e.g.

MYBUTTON--

ATTACH_TOP= Used to attach the top of the PushButton to the bottom of 
another Button or a field.

ATTACH_LEFT= Used to attach the left side of the PushButton to the right side 
of another Button or a field.

ATTACH_RIGHT= Used to attach the right side of the PushButton to the left side 
of another Button or a field.

ATTACH_BOTTOM= Used to attach the bottom of the PushButton to the top of 
another Button or a field.

VIDEO= Set video attributesa for PushButton. E.g.:
VIDEO=REVERSE+BOLD

Video attributes may also be specified on the PUSHBUTTON 
(BP) line:

PUSHBUTTON NEXT %REVERSE+BOLD

a.    Video attributes are BOLD, UNDERLINE (UL), BLINK, and REVERSE.  
They may be abbreviated to two or more characters and/or combined 
using “+”, e.g.: UL+REV. 

LABEL= The character string that will be placed inside the 
PushButton. If it contains more than one word, it must be 
surrounded by single quotes, e.g.:

LABEL='PRESS ME'
Label may also be specified on the PUSHBUTTON (BP) line:

PUSHBUTTON NEXT %REVERSE+BOLD ‘Next PO‘
The width of the label determines the width of the button.  If 
no LABEL statement is present, the PUSHBUTTON name 
will be used.

ACTION= One or more keystrokes to execute when released. Uses same 
syntax as when defining keyboard macros in TRANS$ENV. 
E.g. to execute branch 4 when a PushButton is pressed, use:

ACTION=%brnc 4 
ADMINS User Guide  5 - 45



Field Names
5.5.17.2  LabelButton Object
LabelButtons are used to place literal text on the screen.  The syntax for a LabelButton 
is:

LABELBUTTON Button_name [ %video-codes ] [ 'Label text' ]
      [ ROW=row# ]          ! Must be present if no ATTACH
                            ! or Layout placement
      [ COLUMN=column# ]    ! Must be present if no ATTACH
                            ! or Layout placement
      [ ATTACH_TOP=Button or Container ]
      [ ATTACH_LEFT=Button or Container ]
      [ ATTACH_RIGHT=Button or Container ]
      [ ATTACH_BOTTOM=Button or Container ]
      [ VIDEO=Video_attributes ]
      [ LABEL='Character string' ]

The LABELBUTTON keyword may be written as BL.

5.5.17.3  Using Button Fields
Buttons fields have flexible syntax options that allow developers to code applications 
in whatever style best suits their needs.23 For example, these two code fragments 
produce an identical set of buttons:

Fragment #1
!Next Button
BL LNXT  'Next PO         '!Label will be left
    ROW=7                  !of clickable button
    COLUMN=2               !All other buttons "hang" off LNXT
                           ! i.e. if it is moved others will keep
                           ! position relative to it.
BP NEXT %REVERSE '  '      !Blank, reverse video button
   ATTACH_LEFT=LNXT        !attached right of label
   ACTION=%next            !does %next keystroke
!Prev Button
BL SEP1 ' '                ! Blank label button
   ATTACH_TOP=LNXT         ! used as separator 
BL LPRV  'Previous PO     '! Label
  ATTACH_TOP=SEP1
BP PREV %REVERSE '  '      !Blank, reverse video button
   ATTACH_LEFT=LPRV        !
   ACTION=%prev            !does %prev keystroke

Fragment #2

!Next Button
LABELBUTTON LNXT           !Label will be left
   ROW=7                   !of clickable button
   COLUMN=2                !All other buttons "hang" off LNXT
                           ! i.e. if it is moved others will keep
                           ! position relative to it.
   LABEL='Next PO         '
PUSHBUTTON NEXT            !Blank, reverse video button
   ATTACH_LEFT=LNXT        !attached right of label
   LABEL='  '
   VIDEO=%REVERSE
   ACTION=%next            !does %next keystroke
!Prev Button
LABELBUTTON SEP1           ! Blank label button
   ATTACH_TOP=LNXT         ! used as separator 
   LABEL=' ' 
LABELBUTTON LPRV           ! Label
   ATTACH_TOP=SEP1
   LABEL='Previous PO     '
PUSHBUTTON PREV            !Blank, reverse video button

23.   The action code for a button can be specified as  M$M_nn. For more information, 
refer to Section 15.1.2.1 “M$M_nn: Action Code For Button”
5 - 46   ADMINS User Guide



Field Names
   ATTACH_LEFT=LPRV        !
   LABEL='  '               
   VIDEO=%REVERSE
   ACTION=%prev            !does %prev keystroke

The buttons produced by either of the above code fragments will look  like this:

Next PO                           
Previous PO  

5.5.18  %PUSHBUTTON: Display Alpha field as PUSHBUTTON

An alphanumeric field (An) can be displayed as a pushbutton. The field’s value will 
be the button’s label.  The syntax is:

E FIELDNAME %PUSHBUTTON
ACTION=action(s)

For example:

e invoice %pushbutton
action=m$m_55

IN the above example, setting ACTION=M$M_55 specifies that the RMO will get a 
call with M$M set to '55' when the button is clicked.  %PUSHBUTTON may be used 
in multi-record screens.

5.5.19  SELECT Statement in TRANS

The SELECT statement provides a way for TRANS to operate on a “virtual” file of 
records that meet the selection criteria. The syntax is:

SELECT [NO]LINK [%EXECUTE XXPP] select statement

Where:

[NO]LINK determines whether links are performed before the 
select statement is executed or not.  One of these 
keywords are mandatory. If the select statement 
only references fields in the main file use the 
NOLINK keyword, as executing the links in the 
select phase adds a lot of overhead.

%EXECUTE XXPP determines if the RMO should be called before the 
links are executed.  This may be necessary if the 
RMO usually creates link keys in the pre-link RMO 
call.  If present, the RMO will be called pre-link with 
M$M set to the first two characters of the word 
following the %EXECUTE keyword (i.e. “XX” in the 
example to the left), and the RMO will be called 
post-link with M$M set to the last two characters of 
the string following the %EXECUTE keyword(i.e. 
“PP” in the example to the left).  If only two 
characters are present only the pre-link call will 
occur. If just a post-link RMO call is needed, put in 
“..” (two dots) for the pre-link M$M value, e.g. 
“%EXECUTE ..PP”.  It is the developers 
responsibility to ensure that these M$M settings are 
unique.  Only calculation of fields that are necessary 
for the links (or the SELECT statement) should be 
done in these RMO calls.
ADMINS User Guide  5 - 47



Screen Layout
When a selected record is present in the TRS, a snapshot of records that satisfied the 
selection criteria at the time of executing the select statement is presented to the user.  
The records on the screen remain selected until the user moves to another screen-full 
of records, even if somebody changed some value(s) in a record so that it no longer 
satisfies the selection.

If a SELECT statement is present, S$SEL has no effect.

The file should have a “dummy” or NULL record, as the first record in the file 
displays if no records are selected.

It is important to understand that no regular RMO calls are executed in the selection 
phase (with the possible exception of any RMO calls caused by the %EXECUTE part 
of the SELECT statement, and no V (virtual field) logic is executed.  Any calculations 
or logic necessary for the selection criteria must therefore be contained within the 
SELECT statement itself, or possibly set during the %EXECUTE RMO call.

5.6  Screen Layout 

The fourth component of the screen description is called the screen layout section. 
This section starts with the word SCREEN on a line. The word SCREEN can 
(optionally) be followed by four numbers that "position" the layout on the screen. The 
first two numbers are the line and column number for the upper leftmost corner of a 
rectangle where the screen layout should be displayed. The second two numbers are 
the number of lines and the number of columns of the display rectangle. If these four 
numbers are absent, they are assumed to be 1, 1, 24, 80. (They are assumed to be 1, 1, 
24, 132 if the screen header line contains the keyword 132. The SCREEN line, showing 
the default position, is written as follows: 

SCREEN 1 1 24 80 

The screen described in this particular layout will appear in a particular display 
rectangle. Other information already on the screen outside this rectangle when this 
particular layout is displayed will not be erased. The ability to place the display 
rectangle anywhere on the screen can be used to create "split screen" effects, and 
when combined with the branching features described below constitute a general 
facility for simultaneously displaying information from multiple records drawn from 
multiple files, all in relation, on one "composite" screen. 

By default, the total usable space on the display screen consists of 24 lines of 80 
characters each. The screen layout can be 132 characters wide if the screen header line 
contains the keyword 132 and the terminal supports 132 character lines. You can 
extend the screen layout beyond 24 lines to a maximum of 72 lines by assigning the 
number of lines in the desired screen layout to the logical name ADM$_VTLEN, e.g.: 

$> assign 64 adm$vtlen

Makes the screen display 64 lines long 

The bottom three lines of the terminal are also used by TRANS for various automatic 
indicators and messages. These messages may overwrite application information. 
Therefore the bottom three lines should be used carefully and only when necessary. 
5 - 48   ADMINS User Guide



Screen Layout
The last 12 characters of the first line on the screen are used by TRANS to display top 
of file (TOF), end of file (EOF), and mode messages (e.g. UP for Update Mode). If 
these positions are to be used by the application display of these messages should be 
suppressed using the NOMSG keyword (see Section 5.3.1.2 “NOMSG: Inhibit On-
line Messages”). 

The lines that follow the SCREEN line contain the layout of what is to be displayed 
on the terminal when this particular screen description is activated. The conventions 
for the layout are very similar to those used to specify the layout for the DETAIL 
section of a report. Namely: 

1. Each line corresponds to a line on the terminal. 
2. Strings that contain neither leading nor trailing dashes are treated as literal text 

and displayed exactly as they are entered in the screen layout. 
3. Strings with leading or trailing dashes are treated as (partial) names for fields 

from the field names immediately preceding the layout. Leading dashes 
indicate right justification of the data in the space occupied by the (partial) field 
name following the dashes. Trailing dashes indicate left justification. 

4. Fields that are designated to be smaller than the full width for the type of the 
field (for example a decimal field designated to be only eight characters wide, or 
an A60 field designated to be only 25 characters wide) are truncated to the 
designated width (and thus might not show the entire contents of the field).

5.   (During data input, leading blanks are usually squeezed out of alphanumeric 
fields. However if T is included in the string assigned to the logical name 
OPTION, then leading blanks are preserved in alphanumeric fields. See 
Appendix A: “Options”.) 

6. If a field designator for a text field24 has a number embedded in its string of 
dashes, the number is treated as the height of a multi-line block of text from the 
text field to be displayed starting at the position of the field designator. The 
height can be anywhere within the dashes (but it must be surrounded by 
dashes). For example, to display up to 6 lines of text stored in the TI field 
ADDRESS: 

ADDRESS--------------6--- 
 The height specified must be non-zero and positive. It is the responsibility of 
the developer to ensure that text blocks do not overlap other items in the screen 
display. 

7. The letters BL in the first 2 

character positions in a line indicates the line is to be displayed as all blanks. 
8. The letters CE in the first 2 character positions in a line followed by a blank 

indicate that the remaining information in the line is to be centered within the 
dimensions of the current screen. A line with CE may contain both data fields 
and/or literal text. Centering of variable length data fields by AdmScreen is 
based on reserved length, not on the length of the actual data. 

9. The letters DW in the first 2 character positions in a line followed by two blanks 
indicate that the information on that line is to be displayed using double width 
characters. Data and literal text may be displayed using DW. The double width 
character capability is a feature of the DEC VT series terminals. 

24.   See Section 5.15 “Text Fields”.
ADMINS User Guide  5 - 49



Screen Layout
10. The letters DH in the first 2 character positions in a line followed by two blanks 
indicate that the remaining information in the line is to be displayed using 
double height double width characters. Literal text may be displayed using DH. 
The double height, double width character capability is a feature of the DEC VT 
series terminals. When DH is used, two lines of the layout must be identical 
except for the DH; the first line for the upper half of the character and the 
second line for the lower half of the character. For example: 

SCREEN
DH      Personnel Information Screen
        Personnel Information Screen
... 

5.6.1  Precise Placement of Fields 

Screen layout information for fields can also be supplied on the field declaration line 
as follows: 

[LINE,COLUMN,SIZE[,JUSTIFICATION]]

where:

Precise placement is usable with D, E, DR, ER, L and V fields. Placement 
specifications precede the query name (see Section 5.5.2 “Editable”), if both are used. 
Fields which use precise placement do not appear in the layout, although their data 
contents will appear on the actual screen display. Precise placement is most useful for 
specifying the display of small fields whose names do not contain initial characters 
which are unique among field names, or to place related fields directly alongside 
each other. 

Examples: 

E MONTH [3,10,2]
E DAY [3,13,2]
E YEAR [3,16,2]
E AMOUNT [3,25,6,RIGHT] 

The LINE and COLUMN coordinates for precise field placement may contain 
"addition" expressions that can be used with parameterization:25 

E FLD [<Y>+5,<X>+10,8] 

There can be only one '+' per coordinate; negative numbers and subtraction are not 
supported; and there must not be any embedded blanks in the coordinate expression. 
After the substitution of angle-bracketed parameters (see Section 5.16 

LINE (Line Number) Both line and column numbers are relative to the upper left 
hand corner of the screen. The screen is itself positioned on 
the display device by the coordinates specified on the 
SCREEN statement.

COLUMN (Column Number)

SIZE Width of field display.

JUSTIFICATION (Optional) Indicates whether the data in the field is to be 
displayed "RIGHT" justified or "LEFT" justified(can be 
abbreviated to "R" or "L"). If omitted the field is left justified.

25.  This feature is useful when a standard block of fields is included by indirect 
reference (using @@) in several screens but must be placed at different locations 
in different screens.
5 - 50   ADMINS User Guide



Screen Layout
“Parameterization”) and/or the substitution of parameters in indirectly referenced 
(@@) files (see Section 1.4.3.1 “Passing Parameters in Indirect References”), the 
coordinate expressions must contain only constants (no field names).

Display width and justification can be specified by referring to the Data Dictionary 
element that describes a field. Use the “W%” and “J%” tokens to retrieve the display 
width and justification attributes from the Data Dictionary element for the field.  E.g.:

E VENDOR [6,10,W%,J%] 

5.6.1.1  Precise Placement of Text Blocks 
TRANS can be instructed to display "text blocks" (see Section 5.6 “Screen Layout”) 
using the following special precise placement syntax: 

[LINE,COLUMN,HEIGHT,WIDTH]    

   

For example, to display up to 6 lines of text stored in the TI field ADDRESS: 

D ADDRESS [10,1,6,60] 

It is the responsibility of the developer to ensure that text blocks do not overlap other 
items in the screen display. 

5.6.2  Inclusive Field Names 

A problem arises when there are two field names where one is included in the other 
as a substring. For example, "ST" and "STREET". When specifying a field for display 
in the layout section of a screen, a period (".") can be added to a field name to indicate 
that the user is specifying the full field name, and not a partial name. In the example, 
"----ST" is ambiguous as to whether the reference is to "ST" or "STREET", whereas "--
-ST." is specifically a reference to "ST" and "---STR" is a reference to "STREET". Where 
a reference is ambiguous, i.e., the partial field name is part of more than one actual 
field name, AdmScreen uses the first field name in the field names portion of the 
screen description that qualifies. Where possible, fields should be named so as to 
avoid ambiguity. 

5.6.3  Displaying Fields More than Once 

In a screen description, each of the field names can only be displayed once in the 
screen layout. If, in fact, the user wishes to display a particular field more than once 
on the screen, this can be done using virtual fields. However changing the data can 
only be done via the editable field. For example: 

...

LINE   Line Number (Same as regular precise placement)

COLUMN Column 
Number

(Same as regular precise placement)

HEIGHT Number of lines to be displayed. Must be non-zero and 
positive.

WIDTH Number of columns to be displayed.
ADMINS User Guide  5 - 51



Branches
E OWNER
V XOWNER/A30 OWNER
SCREEN
OWNER: OWNER-------------------------
...
MAIL TO: XOWNER------------------------
END 

5.7  Branches 

The fifth component of the screen description is the BRANCHES paragraph, which 
identifies what "branches" can be called from the screen. "Branching" is when TRANS 
exits from the current screen and enters a new one (or re-enters the original one.) 
Branches can use data from the current record as key values to determine which 
record is to be displayed by the new screen. 

The BRANCHES paragraph is separated from the screen layout by a line that begins 
with the word BRANCHES. The BRANCHES paragraph is terminated with the END 
statement, and may be followed by additional screen descriptions. (When there are 
no branches in a particular screen END terminates the screen description.) 

The BRNC keystroke initiates the branching function; TRANS prompts for a branch 
name: 

Branch to 

If the user responds by entering a valid branch name, TRANS "branches" to the 
specified screen. Responding with another BRNC keystroke calls the "pop-up" 
Branch Menu, which displays all the branch choices available. 

If implemented by the application developer, as described in Section 6.12 “HELP in 
TRANS”, responding with the letter "H" will call TRANS HELP: on-line application-
level assistance displayed in a pop-up window.26 

Some common uses of this branching facility are as follows: 

1. To change screens on the current displayed record. This type of branch would 
be used if a record contained too much information to be shown on one screen. 

2. To display another record in the same file using data from the current record to 
identify the new record to be displayed. The new record is to be displayed via 
the current screen. For example, a person's record may identify the spouse's 
record, or children's record, and a branch might be to display the spouse's 
information using the same layout as the current record. 

3. To display a record in another file using another screen. For example, a screen 
for a street index file keyed on street name and number may contain a branch 
which uses the account number to branch to a screen of the property ownership 
record (keyed by account number) at a particular street address. 

4. Branching may also be used to call up another screen and/or another file that 
are not directly referenced from data on the current screen. This would be done 
to allow the user to access other files after concluding with the one on the 
current screen. 

The branch section of the screen description contains the following for each branch. 

26.  Using BRNC and "H" is not a branch to another screen, it is simply an alternative 
to the HELP keystroke for calling the TRANS HELP facility.
5 - 52   ADMINS User Guide



Branches
BRANCH-NAME [TRO-NAME/]SCREEN-NAME [BRANCH-FIELDS]
BRANCH EXPLANATION TEXT 

BRANCH-NAME is the name of the branch. Typing this name or the initial letters of 
this name after the BRNC key or while the Branch Menu is active tells TRANS to 
perform this branch. TRANS uses only the first two characters of BRANCH-NAME 
to distinguish between branch selections, so the branch names within a TRS should 
be unique in their first two characters.27 (BRANCH-NAME "H" is usually reserved 
for Help in TRANS.) 

TRO-NAME/SCREEN-NAME identifies the screen that should be used to display 
the "target" record of the branch. Branches may be made to screens within the current 
TRO (and described in the same TRS file) or to screens in another28 TRO (and 
described in a different TRS file). 

If the target screen is described in the same TRS file (and is consequently part of the 
same TRO) as the current screen only SCREEN-NAME, the name of the screen (the 
first element of the target screen's screen header line) is given. If the target screen is 
part of another TRO both the TRO-NAME (the target screen TRO name without the 
".TRO" suffix) and the SCREEN-NAME must be provided, separated by a slash (/). 

BRANCH-FIELDS are the (optional) field names of fields in the current record that 
form the key which identifies the target record to be displayed by this branch. 

 If the target of a branch is another screen in the same TRO operating on the same 
record in the same file, the BRANCH-FIELDS specification may be replaced by the 
word "SAME". SAME indicates that the target screen should operate on the same 
record as the active screen. There are two subtle differences between branching using 
SAME and branching with explicit branch fields. "SAME" guarantees that the target 
screen branches to the same record, rather than to the first record in the target file 
with the key values of the branch fields. This is useful when the target screen operates 
on a file with multiple records with the same key values. Second, the use of 
BRANCH-FIELD "SAME" does not close and reopen the master file, which may have 
minor throughput benefits. 

(If BRANCH-FIELDS are simply not present then when the particular branch is 
taken, the target screen will show the first record in the target file.) 

BRANCH EXPLANATION TEXT is a short descriptive phrase that will appear in the 
entry for the branch in the Branch Menu. 

In the following example the "A" branch is to the ACC screen in the 
ACCOUNTS.TRO file. The "F" branch is to the DESC screen in the FUND.TRO file in 
the [ACCTG] directory. The "V" branch is to the VENDOR screen in the current TRO. 

A ACCOUNTS/ACC ACCT#
Examine detail accounts
F [ACCTG]FUND/DESC
Fund descriptions
V VENDOR VEND#
Vendor list 

27.   If "j" (lowercase) is included in the string assigned to the logical name option, one 
and two character BRANCH-NAMES may be used that share the same initial 
character. This option causes TRANS to wait for a terminator (carriage return) 
when the branch-name is entered by the user, allowing it to distinguish, for 
example, a BRANCH-NAME of "A" from a branch name of "AB".

28.  There is a slightly higher overhead in branching outside a TRO file, because 
TRANS must open the new TRO file
ADMINS User Guide  5 - 53



Branches
By default, the menu window is displayed centered at the bottom of the screen. The 
BRANCHES paragraph in the above example would display the following menu 
window: 

 -----------------------------

|         Branch Menu       |
| A: Examine detail accounts|
| F: Fund descriptions      |
| V: Vendor list            |
|                           |
 ----------------------------- 

Select a branch in the menu by typing its branch code, or use the arrow keys to 
highlight the branch you want, then press SELECT. 

If there are more branch entries than can be displayed in the menu window, the 
message "<more>" appears on the bottom line. Use PREV or NEXT to move forward 
and backward within the list of available branch options. 

If a screen uses branches identical to those already specified in a preceding screen in 
the TRS file, then the BRANCH-NAME constitutes a sufficient description of the 
branch, i.e. the SCREEN-NAME, BRANCH-FIELDS and BRANCH EXPLANATION 
TEXT can be omitted and they will be picked up from the preceding description of 
the branch. The branch to "Examine detail accounts" in the previous example could 
be included in the next screen description in the same screen instruction file as 
follows: 

BRANCHES
A
END 

(You can back out of the BRANCH function via the HOME keystroke) See Section 6.8 
“Branching and Subscreens” for details on how to use TRANS' branching facility. 
5 - 54   ADMINS User Guide



Branches
5.7.1  Customizing the "Pop-up" Branch Menu 

Instead of using the default menu heading and centered rectangle at the bottom of 
the screen, the developer can place the menu rectangle anywhere on the screen by 
giving the coordinates of the upper left corner, and optionally the rectangle size and 
a menu header text, on the BRANCHES line of the TRS using the following syntax:

BRANCHES line [column [#_of_lines [width]]] [Menu heading text] 

For example: 

BRANCHES 5 20 6 30 THIS IS A MENU
A ACCOUNTS/ACC ACCT#
Examine detail accounts
F [ACCTG]FUND/DESC
Fund descriptions
V VENDOR VEND#
Vendor list
END 

will display a menu window, 6 lines long and 30 columns wide, starting at line 5, 
column 50: 

 ----------------------------
|         Branch Menu       |
| A: Examine detail accounts|
| F: Fund descriptions      |
| V: Vendor list            |
 ----------------------------- 

Note that #_OF_LINES and WIDTH values both include the menu border; and 
#_OF_LINES includes the menu heading. 

If any of the values are missing, TRANS will provide defaults. Since column, 
#_of_lines and width are positional, a zero may be present to get the default for any 
parameter, but still provide a fixed value for a subsequent parameter. E.g. 

BRANCHES 16 40 0 30 MENU HEADING 

will create a menu window starting at line 16, column 40, with a width of 30 columns. 
The number of branches present will determine the number of lines used. 

BRANCHES 16 40 MENU HEADING 

will create a menu window starting at line 16, column 40. The number of branches 
present will determine the number of lines used, and the longest branch text present 
will determine the width. 

5.7.2  Automatic-only Branches 

If two percent signs (%%) precede the text of a branch description, then that branch 
can only be activated automatically, as described in Section 16.2 “Automatic 
Branching: B$B and R$R”.29 Automatic-only branches are not presented to the user 
in the Branch Menu. 

29.  The AUTOBR subroutine (see Appendix H.14.1 “AUTOBR: Automatic Branch 
Control”) provides even more flexibility in controlling branching. RMO calls to 
the AUTOBR subroutine allow automatic-only branches, either individually or 
universally, to be converted to manual branches (and back to automatic-only 
branches).
ADMINS User Guide  5 - 55



Branches
5.7.3  Calculated Branches 

TRANS supports "calculated branches". To specify "calculated branches", the 
SCREEN-NAME for a branch is given in the TRS file as B$fieldname/XX, where the 
SCREEN-NAME must start with the string "B$" "fieldname" may be any alpha 
string, i.e. "B$BRANCH/XX" or "B$CALCBR/XX", and the SCREEN-NAME must 
end with the string "/XX", 

Calculated branches work as follows: TRANS expects an alphanumeric (An) type 
field called "B$fieldname" (the same string as in the branches paragraph, less the "/
XX") to exist in the TRO virtual record. TRANS expects this field to contain a TRO 
name followed by a slash and a screen name within the TRO (e.g. MENU/FIRST 
where MENU.TRO contains a screen called FIRST). The syntax for calculated 
branches is as follows: 

BRANCH-NAME B$FIELDNAME/XX [BRANCH-FIELDS]
BRANCH EXPLANATION TEXT 

For example, if we had the following lines in the TRS:  TRANS will execute the branch 
as specified in B$fieldname. Using this feature sophisticated menu systems can be 
built where the30 target screens for branching are kept in ADMINS files.   

...
ER B$BRANCH/A24
...
BRANCHES
A B$BRANCH/XX
THIS IS A CALCULATED BRANCH
END 

then if "[ACCTG]FUND/DESC" were entered into the field called B$BRANCH, the 
"A" branch would be to the DESC screen in the FUND.TRO in the directory 
[ACCTG]. The B$BRANCH field could be an actual field in the master file, a field 
linked from a link file, or a local field entered by the user or set by an RMO behind 
the screen.

30.  The B$KEYFIELDS RMO array is checked if no BRANCH-FIELDS are given for 
a calculated branch. The B$KEYFIELDS array allows you to set the keyfields (or 
key values) for a calculated branch at the time a branch is made. The 
B$KEYFIELDS facility, discussed in Section 16.19 “Calculated Branches with 
Variable Branch Keys”, allows you to develop and control even more complex 
screen families and menu systems.
5 - 56   ADMINS User Guide



Time Card Entry Example
5.8  Time Card Entry Example 

A screen is to be used to enter payroll time cards. The user enters the employee 
number, the regular hours for the week, and the overtime hours for the week. The 
screen checks via a link that the employee exists in the employee master file and 
displays the employee name on the screen. The screen also checks that the regular 
hours do not exceed 40, that overtime hours are only entered when regular hours 
equal 40, displays a message for employees with less than 40 hours, and shows the 
total hours worked as well. The DEF of TIME.MAS could be as follows. 

*    TIME.DEF
MAS 1000
EMPL# X9999 KEY1      "employee number"
REGH D2               "regular hours"
OVTH D2               "overtime hours" 

The DEF of EMPL.MAS (the employee master file) might contain the following. 

MAS 1000
EMPL# X9999 KEY1      "employee number"
LNAME A20             "last name"
FNAME A10             "first name"
HRLYRT D2             "hourly rate"
RHTD D2               "regular hours to date"
OHTD D2               "overtime hours to date"
PTD D2                "total paid to date"
TITLE A20             "job title"
ADDR A20              "home address"
CITYST A20            "and city state" 

The screen description would look as follows. 

*    Screen runs on TIME.MAS
TIME TIME.MAS 1 APPEND
*
*    Use LINK to get first and last name
*

LINK EMPL.MAS
KC EMPL#
L LNAME
L FNAME
END
*
*  Fields for display
*
E EMPL#
* Display the name
D FNAME
D LNAME
* Check for correct employee number
C EMPL# NE 0000 AND LNAME EQ ' '
INCORRECT EMPLOYEE NUMBER
E REGH
* Check regular hours not greater than 40
C REGH GT 40.00
REGULAR HOURS EXCEEDS 40
E OVTH
* if overtime, regular must be 40
C REGH NE 40.00 AND OVTH NE 0
REGULAR HOURS ARE NOT 40
* Compute total hours
ADMINS User Guide  5 - 57



Time Card Entry Example
V TOTH/DP REGH + OVTH
SCREEN
CE TIME CARD ENTRY SCREEN
BL
EMPL#: EMP-            NAME: FNAME----- LNAME---------------
BL
REGULAR: ----REGH      OVERTIME: ---OVTH
BL
                            TOTAL HOURS: -----TOTH
END 

A branch is added to the screen that would display under the time card entry screen 
other information from the employee master file record. First, add a display rectangle 
to the SCREEN statement for the time card. 

SCREEN 1 1 8 80 

And then place the following 3 lines just before the END statement. 

BRANCHES
E EMPL EMPL#
DISPLAY EMPLOYEE INFORMATION 

And finally place a second screen description, starting with its header line, after the 
END statement of the first screen description. 

EMPL EMPL.MAS 1
E EMPL#
D FNAME
D LNAME
D TITLE
D ADDR
D CITYST
D HRLYRT
D RHTD
D OHTD
D PTD
* place the display rectangle at
* row 9, column 1, for 8 lines, and 80 columns
SCREEN 9 1 8 80
EMP-  FNAME----- LNAME---------------   TITLE---------------
      ADDR----------------
      CITYST--------------
BL
HOURLY RATE:    -----HRLY
REG. TO DATE:   -----RHTD
OVT. TO DATE:   -----OHTD
PAID TO DATE:   ------PTD
BRANCHES
T TIME EMPL#
RETURN TO TIME ENTRY SCREEN
END 

We redisplay the employee number and name on the employee master screen. This 
is done because the user may move around among employee records in the employee 
master file, and should see the name for the displayed employee number.31 

Also included in the second screen is a branch back to the first screen. 

TRANS will erase the bottom half of the screen when the user takes the T branch back 
to the TIME screen if the display rectangle set for the time entry screen is the whole 
screen, i.e. the SCREEN statement is used without screen layout coordinates. 

31.  Key fields are never "edited". They can only be changed via a record transfer, 
described in Section 6.6 “Record Operations”. TRANS always interprets entry 
into a key field as a search request to go and find the record with the entered key.

NOTE
5 - 58   ADMINS User Guide



Multi-Record Screens
5.9  Multi-Record Screens 

On a multi-record screen the contents of several records are displayed 
simultaneously on the screen. This is controlled by the RPS, records per screen, 
keyword on the screen header line, being set to more than "1" (see Section 5.3 “Screen 
Header Line”). 

The following restrictions apply to multi-record screens. 

1. By default, only one line of information is repeated per record. The heading, 
which is considered to be everything but the last line of the layout, may contain 
data fields as well as literal text. (Data fields in the heading must appear first in 
the field names section of the multi-record screen.) The data fields in the 
heading will be taken from the first record that appears on the screen. The last 
line of the layout, i.e. the repeating fields part, should contain data fields only32 
(no literal text). This last line is displayed repeatedly for each record on the 
screen. 
 If the value of the RPS keyword is immediately followed by "/n", e.g. 6/3, then 
AdmScreen is instructed that the last "n" lines of the screen layout repeat for 
each record to be displayed. That is, by appending the "/n", more than one line 
of data can be displayed for each record in a multi-record screen. Here too, only 
data fields and not literal text can be contained in the repeating portion of the 
multi-record display. Text placed in virtual alphanumeric fields may, however, 
be included in the multi-record display. 
Up to 9 lines may be repeated for each record, e.g: 4/9 to display 4 records per 
screen and 9 lines per record.

2. Multi-record screens may be used for display and for update. However, the 
APND, INS, DEL, or TRF keystrokes cannot be used with multi-record screens. 
(See Section 6.6 “Record Operations” on TRANS for an explanation of these 
keystrokes). 

3. Local33 ER fields should not be used in the repeating portion of a multi-record 
screen. (ER fields are OK in the heading portion of the screen.) 

4. NOWRITE should not be used with multi-record screens. 
5. A Multi-record screen may not be used in conjunction with LFEXIT control. 

Therefore, a multi-record screen is incompatible with the keywords LFEXIT or 
LFBACK, the REQUIRE statement, or the CLF Check statement. 

6. Subscreens are not available in multi-record screens. 

One use for multi-record screens is to display a few fields from several records, with 
a branch to a screen which displays more fields for a single record. The UP and 
DOWN (arrows) keystrokes can be used to move the cursor from record to record on 
the page of a multi-record screen, to single out particular records. 

32.   If it is necessary to precisely place every field on the repeating line or lines, put 
a 'BL' (blank line) on those lines in the screen layout.

33.Main file and linked-in fields that are referenced in the TRS as ER fields (because 
they might be changed by the RMO) may be used (and commonly are used) in 
the repeating portion of a multirecord screen. 
ADMINS User Guide  5 - 59



Multi-Record Screens
A second use for multi-record screens is similar to showing a little about many 
records and then branching to a full screen about one record, only the multi-record 
screen is displaying an index file and the branch is to the master file. (The LINK 
statement on the index file screen can be used to include some information from the 
master record on the multi-record index screen.) 
5 - 60   ADMINS User Guide



Multi-Record Screens
A third use for the multi-record screen is in those cases where there is a file of master 
records and a file of related repeating detail records per master record. For example, 
the accounting ledger record and the detailed purchase order records for each 
account. Then one could display a ledger record for a particular account and branch 
to a split screen that displayed several of the detail purchase order records for the 
same account. The BREAK keyword (see Section 5.3.1.5 “BREAK On A Multi-Record 
Screen”) would be used in this situation to restrict the multi-record display to records 
for the same account only. 

5.9.1  Multi-Record Screen Example 

The following is an example of a multi-record screen with a single line of repeating 
information for each record. 

DIREC DIREC.MAS 10
E LNAME
E FNAME
E ADDRESS
E TELNO
SCREEN
CE DIRECTORY LISTING
BL
NAME                        ADDRESS         TELNO
LNAME--------- FNAME------  ADDR---------   TEL----
END 

This screen would display 10 consecutive telephone directory records at a time. The 
example in Section 5.9.2.1 “BREAK Example” shows the use of data in the heading. 

In the following example of a multi-line, multi-record screen, there are 4 lines of data 
for each of the 5 records displayed on the screen. The virtual fields DASH1 and 
DASH2 are used to place literal text in the repeating section of the screen . 

*
MAILING CUSTOMER.MAS 5/4 NOMSG
E CUSTCODE   
*
D CUSTNAME     
D ADDR1 
D ADDR2
D CITY     
D STATE     
D ZIP      
V DASH1/A30 '------------------------------' 
V DASH2/A30 '------------------------------'
SCREEN
CE MAILING LIST
CODE AND NAME                  ADDRESS
BL 
CUSTCODE-                      ADDR1-------------------------
CUSTNAME---------------------- ADDR2-------------------------
                               CITY------------ STATE-  ZIP--
DASH1------------------------- DASH2------------------------- 
END 
ADMINS User Guide  5 - 61



Multi-Record Screens
Below is a sample of the screen output produced from the instruction file above. 

                     MAILING LIST
NUMBER AND NAME                ADDRESS 
      
B217104                        Room 30 
BAY COLONY PAPER COMPANY       450 Broadway
                               Danvers        MA      01920
------------------------------ ------------------------------
C217535                        2225 Lowell Street
CAMBELL & MORRISON PAPER, INC. 
                               Chelmsford     MA      01824
------------------------------ ------------------------------
F217654                        2nd Floor 
FAY PAPER PRODUCTS             332-22 Van Ness Street
                               Boston         MA      02100
------------------------------ ------------------------------
F217885                        1254 Washington Street
FRANKLIN & WALSH PAPER SUPPLY 
                               Worcester      MA      01613
------------------------------ ------------------------------
P217231                        Suite 14-5
THE PAPER TREE                 91 West Seventh Street
                               Lowell         MA      01853
------------------------------ ------------------------------ 

5.9.2  BREAK In a Multi-Record Screen 

The BREAK keyword placed on the header line of a multi-record screen description 
instructs TRANS to display only records with the same (full or partial) key on a 
particular multi-record display.

Two keystrokes described in Section 6.4 “Field Logging” have special functions for 
use in multi-record screens with BREAK . The PRBK keystroke moves to the previous 
control break rather than the previous sequential page. Likewise, the NBRK 
keystroke will start the next display page at the next control break, rather than the 
next sequential page. The NEXT, PREV and NREC keystrokes always operate on 
sequential pages of records without regard to the BREAK feature. 

 After the BREAK keyword, or after the key name which follows the BREAK 
keyword, a partial key field designator can be used. For example, if the active file has 
one A10 key field, you could specify "BREAK =XXXX" or "BREAK KEYNAME 
=XXXX" for a control break whenever any of the first four characters of the key field 
changes. 

Syntax for partial field BREAKs are the same as in REPORT (see Section 7.7.5 “Break 
At Partial Field” for details): 

=X... for an alpha (A) field

=A...9... for picture (X) fields

=YY or 
=YY-MMM 

to break on the year or year and month in a 
standard-format date (DA) field.

=.SUBFIELD to break on the SUBFIELD, e.g. if the key is 
ACCOUNT and it has a subfield DEPT then:

BREAK =.DEPT 
or 
BREAK ACCOUNT = .DEPT  
5 - 62   ADMINS User Guide



Multi-Record Screens
5.9.2.1  BREAK Example 
*          DEPT.DEF
TAB 100
DEPT X99 KEY1  "department code"
NAME A20       "department name" 

 

*          BUDGET.DEF
MAS 1000
DEPT X99 KEY1  "department code"
OBJ X999 KEY2  "object of expense code"
AMT D2         "budgeted amount" 

The multi-record screen follows: 

AMT BUDGET.MAS 10 NOMSG BREAK DEPT AUTOCR
*
*     Link to get the department name
*
LINK DEPT.TAB
KC DEPT
L NAME
END
D NAME
E DEPT
E OBJ
E AMT
SCREEN
CE DISPLAY BUDGET AMOUNTS FOR DEPT NAME----------------
BL
                         DEPT      OBJECT      AMOUNT
BL
                          D-        OB-    ---------AMT
END 

The screen would break at the end of each department even though BUDGET.MAS 
is keyed on department and object. The BREAK keyword can be followed by the field 
name of one of the keys, instructing TRANS to "break" on that key field. The 
following is a sample of the display generated by the screen description above: 

      DISPLAY BUDGETS AMOUNTS FOR DEPT PUBLIC SAFETY
  
             DEPT      OBJECT      AMOUNT
  
             05        101      101,765.00
             05        102       20,378.00
             05        103        3,234.00
             05        104       10,250.00
             05        201       30,788.00
             05        202          376.00
              05        203        1,450.00 

Note, that although up to 10 records are allowed on the screen, there are only 7 
records in Department 05, and hence only 7 records are displayed. 
ADMINS User Guide  5 - 63



Video Highlighting Facilities
5.10  Video Highlighting Facilities 

The setting of the logical name OPTION (see Appendix A: “Options”) can be used to 
create general highlighting effects in TRANS. 

If the logical name OPTION includes the letter "R", TRANS will display data in 
reverse video with the keys underlined and display literal text in normal video. This 
is the same method TRANS uses when in the GENED Mode (see Section 6.14 
“General Editor Mode (“GENED”)”). 

If the logical name OPTION includes the letter "W", TRANS will display keys in 
reverse video and other data in increased brightness (bold). 

Video highlighting can be set on a field by field basis, by placing video attributes 
keywords after the field name in the TRS fields section. 

The video attributes keywords are: 

BOLD
UNDERLINE or UL
BLINK
REVERSE
FULL
NORMAL 

All codes can be abbreviated to two or more characters. 

"FULL" instructs TRANS to always highlight the full width of the field, regardless of 
how many positions are actually filled with data. Attributes applied with "FULL" 
persist even when the field is cleared for editing. "NORMAL" instructs TRANS to 
display the field in normal video when a more general video instruction (described 
below) would otherwise cause it to be highlighted. 

The video attributes keywords are preceded by a "%" (percent sign). Two or more 
attributes can be combined with a "+" (plus) character (no imbedded blanks): 

%UL+BOLD+FULL 

The video attributes keywords must be the last item in the field declaration 
statement, unless the field has a LOOKUP file (see Section 5.11 “LOOKUP Window”) 
associated with it. Examples: 

E NAME  %BOLD+FULL
 
    ER ZIP/X99999 [6,10] %UL %LOOKUP ZIP.TAB 

The VIDEO statement may be used in the TRS to assign default video attributes to 
all fields in four different classes. The syntax is: 

VIDEO CLASS video_attributes [CLASS video_attributes ...]
5 - 64   ADMINS User Guide



Video Highlighting Facilities
Where CLASS may be KEYS, EDIT, DISP, or MULTI. "KEYS" defines default video 
attributes for all key fields; "EDIT" defines default video attributes for all editable 
fields (including loggable fields); "DISP" defines default video attributes for all 
display fields; and MULTI defines video attributes for the active record in multi-
record screens34. Video attributes are specified in the VIDEO statement using the 
same keywords and syntax as described above (the "%" delimiter is only used on the 
field declaration line). Example: 

VIDEO KEYS BOLD+REVERSE+FULL EDIT REVERSE+FULL DISP BOLD 

MULTI attributes are combined with attributes specified for classes of fields. E.g.:

VIDEO MULTI REV KEYS UL 

will display key fields underlined in all the records of a multi-record screen and 
display the entire active record in reverse video.

The VIDEO statement must be the first line following the SCREEN header line. 
The "VIDEO" statement effects only the screen where it appears. 

VIDEO attributes specified for individual fields override those specified in a video 
statement. For example, the NORMAL keyword in the field declaration statement 
could be used to turn off the video attributes for a specific field, as follows: 

ITEMLIST INVENTORY.MAS 10 NOMSG 132
VIDEO KEYS BOLD DISPLAY REVERSE
    .
    .
    .
DR TODAY/DA %NORMAL
    . 

 To avoid having to put the VIDEO statement into all the screens if you want all key, 
editable, and display fields to be highlighted the same way throughout an 
application or entire system, you may assign the content of the VIDEO statement to 
the logical name ADM$SCR_VIDEO before SCREENing the TRS's. When 
ADM$SCR_VIDEO has a value assigned to it, AdmScreen treats that value as the 
VIDEO statement for every screen it compiles. 

For example, the following logical name assignment: 

$ assign "KEYS BOLD+FULL EDIT REV+FULL DISP UL" ADM$SCR_VIDEO 

 would cause the screen to be compiled with all key fields to be displayed in bold for 
the full display length of the fields, all editable fields other than key fields to display 
in reverse video for the full length of the field, and all display only fields to be 
underlined only for the part actually containing data. 

34.  MULTI highlights the entire active record area, not just the fields, giving the 
screen an appearance similar to a LOOKUP window. (For MULTI the FULL 
attribute is redundant.)
ADMINS User Guide  5 - 65



Video Highlighting Facilities
To provide even greater flexibility, TRANS video attributes can be changed at run 
time without re-screening; either globally or differently for different users according 
to individual preferences.35 ADM$TRANS_VIDEO has exactly the same syntax as 
ADM$SCR_VIDEO, described above. ADM$TRANS_VIDEO does not override 
video settings which are compiled into the TRO or the RMO (see precedence 
discussion below). ADM$TRANS_VIDEO is evaluated after the first pair of BEGREC 
(or MULREC) calls when a screen is first entered. The RMO can assign the 
ADM$TRANS_VIDEO logical name at the first calls (BEGREC or MULREC) in a 
screen and the video attributes specified will apply for that screen.36 

 The KEY_VIDEO statement is used in the TRS to modify the video highlighting 
action of TRANS resulting from the logical name ADM$TRANS_VIDEO, e.g. the 
statement 

KEY_VIDEO AFIELD BFIELD 

would cause the fields AFIELD and BFIELD to be displayed with the same video 
attributes as specified for the screen's key fields in the logical name 
ADM$TRANS_VIDEO. 

There are several distinct mechanisms in ADMINS for specifying the video attributes 
of a field displayed on a screen. The complete order of precedence is, from low to 
high: 

(lowest)  R and W OPTION settings (see Appendix A: “Options”)
          ADM$TRANS_VIDEO logical name
          ADM$SCR_VIDEO logical name
          VIDEO statement 
          video attribute keywords in field declarations
(highest) H$CODE settings (see Section 16.5 “Highlighting Fields”)

5.10.1   %GRAPHICS: Display Field Contents in Graphics Mode

Use %GRAPHICS when the fields contents are intended to be displayed in “graphics 
mode”. When TRANS displays a field that has the %GRAPHICS attribute, it will 
attempt to display the contents of the field using the DEC Special Graphic character 
set.37 

35.  ADM$TRANS_VIDEO works only with TROs, not in GENED mode.
36.  See Section 15.2.1 “Beginning of Record Processing: S$S = 'BEGREC'” for a 

general discussion of Beginning of Record RMO processing (BEGREC). See 
Section 16.21 “Multi-Record RMO Support” for a discussion of RMO 
communication with multi-record screens (MULREC calls). See Appendix H.9.1 
“CRLOG - Create or Delete a Logical Name” for description of the CRLOG 
subroutine, which could be used to assign the ADM$TRANS_VIDEO logical 
name when the screen is entered.

37.   Another name for the DEC Special Graphic character set is the VT100 line-
drawing character set.
5 - 66   ADMINS User Guide



LOOKUP Window
5.11  LOOKUP Window 

 TRANS' LOOKUP windows provide quick, easy access to tables that contain 
information relating to editable and displayed fields. When the TRANS cursor goes 
to a field that has a LOOKUP file associated with it, the user can call up a window 
with a scrollable multi-record display and select a value from the display for 
automatic entry. TRANS treats the selected entry exactly the same as if the value had 
been typed via the keyboard.38 

LOOKUP windows can be designed to start displaying records at a designated point 
(a value for the first key) in the LOOKUP file, or to display only a subset of the 
LOOKUP file, defined either by a key range or by a select expression. LOOKUP 
windows may also link in values from an additional file, and/or transfer values from 
any field in the  file to fields other than the  field. 

LOOKUP can be used for any editable or display (E, D, L, DL, ER, DR, LR) field in 
the screen. 

LOOKUP syntax is: 

E FIELD %LOOKUP file_name or ADD
  [ HEADING LITERAL ... ]
  [ TITLE [%VIDEO] LITERAL ]
  [ FOOTING [%VIDEO] LITERAL ]
  DISPLAY D_FIELD[/WIDTH] ...
  [ KEY  K_FIELD1 [K_FIELD2]... ]
  [ KEY_RANGE LO_FLD1 [LO_FLD2...] HI_FLD1 [HI_FLD2...] 
  [ PROMPT PROMPT_TEXT/1 [PROMPT_TEXT/2...]
  [ RETURN  FIELD[/NOTYPE] ]
  [ WINDOW LINE COL #LINE #COL ]
  [ LINK =prefix link_file KEY[S] IS/ARE L_KFLD1 L_KFLD2...] 
  [ TRANSFER LKUP_FIELD INTO SCREEN_FIELD ]
  [ SELECT expression ]
  [ CREATE FIELDNAME/TYPE expression]
  [ NOLOCKEDRECORDS ]
    [ BREAK KEY_FIELD ]
  [ CAPS ]
  [ BOUND ]
  [ BOUND_KEY ]
  [ CR_EXIT ]
  [ NOREFRESH ]
  [ LK_CLOSE ]
  [ PUSHBUTTON ]
  [ IDENT NAME ] 

Use 

%LOOKUP file_name 

to specify a LOOKUP window when the window is to be based on a ADMINS data 
file that is being used as a table. 

Use 

%LOOKUP ADD 

38.   For display-only fields (D, DR, DL) LOOKUP windows are also display-only, e.g. 
no value can be selected or written.
ADMINS User Guide  5 - 67



LOOKUP Window
to modify the Data Dictionary-generated automatic LOOKUP window for a field that 
is bound to a Codelist Table (see Appendix I.5.3 “Automatic Lookup Windows ”). 
The statements described below will override the specification for that characteristic 
in the Dictionary39. The %LOOKUP ADD syntax is also used when the Data 
Dictionary-generated automatic LOOKUP window is to be used with a display-only 
field (without the %LOOKUP ADD the cursor would not go to a display-only field). 

LOOKUP sub-statements must be indented. Up to 7 LINK sub-statements and/or up 
to 25 TRANSFER sub-statements may be used in a single LOOKUP paragraph. All 
other sub-statements may appear only once. The SELECT, KEY, KEY_RANGE, and 
PROMPT sub-statements may be continued to a new line using the ":" continuation 
operator.  

39.  When you use %LOOKUP ADD the names of the code, description and user 
action fields in the codelist table are {D}CODE, {D}DESCR, and {D}UAC, 
respectively.  Use these names to refer to these items in any LOOKUP 
substatements, e.g.:  SELECT {D}CODE NE ‘00000’. 

Sub-statement Description

DISPLAY Lists the fields in the LOOKUP file to be displayed in the 
window. DISPLAY is the only required sub-statement in a 
LOOKUP paragraph.

HEADING Must contain one alphanumeric literal (no spaces) for each 
field named in the DISPLAY statement. (If no HEADING 
statement is present, the DISPLAY field names are used as 
headings). Heading text is justified according to the data type 
of the corresponding DISPLAY field.

TITLE Put literal text on the top line of the LOOKUP window. The 
text will be centered in the window. Video attributes 
(combinations of bold, underline, blink, reverse) for TITLE 
can be specified using the "%attribute+attribute" syntax 
described in Section 5.10 “Video Highlighting Facilities”, 
e.g.: 

TITLE %BOLD+REV This is the TITLE 
will display the TITLE text in reverse video and bolded. 
The video keyword must immediately follow the keyword 
TITLE, and begin with %. Invalid video keywords are 
included literally in the TITLE.
The TITLE can contain information from fields in the virtual 
record.  Use the field name surrounded by “%”, for example:

TITLE Lookup for %TBLNAME% table
or
TITLE %LOOKUPTITLE%

FOOTING Put literal text on the bottom line of the LOOKUP window. 
The text will be centered in the window. Video attributes for 
FOOTINGs are specified as described above for TITLE. 

KEY Start to display records at the specified key value. Up to 9 key 
values may be specified, corresponding to the key fields of 
the LOOKUP file. K_FIELD1 through K_FIELDn must be 
defined in the screen's virtual record. 
5 - 68   ADMINS User Guide



LOOKUP Window
KEY_RANGE Limits the LOOKUP display to records with a key value 
within the range of the values defined by the LO_FLDn and 
HI_FLDn fields. Up to nine low/high pairs may be entered 
(use ":" line continuation if necessary). The number of lower 
limit fields given must be equal to the number of upper limit 
fields given.

PROMPT Allows the user to customize the key field prompts that 
appear when the user presses LOOK while the LOOKUP 
window is active. 
LOOKUP will prompt, using the specified string in place of 
the field name, for each key value specified in the PROMPT 
sub-statement. 
PROMPT syntax is: 

PROMPT PROMPT_TEXT/1 [... PROMPT_TEXT/
9] 

The prompt string may be up to 20 characters long. If any 
imbedded blanks appear in the prompt string the entire 
string must be enclosed with apostrophes. The prompt string 
is followed by a slash and the associated key number, i.e. "/
1" appended to the prompt string identifies that string as the 
prompt for KEY1, and "/9" identifies the prompt string for 
KEY9. 
An example: 
If KEY1 of the LOOKUP file, EMPLOYEE.MAS, is EMPNO, 
the employee's ID number, then by default LOOKUP will 
prompt as follows when LOOK is pressed when the 
LOOKUP window is active: 

Enter search value for field EMPNO 
If the following PROMPT sub-statement is introduced into 
the LOOKUP paragraph:

PROMPT Employee_ID/1 
then LOOKUP will prompt as follows: 

Enter search value for field Employee_ID
Prompt strings must appear in key order ([D]KEY1 first), 
although keys can be omitted. Values for omitted keys are 
taken from the current record in the LOOKUP window. 
If no PROMPT sub-statement is specified for a LOOKUP 
paragraph, LOOKUP prompts for [D]KEY1 only by name, 
and does a partial key search for the value of [D]KEY1 given 
in response.

RETURN Identifies the field in the LOOKUP file whose value should 
be put into the editable field when a selection is made.
If no RETURN statement is specified the CANCEL button 
will be the default button when the LOOKUP window is 
displayed. 

WINDOW Defines the LOOKUP window display area (starting LINE, 
starting COLUMN,number of  LINES,number of 
COLUMNS). If no WINDOW statement is present, TRANS 
uses a window big enough to display ten records, and places 
it in the lower right corner of the screen.

Sub-statement Description
ADMINS User Guide  5 - 69



LOOKUP Window
LINK Allows information to be brought in from additional files. 
The key fields, L_KFLDn, used to perform the link may be 
fields in the LOOKUP file itself, or be fields linked into the  
window via previous LINKS (identified with their prefix, as 
described below). The =prefix is put in front of all field 
names in the linked file, to automatically rename them for the 
scope of the LOOKUP paragraph. This prefix must be present 
when any fielda from the LINK file is subsequently 
referenced in the LOOKUP paragraph, e.g.: 

LINK =CS_ CUSTOMER.MAS
    
SELECT CS_D%SALESREP EQ 'Cosmo Carducci' 

TRANSFER Used to transfer a value from a  file field (LKUP_FIELD) into 
a field (SCREEN_FIELD) other than the  fieldb 
SCREEN_FIELD may be a field in the screen file, or an ER or 
DR field defined locally for the screen. The data type of 
LKUP_FIELD and SCREEN_FIELD must be the same 
(although the length might differ). Note that TRANSFER 
sub-statements only transfer values when a record is 
selected in the LOOKUP window. If data is typed by a user 
directly into the field with the LOOKUP paragraph, no 
TRANSFER takes place. The BOUND keyword, described 
below, provides a means to insure that specified transfers 
will take place.

SELECT Displays only those records in the LOOKUP file that satisfy 
the SELECT expression. Fields in the LOOKUP file, LOOKUP 
LINK files, fields in the virtual record of the screen, or 
constants, may be used to form the SELECT expression. 
When a field from the virtual record in the screen (i.e. outside 
the LOOKUP paragraph) is referenced, prefixc the field name 
with a ~ (tilde), e.g. 

SELECT LKUPFLD EQ ~SCRFLD 
where LKUPFLD is a field from the LOOKUP file, and 
SCRFLD is a field from the screen's virtual record, or

SELECT ~D%OCC_CODE EQ 'LABORER' 
where D%OCC_CODE is the codelist description for 
OCC_CODE, a field in the virtual record. 

CREATE LOOKUP in TRANS supports “virtual fields” for display in 
the LOOKUP window.  The general syntax is:

CREATE FIELDNAME/TYPE expression

i.e. similar to CREATE statements in REPORT and V 
statements in TRANS.  These fields are for display only, their 
values are only calculated after a record has been selected for 
display.

NOLOCKED-
RECORDS

Do not display (select) records that are currently locked by 
another user.

BREAK If the BREAK keyword followed by a key field name is 
included in the LOOKUP paragraph, the LOOKUP window 
will "break" on that key, i.e. only records with the same full 
or partial key value will be displayed together. This facility 
performs in a manner similard to BREAK in a multi-record 
screen (see Section 5.9.2 “BREAK In a Multi-Record Screen”).

Sub-statement Description
5 - 70   ADMINS User Guide



LOOKUP Window
CAPS If you press the LOOK key while LOOKUP is active, 
LOOKUP prompts for a key value to search for. If the CAPS 
keyword is used in the LOOKUP window specification, your 
response is converted to upper case before the search takes 
place.

BOUND Prevents a user from entering into the field except by 
selecting from the LOOKUP window. When BOUND is 
specified in a LOOKUP paragraph, LOOKUP is called 
immediately if any attempt is made to type in the field. 
BOUND is especially useful when TRANSFERs are specified 
for the LOOKUP paragraph, to insure that the intended data 
transfers take place. 
BOUND must be explicitly specified for each field that is 
associated with a particular LOOKUP paragraph (using the 
"%LOOKUP =NAME" syntax). See the discussion of the 
IDENT keyword below.

BOUND_KEY Like BOUND, BOUND_KEY prevents a user from altering 
the field except by selecting from the LOOKUP window. 
BOUND_KEY, however, does allow typing into the field. 
With BOUND_KEY in effect, whatever is typed into the field 
is used as a key specification for the LOOKUP window, 
which displays automatically when the entry is terminated. 
LOOKUP starts displaying records at the point in the file that 
is the best match (value of the first key) for the value entered. 
As with BOUND, when BOUND_KEY is in effect the only 
way to actually change the value of a field is by selecting a 
value via the LOOKUP window. 

CR_EXIT Moves the cursor to the next field, and, if the local RMO field 
F$UNCKEYe is present, calls the RMO with F$UNCKEY set 
to "LRET", when the LOOKUP window is cleared (via 
HOME) without selecting a value. If CR_EXIT is not 
specified, the cursor remains at the same field, and the RMO 
is not called, if LOOKUP is cleared without selecting a value. 

NOREFRESH Causes the LOOKUP window to stay on the screen when you 
exit LOOKUP and return to TRANS. The full screen display 
can be restored by pressing REF.f 

LK_CLOSE LK_CLOSE instructs TRANS to close the data files opened by 
the LOOKUP window when it leaves LOOKUP. 
Without LK_CLOSE, files opened by a LOOKUP window 
remain open until another LOOKUP window opens different 
files or until TRANS exits the current screen. Leaving the 
LOOKUP files open is more efficient if it is likely that the next 
use of LOOKUP would use the same files. Use LK_CLOSE 
when this assumption is not valid or whenever you want to 
make sure the files are closed immediately when TRANS 
leaves LOOKUP. LK_CLOSE can be especially useful to 
conserve resources when complex screens must operate near 
TRANS' limits. 

Sub-statement Description
ADMINS User Guide  5 - 71



LOOKUP Window
PUSHBUTTON

Label Text

ACTION

&TRANSFER

&OK

USe PUSHBUTTON  to add an additional pushbutton to the 
row of buttons at the bottom of the Lookup dialog box. 
The syntax is:
PUSHBUTTON LabelText ACTION=action(s)
where:

is the text that appears on the button. Use apostrophes to 
enclose a label that contains embedded blanks.
Specify the button’s action using the same TRANS keystroke 
macro syntax used for regular push buttons (see Section 
5.5.17.1 “PushButton Object”), macro definitions in the 
TRANS$ENV file (see Section 6.15.2 “Define Macro 
Function”), and in the alphanumeric argument method for 
the setkey routine (see Appendix H.14.10 “SETKEY - 
Simulate Keystrokes in TRANS”)
For example,  this button may be used to signal to the RMO 
to take some special action when returning from the  dialog:

    PUSHBUTTON 'New Customer' M$M_11

would call the RMO with M$M set to '11' when the  dialog 
box closes.  The RMO might then branch to a special screen 
for adding new customers.
By default, the Lookup window is always cancelled (e.g. no 
record is selected and no value is returned or transferred) 
before the PUSHBUTTON’s action occurs.

To TRANSFER fields the last action for the PUSHBUTTON 
can be a single &TRANSFER statement. 

 The syntax is:

&TRANSFER sourcefield INTO targetfield

Observe that the ampersand (&) in front of the TRANSFER 
verb is part of the syntax.

To RETURN and TRANSFER fields (the same result as  
clicking the OK button)  use “&OK” as the last action for the 
PUSHBUTTON

PUSHBUTTON 'Buttontext' M$M_nn &OK

When this button is pressed all transfer and return 
statements are executed, and the RMO will get the usual 'UX' 
and 'UP' calls, but F$UNCKEY will be set to 'nn' instead of 
'LKUP', where '01' <= 'nn' <= '99', thus making it possible for 
the RMO to know which button was pressed

Sub-statement Description
5 - 72   ADMINS User Guide



LOOKUP Window
If you do not want to show the whole length of a DISPLAY field, indicate the desired 
display length "n" by adding "/n" to the field name, e.g. to show the first 10 characters 
of the A40 field CITY, the syntax is CITY/10. 

If a LOOKUP window is available for a field on the screen, pressing LOOK when the 
cursor is at that field activates the LOOKUP window.

If LOOK is pressed before anything is typed into the field, TRANS displays the table 
file starting at the top of the file (unless a KEY or a KEY_RANGE statement is 
present). If anything40 is typed into the field before pressing LOOK, TRANS uses that 

IDENT To avoid having to define identical LOOKUP clauses for each 
field in a screen where you have several fields of the same 
type, looking up in the same table, and displaying and 
returning the same fields, you may name the LOOKUP 
clause for the first field, e.g. IDENT NAME. NAME is a 
character string constant up to 4 characters long (if longer, 
only the first 4 characters are used). On subsequent fields in 
the screen, where you want to invoke the same LOOKUP 
window, refer to the named LOOKUP clause. The syntax is: 

E FIELD %LOOKUP =NAME [BOUND] 
There can be no spaces between the equal sign and the name. 
BOUND must be explicitly specified for each use of the same 
LOOKUP paragraph. When specifying BOUND for a 
LOOKUP window that references a previously specified 
LOOKUP paragraph, BOUND must appear on the same line 
as "%LOOKUP =NAME". 

a.    The =prefix precedes the D% or U% prefix when the codelist description 
or user action code (see Appendix I.5.2.1 “Update Internal Codelist Tables 
”) for a field from the link is being referenced, i.e.
SELECT CS_D%SALESREP EQ 'Cosmo Carducci' 

b.    The RETURN statement is used to put values into the  field.
c.    The ~ (tilde) prefix is used both to signal that the field is in the screen 

virtual record, rather than the LOOKUP file, and to rename the field in 
case the LOOKUP file has a field with the same name. The tilde prefix 
precedes D% or U% when the codelist description or user action code for 
a field in the virtual record is being referenced.

d.    The partial key designator syntax (=YY-MMM etc.) is not supported in 
LOOKUP.

e.    See Section 16.15 “Subscreen Status and Control: ADM$SUBSCR”
f.     If "l" (lowercase) is included in the string assigned to the logical name 

OPTION the LOOKUP window will remain on the screen (with or without 
NOREFRESH) after you exit LOOKUP, and will be included in the "screen 
print" produced if PRT is pressed (See Section 5.3.1.9 “SPn or TTn: Print 
Device Specification”). Be aware that when this feature is used, any data 
(and literal text) that are overlaid by the LOOKUP window is erased from 
the screen buffer, and cannot be restored using REF*.

40.  A key value for the LOOKUP table can be entered, regardless of whether the field 
on the screen has the same data type as the LOOKUP table key. For example, if 
the LOOKUP clause returns an account number, type X9999, that is looked up via 
the account holders last name, you could type the first few characters of the last 
name (alpha characters) into the editable account number field (all numerics), 
then press LOOK, to "home in" on the part of the LOOKUP file you want.

Sub-statement Description
ADMINS User Guide  5 - 73



LOOKUP Window
as a key value in the LOOKUP file, and displays records starting with that key. If  a 
KEY_RANGE statement “locks” the  LOOKUP window into a specific key value, 
then the value is used for the next key. For example, if a LOOKUP file has two keys 

FISCALYEAR X9999 KEY1
DEPT X999 KEY2

and the  LOOKUP paragraph had this KEY_RANGE statement:

KEY_RANGE FISCALYEAR THISYR THISYR

then the value typed into the field before the pressing LOOK would be used for 
DEPT, and the LOOKUP display would start with that record.

See Section 6.9 “Lookup Windows” for details on navigating inside the LOOKUP 
window. 

LOOKUP's help uses the bottom four lines of the screen, which are refreshed when 
the user leaves help (via the EXIT key).41 

The user selects a value in LOOKUP by positioning the LOOKUP's cursor at the 
desired record and pressing the SELECT key or the MENU key. The LOOKUP 
window is cleared from the screen and the RETURN field value from the LOOKUP 
file is "entered" into the editable field on the screen. (If the field is identified in the 
CAPS statement of the TRS, the RETURN field value will be converted to uppercase 
before being entered into the editable field on the screen.) If the local RMO field 
F$UNCKEY is present (see Section 16.14 “F$UNCKEY - Function Key Detection in 
RMO”), it is set to the value 'LKUP'. Any TRANSFERs specified in the LOOKUP 
paragraph are also performed. 

If no RETURN is specified for a LOOKUP paragraph, TRANSFERs may still be 
specified if a record is selected in the LOOKUP window. If the local RMO field 
F$UNCKEY is present (see Section 16.14 “F$UNCKEY - Function Key Detection in 
RMO”), it is set to the value 'LKUP' and M$M will be set to 'FX'. 

If no RETURN or TRANSFER is specified in the LOOKUP window the SELECT and 
MENU keystrokes are ignored. 

Pressing LOOK while in an active LOOKUP window causes TRANS to prompt for a 
target key value(s), as follows: 

Enter search value for field <Field_name> 

where <Field_name> is the [D]KEY1 field's name from the file definition, or a prompt 
string specified in the PROMPT sub-statement (described previously in this section). 
If no PROMPT sub-statement is present, LOOKUP prompts only the for the first key 
field ([D]KEY1). If a PROMPT sub-statement is present, LOOKUP will prompt for 
each field specified. As each prompt is responded to, LOOKUP will provide values 
from the current LOOKUP record for any higher key fields whose prompts were 
omitted in the PROMPT sub-statement, but if a PROMPT statement prompt receives 
a response of RETURN (a null response), then prompting stops and the target value 
for all (lower) keys after the last non-RETURN response are set to null. For example, 
given the following keys and PROMPT sub-statement: 

Keys:  DEPT X999   KEY1
       ORG  X999   KEY2
       SECT X99    KEY3
       GANG X999   KEY4
       RATE D6    DKEY5
       WEEK I     DKEY6

41.  The LOOKUP help file is ADM$DIST:LOOKUP.HLP. TRANS users must be able 
to read it. LOOKUP.HLP can be modified if desired, provided that the text does 
not exceed two lines or 78 characters.
5 - 74   ADMINS User Guide



LOOKUP Window
 
    PROMPT Department/1 Section/3 Pay_rate/5 Pay_period/6 

If a response of "801" is given to the prompt:

Enter search value for field Department

and if a response of "14" is given to the prompt

Enter search value for field Section

and if a response of RETURN (no value) is given to the prompt

Enter search value for field Pay_rate

then prompting stops (Pay_period is not prompted for), and the key search 
commences using values as follows:

Field Search      

Once the key target value(s) are entered, LOOKUP looks for the specified record and 
if it is found, records are displayed beginning with that record. If the specified key 
value is not found, records starting with the next previous value are displayed, as in 
a multi-record screen. 

LOOKUP can perform data type conversion on the RETURN field. For example, the 
field ZIP might be an X99999 in the active file, but might have type A5 in the zip code 
table. LOOKUP handles such conversions automatically. After conversion, the 
RETURN value must be a valid value for the field being entered, and must fit within 
the field's display width. To prevent AdmScreen from giving a field type mismatch 
error message when data type conversion is necessary, use the /NOTYPE qualifier 
immediately after the RETURN field name: for example, "RETURN ZIP/NOTYPE". 

5.11.1  LOOKUP Window: Examples 

The following example specifies a LOOKUP window for field CUST#. When a record 
from the LOOKUP file is selected, the value from CUSTNO will be entered into field 
CUST#. In addition, values from fields accessed via the LOOKUP paragraph LINK 
will be loaded into the screen's IDATE and IAMT fields. 

E CUST#    %LOOKUP CUSTOMER.IDX
            LINK =I_ INVOICE.MAS KEY IS CUSTNO
            DISPLAY CUSTNAME I_INVDATE I_AMOUNT
            RETURN CUSTNO
            TRANSFER I_INVDATE INTO IDATE

Key Name Value Explanation

1 DEPT 801 Response to PROMPT (...Department)

2 ORG <LOOKUP> Use Value from current LOOKUP 
record

3 SECT 14 Response to PROMPT (...Section)

4 GANG null Not loaded from current LOOKUP 
record because RATE reply was 
RETURN

5 RATE null Reply was RETURN

6 WEEK null Not prompted because RATE prompt 
reply was return
ADMINS User Guide  5 - 75



LOOKUP Window
             TRANSFER I_AMOUNT  INTO IAMT 

The prefix "I_" identifies I_INVDATE and I_AMOUNT as fields INVDATE and 
AMOUNT from the LOOKUP paragraph LINK to file INVOICE.MAS. 

Another example, using the SELECT statement referencing a field in the screen: 

E WRKORDER %LOOKUP WORKORDER.MAS
            HEADING WORKORDER DESCRIPTION
            DISPLAY W_ORDER/10 DESCR
            RETURN W_ORDER
             SELECT RESP EQ ~EMPL# 

This LOOKUP paragraph shows only those work orders from the 
WORKORDER.MAS file where the RESPonsible field is equal to the EMPL# field in 
the screen virtual record. The ~ (tilde) signals that EMPL# is from the screen rather 
than the LOOKUP file. 

5.11.2  LOOKUP Menu 

You can specify multiple LOOKUP paragraphs for a single field. The user then selects 
a LOOKUP window from a LOOKUP menu that is displayed when the LOOK key is 
pressed. To specify multiple LOOKUPs for a single field use the %LOOKUP_MENU 
paragraph as the first entry of a series of %LOOKUP paragraphs. 

%LOOKUP_MENU syntax is: 

E FIELD %LOOKUP_MENU
         [ TITLE [%VIDEO] Title String ][ FOOTING [%VIDEO] Footing 
string ]

         [ WINDOW LINE COL ]
         [ CR_EXIT]
         [ MenuOnCancel ]
         [ IDENT NAME ]
         %LOOKUP ... 

To utilize a LOOKUP menu specified previously in the current screen, use the name 
specified in its IDENT statement: 

E FIELD %LOOKUP_MENU =NAME 

A maximum of eight LOOKUP entries may be specified for a LOOKUP menu. 

Note that only LINE and COLUMN numbers are given for the WINDOW statement 
in a %LOOKUP_MENU paragraph. The compiler will calculate the number of lines 
and columns needed to display the full menu. 

The LOOKUP_MENU window displays the TITLE line from each LOOKUP 
paragraph as menu items (or the LOOKUP file name if no TITLE is present), 
preceded by a sequential number. A selection is made either by typing its number or 
placing the cursor at the desired item and pressing SELECT. 

By defining keystroke macros in the TRANS.ENV file (see Section 6.15 “The TRANS 
Environment File”) you can enable users to invoke a specific choice from the menu 
without displaying it.42 The following TRANS.ENV entries will make F12 
automatically invoke menu item 1,  and F13 automatically invoke menu item 2: 

define LKP1=F12 %look 1
define LKP2=F13 %look 2

42.   These macros assume that the order of the %LOOKUP paragraphs do not vary 
in the .TRS source - you want the application behavior to be consistent.
5 - 76   ADMINS User Guide



LOOKUP Window
Example: 

Assume we have an account structure where some portion of the composite account 
number sometimes reflects a vendor number, sometimes a customer number, and 
sometimes an employee number. We may use the following LOOKUP syntax: 

E ANUMBER %LOOKUP_MENU
           WINDOW 5 10
           TITLE %REVERSE VENDOR/CUSTOMER/EMPLOYEE
          %LOOKUP APP:vendor.mas
           TITLE %REVERSE VENDOR LOOKUP TABLE
           DISPLAY VNO VNAME VCITY VSTATE
           RETURN VNO
          %LOOKUP APP:customer.mas
           TITLE %REVERSE CUSTOMER LOOKUP TABLE
           DISPLAY CNO CNAME CCITY CSTATE
           RETURN CNO
          %LOOKUP APP:employe.mas
           DISPLAY EMPNO EMPNAM EMPCITY
            RETURN EMPNO 

Pressing LOOK at the ANUMBER field will cause the LOOKUP menu to be 
displayed (plus a box around it): 

VENDOR/CUSTOMER/EMPLOYEE
1: VENDOR LOOKUP TABLE
2: CUSTOMER LOOKUP TABLE
3: APP:employee.mas 

If you want number 2, Customer Lookup Table, either press the '2' key, or press 
DOWN to make the number '2' choice highlighted, and then press the MENU key. 

If the TRANS.ENV file entries described above were implemented, the F13 key 
would automatically invoke the second  entry. 

5.11.3  LOOKUP on Local Arrays

LOOKUP windows may be used to access local arrays initialized by the RMO.  The 
syntax for LOOKUP on local arrays is:

%LOOKUP_ARRAYS AR1/type(dim) AR2/type(dim) ...
     [ HEADING… | TITLE… | WINDOW…    etc. …]
       DISPLAY AR1 AR2 ...
     [ ARRAY_START Fieldname ]
     [ ARRAY_END   Fieldname ]
     [ RETURN… | TRANSFER… | SELECT… | BOUND…   etc. …]
      ...

The arguments that follow the %LOOKUP_ARRAYS keyword, AR1/type(dim), 
AR2/type(dim) etc., are the names of the local arrays whose elements will be 
displayed together as "records" in the LOOKUP window.  (The field type and size of 
the local arrays must be declared here, as AdmScreen does not know what is 
contained in the RMO.)

Note that references to these arrays in LOOKUP sub-statements, e.g. DISPLAY, 
TRANSFER and SELECT use the base array name only, without any subscript.

The ARRAY_START and ARRAY_END sub-statements are used to identify two 
integer fields (which may be set by the rmo) that define the range of array elements 
that are to be displayed (or selected from), e.g.:

ARRAY_START STARTNO
ARRAY_END ENDNO
ADMINS User Guide  5 - 77



Menu Bar
If STARTNO has a value of 10 and ENDNO has a value of 30 then the 
%LOOKUP_ARRAYS window would display (or SELECT from) only the 10th 
through 30th elements of the arrays specified in the DISPLAY sub-statement. If 
ARRAY_START is not present, the %LOOKUP_ARRAY display will begin with the 
first element of each array, IF ARRAY_END is not present the dimension of the 
shortest array named in the DISPLAY sub-statement determines how many elements 
are used from each array.

The maximum dimension for any array used with %LOOKUP_ARRAYS is 4095.

No KEY or KEY_RANGE statements are allowed with %LOOKUP_ARRAYS.

For example,  if the following three arrays are declared in the RMO:

XLNAME/A20(20) Davis Neer Grahl Saether Piecham Yee Saether

XFNAME/A20(20) Bill Avi Bart Dagfinn Chuck Ginny Kjell

XAMT/D2(20)    4.29 6.02 0 17.23 18,429.67 0 23

Then the following %LOOKUP_ARRAYS paragraph could be used to access the 
arrays in a LOOKUP window:

E D2 %LOOKUP_ARRAYS XLNAME/A20(20) XFNAME/A20(20) XAMT/D2(20)

     SELECT XAMT GT 0

     DISPLAY XLNAME XFNAME XAMT

     RETURN XAMT

The above code would result in a LOOKUP window containing the following:

XLNAME______________ XFNAME______________ _________________XAMT 

DAVIS                BILL                                  4.29 

NEER                 AVI                                   6.02 

PIECHAM              CHUCK                            18,429.67 
SAETHER              DAGFINN                              17.23 

SAETHER              KJELL                                23.00 

5.12  Menu Bar 

TRANS' Menu Bar allows the screen developer to present the user with a selection of 
options in a form similar to popular PC and workstation window-based applications. 

The choices presented in a menu bar can be any type of TRANS function: perform a 
branch, do a calculation, file a record, move the cursor, spawn a process, leave 
TRANS, etc. A menu bar choice can also display a pulldown or popup window which 
presents a submenu. 

A menu bar can appear anywhere except the last line of the screen. It can be 
displayed at all times, or it can appear when the user hits the MENU key (this is the 
default). The menu bar display line consists of several short keywords, each 
representing an option, appearing in equal-sized reverse video areas. 

In TRANS, the Menu Bar is activated by pressing the MENU key when positioned at 
the first character of any field. Section 6.10 “Menu Bars and Submenus” describes 
how to navigate once the Menu Bar is active. 
5 - 78   ADMINS User Guide



Menu Bar
Each choice on the menu can either  

1. cause a branch, 
2. cause a special RMO call where S$S is the field name you were at when you 

entered the menu and M$M is a value specified in the BAR paragraph, 
3. leave TRANS, 
4. call TRANS HELP, 
5. display the TRANS branch menu; or 
6. display a pulldown or popup submenu with further choices of the first 5 kinds. 

Menu choices which refer to branches which are designated as automatic-only in the 
TRS (using "%%", as described in Section 5.7 “Branches”) are not displayed in the 
menu bar or in a submenu, unless the AUTOBR subroutine (see Appendix H.14.1 
“AUTOBR: Automatic Branch Control”) has made them available for manual 
branching. Changes in the contents of menus due to AUTOBR calls are reflected on 
the screen the next time the user hits the MENU key. 

If a submenu becomes empty because all of its items are currently automatic-only 
branches, it still appears as a choice on the menu bar, but, if you select it, TRANS 
gives the message "No Items Available". If the menu bar itself becomes empty, then 
pressing the MENU key has no effect. 

5.12.1  Bar Paragraph Syntax 

BAR syntax in the TRS is: 

BAR [Line] [WIDTH=n] [OPTIONS=op1+op2]    Choice_name Action_code  
[Parameters]
    Description
    ... 

The BAR statement is placed above the SCREEN statement, and there can be only one 
BAR per screen. The BAR statement has options pertaining to the menu bar as a 
whole. Each item in the bar is described by 2 lines; and the item description lines must 
be indented with at least one space or tab. 

On the BAR line, the screen line where the bar appears can be specified (the default 
is line 1). The screen line refers to the absolute position on the screen: it is not relative 
to the top line of a split screen. 

The maximum width of any choice on the bar can be specified. The default width is 
8 characters. 

 Five OPTIONS keywords may be used in specifying a menu bar:        

OPTIONS Keywords Description

VISIBLE  is included if the menu bar should always be 
displayed on the screen. By default the menu bar is 
displayed only when the MENU key is pressed. 

CURSOR is included if you want the TRANS cursor to remain 
visible while in the menu. By default the cursor 
disappears when the menu bar is entered. 
ADMINS User Guide  5 - 79



Menu Bar
Multiple OPTIONS keywords can be specified for a menu bar by combining them 
with a plus sign "+", i.e. "OPTION=VISIBLE+INSIDE". 

After the BAR statement up to 20 pairs of lines can be used to specify up to 20 menu 
choices. 

    ...
    Choice_name Action_code  [Parameters]
    Description
    ... 

The first line of each pair identifies the menu item (Choice_name), defines the type of 
action this choice is to perform (Action_code), and supplies any parameters that type 
of action might require. The second line contains a short description for the item, up 
to 40 characters long (blanks may be included.) 

Choice_name is a short string of up to 8 characters (or up to WIDTH characters, 
where WIDTH is set in the BAR statement) with no embedded blanks, which will be 
displayed in the bar menu. 

Action_code must be one of the values listed in the following table: 

INSIDE is included if you want the menu bar to be 
displayed inside a BOX (see Section 5.5.11 “BOX 
statement”). Normally the menu bar occupies the 
full display width of the screen, but if a BOX is 
present on the screen that starts in column 1 and is 
at least 4 lines in length, and if the menu line is 
specified to fall inside that BOX, then 
OPTIONS=INSIDE will display the menu inside the 
BOX, if possible. 

OPEN makes the menu bar "open ended" in the sense that 
AdmScreen will accept more choices than would 
actually fit across the screen. OPEN is for use when 
some choices will not be displayed because they are 
branches which will have been set as automatic-
only by the AUTOBR subroutine (see Appendix 
H.14.1 “AUTOBR: Automatic Branch Control”). It is 
the developer's responsibility to ensure that the 
choices which are displayed will fit across the 
screen at run time. Choices which do not fit are 
ignored (from the right) by TRANS. 

NOEX prevents the user from leaving the menu without 
making a choice, i.e. it has the effect of disabling the 
HOME key in the bar menu.

Action Code Description Parameters

QUIT leave TRANS none

BRANCH branch branch code or *

SUBSCREEN subscreen subscreen name or *

EXECUTE calls RMO M$M value

HELP calls HELP help topic name

MENU calls submenu submenu name

OPTIONS Keywords Description
5 - 80   ADMINS User Guide



Menu Bar
BRANCH requires a branch code as a parameter. If a menu choice is selected that has 
the BRANCH action code, TRANS will branch to the target screen indicated by the 
supplied branch code. If the branch code parameter is an asterisk (BRANCH *) rather 
than a branch code, TRANS will call up the standard branch menu when the item is 
selected. By using BRANCH *, you can make all manual branches available as one 
menu item, instead of having to specify each branch as a separate menu item. 

Similarly, the SUBSCREEN action code can be used to display a particular subscreen 
by giving its name as the parameter, or to display the subscreen menu, by giving an 
asterisk as the parameter. 

EXECUTE requires a value of M$M as a parameter. If a menu choice is selected that 
has the EXECUTE action code, TRANS will call RMO with the mode, M$M, set to the 
value supplied in the EXECUTE parameter, and the status, S$S,, set to the name of 
the field from which the menu was called (i.e. the field at the current cursor position). 

MENU requires the name of a submenu as a parameter. See Section 5.12.2 “The Menu 
Paragraph” for a discussion of the MENU paragraph. 

HELP requires the name of a help topic in the ADM$HELPFILE. If a menu choice is 
selected that has the HELP action code, TRANS will call HELP for the topic name 
supplied by the HELP parameter. If the HELP parameter is H$ELPNAME,43 HELP 
will use the contents of the field H$ELPNAME to identify the topic section to look for. 

Each item on the bar is displayed in a reverse video "field" of the same width. If you 
use items 8 characters wide (the default), then the items are displayed 9 characters 
apart (8 plus one space), so 9 items can fit on an 80-column line. 

5.12.2  The Menu Paragraph 

If the BAR paragraph offers any choices with the MENU action code, then each 
submenu named must be specified in a MENU paragraph. All MENU paragraphs 
must be placed below the BAR paragraph in the TRS. 

MENU paragraph syntax in the TRS is similar to BAR paragraph syntax (see Section 
5.12.1 “Bar Paragraph Syntax”):

 MENU Menu_name [OPTIONS=NOEX]
    [SEPARATOR]
    Choice_code  Action_code  [Parameters]     Description
    [SEPARATOR]
    [Choice_code etc. …]

The MENU line must contain a menu name: This is the name by which the submenu 
is referenced in the BAR paragraph. The only OPTIONS keyword available in 
submenus is NOEX.

The menu items are described in the same way as in the BAR paragraph. Choice 
codes should only be one character long, and should be unique within each MENU 
paragraph, to enable accelerator keys.

A separator (horizontal graphic line) can be inserted in a submenu with the keyword 
"SEPARATOR" ("se" is enough) on a line by itself in the MENU paragraph.  Normally 
a separator is placed between two items, but it can also be placed above the first item, 
to draw a line under the submenu title area.

Example:

43.   See Section 6.12 “HELP in TRANS”
ADMINS User Guide  5 - 81



Menu Bar
       MENU Verify
          N EXECUTE YN
          Change Name
          A EXECUTE YA 
          Change Address
          SEPARATOR
          X QUIT
           Accept and Exit

There can be any number of SEPARATORs in a submenu, but they do count against 
the limit of 20 items in a menu paragraph.  Item descriptions are limited to 40 
characters. 

Only one level of submenus is supported. Therefore, the action code 'MENU' cannot 
be used in a MENU paragraph. 

Submenus drop down from the menu bar if there are enough lines on the screen 
below the menu bar. If not, they pop up from the menu bar. There is no scrolling 
inside these windows: all submenu choices and separators, plus the window border 
and the submenu title, must fit on the screen, either above or below the menu bar. If 
there is not enough room for a submenu either to pop up or to drop down from the 
menu bar, AdmScreen will exit with an error message. 

Keystrokes inside a pulldown or popup submenu are the same as in the menu bar. 

5.12.3  Enhanced Accelerator Capability

If the tilde character (~) is placed in the string assigned to the logical name OPTION, 
an enhanced accelerator key capability is enabled. This option makes accelerators in 
the menu bar and submenus more flexible, makes TRANS display them differently, 
and causes AdmScreen to error check them.  This is a SCREEN (i.e. compile-time) 
option; to get the enhanced accelerators you must re-SCREEN the TRS with "~" in 
OPTION.44

With enhanced accelerator keys enabled, TRANS displays the accelerator key for a 
menu bar or submenu item in underlined boldface, and any character in the menu 
bar item name, or submenu item description may be the accelerator key for that 
item.

The Menu BAR item syntax is:

Name Action [Parameter]
Description

"Name" is what is displayed in the bar. The default accelerator for the item is the first 
character of "Name" (case blind).  If the screen is compiled with "~" in OPTION the 
first character will be highlighted with underlined boldface, to identify it as the 
accelerator key, unless another character in the item name is designated as 
accelerator for that item by placing a tilde (~) before it: e.g., "E~xit" tells AdmScreen 
to highlight and use 'x' (and 'X') as the accelerator key for item "Exit".

If more than one tilde appears in a name, only the first one is significant; any other 
tildes are just literal characters. If a tilde appears at the end of a name ("Name~"), it 
is a literal character.  These rules apply to MENU item syntax as well.

44.  It does not matter whether OPTION "~" is assigned when TRANS runs, once 
compiled the enhanced behavior is "built-in" to the screen.
5 - 82   ADMINS User Guide



The MESSAGE Facility
The MENU item syntax is:

C Action [Parameter]
Description

By default, the choice code and the description for each item appear in the submenu.  
If the screen is compiled with "~" in OPTION only the description is displayed in the 
submenu, with the accelerator key highlighted in underlined boldface.  By default, 
the accelerator key is the choice code (AdmScreen will check that the choice code 
character is present in the description, issuing a warning message if it is not45).  As in 
the BAR menu, you may designate any character in the description as the accelerator 
for a submenu item by placing a tilde (~) before it.  For example:

Y EXIT
Accept and E~xit

designates X as the accelerator key for the submenu item "Accept and Exit" ("x" will 
be highlighted in underlined boldface).  When the "~" is used to designate an 
accelerator, the choice code is not used, but is still required as a placeholder.

5.13  The MESSAGE Facility 

The MESSAGE facility allows screens to display messages whose contents are 
determined at run-time, whenever the cursor arrives at a field. The message 
disappears when the cursor leaves the field. Anything hidden by the message is 
refreshed. 

The MESSAGE paragraph is an optional component of a field declaration, identified 
by the keyword %MESSAGE. The syntax for the MESSAGE paragraph follows. 

E FIELD %MESSAGE [LOCATION][ALIGN][BOX][VIDEO][EXECUTE][=NAME]
[IDENT msg_nm]
[CONTROL field_name]
DISPLAY literal ^ --FIELD FIELD-- $$FIELD FIELD.-- 
[DISPLAY additional lines] 

The only required items are the %MESSAGE keyword itself and at least one 
DISPLAY substatement (or a reference to a previously described message statement.) 
"!" for comments can be used everywhere except after DISPLAY, which interprets '!' 
as a literal character in the message text. 

45.  When "~" is in OPTION, AdmScreen also checks that the accelerators are unique 
for a given submenu or menu bar.
ADMINS User Guide  5 - 83



The MESSAGE Facility
The keywords described below are all optional. If used, they must appear on the 
same line as "%MESSAGE". 

LOCATION There are several ways to specify where to display the 
message.

Coordinates (4 numbers) the position and size (line, column, height, 
width) of the window where the message is displayed. The 
line and column numbers are relative to the upper left corner 
of the physical screen. 
Because using coordinates and dimensions can be tedious 
and hard to maintain; there are four keywords you can use 
instead: ABOVE, BELOW, RIGHT, and LEFT. With these 
keywords, the width and height of the message window are 
determined by whatever it displays; and the screen 
placement is determined using the coordinates of the left end 
of the field. 

ABOVE Places the message above the field. 

BELOW Places the message below the field.

RIGHT Places the message to the right of the field.

LEFT Places the message to the left of the field.
If none of these keywords is used and no coordinates are 
given, the default message window is assumed. It starts in 
column 1, two lines above the bottom line on the screen; it is 
two lines high and uses has a width ten characters less than 
the entire screen width, e.g. on a 24x80 screen, the default 
message window starts on line 22, column 1 and extends to 
line 23, column 70. 

ALIGN Two mutually exclusive keywords modify the alignment of 
the message window.

CENTER If present, modifies the alignment of the message window 
when ABOVE or BELOW is specified, so that the message 
window is centered above or below the cursor when it 
arrives at the field. If CENTER is not specified, the left side of 
the message window is aligned with cursor when it arrives at 
the field.

RJUST If present, right-justifies the message within the message 
window. Used with ABOVE or BELOW RJUST also aligns 
the right side of the message window with the right end of 
the field.

BOX If BOX is present, the message window is displayed inside a 
box. If coordinates are used to locate and size the message 
window, the height and width must include two lines and 
two columns for the box.

VIDEO One of more video attributes can be specified for the message 
window, using the following keywords.

BOLD Displays both the text of the message and the surrounding 
box (if any) in bold.

UL Underlines the full width of the message window. UL has no 
effect on the box.

REVERSE Displays the full width of the message window in reverse 
video. REVERSE has no effect on the box.
5 - 84   ADMINS User Guide



The MESSAGE Facility
BLINK Causes the contents of the message window to blink.

EXECUTE Tells TRANS to call the RMO just before the message is 
displayed. The RMO can set fields in DISPLAY statements or 
can set a CONTROL field (described below). The RMO is 
called with S$S set to the field name and M$M set to 'MS'. If 
the screen has no RMO, EXECUTE is ignored.

=NAME Used to reference a previously declared message by its 
IDENT name (described below). When a previously declared 
message is referenced, the %MESSAGE line is the only line of 
the message paragraph, i.e. the IDENT, CONTROL, and 
DISPLAY lines cannot be overridden. 
If the referencing message has nothing except "=NAME" on 
the %MESSAGE line, all %MESSAGE line options are copied 
from the referenced message. Otherwise, the referencing 
message uses the options specified on its %MESSAGE line. 
The "%MESSAGE" keyword appears on the same line as the 
field declaration, after the precise placement specification (if 
any), unless the field has any other "%" keywords 
("%WINDOW", "%LOOKUP", %BOLD", etc.). If any other 
"%" keywords are in use for the field, %MESSAGE (indented) 
goes on the next line following the field declaration. 
%LOOKUP (see Section 5.11 “LOOKUP Window”) can be 
used with %MESSAGE in either order. Just start the 
%MESSAGE paragraph (on a new line, indented) 
immediately after the last line of the %LOOKUP paragraph, 
or vice-versa. 
 The MESSAGE paragraph sub-statements described below, 
if used, are placed one to a line on indented lines following 
the %MESSAGE line. Unless the MESSAGE paragraph is 
referencing a previously specified MESSAGE (using the 
=NAME syntax), the message paragraph must contain at 
least one DISPLAY statement.

IDENT Gives the message a name so it can be re-used for another 
field via "=NAME". Only the first four characters of the 
IDENT name are used by TRANS. These first four characters 
must be unique within a screen. 

CONTROL Allows the RMO running with the screen to determine 
whether or not to display the message. Identifies an integer 
(I) field which TRANS is to check. If the CONTROL field is 
set to zero the message is not displayed; or if it is set to one 
the message is displayed. CONTROL can be used with or 
without EXECUTE, and it must be above the first DISPLAY 
statement.
ADMINS User Guide  5 - 85



The MESSAGE Facility
The message is displayed after fields are displayed. The developer must therefore 
make sure that a message using explicit coordinates and dimensions does not cover 
up the display of the field to which it refers. 

A MESSAGE window and a LOOKUP window on the same field can overlap on the 
screen. When the LOOKUP window displays it may cover part of the message 
window; when the LOOKUP window clears the MESSAGE window is refreshed on 
the screen. 

Messages are not printed as part of the screen display when the PRT keystroke or the 
CTRLP subroutine is used. The REF keystroke refreshes the message for the field at 
the cursor. 

DISPLAY Provides a layout for one line of the message. At least one 
DISPLAY statement is required, and there is no limit on the 
number of DISPLAY lines except that they must fit on the 
screen. 
Each DISPLAY contains a line of field designators and/or 
literal text to be displayed. Field designators in DISPLAY 
must have one or more dashes (-) or dollar signs ($) in front 
of the full or partial field name (e.g.: ---FLD, $$$FLD), or else 
one or more dashes after the field name (e.g. FLD---). As in 
AdmScreen or REPORT layouts, the total width of the field 
name string with its dashes or dollar signs is the maximum 
width which will be displayed (values of the field which are 
too wide are truncated on the right). Leading dollar signs 
cause the '$' character to be displayed immediately before the 
value. To force a match on the exact field name string given, 
put a dot after the field name (e.g., '---FLD.' or 'FLD.---'). 
Displayed numeric values always have leading zeroes and 
commas suppressed. Hats (^) can be used to insert "hard 
blanks" in DISPLAY literals: this is especially useful if you 
want a RIGHT or LEFT message to start or end with blanks 
in order to separate it from the field's value. DISPLAY 
followed by nothing generates a blank line. 
The message lines are formed by concatenating the various 
literals and fields on each DISPLAY line, with one blank 
between them (unless hats are used to insert "hard" blanks). 
It makes no difference whether dashes are on the left or the 
right of a field name, because leading and trailing blanks in 
field values are ignored. 

TABULAR Allows you to create a tabular display in a %MESSAGE 
paragraph, with properly justified and aligned columns.
TABULAR can be placed on the %MESSAGE line and affects 
the formatting of the message display in two ways:

1.  Multiple blanks between fields or between literals and 
fields in message DISPLAY lines are preserved, not 
squeezed out.
2.  As in REPORT, fields in DISPLAY are left justified or 
right justified, depending on which side of the field name 
the dashes or dollar signs are placed.

The TABULAR attribute is inherited by “=name” references 
to a message. That is, if a message has TABULAR, other 
messages which reference it by its IDENT name have the 
TABULAR attribute. If a message does not have TABULAR, 
messages referencing it do not, either. The TABULAR 
keyword is not required, and is ignored, on %message lines 
which contain an “=name” reference.
When TABULAR is used, hats (^) are not needed to preserve 
blank space.
5 - 86   ADMINS User Guide



The MESSAGE Facility
5.13.1  MESSAGE Facility Example 

VEH.TRS and VEH.RMS, listed below, specify a screen that illustrates some uses of 
%MESSAGE. Note that field JCDE has both a video keyword (%BOLD), a LOOKUP 
paragraph, and a MESSAGE paragraph; and that the display of the message for field 
VID is controlled via logic in the RMS. 

      ***** VEH.TRS *****
      *
      VEH DATA$DIR:VEH.MAS 1 VEH.RMO
      ER AUTHCODE/A10
      DR AUTHFLAG/I
      E JCDE %BOLD %LOOKUP JCDE.MAS               
            DISPLAY JCDE JDESC
        %MESSAGE BELOW CENTER BOX         
            DISPLAY To update a different job code than 
            DISPLAY JCDE----- type the new value 
            DISPLAY over the current value
            DISPLAY then press RETURN
      *
      E VID %MESSAGE BELOW CENTER BOX BLINK EXECUTE
            CONTROL AUTHFLAG
            DISPLAY You must enter 
            DISPLAY an authorization code
            DISPLAY for changes to be valid!
      *
      SCREEN
                   Vehicle Assignments
      BL
            Authorization Code: AUTHCODE-------
      BL
               Job Code              Vehicle ID
             JCDE-----               ------VID
      END 

      ***** VEH.RMS *****
      *
      FILE DATA$DIR:VEH.MAS
      M$M/A2
      S$S/A6
      AUTHFLAG/I
      AUTHCODE/A10
      PROGRAM
      IF M$M EQ 'MS' AND AUTHCODE EQ ' ' THEN ; !Display when
           AUTHFLAG = 1 ELSE AUTHFLAG = 0 END   !auth code nonblank 
ADMINS User Guide  5 - 87



Subscreens
5.14  Subscreens 

The SUBSCREEN facility provides a means to display a subset of a screen's fields, 
literals, etc. Subscreens can be laid out side by side, or they can completely or 
partially overlap. 

Subscreens are useful, for example, in data entry screens where there are too many 
fields to fit legibly on the physical screen, or in screens where different subsets of 
fields are displayed and edited under different conditions. 

Using subscreens can reduce the number of screens and RMOs and the amount of 
duplicative code in the application, which makes both implementation and 
maintenance easier. In addition, the use of subscreens can improve the 
responsiveness of the application to the extent that branching to complex screens is 
reduced. Switching between subscreens is much faster than branching because all 
data files are already open and the TRO and the RMO are already in memory. 

Note: Subscreens are not available in multi-record screens.

Subscreens are only a mechanism for changing the screen display and the list of fields 
on the screen. A subscreen is not a separate screen: instead, a main screen and all of 
its subscreens make up a single TRANS screen. The RMO and all LINKs, etc., operate 
exactly as if there were no subscreens. All TRANS limits and syntax rules apply to 
the entire screen, not to each subscreen separately. 

A screen can consist of a main screen and up to 14 subscreens. TRANS initially 
displays only the main screen. In the main screen, the only editable or refreshable 
fields are those in the main screen itself. The user or the RMO can then invoke various 
subscreens. When TRANS displays a new subscreen, the cursor normally lands on 
the first editable field in the subscreen. However, in a subscreen, both the main 
screen's fields and the fields in the subscreen are editable and refreshable: with the 
usual keystrokes (HOME, arrows, RETURN) the user can place the cursor at any of 
these fields. All TRANS features and keystrokes are available within subscreens. 
Specifically, since the key fields should be in the main screen, the user can enter a key 
value to go to another record without changing subscreens. 

The SUBS keystroke is used to move between subscreens. When SUBS is pressed, the 
subscreen menu appears. This menu looks and works like the branch menu (see 
Section 5.7.3 “Calculated Branches”). The main screen always has "branch code" 0, 
while subscreens are numbered from 1 to 9 and A to E. Subscreens appear in the 
menu in the same order they appear in the TRS. Using the menu, the user can go to 
any subscreen in the current screen, or to the main screen. 
5 - 88   ADMINS User Guide



Subscreens
5.14.1  Subscreen Design Considerations 

Fields on the main screen are always refreshed, and so when switching from a 
subscreen to the main screen, the main screen is not redisplayed (the main screen is 
always assumed to be visible!). Because of this, the following guidelines should be 
observed when designing screens with subscreens.46 

1. All key fields used in the screen should appear in the main screen. 
2. Any other fields which should always be visible, editable, and/or visibly 

refreshed should be on the main screen. 
3. Other fields, especially other editable fields, should appear in subscreens, not in 

the main screen. 
4. Subscreens should not overlap with any non-blank part of the main screen. The 

net result is that, generally, the main screen will have very little on it. 

For example, a main screen might look like this: 

 
=================================================================
 *--------------------------------------------------------------*
 |                             Main Screen                            |
 | Key: KEY----  Name: LNAM-------- , FNAM----------                  |
 |                                                                    |
 *--------------------------------------------------------------*
 
 
 
 
 
 
 
            (THIS BLANK AREA WILL BE OVERLAID BY SUBSCREENS)
 
 
 
 
 
 
 
 
 *--------------------------------------------------------------*
 MESSAGE---------------------------------------------------------
 *--------------------------------------------------------------*
 
=================================================================

In the above example, the key and name fields, and the message field, are always 
visible, editable, and refreshable. Various subscreens with additional fields, literals, 
boxes, etc., would be laid out in the blank area as described below. 

46.   Some special notes on Digital's VTxxx terminals: VTxxx compatible terminals 
cannot display part of the screen in 80 column mode and another part in 132 
column mode. Therefore, all subscreens have the same character mode (80 or 132) 
as their main screen. Double width (DW) and double height (DH) are attributes 
of an entire line on a VTxxx screen, not attributes of a character cell. These 
features should be avoided in screen layouts which do not use the full width of 
the screen.
ADMINS User Guide  5 - 89



Subscreens
5.14.2  Subscreen Syntax 

Subscreens are implemented using three statements: SUBSCREEN, TITLE, and 
SCRMENU. These keywords fit in the TRS syntax as follows: 

          Screen header line
              [ LINK, APPEND, and INDEX paragraphs ]
     -->      [ TITLE Main_screen_title ]
     -->      [ SCRMENU L# C# HGT WID Subscreen_Menu_Title ]
              Main Fields section
              SCREEN [ coordinates ]
              Main screen layout
              *
     -->      SUBSCREEN Subscreen_name [RPS[/n] [RESTORE] [LOCK]
              [ TITLE Subscreen_title ]
              Subscreen Fields section
              SCREEN [ coordinates ]
              Subscreen layout
              *
              SUBSCREEN Subscreen_name ...
              ...
              *
              [ BRANCHES ]
              END 

SUBSCREEN is required if subscreens are used, the others are optional. 

The TITLE statement provides a screen description (up to 40 characters long) which 
appears in the subscreen menu. TITLE should be present in the main screen and in 
each subscreen. If there is no TITLE for the main screen or a subscreen, the subscreen 
menu displays "MAIN" or the subscreen name. To prevent a specific subscreen (or 
main screen) from appearing in the subscreen menu, use the statement 'TITLE %%'. 

The SCRMENU statement gives the developer more control over the subscreen 
menu. The coordinates and dimensions of the subscreen menu box can be specified, 
and a subscreen menu title can be given. The SCRMENU syntax is the same as the 
BRANCHES syntax for customizing the branch menu (see Section 5.7.1 
“Customizing the "Pop-up" Branch Menu”), except that the menu title is limited to 40 
characters. If used, SCRMENU should appear only once per screen, in the main 
screen section. If SCRMENU is not present, the subscreen menu appears centered 
near the bottom of the screen with the title "Subscreen Menu". 

If TITLE or SCRMENU is used in the main screen, they must appear below all 
external file paragraphs (LINK, APPEND, INDEX). 

SUBSCREEN paragraphs are described between the last line of the main screen 
layout and the BRANCHES or END statement. The SUBSCREEN header line 
indicates the beginning of a subscreen and gives it a name (subscreen names must be 
unique within each screen and are limited to 18 characters in length). Each screen can 
have up to 14 subscreens. 

RPS is an optional number to indicate the number of records  in a multi-record 
subscreen.  For example,

subscreen listall 5

Specifies the subscreen will display 5 records at a time.

If each record in the multi-record subscreen is to have multiple lines, specify the 
number of lines for each repeating record by appending a slash (“/”) and the number 
to the RPS number. For example,

subscreen listall 4/3
5 - 90   ADMINS User Guide



Text Fields
Specifies the subscreen will display 4 records at a time with three lines being 
displayed for each record.

The RESTORE keyword on the SUBSCREEN line causes the subscreen to disappear 
when the user goes to another subscreen. Whatever was covered up by the subscreen 
is redisplayed. 

The LOCK keyword on the SUBSCREEN line prevents the user from going to 
another record while in the subscreen. Using LOCK, the key fields become display-
only; and all record movement keystrokes are blocked (SELECT, PREV, NEXT, 
NREC, etc.). 

Each SUBSCREEN paragraph has its own fields section. The subscreen fields section 
has the same purpose, syntax, and supports all the features of the main screen fields 
section, as described in Section 5.5 “Field Names”, i.e.: virtual fields, check and 
message statements, CAPS, REQUIRE, LOOKUP, precise placement, BOX, etc. As in 
any other screen, BOX coordinates and precisely placed field coordinates are relative 
to the upper left corner of the SCREEN rectangle, which is specified in the SCREEN 
statement of the SUBSCREEN paragraph. 

Both the VIDEO statement and special BOX statements such as BOX DEFAULT carry 
over into any subsequent SUBSCREEN paragraphs in the screen: they need not be 
repeated in each subscreen's fields section. 

LINK, APPEND, and INDEX paragraphs as well as BAR and MENU statements must 
appear in the main screen, not in subscreens. 

Each subscreen also has its own SCREEN layout section. Normally, the SCREEN 
statement for a SUBSCREEN will include coordinates and dimensions for the 
subscreen rectangle (a "split screen"), so that it will not overlap with information 
displayed in the main screen. 

5.15  Text Fields 

Text fields (TInn and TXnn data types) are edited and displayed using the TED 
editor, as described in Appendix J: “The TED Text Editor”. 

Until the TED editor is called (via the EDIT keystroke) only the first line of the text 
field is displayed, following the same display syntax that is used for alpha fields, e.g. 
to display field EXPLANATION, data type TI60, use: 

     E EXPLANATION [2,59,21]  ! in the field declaration section.
 
                            or
 
     EXPLANATION----------    ! in the SCREEN description 

In either case only the first line of EXPLANATION will appear on the screen, 
truncated to 21 characters, until the TED editing window is called for 
EXPLANATION. 

Any attempt to type into a text field without calling TED will produce a warning 
tone. 

To display multiple lines of the text field use the 

TEXTFIELD----n------ 
ADMINS User Guide  5 - 91



Parameterization
syntax, where n is the number of lines in the text window. The multi-line display is 
read-only. The multi-line display can also be specified using precise placement 
syntax:

E TEXTFIELD [line,col,#lines,#columns]

If the text field is declared as a display-only field in the field declaration section, or if 
the field is in fact display-only because, for example, the file has been opened read-
only, or because the EDFLDS subroutine made it display-only, the TED editor is 
called in read-only mode, i.e. the file can be viewed but not altered. 

If the text field is editable the TED editor is called with full editing capability. The file 
may be initialized, either directly via the Data Dictionary, as described in Appendix 
J.7 “The Text Initialization File”, or under the RMO control, as described in Section 
16.23 “TX$INITF: Automatic Initialization of Text Fields”. 

By default, the TED editing window takes up the entire screen display. You may 
specify the size of the TED editing window for a text field by using the %WINDOW 
keyword in the field declaration section: 

E EXPLANATION [2,59,21] %WINDOW 5 2 16 79 

The first two numbers after %WINDOW are the line and column number for the 
upper leftmost corner of a rectangle where TED's window is to be displayed. The 
second two numbers are the number of lines (length) and the number of columns 
(width) of the TED window. 

5.16  Parameterization 

If the letter "p" (lowercase) is included in the string assigned to the logical name 
OPTION (see Appendix A: “Options”), then any string in the TRS instruction file can 
be parameterized by placing the string in angle brackets. The string enclosed by the 
angle brackets becomes a prompt that will be displayed during the compilation of the 
screen.47 The string typed in response to the prompt by the user is inserted into the 
instruction file for the purpose of the particular compilation in place of the angle 
bracketed parameter text. For example: 

     BILLING <Enter year to view>BILL.MAS 1 BILLING.RMO NOMSG 
 
     V DEPARTMENT/A20 <Enter department name>
 
     CE Job status for <Enter your name> 

Once text has been supplied for a particular parameter, i.e. a particular angle 
bracketed string, then that text will be substituted for the parameter each time it is 
encountered. 

47.  Because AdmScreen can accept wildcard syntax (*.trs) to screen many TRSs in 
one step, parameterization should be used carefully with AdmScreen. We 
recommend using logical ("L$") parameters (see Section 5.16.1 “Logical 
Parameters”) in TRSs, and never using the same logical name for parameters 
which have different values in different TRSs. If you do not use logical 
parameters, AdmScreen prompts for parameter values; with a wildcarded 
AdmScreen command, it prompts once for each unique parameter string within 
each TRS. Consistent use of logical parameters eliminates the prompting and 
makes AdmScreen wildcard syntax much easier to use.
5 - 92   ADMINS User Guide



Parameterization
If the parameter is enclosed in double brackets, as follows: 

ER NAME/A40 [5,<<Enter column for name, or press return to 
skip>>,40] 

and the user does not supply a response, then AdmScreen will ignore the entire 
instruction line which contained the double bracketed string. 

5.16.1  Logical Parameters 

If the parameter string contained in the angle brackets begins with the characters 
"L$", (e.g. <L$fieldname>), then AdmScreen first tries to translate the prompt as a 
logical name. If the logical name has been assigned the user is not prompted for the 
contents of the parameter. Instead the value of the logical name is substituted for the 
prompt. Parameters which begin with the characters "L$" and are assigned as logical 
names are called "logical parameters". 

When the logical names exist, the display of logical parameter prompts and their 
values can be suppressed by assigning the lowercase letter "c" to the logical name 
OPTION (see Appendix A: “Options”). 

If a parameter beginning with "L$" is not assigned as a logical name, then the user is 
prompted for a value as in standard parameterization (see Section 5.16 
“Parameterization”).  

Prompting for values when the logical name is not assigned can be avoided entirely 
by supplying a default value in the parameter string, as follows:

<L$MINIMUM=0>

Specify the default value for the logical name by appending “=value” to the logical 
name inside the angle brackets. In the example above if the logical name 
L$MINIMUM is not assigned, the value “0” will be substituted for the parameter.

5.16.2  Data DIctionary Parameters 

If the parameter string contained in the angle brackets begins with the characters 
"L%",  “W%”, or “J%” (e.g. <L%fieldname>), where “fieldname” is a field in the 
virtual record that references an element in the Data Dictionary, then AdmScreen 
first tries to substitute the prompt with the “Line Label” (L%), “Display Width” (W%) 
or “Justification” (J%) attributes of  the referenced Data Dictionary element. as a 
logical name. If successful AdmScreen does not prompt the user for a value. 

As with logical parameters,  when Data Dictionary references exist, the display of 
parameter prompts and their values can be suppressed by assigning the lowercase 
letter "c" to the logical name OPTION (see Appendix A: “Options”). 

If a parameter beginning with "L%" does not succesfully retrieve a value from the 
Data Dictionary, then the user is prompted for a value as in standard 
parameterization (see Section 5.16 “Parameterization”).
ADMINS User Guide  5 - 93



Parameterization
5 - 94   ADMINS User Guide



Chapter 6:TRANS: Screen Transactions

AdmTRANS (or “TRANS”), the TRANSaction processor, is used to process data in a 
screen display. Simple screen formats can be generated automatically by TRANS 
"General Editor Mode", which is described in  Section 6.14 “General Editor Mode 
(“GENED”)”. Generally, though, specific screen instruction files are first "compiled" 
using the AdmScreen (or “SCREEN”) command, described in Chapter 5: 
“AdmScreen: Compiling Screen Forms”. The SCREEN command produces a file 
called "name.TRO" by compiling the screen instruction file called "name.TRS". Then 
the user can type "TRANS name" on the command line to call TRANS to process data 
according to that screen. For example:

$ trans name

If the user types only TRANS on the command line, TRANS will prompt for a screen-
name or a file name:

$ trans
TYPE SCREEN-NAME OR FILE-NAME OR C.R.
name

Pressing carriage return (C.R.) in response to the prompt will exit TRANS. The FILE-
NAME option (General Editor mode) is described in Section 6.14 “General Editor 
Mode (“GENED”)”.

6.1  Standard Functional Keystrokes

The table that follows lists TRANS' standard function keystrokes that are used to 
control cursor movement and TRANS special functions. TRANS editing keystrokes, 
which are used when entering and editing data in a field, are described separately in 
Section 6.3.2 “Keystrokes: Editing fields in TRANS”.

Function Key Function

apnd Enter (or exit) Append Mode.

brnc Accept branch code (switch to another screen).

copy Copy value from the same field in the previous record.

del Delete record.

down Move cursor down a line; after NREC, move n records 
towards the end of file, or to the end of file.

edit Enter edit modeaon a text (TInn) field.

ENTER Insert value into field; move cursor to next field or subfield

err Acknowledge error, clear error condition for next operation.
ADMINS User Guide   6 - 1



Standard Functional Keystrokes
exit Accept new screen name, or first step to leave TRANS.

fsm Change Field Selection Mode between tabbing and query

help Display user help (see Section 6.12 “HELP in TRANS”)

home Move cursor to primary key field of record; exit lookup, 
branch menu, menu bar without action.

ins Insert record with the same key(s) as the current record (this 
key is disabled if file is open via an alternate index).

key2 Move cursor to second key (KEY2).

key3 Move cursor to third key (KEY3).

left Move cursor to the previous editable, lookup, or text field.

lkcl Close display-only Lookup window

lkdo Open Lookup window in display-only mode

look Display LOOKUP window for field (see Section 6.9 “Lookup 
Windows”)

menu Activate  the menu bar; choose menu bar item (see Section 
5.12 “Menu Bar”)

msg Toggle: display/hide field format information.

nbrk Display next record (page); if multi-record screen with 
BREAK display next page starting at next control break.

next Display next record (page); write record in Append/Insert or 
with LFEXIT control in Update Mode.

nrec Accept (optional) number for record movement followed by 
an up arrow (move towards top of file) or down arrow (move 
towards end of file); arrow without preceding number moves 
directly to top or bottom of file.

pbrk Display previous record (page); if multi-record screen with 
BREAK display page starting at previous control break.

plus Add one to the value of the same field in the previous record, 
place new value in the current record (integer fields only).

prev Display previous record (page).

prt Send printout of current screen contents to print queue.

ref Refresh the display on the screen.

rght Move cursor to the next editable, lookup, or text field.

rmo Call the RMO with status (S$S) set to the field the cursor is on, 
and mode (M$M) set to ‘XX’. Allows special RMO processing 
regardless of cursor position (See Section 16.17 “Special 
Keystroke to Call the RMO” for details).

same Use value from current record for this key.

shfk Show TRANS function keys.

subs Display subscreen menu 

Function Key Function
6 - 2   ADMINS User Guide



Standard Functional Keystrokes
6.1.1  TRANS Function Key Help

TRANS displays the following keystroke function help if you press the SHFK key 
while entering or editing data in a field. The KEYname for each key will reflect the 
standard function key name of the physical key or meta key combination currently 
associated with each TRANS function. If any "meta keys" (see Section 6.15.4 “Set 
"Meta Key": GOLD, WHITE, RED, or BLUE”) are enabled in the TRANS environment 
they are indicated in the help display.

The display below reflects TRANS default key assignments for VT compatible 
terminals.

By default, TRANS displays the function keys in alphabetic order by TRANS 
function name. You can change the order the functions keys are displayed in via the 
SHFK_SORT statement in the TRANS environment file.1

tdbg TRANS Debug Information

test Toggle RMO Test Mode on/off.

trf Transfer record. (this key is disabled if file is open via an 
alternate index)

up Move cursor up a line; after NREC, move n records towards 
the top of file, or to the top of file.

xret Return to the point of last branch.

a.     See Appendix J: “The TED Text Editor”for a description of the TED editor. 
See Appendix K: “Using Text Fields” for a general discussion of the use of 
text fields. Section 5.15 “Text Fields” describes how text fields are specified 
in SCREEN.

Function Key Function

1.    See Section 6.15.12 “REF_INIT: Optional Screen Refresh Behavior” 
ADMINS User Guide  6 - 3



TRANS Modes
6.2   TRANS Modes

TRANS can be in one of four data entry modes: Update, Append, Insert, and Error.

6.2.1  Update Mode

This is the usual mode for TRANS, and it is the initial mode when a screen is 
activated (except when the main file is empty, in which case TRANS automatically 
starts in Append Mode if Append Mode is allowed on the screen). During Update 
Mode, editable and loggable fields can be updated, text fields can be displayed and 
edited using TED, branches can be made to other screens, records can be deleted, and 
the user can put TRANS into Insert, Append or Error Mode. In Update Mode, each 
time the user enters a manual change, the disk block containing the active record is 
written back to the disk.2

During Update Mode a message ("TOF" or "EOF") is displayed at the top right corner 
of the screen to indicate that the first record in the file is being displayed ("top of file") 
or the last record is being displayed ("end of file"). The "TOF" or "EOF" message 
overwrites the text in the last 13 characters of the first line of a screen. This text can 
be recovered with the REF keystroke (see Section 6.7 “Control Functions”). 
Alternatively, these message displays are controlled with the MSG keystroke (see 
Section 6.7 “Control Functions”), or the NOMSG screen instruction file keyword (see 
Section 5.3.1.2 “NOMSG: Inhibit On-line Messages”).

6.2.1.1  Update Mode Under LFEXIT Control
LFEXIT control in Update Mode is used to provide an environment under which data 
entry can be stringently controlled with a minimum of application programming. 
When LFEXIT control has been requested3 for a screen, it is activated when the user 
enters a value into a non-key field.

Under LFEXIT control, the active record is written to disk only when the user presses 
NEXT (or otherwise invokes TRANS’ NEXT keystroke function) to leave the record. 
This provides a straightforward method for performing data checkout at end of 
record processing. In addition, data entry in Update Mode is more efficient because 
the block containing the active record is written back to the disk only once per record 
instead of after each field is entered.

2.    Under LFEXIT control, or if the NOWRITE keyword is present on the screen 
header line, the block containing the active record is NOT written back to disk 
every time manual change is entered. LFEXIT control is discussed in Section 
6.2.1.1 “Update Mode Under LFEXIT Control”. NOWRITE processing is 
described in Section 16.1.1 “High Volume Update: NOWRITE”.

3.    To request LFEXIT control the keyword LFEXIT or LFBACK must be present on 
the header line of the screen instruction file, or the field names section of the 
screen instruction file must have at least one REQUIRE statement (see Section 
5.5.5 “REQUIRE Statement”).
6 - 4   ADMINS User Guide



TRANS Modes
Since TRANS under LFEXIT control does not write to the disk on a field by field basis, 
all field logging is performed at once. All changes to the record are logged when the 
active record is written to disk (i.e. at the NEXT keystroke). A log record is generated 
for each loggable ("L" or "LR") field in the active file record whose value has been 
changed, including fields changed by the RMO.4

In Update Mode, ordinarily the user can leave the active record in a file using any of 
a number of keystrokes (e.g. NREC, PREV, BRNC, EXIT etc.). Once the user enters a 
non-key field, LFEXIT control prevents the user from leaving the record by any 
means other than the NEXT function.5 TRANS indicates that LFEXIT control is active 
by displaying the characters "UP" in the upper right corner of the screen.6

TRANS normally displays the next record in the file when the user presses NEXT in 
Update Mode. However, if lowercase "b" is in the string assigned to the logical name 
OPTION and LFEXIT control is active, then when NEXT is pressed, the record is filed 
but TRANS remains at the record which was just changed. (The BEGREC RMO calls 
occur; and the cursor goes to the first editable, lookup, or text field.) Using OPTION 
"b" the user can stay on the current record even after changes have been filed. 
Remaining on the record just changed may be useful before a branch using branch 
fields in the active record.

6.2.2  Append Mode

This mode can be entered (if Append Mode is allowed on the screen (see Section 
5.3.1.1 “INSERT, DELETE, or APPEND Records”)) by pressing the APND keystroke 
and is used to append records to the bottom of a file, including initial entry of records 
into an empty file. (When a screen is activated on an empty file, TRANS 
automatically goes into Append Mode if Append Mode is allowed on the screen.) In 
Append Mode the user can only enter values, and use the NEXT keystroke function 
to file away the record which has been entered on the screen, and get another blank 
screen in which to fill in another record. (Values on the record being entered can be 
changed by simply moving the cursor to a field, and entering another value "on top" 
of the previously entered one. Also, the EDIT keystroke can be used for editing 
alphanumeric fields in Append Mode).7 When the APND keystroke is pressed again 
to leave Append Mode, TRANS is placed in Update Mode at the last record in the file. 
A handy way to see the last record appended when in Append Mode is to press 

4.    Ordinarily (without LFEXIT control), only fields manually updated by the user 
are logged (see Section 6.4.2 “Field Logging, Method of Operation”). Changes 
made by the RMO are only logged if they are made after LFEXIT mode is in effect 
(i.e. after a manual change to the record). Please note that field logging under 
LFEXIT control requires that the field MODE/A2 must be present in the field log 
file (see Section 6.4.3 “Expanded Field Log Facilities”).

5.    By placing the LFBACK keyword on the screen header line, the screen developer 
can allow the user to "back out" of the current record (see Section 5.3.1.18 
“LFEXIT or LFBACK: Update Mode Control”).

6.    The MSG keystroke (see Section 6.7 “Control Functions”), or the NOMSG screen 
instruction file keyword (see Section 5.3.1.2 “NOMSG: Inhibit On-line 
Messages”). will suppress the "UP" indicator.

7.    Text fields in the main file of a screen cannot be displayed or edited (via TED) in 
Append Mode. As explained in Appendix K: “Using Text Fields”, because no 
actual record exists in Append Mode until the record is filed (via NEXT), text 
fields in the main screen file cannot be used.
ADMINS User Guide  6 - 5



TRANS Modes
APND to leave Append Mode, look at the last record, and then press APND again to 
continue in Append Mode. If APND is pressed while in Append Mode the record on 
the screen is not filed, i.e. the values entered on the "blank form" never are written to 
disk. Therefore, the operator will normally press NEXT to file the last entered record 
before pressing APND to leave Append Mode. TRANS will not exit (i.e. via EXIT), or 
branch from the current screen while in Append Mode.

During Append Mode the message8 "AP" is displayed at the top right corner of the 
screen.

6.2.3  Insert Mode

This mode can be entered (if Insert Mode is allowed on the screen, (see Section 5.3.1.1 
“INSERT, DELETE, or APPEND Records”) via the INS keystroke function to insert 
another record under an existing key value, or by typing "I" in response to the  
"ENTER I TO INSERT" prompt presented to the user after a failure to match on an 
entered key. 

Insert Mode stays active while the inserted record is "filled in", until the NEXT 
keystroke function is used to file the entered values, i.e. to write them to disk. Then 
TRANS returns to Update Mode, with the record just inserted active. TRANS will not 
exit (i.e. via the EXIT key), or branch from the current screen while in Insert Mode.

During Insert Mode the message9 "IN" is displayed at the top right corner of the 
screen.

6.2.4  Error Mode

This mode is entered when TRANS detects an entry error due to a format check, or a 
Data Dictionary validity or codelist check (see Appendix I: “ADD: The ADMINS 
Data Dictionary”), or when a Check expression evaluates to "true" (see Section 5.5.6 
“Check Statement”), or when a REQUIREd field is null at end-of-record processing 
(see Section 5.5.5 “REQUIRE Statement”), or when the RJ$RJ local RMO field is set 
(see Section 16.1.2 “Reject APPEND, INSERT, UPDATE, DELETE, or Transfer”). In 
Error Mode the offending entered value is displayed at the bottom of the screen, an 
error message is displayed if a Check statement is the cause of Error Mode, and all 
other keystrokes are ignored until ERR is used to clear the error condition. Then 
TRANS returns to the mode it was in before the error occurred.

8.    The MSG keystroke (see Section 6.7 “Control Functions”), or the NOMSG screen 
instruction file keyword (see Section 5.3.1.2 “NOMSG: Inhibit On-line 
Messages”), will suppress the "AP" indicator.

9.    The MSG keystroke (see Section 6.7 “Control Functions”), or the NOMSG screen 
instruction file keyword (see Section 5.3.1.2 “NOMSG: Inhibit On-line 
Messages”) will suppress the "IN" indicator.
6 - 6   ADMINS User Guide



Entering or Changing Fields
6.3  Entering or Changing Fields

When data is entered into a non-key field of a record in Update Mode, it is ordinarily 
written to the disk ("filed") immediately, i.e. the entire block containing the active 
record is copied from memory to the disk.

In Update Mode under LFEXIT control (see Section 6.2.1.1 “Update Mode Under 
LFEXIT Control”), the record is not written to disk until the NEXT keystroke function 
occurs.10 In this case, the block containing the active record is written back to disk 
only once for each record, when the updates for that record have been completed.

In Update Mode under NOWRITE control (see Section 16.1.1 “High Volume Update: 
NOWRITE”), changes to the record are not filed until the RMO running behind the 
screen causes the record to be written to disk.

In Append Mode, the user fills in the fields of a "blank form". Nothing is written to 
disk until the NEXT keystroke function occurs. When NEXT occurs, the filled-in 
active record is appended to the end of the file, and a new "blank form" is displayed.

In Insert Mode, a blank record with the requested key values is written to disk as soon 
as "I for INSERT" has been entered. None of the values entered into non-key fields are 
actually written to disk until the NEXT keystroke function occurs.

If "Y" is assigned to the logical name ADM$READONLY, TRANS opens all files read 
only. Insertion, deletion, and appending to all files is blocked: nothing can be 
changed in any file on disk when the screen is in read only mode because TRANS 
never writes to disk (the cursor will go only to key fields and ALLOW fields (see 
Section 5.5.15 “ALLOW statement”) when ADM$READONLY is in effect).

6.3.1  Keystrokes: Entering or Changing Fields

ENTER (return or enter): Used to enter data into a field. For example, to enter the 
value "4.50" into the field "DISCOUNT" the operator places the cursor at the 
DISCOUNT field, types "4", ".", "5", and "0" and then the ENTER keystroke. The 
ENTER keystroke causes the data to be checked out, entered into the record, and 
"tabs" the cursor to the next editable, lookup, or text field. (The AUTOCR keyword, 
see Section 5.3.1.3 “AUTOCR: Automatic Carriage Return”, can be used to eliminate 
the need to press the ENTER keystroke when entering data.) Once you have started 
typing data into a field, TRANS editing keys (described in Section 6.3.2 “Keystrokes: 
Editing fields in TRANS”) may be used.  

If the ENTER keystroke is given without any data being typed, then the field is not 
changed, and depending on the current Field Selection Mode (tabbing or query), the 
cursor tabs forward to the next field (tabbing) or the user can type a new field 
selection (query). ENTER is used in Append, Insert and Update Modes.

COPY: (For fields from the main file only). If the first keystroke pressed at the current 
cursor position is COPY, the value of this field in the previous record in the file is 
copied to the current record.

10.  Or until the RMO causes an automatic NEXT (B$B = 'LF'), see Section 16.2.2 
“Automatic NEXT key: B$B = 'LF'”.
ADMINS User Guide  6 - 7



Entering or Changing Fields
PLUS: (For integer fields from the main file only). If the first keystroke pressed at the 
current cursor position is PLUS, the value of this field in the previous record in the 
file is incremented by one and then placed in the current record.

LOOK: If the LOOK keystroke function occurs before or during the time a field is 
being typed in, TRANS will display the LOOKUP file window for that field, if one 
exists (see Section 5.11 “LOOKUP Window”). When the cursor goes to a field with 
LOOKUP available, the symbol <LKUP> appears in the bottom right corner of the 
screen.

UP, DOWN, LEFT, RGHT (arrows): In "tabbing" Field Selection Mode the cursor is 
moved in one of four directions. LEFT and RGHT move the cursor to the previous or 
next editable, lookup, or text field using the order of the field names from the screen 
description file as the guide. UP and DOWN move the cursor to the last editable, 
lookup, or text field on the previous line or the first editable, lookup, or text field on 
the next line respectively.

EDIT: Ordinarily when you type characters into a field TRANS substitutes the new 
entry for the old when you press RETURN. TRANS also allows character by 
character editing of the current value of the field at the cursor. Position the cursor at 
the field to be edited and press the EDIT keystroke. The cursor will be placed at the 
end of the current value of the field (as if you had just typed it). You may then change 
the value by typing new characters and using the TRANS editing keys (described in 
Section 6.3.2 “Keystrokes: Editing fields in TRANS”) in exactly the same way as when 
entering new data into a field.

When the cursor goes to a text field, the symbol <TEXT> appears in the bottom right 
corner of the display screen.11 Text fields (TInn or TXnn) cannot be displayed or 
edited in TRANS until its built-in word processor, TED, is called. Any attempt to 
type in a text field will produce a warning tone. To activate TED, move the cursor to 
the text field you want to display or edit, and then press EDIT to call TED. TED is a 
complete, full featured word processing module specifically designed for handling 
ADMINS text data types. TED operations and syntax are described in Appendix J: 
“The TED Text Editor”.

6.3.2  Keystrokes: Editing fields in TRANS

When entering or editing the value of a field the default editing mode is overstrike.  
If you change the editing mode to insert (via the ED.IOVR keystroke which toggles 
between overstrike and insert mode), by default TRANS will remain in insert mode 
for all other fields until you toggle back to overstrike mode.  You can change the 
default mode (to insert), and specify that the default mode is to be reset after each 
field if the toggle is used, by using the edit_default command in the TRANS$ENV 
file:

    edit_default=reset|insert|insert,reset

where:

11.   If the text field is also a LOOKUP field (see Section 6.9 “Lookup Windows”), the 
symbols <TEXT> and <LKUP> are combined into <LKTX>.

reset Restore overstrike mode when work is complete on the 
current field (by default if mode is toggled to insert it remains 
in effect for subsequent fields).
6 - 8   ADMINS User Guide



Field Logging
TRANS displays the following editing keystroke help if you press the ED.SHFK key 
while entering or editing data in a field.  KEYname is the standard function key name 
of the physical key or meta key combination currently associated with each TRANS 
editing function (default values shown).

6.4  Field Logging

TRANS can be instructed to maintain an automatic log of changes to fields in the 
master file of the screen. If a field log file was created when the master file was 
defined (see Section 2.10 “Field Logs”), or if a field log file is explicitly identified in 
the TRO12 (see Section 5.3 “Screen Header Line”), then TRANS will automatically 
maintain a log of changes made to the "loggable" fields in the screen (see Section 5.5.3 
“Loggable”).

insert Make insert the default (i.e. the initial) mode for editing in the 
TRANS session.

insert,reset Make insert the default mode for editing in the TRANS 
session, and restore insert mode when work is complete on 
the current field (if mode is toggled to overstrike).

Func Description KEYname

ed.begl Beginning of Line PF2

ed.delc Delete Current Char REMO

ed.delw Delete Word F12

ed.dend Delete to End of Line F14

ed.ebeg Erase to Beg. of Line CT_U

ed.endl End of Line CT_E

ed.erac Erase Previous Char BACK

ed.eraw Erase (Previous)Word F11

ed.iovr Toggle Insert/Overstr CT_A

ed.left Move Cursor to Left LEFT

ed.nwrd End of Word NEXT

ed.pwrd Beginning of Word PREV

ed.rght Move Cursor to Right RIGH

ed.shfk Display this Screen CT_K

ed.trpc Switch Cur./Next Chars. CT_T

12.  A field log file explicitly referenced in the TRO will override the field log file 
created when the master file was defined.
ADMINS User Guide  6 - 9



Field Logging
As was shown in Section 2.10 “Field Logs”, DEFINE creates two files, TELFON.MAS 
(20,000 records) and TELFON.FLG (5,000 records), from the following DEF, because 
the FLGSIZ specification (e.g. 5000) is included.  The layout for TELFON.FLG is 
shown following the DEF:

*              TELFON.DEF
*  Telephone directory file definition
MAS  20000  5000
LNAME    A20   KEY1   "last name"
FNAME    A10   ASC2   "first name"
INITIAL  A1           "middle initial"
TELNO    A8           "telephone number"
#STREET  A6           "street number"
STREET   A20          "street name"
CITYST   A30          "city and state"
ZIP      X99999       "zip code"

*  Layout for TELFON.FLG
CHGDAT DA  ASC1  "change date"
TSEQ   I   ASC2  "transaction sequence #"
DLC    DA        "date of last change"
LNAME  A20       "key field from master file"
FLDNAM A8        "name of changed field"
FLDTYP A2        "data type of changed field (I,D,F,DA,A,X)"
TTYP   A2        "transaction type"
SEQ    I         "sequence for multi-line change"
OLD    A16       "old value"
NEW    A16       "new (changed) value"

The field log holds the following information for each change made to a file: the date 
of the change, the transaction sequence number assigned (automatically) to that 
change, the date of the last change, the key value(s) for the record being changed, the 
first eight characters of the name of the field being changed, the data type of the 
changed field, the transaction type, and the old and new (changed) value. If the old 
or the new value in the field is larger than 16 characters, then a field log record is 
written for each 16 characters of the field and the field SEQ contains the sequence of 
the multiple records.13

Each file whose definition calls for a field log automatically has fields DLC and TSEQ 
built into its internal record definition. These two fields , DLC for "date of last 
change" and TSEQ for "transaction sequence number", are set by TRANS with the 
DLC and TSEQ of the FLG record that logged the last change to the record. The field 
log transaction record can in turn be used via its DLC and TSEQ to pick out the 
previous transaction record that logged the previous change to the original file 
record, and so on. In this way ADMINS can provide14 an audit and recovery trail of 
changes to records made via TRANS. The field log file could be used to produce 
reports about file activity, or to reprocess record changes (via PROD) against an 
earlier version of the file, if the latest version of the file were lost.

13.   By creating an explicit DEF for a field log file, the size of the OLD and NEW fields 
in the field log file can be extended up to A80. This method is recommended for 
handling fields larger than A16. See Section 6.4.3 “Expanded Field Log Facilities” 
for a discussion of this facility.

14.   The log file is a legitimate ADMINS file and can be displayed and analyzed using 
all the ADMINS tools. Usually there is a transaction log per master file. There 
may actually be several logs per master file, one for each kind of update or each  
operator. There is a place in the screen description form for assignment of a 
particular log for a particular screen.
6 - 10   ADMINS User Guide



Field Logging
6.4.1  Field Log Example

To clarify the field log function, the following is an example showing the results of 
field logging.

Using the following file definition, DEFINE creates DEMO.MAS and DEMO.FLG. 
The field types were chosen to illustrate the result of a change to each of the six 
ADMINS data types.

*     DEMO.DEF
MAS 1000 100
REC    I   KEY1  "record number"
IFLD   I         "I type field"
DFLD   D2        "Dn type field"
FFLD   F4        "Fn type field"
DAFLD  DA        "DA type field"
AFLD   A30       "An type field"
XFLD   XA9A9A9   "Xpic type field"

In addition to the fields in the file definition, DEMO.MAS will also include the 
following fields because DEFINE was asked to create a field log.

TSEQ   I         "transaction sequence number"
DLC    DA        "date of last change"

For purposes of illustration, DEMO.MAS has three records and the fields have the 
following values.

     REC   IFLD    DFLD      FFLD       DAFLD
     ---   ----   ------   --------   ---------
       1    123   456.00   789.0000   25-DEC-81
       2    234   567.00   890.0000   01-JAN-82
       3    345   678.00   901.0000   15-JAN-82

     REC     AFLD                          XFLD   TSEQ     DLC
     ---  ------------------------------  ------  ----  ---------
       1  This is a test of fields logs.  A1A1A1    0
       2  Any alphanumeric data is fine.  B2B2B3    0
       3  The purpose is to see the log.  C3C3C3    0

The following shows the field log transaction records that were created by TRANS 
when changes were made to fields in the records.

       CHGDAT   TSEQ     DLC     REC  FLDNAM  FLDTYP
     ---------  ----  ---------  ---  ------  ------
     19-JAN-82     1               1  IFLD    I
     19-JAN-82     2               2  DFLD    D
     19-JAN-82     3               3  FFLD    F
     19-JAN-82     4  19-JAN-82    1  DAFLD   DA
     19-JAN-82     5  19-JAN-82    2  AFLD    A
     19-JAN-82     6  19-JAN-82    2  AFLD    A
     19-JAN-82     7  19-JAN-82    3  XFLD    X

     TSEQ  TTYP  SEQ     OLD               NEW
     ----  ----  ---  ----------------  ----------------
        1  UP      1  123               321
        2  UP      1  567.00            765.00
        3  UP      1  901.0000          109.0000
        4  UP      1  25-DEC-81         15-JUN-81
        5  UP      1  Any alphanumeric  This field gets
        6  UP      2   data is fine.    2 log records.
        7  UP      1  C3C3C3            F6F6F6

Finally, the contents of DEMO.MAS after the changes were made. Using the field log 
transaction record and the before and after representations of the file, you can follow 
how the fields were changed and the audit trail of the change.

     REC   IFLD    DFLD      FFLD       DAFLD
ADMINS User Guide  6 - 11



Field Logging
     ---   ----   ------   --------   ---------
       1    321   456.00   789.0000   15-JUN-81
       2    234   765.00   890.0000   01-JAN-82
       3    345   678.00   109.0000   15-JAN-82

     REC     AFLD                          XFLD   TSEQ     DLC
     ---  ------------------------------  ------  ----  ---------
       1  This is a test of fields logs.  A1A1A1     4  19-JAN-82
       2  This field gets 2 log records.  B2B2B3     6  19-JAN-82
       3  The purpose is to see the log.  F6F6F6     7  19-JAN-82

6.4.2  Field Logging, Method of Operation

When ever a manual change is made to a loggable15 field in Update Mode, a record 
describing the change is appended to the field log file. Fields set by an RMO running 
behind the screen changes are not ordinarily logged. However, TRANS will log all 
changes (manual or set by RMO) to loggable fields when LFEXIT control is active (see 
Section 6.4.3 “Expanded Field Log Facilities”).

6.4.3  Expanded Field Log Facilities

Users may choose to define their own field logs, rather than use the field log created 
automatically by DEFINE when a field log size is included in the file description line 
in the DEF. Choosing from the field log fields described above and additional field 
log fields described below the user can request either a simpler or a more detailed 
field log than the one which is automatically provided.

The choices available to the user include making the field log a keyed file; not 
including some of the automatic field log fields, i.e. field type of the logged field; and 
adding additional fields to the field log to capture such information as last 
transaction sequence, operator id, time of change, or operator.

TRANS also supports full record logging as well as field logging. By placing the field 
name MODE/A216 in the field log file, the user is requesting TRANS to log every 
non-null value that was present in the master file record at the time when a record is 
appended, inserted or deleted. In addition placing the field MODE/A2 in the field 
log file enables field logging under LFEXIT control (see Section 6.2.1.1 “Update Mode 
Under LFEXIT Control”) and with NOWRITE (see Section 16.1.1 “High Volume 
Update: NOWRITE”). (Changes made to records in Update Mode without 
NOWRITE or LFEXIT control are logged as in simple field logging.)

Below we list the automatic field log "DEF".

     FLG flgsiz
     *
     CHGDAT  DA  ASC1  "date of change"
     TSEQ    I   ASC2  "transaction sequence"
     DLC     DA        "date of last change"
    
     master file keys

15.  Fields are specified as loggable in the screen description file (TRS). See Section 
5.5.3 “Loggable”.

16.AdmScreen checks that the field log file contains the field MODE if the TRS 
specifies LFEXIT or NOWRITE, and the TRS has loggable fields.  If the log field 
cannot be found, or it does not contain the field MODE non-fatal error message 
"scr505" will be printed warning that no logging will occur.
6 - 12   ADMINS User Guide



Record Moving and Searching
     FLDNAM  A8        "name of logged field"
     FLDTYP  A2        "type of logged field"
     TTYP    A2        "transaction type"
     SEQ     I         "multi-record sequence number"
     OLD     A16       "string representation of old value"
     NEW     A16       "string representation of new value"

If the user creates an explicit DEF for the field log file then any of these fields may be 
omitted, their order may be changed, and any fields may be made keys. The user may 
not change the field types except that the user may change the length of the fields 
OLD and NEW. The length of the fields OLD and NEW may be up to A80 (both must 
be the same). This facility can be used to eliminate the multi-record field log 
transactions (i.e. SEQ greater than 1).

The following fields may also be included in a field log DEF.

     LSEQ  I   "last transaction sequence for the master file"
     TTNO  A2  "terminal number, e.g. B2"
     OPER      "operator id"
     TIME  A8  "time of logging"
     MODE  A2  "mode, requests record logging"

Each time a field log entry is made the TSEQ and DLC fields on the active record are 
set to the field log record number and the current date (i.e. TSEQ and CHGDAT in 
the field log). Before changing the TSEQ and DLC fields in the master file record these 
values are placed in LSEQ and DLC in the field log record, creating a chain of 
pointers to all field log records for a given master file record. (If the field log file is 
defined explicitly, the TSEQ and DLC fields must be included explicitly in the master 
file DEF.)

The OPER field in the field log is set from an actual or virtual field called OPER in the 
master file record. The OPER field can be of any type, but should have the same type 
in both the master file and the field log file.

6.5  Record Moving and Searching

When TRANS is called, if there are records in the file it is to utilize, TRANS goes into 
Update Mode on the record at the top of file.17 In Update Mode, the user may move 
around in the file from record to record by several different means. A common 
method is for the user to enter values into the key field or fields. Once one field of the 
key is entered all other editable fields in the key must also be entered. Entering a key 
requests a record search for a specific record to be displayed on the screen.

17.   TRANS can be instructed to enter the file on a specific record. See Section 6.13 
“Entering TRANS On A Specific Record”.
ADMINS User Guide  6 - 13



Record Moving and Searching
When a record search on key value fails to find a matching record there are three 
possible responses from TRANS.

1. The record with the nearest smaller key value is found and displayed. This 
occurs if neither the INSERT nor the MATCH keywords were present in the 
screen instruction header line.
If "k" (lowercase) is included in the string assigned to the logical name 
“OPTION” (see Appendix A), TRANS, by default, displays the record with the 
nearest larger key value.
The screen header line keywords PREV and NEXT (see Section 5.3.1.13 “PREV, 
NEXT: Record to Display if Key not Found”) are used to modify the default 
action for the current screen. If PREV is present TRANS will always display the 
previous record, if NEXT is present TRANS will always display the next record, 
irrespective of the option "k" setting.

2. The MATCH keyword (see Section 5.3.1.8 “MATCH: Require Exact Match”) 
instructs TRANS to go to the top of file. The MATCH keyword in the screen 
header line requires the match of an entered key value to a record in the file. If 
no match occurs TRANS goes into Error Mode (See Section 6.2.4 “Error Mode”). 
When the error is cleared TRANS goes to the record at the top of the file.

3. TRANS offers to insert a new record with the sought after key value. If the 
INSERT keyword was present in the screen description, TRANS displays the 
phrase "ENTER I TO INSERT" at the bottom of the screen. If the operator does 
not enter "I" (i.e. the operator just presses ENTER) then the record of nearest 
(higher) key value(s), (or the last record in the file) is displayed and TRANS 
stays in Update Mode. If, on the other hand, the operator does type "I" and 
ENTER, a record containing the sought after key value and blanks or zeroes in 
non-key fields is inserted in the file, and is displayed on the screen. TRANS 
enters Insert Mode on this new record. The operator may then enter values for 
the non-key fields. The values are not filed one by one. Rather, they will all be 
filed (i.e. written to the disk) when the operator signifies the completion of the 
entries for the new record. This is done when the NEXT keystroke function 
occurs, which is the only way to exit Insert Mode. NEXT performs an update of 
the complete new (inserted) record before returning to Update Mode on the just 
inserted record. (The blank record with key values set is inserted into the disk 
file when the user types "I", before the user starts entering data.)
• HOME: This keystroke moves the cursor to the highest editable key field. 

When values have been entered into all the key fields (there may be just one), 
the implied instruction for TRANS is to search for and then display the record 
with the just entered key value(s). As was explained above, whenever a value 
is entered into the first editable key field values must be entered into all of the 
subsequent editable key fields.
6 - 14   ADMINS User Guide



Record Moving and Searching
You can override this default behavior so that TRANS will allow you to 
escape from a key sequence. To enable this functionality, assign anything to 
the logical name ADM$KEY_ESC (see Appendix B: “Special Logical Names 
used by ADMINS”), e.g.

$ ASSIGN Y ADM$KEY_ESC
Then, if you are in a key sequence and press HOME (PF2), TRANS resets all 
keys to the values in the current record. Then, performing a FIND for the 
record with those keys brings you back to the first editable field for the screen 
on the same record (if the keys are unique).
You can also use the branch key (TAB) to escape a key sequence. Assigning 
ADM$KEY_ESC and pressing the branch key during key field entry tells 
TRANS to restore the original key values, find the record, and enter the 
branch dialogue.
This behavior is identical to what you get if the keys for the current record 
were re-entered.
In a multi-record screen, escaping from the key sequence results in the current 
record being re-displayed at the top of the screen (just as if current record’s 
keys were re-entered).

• KEY2, KEY3: These keystrokes move the cursor to the second (KEY2) or third 
(KEY3) key field, keeping intact the current values of the other (higher) fields 
of the key. When values have been entered into all the remaining key fields, 
the implied instruction for TRANS is to search for and then display the record 
with the just entered key values. When the cursor is moved to either the 
second or third keys via the KEY2 or KEY3 keystrokes, a value must be 
entered into all of the remaining key fields. The KEY2 and KEY3 keystrokes 
are disabled in Insert Mode and Append Mode.
A search for a record with a key value that is not present in the file will result 
in one of the three possible TRANS responses described above.
If an "E" is included in the logical name OPTION (see Appendix A: 
“Options”), indicating ADMINS is being used with the European character 
set where "[" and "]" are legitimate characters, then the function of the KEY2 
([) and KEY3 (]) keystrokes is disabled, and the "[" and "]" are characters 
without any special function.

• SAME: The SAME key is used to skip the entry of any key field. Pressing 
SAME has the same effect as entering the key value which is currently being 
displayed. The SAME keystroke has no effect unless the cursor is at a key 
field.

• NEXT: This keystroke causes display of the next record in single record 
screens and of the next page in multi-record screens. In Append Mode, Insert 
Mode, and Update Mode under LFEXIT control, NEXT causes the active 
record to be written to disk.

• NBRK: When BREAK is in effect on a multi-record screen (see Section 5.9.2 
“BREAK In a Multi-Record Screen”) this keystroke starts the next display 
page at the next control break. Otherwise, this keystroke acts the same as 
NEXT in most cases, i.e. it causes display of the next record in single record 
screens and of the next page in multi-record screens. Unlike NEXT, however, 
NBRK does not cause the active record to be written to disk in Append Mode, 
Insert Mode, or Update Mode with LFEXIT control.

• PREV: This keystroke causes display of the previous record in single record 
screens, and of the previous page in multi-record screens. In Update Mode the 
PREV keystroke can be used to "back out" of updates to a record when 
LFEXIT control is active. No updates to the current record are written to 
ADMINS User Guide  6 - 15



Record Operations
disk.18 This "backout" function is enabled if the LFBACK keyword is present 
on the screen header line (see Section 5.3.1.18 “LFEXIT or LFBACK: Update 
Mode Control”). When PREV is entered under LFEXIT control, TRANS 
prompts as follows:

 "PRESS PREV TO CONFIRM BACKOUT"
The user enters PREV again to confirm that the updates are not to be filed.

• PBRK: When BREAK is in effect on a multi-record screen (see Section 5.9.2 
“BREAK In a Multi-Record Screen”) this keystroke starts the display page at 
the previous control break. Otherwise, this keystroke acts the same as PREV 
in most cases, i.e. it causes display of the next record in single record screens 
and of the next page in multi-record screens.

• NRECS: This keystroke prompts "N:" on the lower right hand corner of the 
screen. The operator then enters a number "n" and then presses the DOWN 
(down_arrow) or UP (up_arrow) key, or just presses an (up or down) arrow 
key. TRANS then moves either n records in the down (i.e., towards end of file) 
or up (i.e., towards beginning of file) direction, or if n is not entered, then 
TRANS moves to the record at the end or the beginning of the file.

• ESCAPE: Hitting the ESCAPE key to cancel the typing in a field and restore 
the original value.

6.6  Record Operations

• APND: This keystroke is used to enter entirely new records which will be 
appended to the end of the active file. Once in Append Mode, i.e. after 
pressing the APND keystroke, the operator is presented with a blank form. 
The UP, DOWN, LEFT, and RGHT (arrow) keystrokes can be used to move 
the cursor among the fields on the form. Once the cursor is positioned at a 
field, data can be entered there. Data can also be overwritten (i.e. corrected) 
on a field by field basis on the "append" screen. The particular record being 
entered is filed when the operator presses the NEXT keystroke. After filing 
that record the screen is cleared of data and another record can be appended. 
During Append Mode most other function keystrokes are disabled. To leave 
Append Mode the operator presses the APND keystroke once again (if 
Append Mode is exited before the NEXT keystroke, the record is not filed). 
The last record in the file is displayed and TRANS is once again in Update 
Mode. The APND keystroke is ignored if the APPEND keyword is not 
present on the header line of the screen instruction file.

• DEL: This keystroke initiates a dialogue which, if successfully completed, 
results in the deletion of a record. The purpose of the dialogue is to insure that 
the operator is in fact deleting the intended record. In order to delete a record, 
the record must first be brought onto the screen either by moving to it or by 
searching it out. When the DEL keystroke function occurs must be pressed, 
TRANS will check, and ignore the DEL keystroke, if the current record is the 

18.  This facility is useful for the situation when LFEXIT control is being used to 
ensure that only complete, valid records are being filed; but the user does not 
have enough information to complete a valid record. After backing out, the user 
can continue entering valid records, coming back to the problem record when 
complete information is available.
6 - 16   ADMINS User Guide



Record Operations
only record in the file, or the only record in a locked range (see Section 5.5.1.1 
“Restrict TRANS to Key Range”). TRANS will then ask the operator to retype 
every key field of the current record on the screen.19 This retyping occurs at 
the bottom of the screen. If each retyped key field correctly matches the 
respective keys of the current record on the screen then that record is deleted 
from the file. The DEL keystroke is ignored if the DELETE keyword is not 
present on the header line of the screen instruction file. After deletion of a 
record TRANS displays the next record in the file.
Pressing DEL a second time bypasses the delete verification dialogue. The 
first DEL keystroke prompts for the keys, but DEL typed again at this prompt 
ends the verification dialogue successfully and deletes the current record.

• INS: This is the INSERT keystroke. It is used to insert records that have key 
values that already exist in the file. (ADMINS supports multiple records with 
the same key values.) To insert another record with the same key value after 
the record being displayed, enter INS. If the INSERT keyword is active for this 
screen, TRANS will enter Insert Mode and the entire insert sequence will 
ensue, as described under variation (3) of inserting after a failure to find a key 
match (see Section 6.5 “Record Moving and Searching”). During Insert Mode 
most other function keystrokes are disabled.

• TR: This keystroke is used to transfer records. A transfer can be thought of as 
a delete followed by an insert, or as a refiling of information in the current 
record under a new identification (key value). This function is only enabled if 
DELETE is permitted on the screen. After typing TRF, the operator enters a 
new key value indicating the position in the file to which the current active 
record is to be transferred.

The entire transfer sequence occurs as follows:

1. The operator positions TRANS at the record to be transferred.
2. The operator presses the TRF keystroke. TRANS will check, and ignore the TRF 

keystroke, if the current record is the only record in the file, or the only record in 
a locked range (see Section 5.5.1.1 “Restrict TRANS to Key Range”).

3. If DELETE is permitted on the active screen, then TRANS prompts (at the 
bottom of the screen) for new key values.20 The HOME key escapes from the 
transfer function.
During the record transfer dialogue, the SAME keystroke can be used to copy 
the value for a particular key from the current record to the new record, and the 
MENU keystroke terminates prompting for more new key values, and use the 
current record's values for all the remaining keys.

4. The operator enters new key values under which the active record is to be filed. 
If a record with these key values does not already exist then the key values in 
the active record are changed to these new key values and the active record is 
refiled under these new key values. If a record with these new key values does 
exist, then the operator is asked whether the active record is to be filed first or 

19.   If TRANS is in a locked range of keys (see Section 5.5.1.1 “Restrict TRANS to Key 
Range”), TRANS only asks to verify the keys "below" the locked range, i.e. if 
KEY1 and KEY2 of the file have been locked into a range TRANS will request 
verification only of KEY3, KEY4 etc.

20.  If TRANS is in a locked range of keys (see Section 5.5.1.1 “Restrict TRANS to Key 
Range”), you cannot transfer the record out of the locked range. TRANS only 
asks for the keys "below" the locked range, i.e. if KEY1 and KEY2 of the file have 
been locked into a range TRANS will only prompt for KEY3, KEY4 etc.
ADMINS User Guide  6 - 17



Control Functions
last in the sequence of existing records that already have the key value. The 
operator responds and the active record is refiled. Here too the HOME key 
escapes from the transfer function.

6.7  Control Functions

• EXIT: When this keystroke function occurs TRANS closes the current screen 
and prompts:

     TYPE SCREEN NAME OR FILE NAME OR C.R.
where the operator can type a different screen name or file name, or exit 
TRANS.The EXIT keystroke function can be inhibited by the NOEX keyword 
on the screen header line as described in Section 5.3.1.16 “NOEX: Inhibit 
Screen Exit”.

• ERR: This keystroke is used to clear Error Mode, returning TRANS to the 
mode it was in when the error condition occurred. TRANS can enter Error 
Mode as a result of one of many different situations. Some of the common 
situations follow:
— Entered data is not of the expected format for the particular data type, e.g. 

an alphabetic character is entered into a numeric field. (This type of 
checking is automatic and need not be requested explicitly in the screen 
instruction file.)

— An error checking Boolean expression (Check statement) from the screen 
instruction file is evaluated to "true" on entered data.

— The RJ$RJ local RMO field (see Section 16.1.2 “Reject APPEND, INSERT, 
UPDATE, DELETE, or Transfer”) is set to reject the record.

— A Required field is null when user tries to file a record (see Section 5.5.5 
“REQUIRE Statement”).

Whenever TRANS enters Error Mode, all keystrokes are ignored until the 
user acknowledges the error by pressing the ERR keystroke. This clears the 
error condition in TRANS and lets the user proceed.

• PRT: This keystroke is used to capture the current screen display for printing 
or other processing. The printout of the screen contents is queued for printing 
on the spooling device assigned to the logical name ADM$SPOOLn, where 
"n" is set on the screen header line of the screen instruction file via the SPn or 
TTn keyword.
See Section 5.3.1.9 “SPn or TTn: Print Device Specification” for a complete 
explanation.

• REF: This keystroke is used to redisplay the contents of the screen. The 
contents of the screen may have been lost or garbled due to TRANS dialogue 
displayed at the bottom of the screen, messages sent to the user, or hardware 
or communications mishaps.
6 - 18   ADMINS User Guide



Branching and Subscreens
The memory buffer does not retain the video attributes of the screen to be 
redisplayed unless those attributes are produced by TRANS features.21 Video 
attributes produced by other means will not re-appear until the next original 
display. If your application depends on video attributes not produced using 
TRANS features, REF's refreshing action can be modified so that only the 
bottom four lines of the screen are refreshed the first time REF is pressed, and 
the rest of the screen is not refreshed unless REF is pressed a second 
consecutive time. This modified action is enabled if the letter "n" (lowercase) 
is present in the string assigned to the logical name OPTION (see Appendix 
A: “Options”).

• MSG: This keystroke toggles the display/hiding of standard informational 
messages.  These messages include field format prompting on the bottom of 
the screen, and the "top of file" (TOF), and "end of file" (EOF) messages in the 
upper right corner of the screen. The NOMSG instruction in the TRS screen 
header line starts TRANS with these messages hidden.

• FSM: This keystroke changes the Field Selection Mode between "query" and 
"tabbing". In "query" field selection mode the phrase "FIELD?" is displayed at 
the bottom of the screen with the cursor blinking to the right of this phrase. 
The operator then types the initial letter(s) of one of the field names on the 
screen. When sufficient letters have been typed to single out one field on the 
screen from all the others,.   the cursor will move to that field to accept an 
entry for that field. The name of the field on which the matching process is 
performed is either the name of the field from the file definition of the active 
file or it can be the query name supplied with the field name in the screen 
instruction file.
In "tabbing" field selection mode the operator presses ENTER or one of the 
four directional arrows to tab the cursor from field to field.

6.8  Branching and Subscreens

The operator executes a branch by performing the following sequence of steps:

1. Press the BRNC key to invoke the branch function.
2. Press enough letters of the branch name to single out the desired branch from all 

the branch options in the current screen. (Branch names must be unique in their 
first two letters.) If "j" (lowercase) is present in the string assigned to the logical 
name OPTION (see Appendix A: “Options”), you must always terminate the 
BRANCH-NAME code with a carriage return. Enabling Option "j" to force 
entering a terminator allows TRANS to distinguish between one-character and 
two-character BRANCH-NAMES that begin with the same character, i.e. "A" 
and "AB". Without it BRANCH-NAME "A" could not be accessed by this 
method.

21.    Some examples of video attributes produced by TRANS features are: OPTIONS 
"R" and "W" (see Appendix A: “Options”); the BOX statement (see Section 5.5.11 
“BOX statement”); video highlighting facilities in the TRS (see Section 5.10 
“Video Highlighting Facilities”); and highlighting fields in the RMO (see Section 
16.5 “Highlighting Fields”).
ADMINS User Guide  6 - 19



Branching and Subscreens
3. Pressing BRNC twice in a row displays a "pop-up" menu of the branch choices, 
as described in Section 5.7 “Branches”. When this menu is active, select a branch 
by typing its branch name22 or by pressing the SEL key to select the highlighted 
choice. (Browse around the selections using the UP and DOWN arrow keys to 
highlight your desired choice).
If there are more branch entries than can be displayed in the menu window, the 
message "<more>" appears on the bottom line. The PREV and NEXT keys can 
then be used to scroll forwards and backwards in the list of available branch 
options. Use the HOME key to leave the branch menu without branching (the 
branch menu disappears and the original screen contents are restored)23.
After execution of a branch TRANS displays the target screen with the target 
record and the user may then use all the facilities of TRANS under the control of 
the target screen.

4. The XRET keystroke function is used to return to the screens that are the 
"sources" of the last several branches. TRANS keeps track of the sequence of 
branches in a "stack". As you branch from screen to screen in the TRANS 
session, information about each screen you leave is added to the top of the stack. 
(The number of past branches that can be tracked is limited, and depends on the 
key size of the main files involved in the branch. About 10 branches can usually 
fit on the stack. When the stack overflows, older branches are removed from the 
bottom of the stack to make room for the latest branches on the top. If XRET is 
used to return to a screen, TRANS displays the record that was active when the 
branch was made from the earlier screen. (Using BRNC, TRANS would display 
the record with the key values formed by the branch fields.)

5. The XFWD keystroke function is used to retrace “forward” through screens 
visited via XRET. 

For example, lets assume you start in screen A and branch successively to screens B, 
C,  D, and E. Assume further that you move around to different records in each of the 
screens before you make the next branch. From whetever record you were on in 
screen E you could use XRET (3 times) to return to screen B. The same record that was 
active when you branched from screen B to screen C would be the active record when 
you return to screen B.

You could then return to the record you left in screen E by pressing XFWD 3 times.

6.8.1  Subscreens

A screen can consist of a main screen and up to 14 subscreens. (Subscreens are 
described in detail in Section 5.14 “Subscreens”.) When a particular subscreen is 
active, TRANS behaves as if the screen consists only of the fields in the main screen 
and that subscreen. If the SUBS keystroke is enabled, pressing it displays the 
Subscreen Menu, which allows you to move between subscreens. The Subscreen 
Menu looks and works like the branch menu (see Section 6.8 “Branching and 
Subscreens”).24 The main screen always has "subscreen code" 0, while subscreens are 
numbered from 1 to 9 and A to E. 

22.   if Option "j" (described above) is enabled, you must type the terminate branch 
name with a carriage return. If Option Q is in effect TRANS recognizes a slightly 
different set of keystroke functions, as described in Appendix A: “Options”.

23.  The MU.SHFK keystroke (ctrl/k by default) displays all the TRANS branch menu 
keystroke functions.
6 - 20   ADMINS User Guide



Lookup Windows
Using the menu, the user can go to any subscreen in the current screen, or to the main 
screen (by itself).

All TRANS features and keystrokes are available within subscreens. Specifically, 
since the key fields should be in the main screen, the user can enter a key value to go 
to another record without changing subscreens.

6.9  Lookup Windows

When the cursor goes to a field that has LOOKUP available, the symbol <LKUP> 
appears in the bottom right corner of the display screen.25 To activate26 the LOOKUP 
window (or the LOOKUP Menu) press LOOK .27

If multiple LOOKUP windows have been specified (see Section 5.11.2 “LOOKUP 
Menu”) for the current field, a LOOKUP Menu is displayed. Choose a LOOKUP 
window by typing its number, or use the UP and DOWN arrow keys to move to an 
item, then press MENU to select it. To back out of the LOOKUP Menu without any 
action taken press HOME.

When the LOOKUP window or the LOOKUP menu is displayed, keystroke help 
display appears if you press the SHFK key (ctrl/k by default).

To scroll up and down in the LOOKUP file use the PREV and NEXT keys to move a 
"page" at a time, and the UP and DOWN arrows to move one record at a time.

Pressing PRT while LOOKUP is active queues the contents of the active LOOKUP 
window for printing (see Section 5.3.1.9 “SPn or TTn: Print Device Specification”).28

Select a value by positioning the cursor at the desired record and pressing the 
SELECT key or the MENU key. The LOOKUP window is cleared from the screen and 
the RETURN field value from the LOOKUP file (if any) is "entered" into the editable 
field on the screen. Any TRANSFERs specified in the LOOKUP paragraph are also 
performed.

If no RETURN or TRANSFER is specified in the LOOKUP window, the SELECT and 
MENU keystrokes are ignored.

24.  The behavior of the Subscreen Menu is modified if Option "Q" is in effect. See 
Appendix A: “Options” for details.

25.  If the LOOKUP field is a text field the symbols <LKUP> and <TEXT> are 
combined into <LKTX>.

26.  The behavior of the LOOKUP window and the LOOKUP menu are modified if 
Option "Q" is in effect. See Appendix A: “Options” for details.

27.if the TRANS_ENV keyword lookup.rightclick is in effect, right-clicking on a field 
will activate lookup. Right-clicking a field where the TRANS cursor is (the field 
that has the focus) has the same effect as pressing the look key.  Right-clicking a 
field not currently in focus has the same effect as left-clicking on the field (puts it 
in focus) followed by pressing look. 

28.  If "l" (lowercase) is included in the string assigned to the logical name OPTION 
then the entire screen contents are included for printing when PRT is pressed 
while LOOKUP is active.
ADMINS User Guide  6 - 21



Menu Bars and Submenus
If you press the LOOK key while the LOOKUP window is active, LOOKUP will 
prompt for a key value(s).When you have finished specifying the search keys, 
TRANS will position the LOOKUP window at the best available match (the next 
previous record) in the LOOKUP file.

Use HOME to clear the LOOKUP window without selecting a value.

6.10  Menu Bars and Submenus

If a Menu Bar has been specified for the current screen it is activated by pressing the 
MENU key when positioned at the first character of any field. 

When the menu bar becomes active, the user is positioned at the first menu choice 
(the leftmost choice on the bar). The current item is displayed in bold (not reverse) 
and is underlined. Descriptive text for the current item appears on the line following 
the menu bar, underneath the corresponding item. The RGHT, DOWN, and 
RETURN keystrokes move to the next choice on the right; the LEFT and UP 
keystrokes move to the left. These functions wrap around at the ends of the menu, so 
if you go right at the right end of the menu, you go to the first choice, and vice versa.

To choose the current item, use the SELECT or MENU keys. You can also make a 
choice by typing the first character of the choice, if the displayed choices all start with 
different characters (note: the menu bar does not distinguish between upper case and 
lower case, and typing the first character of a choice does nothing unless all the 
displayed choices begin with unique characters!)

The SHFK keystroke displays keystroke help.  You can refresh the screen and the 
menu with the REF key. To leave the menu without choosing anything, use HOME. 
Other keystrokes are ignored.

Keystrokes inside a pulldown or popup submenu are the same as in the menu bar. 
The DOWN and RIGHT arrows, and RETURN take you to the next item; the UP and 
LEFT arrows go to the previous item. The current item can be selected with SELECT 
or the MENU key, or any item can be selected by typing the choice code (assuming 
they are unique). To leave a submenu without making a choice, use HOME.
6 - 22   ADMINS User Guide



Status line
6.10.1  Alternate Menu Bar Behavior - "Option Q"

Menu Bars and submenus can be made to behave in a manner similar to many 
popular PC and windows-based applications. This alternate behavior is enabled by 
placing "Q" in the string assigned to the logical name OPTION.29

If Option "Q" is in effect, Menu Bar and submenu behavior is changed as follows:

In the Menu Bar:

1. RETURN does the same thing as SELECT, i.e. if the item is a submenu RETURN 
displays it, if the item is not a submenu RETURN selects it.

2. DO does the same thing as HOME, i.e. it exits the Menu Bar. DO does not select 
the current item.

3. If the item is a submenu, UP or DOWN displays it. If the item is not a submenu 
UP and DOWN do nothing.

If in a submenu:

1. Whenever a submenu is activated "submenu mode" is turned on (if it is not on 
already). Submenu mode causes submenus to pop automatically whenever they 
become the current item of the menu bar. Submenu mode remains in effect until 
either you return to the menu bar from a submenu (via HOME) or you return to 
TRANS.
Submenu mode is always off when the menu bar is activated from TRANS.

2. RETURN does the same thing as SELECT, i.e. chooses the item.
3. DO exits the Menu Bar immediately and returns to TRANS. DO does not select 

the current item.
4. LEFT and RIGHT move directly to the adjacent choice in the menu bar, 

wrapping to the other end of the bar if at an end.
5. HOME returns to the Menu Bar and turns off submenu mode.

All other Menu Bar behavior is unchanged.

6.11  Status line

TRANS can display a status line at the bottom30 of the screen. The status line is 

29.   Option Q also affects how lookups windows and various TRANS menus behave. 
See Appendix A: “Options” for details.

30.  Usually the bottom of the screen is line 24. If the host writable status line is 
supported and is enabled then TRANS will use it (line 25) by default. Note that 
if the host writable status line is used as the TRANS status line it is not printed 
by the TRANS PRT key function. The host writeable status line is a special 
purpose line provided by the terminal and is not actually part of the TRANS 
screen display.
ADMINS User Guide  6 - 23



HELP in TRANS
displayed in reverse video, and shows the contents of the logical name 
ADM$TRANS_MESSAGE. ADM$TRANS_MESSAGE is translated and displayed 
immediately after the first pre-link RMO call in every screen, so the RMO can set it 
with CRLOG if desired (see Appendix H.9.1 “CRLOG - Create or Delete a Logical 
Name”).

Alternatively, the special local RMO fields M$MSG/An (message text) and M$LOC/
I (optional line number for message) can be used to set the status line in the RMO and 
to place it anywhere on the screen.  Whenever the RMO changes the value of 
M$MSG, the status line is re-displayed (see Section 16.11 “Status Line Control: 
M$MSG and M$LOC”).

6.12  HELP in TRANS

TRANS provides an on-line help facility. Text files containing any desired 
information can be displayed in windows from 3 to 24 lines long,31 at any point in a 
TRANS session. The help text may be scrolled up and down to display more text than 
can fit in the window. The format of a help file for TRANS is a text file. The help file 
contains named sections. Each section starts with a line of the following format.

NAME [TOP BOT]

NAME is how this section is referenced from TRANS. NAME must be one word (no 
embedded blanks) and begins at the left margin.

31.  The length of the HELP window may exceed 24 lines if TRANS is run on a 
terminal which supports more than 24 display lines and the logical name 
ADM$VTLEN is assigned. See Section 5.6 “Screen Layout”.
6 - 24   ADMINS User Guide



HELP in TRANS
TOP and BOT are optional row numbers (1 to 24) describing a scrolling region where 
the help section is to be displayed.

A given section may be given several different NAMEs by having several different 
(unindented) NAME lines precede a HELP section.

The rest of the section contains free text of any length, indented at least one space on 
each line. Help files may contain indirect (@@) references.

For example, the following is a section from a help text file.

FUND 16 24
The fund number is a 6 digit code. The first digit
indicates the fund type. Valid fund types are: 
1=Government  2=Proprietary  3=Fiduciary  4=Special
The second digit represents the fund sub-type.
...

The HELP in TRANS facility supports a terminal independent way of specifying 
video attributes for portions of the help text using the following codes:

     BO  for Bold
     BL  for Blink
     RE  for Reverse Video
     UL  for Underline

     OF  turn all attributes off

Video attribute codes are imbedded directly in the help text, delimited by double 
exclamation points, as in the following example:

ANY 16 8      
 Use this screen to find records by !!BO!!Account Number      
 Press !!BO!!Next!!OF!! to see the Next Page of Records      
 Press !!BO!!Prev!!OF!! to see the Previous Page of Records

 !!BO+RE!!Press Home to leave this Help Window

Attributes are combined by placing a plus sign (+) between them (see example 
above). The "!!OF!!" code is not needed at the end of a line, as all attributes are turned 
off at the end of each line. (To highlight several lines you must turn on video 
attributes at the start of each line.)

If an invalid string is encountered between the "!!" delimiters, it is displayed literally 
including the exclamation points.

Help is available from any screen in any mode (update, append, insert) via the HELP 
keystroke.32 When help is requested, TRANS does the following.

1. First TRANS must find the help file. If the logical name ADM$HELPFILE is 
assigned, TRANS attempts to open ADM$HELPFILE. If this file is found it will 
be used. Otherwise, if the logical name ADM$HELPDIR is assigned, TRANS 
attempts to open ADM$HELPDIR:screen_name.HLP. Screen_name is the name 
of the currently active screen (note that this is the screen name, the first element 
on the screen header line, not the TRO name).

2. Once TRANS has found the help file, TRANS needs to locate a help section 
name. If the field H$ELPNAME/An exists and is not blank, its value is used as 
the section name. Otherwise, TRANS will use the name of the field at the 
current cursor location.

32.  HELP is also invoked if the BRNC keystroke is followed by the letter H or the 
TRANS special field B$B is set to 'H'.
ADMINS User Guide  6 - 25



HELP in TRANS
3. TRANS reads the help file, searching for the requested section. TRANS 
performs partial matching on the section name (for example, if "ACC" is in 
H$ELPNAME, TRANS stops searching when it finds "ACCOUNT_NUMBER", 
which begins with "ACC").

A section name of ANY will always be found, regardless of what section name 
TRANS is searching for. ANY can be used to provide an error message or other 
default user instructions. If ANY is used, it should be the last section in a help file. 
(Otherwise, help sections below it will not be found.)

If the help section name is not found in ADM$HELPFILE, TRANS will search for it 
in ADM$HELPDIR:screen_name.HLP, if that file exists. If the section cannot be 
found in either file, TRANS beeps with the message "No HELP for '<help_name>'".

If the requested help section name is found, TRANS displays as much of the section 
as possible in the help scrolling region. The default scrolling region is from row 22 to 
row 24 unless the region is explicitly set on the section header line in the active help 
file. TRANS uses the last explicit scrolling region it finds in the help file, up to and 
including the section to be displayed.

Once TRANS has filled the scrolling region, the following keystrokes may be used to 
continue reading the help section.

1. UP and DOWN arrows scroll up and down one line.
2. PREV and NEXT scroll back and forward one "page" (3/4 of the scrolling HELP 

window size).
3. ENTER displays the next line of help text.
4. NREC prompts with "n:" and accepts UP or DOWN arrow to go to the 

beginning or end of the section. Press HOME to cancel the NREC request. All 
other keystrokes produce a warning tone.

5. HOME exits from help and return the user to the TRANS screen.
6. SHFK displays keystroke help
7. Other keystrokes produce only a warning tone.

Normally, when the user exits from "help", TRANS refreshes the information which 
was displayed in the scrolling region before help was entered. However, TRANS 
leaves the help text display on the screen if there is a lowercase "h" in the logical name 
OPTION.
6 - 26   ADMINS User Guide



Entering TRANS On A Specific Record
6.12.1  Development Facility for HELP in TRANS files

TRANS allows developers to go automatically back and forth between TRANS help 
and any text editor. To enable this facility, a command line which calls a text editor 
is assigned to the logical name ADM$HELPEDIT:

$ assign "edit/edt /command=util:edtini.edt" adm$helpedit

When the developer is in TRANS help and presses the EDIT key, TRANS spawns the 
editor specified in ADM$HELPEDIT, which opens the current help file for editing. 
The developer can then edit the help file. When the developer exits from the editor, 
TRANS automatically returns with the HELP section redisplayed. The developer can 
see the most recent changes; further edits can be made by pressing EDIT again. (If 
ADM$HELPEDIT is not assigned the EDIT key is ignored while TRANS HELP is 
displayed).

Please note:

ADM$HELPEDIT should only be assigned during the development of help files.

6.13  Entering TRANS On A Specific Record

TRANS can be used on a command line to call up a specific screen on a specific record 
indicated by its key value(s). The syntax is:

$ trans tro-name/screen-name key_values

The "/SCREEN-NAME" is optional, as are the "KEY_VALUES". For example:

$ trans org 100

$ trans acctg/expled 100 0531 101

$ trans payrol/pers "KAETZEL"

If the specific record indicated is not found, TRANS will go to the next highest key 
value or the record at the end of the file. If the MATCH function is in effect (See 
Section 5.3.1.8 “MATCH: Require Exact Match”), when the indicated record is not 
found TRANS will go into error mode, and then to the record at the top of the file 
when the error is cleared.

The key-values element will be treated as a logical name if it starts with "A$". For 
example, if "306469037" were assigned to the logical name A$KEY then TRANS 
would go directly to that employee record.

$ assign 306469037 a$key
$ trans payroll a$key

Key values can also be supplied via "substitutable parameters" in an ADMINS 
command procedure , or via symbol substitution used in either a procedure or on the 
command line. For example, say we have a file keyed by employee last name, and a 
personnel screen that displays information on an employee. If we set up a command 
procedure that calls a screen with a parameter, i.e.

$ trans payrol/pers 'p1

and we set up the procedure to be called by typing "PERS":

$ pers :== @pers.com
ADMINS User Guide  6 - 27



General Editor Mode (“GENED”)
then personnel information on any particular employee could be accessed by typing 
"PERS NAME" as follows:

$ pers "KAETZEL"

The personnel information screen, showing the record for "KAETZEL", would be 
displayed.

6.14  General Editor Mode (“GENED”)

The General Editor Mode is an option in TRANS that can be used without prepared 
screens as a utility to input, patch or browse through ADMINS files. The General 
Editor Mode is not intended for general use, but rather as a tool for the applications 
developer to provide quick and easy access to on-line files. As we shall see in Section 
6.14.5 “Restricting Use of General Editor Mode”, the General Editor Mode can be 
made available on a restricted basis only.

The General Editor Mode is called by entering a file-name or Data View name (See 
Appendix I: “ADD: The ADMINS Data Dictionary”) to TRANS instead of a screen-
name as follows:

$ trans file-name

TRANS will enter General Editor mode if the specification contains a "." (TRANS 
assumes it has been given a file name). TRANS will enter General Editor mode for a 
Data View as long as there is no "TRO" file in the user's current default directory with 
the same name (TRANS will ALWAYS default to the TRO name.)

If the user types only TRANS on the command line, TRANS will prompt for the file-
name as follows:

$ trans
TYPE SCREEN-NAME OR FILE-NAME OR C.R.
file-name

TRANS responds with the prompt:

OPTIONS: AP DEL INS F 132 GO

If the user intends to append (AP), delete (DEL), or insert (INS) records, any or all of 
these options must be requested. Otherwise, these functions will be locked out on the 
automatically prepared screen. The user also either types "F" to instruct TRANS that 
the user wishes to select the fields to be placed on the automatically prepared screen, 
or simply does not type "F", and TRANS will place all fields from the file on the screen 
up to the limit of the display. If the user selects the "132" option, the prepared screen 
will be 132 columns wide instead of the normal 80 (assuming the terminal will 
support 132 columns).

The general editor options may be included on the command line, thus bypassing the 
general editor "OPTIONS:" prompt.

$ trans file-name del ins 132

If none of the general editor options are to be used, the prompt may be bypassed by 
using the general editor option "GO". For example:

$ trans file-name go
6 - 28   ADMINS User Guide



General Editor Mode (“GENED”)
6.14.1  Selecting Fields For Display

If the user takes the "F" option, TRANS prompts for "FIELDS:" and the user can enter 
the field names desired for display. The initial letters of a field name are sufficient 
provided they uniquely identify a specific field. (TRANS will select the first field in 
the file in DEF order that matches the string). The user types the (partial) field names, 
presses ENTER, the line is cleared, and the user can type more field names. When the 
user presses ENTER to an empty line TRANS builds the screen.

If the user presses ENTER after the initial "FIELDS:" prompt before any field names 

have been typed, TRANS displays the names of all the fields in the file. Then the user 
can select fields to be displayed.

6.14.2  User Specified Field Widths

TRANS uses default widths for the fields as is shown in the following table:

Field Type Default Width

I - Integer 7

Ln - Longword Decimal 15

Dn - Decimal 21

Fn - Four word decimal 26

DA - Date 9

DT - Date 9

TM - Time 11

An - Alphanumeric characters in field (n)

Xpic - Picture characters in picture (pic)
ADMINS User Guide  6 - 29



General Editor Mode (“GENED”)
The user can override these widths by asking to specify the field names (the "F" 
option), and then appending "/n" (where n is the desired width in characters) after 
any field name(s) where the default width is to be overridden.

$ trans invoice.mas f
     
FIELDS: lname/10 fname/4 bdate bamt/10 item desc/40

Usually the user specifies widths to set up a multi-record screen, as discussed below.

6.14.3  Alternate Indexes in GENED

6.14.4  Formatting the Display

When TRANS lays out the screen, each field is labeled with its name from the file 
definition, and the fields are displayed in file definition order until the screen is filled, 
or until all requested fields are displayed, or until the maximum of 1000 editable 
fields are reached. TRANS will attempt to create a multi-record33 screen. This is done 
by making the field names the column headings, and reserving sufficient column 
width for the data to be displayed, one record per line. Clearly this is only possible if 
either the file definition of the file was quite small to begin with, or if only a few fields 
were selected for display via the "F" option, or if user specified widths are used to 
shorten the display of "long" fields. Hence "F" is almost invariably used if the user 
wishes TRANS to generate a multi-record screen.

The number of records displayed on a multi-record screen prepared by TRANS is 
controlled either by the maximum of 1000 editable fields or by the maximum number 
of displayable lines.34

If TRANS is called to operate on an empty file, then TRANS goes right into Append 
Mode, regardless of whether the AP option is selected by the user.

In General Editor Mode TRANS displays all data values in reverse video, and also 
underlines key field values.

6.14.5  Restricting Use of General Editor Mode

TRANS General Editor Mode can be disabled by placing "G" in the logical name 
OPTION, or allowed only on a read-only basis by placing "H" in the logical name 
OPTION. The logical name OPTION is described fully in Appendix A: “Options”.

33.   Unless the AP, DEL, or INS options were requested, or the file is empty. These 
options force a single record screen, regardless of the number of fields being 
displayed. They can be used to force a single record screen on files with small file 
definitions that would otherwise always default to multi-record format.

34.  The default maximum number of display lines is 18. (Multi-record screen 
labelling and messages use 6 lines of the default 24 line display.) This may be 
altered using the logical name ADM$VTLEN when, for example, TRANS is 
being run on a terminal with 72 display lines. See Section 5.6 “Screen Layout”.
6 - 30   ADMINS User Guide



General Editor Mode (“GENED”)
The group and system logical name tables are searched first for the translation of 
option when "G" or "H" is checked, before the process logical name table is used. 
Hence the TRANS availability for the entire system or an entire group can be 
controlled because "GRPNAM" and "SYSNAM" privilege are needed to change 
logical names in the group and system tables, respectively. Group and system logical 
name table assignments are not deleted when a user logs out.

TRANS General Editor Mode can also be restricted to operate on only one file each 
time TRANS is invoked. If there is a lowercase "a" in the logical name OPTION, 
TRANS will exit from General Editor Mode at the EXIT keystroke without prompting 
for another screen name or file name. This feature allows TRANS General Editor 
Mode to be used within command procedures restricted to a specific file in situations 
where file and data security are important issues.

These same options also restrict the use of ADED as described in Section 18.5 
“Restricting Use of ADED”.

6.14.6  Instruction File for General Editor Mode

General Editor Mode of TRANS can take its input from an instruction file. The syntax 
is:

$ TRANS N.MAS @@N.INSTR

where N.INSTR is a text file containing the commands you normally would type at 
the “Options:” prompt. E.g. to show the fields NAME ADDR ZIP create an 
instruction file that contains:

F
NAME ADDR ZIP

The first line tells GENED to accept field names, the second line lists the field names 
to be displayed (exactly the same instructions that are used in the GENED interactive 
dialogue).
ADMINS User Guide  6 - 31



The TRANS Environment File
6.15  The TRANS Environment File

TRANS has two built-in environments, or keystroke function mappings: PC-style 
and VT-style. Each of these is complete: all TRANS keystroke functions are mapped 
to unique standard function keys.35 If the first two letters of your TERM variable are 
"vt", TRANS uses the built-in VT environment; otherwise it uses the built-in PC 
environment.36 To override this default behavior set the logical name 
ADM$KB_TYPE to "PC" or "VT", to explicitly load the PC or VT environment.

Use the TRANS Environment File to alter or extend the built-in TRANS 
environment.

TRANS uses the logical name TRANS$ENV37 to find the environment file. You may 
use a relative pathname when specifying TRANS$ENV

The TRANS Environment File is a text editable file where each line modifes a 
particular property of TRANS’ appearance or behavior.  Lines that begin with "!" or 
"*" are ignored and thus can be used for comments. 

The general format is:

keyword=value

where keyword identifies the specific property we want to affect, and value defines 
the new setting for the property identified by keyword.  

The keywords used in the TRANS Environment File are often constructed as a 
hierarchy of keywords, separated by dots (.). For example:

lk.select_hil=U

“lk.select” first specifies the “lookup” class of properties, and then the “selection 
highlighting” property within that class. The value part then specifies the new setting 
for the property or object identified.

35.  TRANS keystroke functions are described in Section 6.1 “Standard Functional 
Keystrokes”. TRANS recognizes standard function keys in various environments 
by utilizing a keyboard translation table, called the "tkb file". The tkb file is 
explained in Appendix G: “TKB File: Keystroke Table”. In TRANS you can check 
the mapping of TRANS keystroke functions to standard function keys via 
TRANS' "show function keys" keystroke (ctrl/K by default).

36.  TRANS is almost always used in the VT environment: either with VT-type 
terminals or with hardware/software that emulates a VT-type terminal. The PC 
environment allows TRANS to map its functions to the standard PC-type 
keyboard when a VT-emulation is not being used. To illustrate the difference, in 
the VT environment TRANS will by default map its HOME function to the PF2 
keystroke and its MENU function to the DO keystroke. (That is, the keys PF2 and 
DO found in the tkb mapping.) In the PC environment TRANS will by default 
map it home function to the HOME keystroke, and the MENU function to the F9 
keystroke. (That is, the keys HOME and F9 found in the tkb mapping.)

37.  When translating the logical name TRANS$ENV TRANS first checks the process 
logical name table, then checks the group table, then checks the system table.
6 - 32   ADMINS User Guide



The TRANS Environment File
6.15.1  Reassign Key for TRANS Keystroke Function

To reassign a TRANS keystroke function to a different standard function key, use the 
following syntax:

%trans_key=KEYSTROKE

where: 

When a TRANS keystroke function is reassigned, the default standard function key 
for that TRANS function is "freed up" for use at the application level. For example, 
the following assignment reassigns the TRANS EXIT function to the F18 key.

%exit=F18

It also allows the default keystroke for EXIT (ctrl/b) to be used for other application 
purposes (like any other standard function key that is not mapped to a TRANS 
function).

To disable a TRANS standard keystroke function leave out the standard function key 
name, e.g.:

%exit=

disables the TRANS EXIT function (and also frees up ctrl/b for another purpose).

6.15.2  Define Macro Function

To extend the TRANS environment, i.e. to add macro function keys, use the define 
keyword:

define func_name=KEYSTROKE sim_key_1 sim_key_2 ... [\~]

where:

Some examples:

trans_key is the TRANS keystroke function name (see Section 6.1 
“Standard Functional Keystrokes”)

KEYSTROKE is the standard function key name taken from the .tkb file.

KEYSTROKE is the standard function key name (taken from the .tkb file) 
that will invoke the macro function. func_name is a name 
you supply for the macro function, e.g. "get_out" for a 
function to exit TRANS environment completely.

sim_key1
sim_key2 etc.

are the keystroke or keystrokes that are to be simulated, i.e. 
the "macro function".
A single character (separated by blanks) represents that 
character. A string of more than one character represents a 
standard function key from the .tkb file. A string that begins 
with "%" is a function name (either a TRANS keystroke 
function or a macro name defined previously in the 
environment file). A macro that contains only a string of the 
form "M$M_xx" (where "xx" is number between 1 and 99, e.g. 
M$M_23, M$M_4) defines a special RMO call. If the defined 
key is pressed TRANS will call the RMO with M$M set to 
"xx" (e.g. "23" or "4"). and S$S set to the field where the cursor 
is located.

\~ denotes the definition is continued on the next line.
ADMINS User Guide  6 - 33



The TRANS Environment File
To define F18 to exit TRANS completely from inside a menu or lookup (i.e. to follow 
the TRANS home keystroke with the TRANS exit keystroke and a carriage return at 
the

"Type SCREEN-NAME, FILE-NAME, or C.R."

prompt), put the following entry in the TRANS environment file:

define get_out=F18 %home %exit CR

To define F17 to type the word "Canceled" followed by a carriage return:

define cancel=F17 C a n c e l e d CR

To define F11 to cause the RMO to be called with M$M set to 23:

define call23=F11 M$M_23

6.15.3  Rename Standard Function Key

To specify a new name for a standard function key, use the rename keyword:

rename KEYSTROKE NEW_NAME

where:

This is useful for development of keyboard independent applications, e.g. you can 
write F$UNCKEY logic in the record maintenance procedure that references a key 
named NEW_NAME; and run the application with any keyboard by using "rename" 
to give an appropriate standard function key on that keyboard the name 
NEW_NAME.

6.15.4  Set "Meta Key": GOLD, WHITE, RED, or BLUE

Four "meta keys", GOLD, WHITE, RED, and BLUE are available for use in the 
TRANS environment. These meta keys are used to define two-keystroke 
combinations of the form:

meta_key + keystroke

where:
   
meta_key        is GOLD, WHITE, RED or BLUE

keystroke       is any single character (case insensitive)
                    or standard function key name
  

Use the SET command to enable a meta_key as follows:

set meta_key=standard_function_key_name

some examples:

set GOLD=PF1

set RED=F20

Then the meta_key can be used two specify a two-key combination when reassigning 
a TRANS keystroke function or defining a macro, as in the following examples:

KEYSTROKE is a standard function key name (taken from the .tkb file).

NEW_NAME is the new name for the key.
6 - 34   ADMINS User Guide



The TRANS Environment File
%exit=GOLD+E

define get_out=RED+X %home %exit CR

define cancel=GOLD+REMOVE C a n c e l e d CR

The first example reassigns TRANS' EXIT function to the combination GOLD+E, i.e. 
press the GOLD key followed by E.

The second example defines a macro function that will cause TRANS' HOME and 
EXIT functions to be invoked, followed by a Carriage Return (will take you 
completely out of TRANS even if Lookup or Menu Bar is currently active).

The third example defines a macro function that will cause the word "Canceled" 
followed by a Carriage Return to be typed whenever the user presses the 
combination GOLD followed by REMOVE. 

6.15.5  DMAP and MAP

The dmap: and map: keywords are used to transpose character values when they are 
moved between internal storage in ADMINS files and the outside world.  

dmap: is used to change a character value when it is moved from internal storage to 
the outside world, e.g. displayed in a window.  This is especially useful when you are 
using a character set for display where certain characters have a different ASCII code 
than the character set used for internal storage. For example, in Scandinavia certain 
7-bit ASCII characters are used to represent local characters that in most character 
sets are found in the extended 8-bit character set.

map: is used to change character values when they come from the outside world (e.g. 
typed at the keyboard) to be stored internally.

The syntax for both keywords is:

dmap:sss=ttt

map:sss=ttt

where 'sss' is the three digit decimal representation of the source character, and 'ttt' 
is the three digit representation of the target value.

A typical display remap sequence for Norway and Denmark would be:

    dmap:091=198    !  [ => Æ
    dmap:092=216    !  \ => Ø
    dmap:093=197    !  ] => Å
    dmap:123=230    !  { => æ
    dmap:124=248    !  | => ø
    dmap:125=229    !  } => å

and for Sweden:

    dmap:091=196    !  [ => Ä
    dmap:092=214    !  \ => Ö
    dmap:093=197    !  ] => Å
    dmap:123=228    !  { => ä
    dmap:124=246    !  | => ö
    dmap:125=229    !  } => å
ADMINS User Guide  6 - 35



The TRANS Environment File
6.15.6  F$UNCKEY=PHYSICAL, Load F$UNCKEY with Physical Key 
Names

By default, when F$UNCKEY38 is present in TRANS' virtual record, it is loaded with 
the TRANS function name (in lowercase), if any, of the function key that is pressed. 
If the function key has no TRANS function mapped to it, then the standard function 
key name of the key (taken from the ".tkb file") is loaded.

If the statement

    f$unckey=physical

is present in the TRANS environment file, TRANS will always load the standard 
function key name into F$UNCKEY, whether or not the keystroke has a TRANS 
function mapped to it. This feature allows older ADMINS/V32 applications that use 
F$UNCKEY to run without change with the newer multi-platform versions of 
ADMINS.

If the special RMO integer field ADM$NOPHYSICAL is present in TRANS' virtual 
record, the current screen ignores F$UNCKEY=PHYSICAL (and 
SETKEY=PHYSICAL, as described in Section 6.15.7 “SETKEY=PHYSICAL, Simulate 
VT-type Function Keys”) in the TRANS environment file. Put

    ADM$NOPHYSICAL/I

in the local section of RMS files that utilize the newer F$UNCKEY syntax to enable 
these applications to run correctly even when the TRANS$ENV file contains 
F$UNCKEY=PHYSICAL.

38.   See Section 16.14 “F$UNCKEY - Function Key Detection in RMO”
6 - 36   ADMINS User Guide



The TRANS Environment File
6.15.7  SETKEY=PHYSICAL, Simulate VT-type Function Keys

If the statement

setkey=physical

is present in the TRANS environment file, TRANS checks the integer array given as 
an argument to SETKEY39 to see if it contains any escape sequences that match those 
sent by VT keyboard special function keys. If so, TRANS will simulate those special 
function keys when TRANS is called.

This feature allows older ADMINS/V32 applications that use SETKEY to run 
without change with the newer multi-platform versions of ADMINS.

If the special RMO integer field ADM$NOPHYSICAL is present in TRANS virtual 
record, the current screen ignores SETKEY=PHYSICAL in the TRANS environment 
file, allowing applications written using the newer syntax to run correctly even when 
SETKEY=PHYSICAL is present.

6.15.8  Global Timeout

Specifies a global timeout statement (see Section 5.5.16 “TIMEOUT statement”).

Examples: 
global.timeout=1200 %exit 

Timeout after 20 minutes (1200 seconds), and exit. 
global.timeout=1200 %brnc T

Time out after 20 minutes (1200 seconds), and branch to branch-code T.

This capability can easily be combined with global.branch (described in the 
next entry) to implement a branch to a “safe” branch target (i.e. no records 
locked, no file conflicts) at timeout. 

After this kind of timeout the user could return to the location where the 
timeout occurred by simply using the %xret keystroke.

39.   See Appendix H.14.10 “SETKEY - Simulate Keystrokes in TRANS”

global.timeout=seconds actions ...

seconds

actions

the number of elapsed seconds for timeout to occur 
(seconds must be >= 600 (10 minutes) and <= 7200 (2 hours)
are a list  of TRANS keystroke functions (see Section 6.15.2 
“Define Macro Function”).
ADMINS User Guide  6 - 37



The TRANS Environment File
6.15.9  Global Branch

Create a globally recognized branch target (see Section 5.7 “Branches”)..

Example:

global.branch=T SYOBJ:SYHold/HOLD "General Holding Screen"

which makes the SYOBJ:SYHold/HOLD screen available in every screen as branch 
target T.

6.15.10  SPAWN Statement: Alternative Behavior after SPAWN

By default, when TRANS returns after a call to the SPAWN subroutine, the screen is 
automatically refreshed. This screen refreshing can be prevented40 by inserting

    SPAWN=NOSCREEN

in the TRANS$ENV file.

If the line

    SPAWN=PAUSE

appears in the TRANS$ENV file, TRANS will display the message

    Press any key to continue

and waits for any keystroke before refreshing the screen and continuing with TRANS 
processing.

The functionality specified via the SPAWN statement in the TRANS$ENV file may 
be overridden by functionality specified in the call to SPAWN itself (see Appendix 
H.15.11 “SPAWN - Create Subprocess from ADMINS Command”)

6.15.11  NOL$PROMPT - Don’t prompt for L$ parameters (text 
initialization)

ADMINS internal text fields have the ability to specify an initialization file that 
governs the creation of the initial text the first time the file is opened. One way to get 
data into the the text is using L$ parameters (for example <L$AMOUNT>, which will 
be replaced by the value of the logical name L$AMOUNT). Usually the L$ logicals 
have been set (perhaps by the RMO) when the user presses the EDIT key on an empty 
text field.

By default, if the logical name does not exist, the user will be prompted for a value to 
be substitued for the parameter. To change this behavior use the keyword

NOL$PROMPT

global.branch=branch_code tro-name/screen name branch-description

40.   If SPAWN=NOSCREEN is used and the spawned process does generate screen 
i/o the behavior of the screen is not defined and not supported (i.e. you should 
only use SPAWN=NOSCREEN if you are certain there will be no screen i/o).
6 - 38   ADMINS User Guide



The TRANS Environment File
on a line by itself in the TRANS.ENV file. L$ parameters for which no logical name 
exists will not result in prompting the user for a value (the parameter will be 
ignored).

6.15.12  REF_INIT: Optional Screen Refresh Behavior

The TRANS REF function (ctrl/w by default) redisplays the screen by sending a 
control sequence to the terminal to clear the screen, then resending the current screen 
contents. Use the REF_INIT command to specify additional control sequences that 
are to be sent to the terminal before the screen is cleared and redisplayed.  In 
specifying the REF_INIT string, use a three-digit octal ASCII code, preceded by a 
backslash (\) to represent non-printing characters (e.g. \033 for the escape character). 
For example if the following command is in the TRANS$ENV file:

ref_init=\033[5m

when REF is pressed this control sequence will be sent to the screen before it is 
cleared and displayed.

6.15.13  SHFK_SORT Statement: Change Function Key Display Order

By default, TRANS displays the function keys in alphabetic order by TRANS 
function name. You can change the order the functions keys are displayed in via the 
SHFK_SORT statement.

Place the line

    shfk_sort=D
   
    or 

    shfk_sort=K

in the TRANS environment file to change the display to "function description" or 
"KEYname" order, respectively. Use

    shfk_sort=F

to reset the display back to TRANS function order (if previously set to another order).

6.15.14  Conditional Compilation Logic in TRANS$ENV

Conditional compilation logic and syntax, as described in Section 1.4.6 “Conditional 
Compilation”, may be used in the TRANS$ENV environment file.

Two special preprocessor constants are always defined for TRANS$ENV:

On OpenVMS systems, TERM is set to the terminal's device type.

_TKB_ shows the name of the .TKB file that is in use, converted to lowercase. This 
value is same as _TERM_ unless the logical name ADM$TERM_INFO has been 
assigned, e.g.:

If ADM$TERM_INFO is... then _TKB_is...

/home/admins/bin/wyse.tkb wyse
ADMINS User Guide  6 - 39



The TRANS Environment File
DKB0:[ADMINS.BIN]WYSE.TKB wyse

If ADM$TERM_INFO is... then _TKB_is...
6 - 40   ADMINS User Guide



The TRANS Environment File
6.15.15  “Localizing” Messages and Prompts

Messages and prompts in TRANS are "soft"; they can be customized (or “localized”) 
by the application developer, for example, to appear in a different language, or to 
reflect the organization’s terminology.

In TRANS, this can be implemented41 via TRANS$ENV file commands in the form:

msg###=message

where ### is a three digit decimal number identifying the message42. To replace 
TRANS message number four, use:

msg004=Message Four

To conserve trailing blanks in a message, put the message in quotes, e.g.

msg007="Trailing blanks "

6.15.16  TRANS$ENV Lexicon

The following symbols and conventions are used to describe TRANS$ENV options 
and syntax:

• PKY - Physical keyname (determined by “TKB file”43)
• MB# - Mouse Button Number (i.e. MB1, MB2)
• %func - TRANS keystroke function (“%exit”, “%prev”)
• xvalue|yvalue - alternation: either xvalue or yvalue
• [value] - optional, may be omitted
• string - string of ascii characters (“abc”) and/or octal codes for ascii characters 

(“\111\112\113”)
• macro - Series of keystrokes, can be character, PKY or %func
• video - video attribute, values are BOLD, UNDERLINE (UL),

BLINK, and REVERSE.

41.   Localization can also be implemented using the ADM$LOCALE file, see Section 
1.10 “Localizing ADMINS”.

42.  The list of messages and prompts is contained in the file adm$dist:admins.msg.  
In this file TRANS message number 4 is tra004; to change tra004 in the 
TRANS$ENV file use the command “msg004=”.

43.  See Appendix G: “TKB File: Keystroke Table”
ADMINS User Guide  6 - 41



The TRANS Environment File
6.15.16.1  TRANS main program

map:xxx=yyy remap ASCII decimal code xxx to yyy

dmap:xxx=yyy remap (display only) xxx to yyy

shfk_sort=D|K|F change SHFK display order (Description/Keystroke/
Function)

set GOLD|RED|WHITE|BLUE = PKY enable meta keys

define fname = PKY macro define keystroke macro

rename PKY newname rename physical key

f$unckey=physical F$UNCKEY loaded with physical names rather than TRANS 
function names

setkey = physical Numeric SETKEY values are interpreted as physical escape 
sequence values. Only VTxxx escape sequence values are 
recognized.s

global.timeout Specifies a global timeout statement (see Section 6.15.8 
“Global Timeout”).

global.branch Create a globally recognized branch target (see Section 6.15.9 
“Global Branch”).

msgNNN = string Change message number NNN

spawn=pause| noscreen Spawn behaviour

edit_default=reset| insert|insert,reset Edit mode behavior

no_akp_mode - Disable "application keypad mode”

mouse_init=string Send string when TRANS starts (to enable mouse)

mouse_exit=string Send string when TRANS exits (to disable mouse)

ctrlp_nospool = PP Send ctrlp subroutine printout to terminal printer port

ref_init=string Send string at refresh

nol$prompt Internal text initfile functionality does not prompt for a value 
if an L$ value is not found.

%msf1=[MB#] Mouse fld-fld movement: Set/disable mouse button
6 - 42   ADMINS User Guide



The TRANS Environment File
%tfky=[PKY] Set/disable the trans function tfky mapped to physical key 
PKY.  For example, to have the trans function key “exit” 
mapped to the physical key “ctrl \” (control + backslash):

%exit=CT_\

The above entry would also “free up” the CT_B keystroke for 
another use in the application.

To disable a trans function keystroke, don’t assign it to a 
physical key, e.g:

%trf=

The above entry would disable the “transfer” keystroke and 
“free up” the CT_T keystroke for another use in the 
application.

See Section 6.1 “Standard Functional Keystrokes”for a list of 
trans function keystrokes and physical keys, showing the 
default mappings.

%up=[PKY] Up: Set/disable physical key

%down=[PKY] Down: Set/disable physical key

%rght=[PKY] Right: Set/disable physical key

%left=[PKY] Left: Set/disable physical key

%exit=[PKY] Exit/new screen: Set/disable physical key

%tdbg=[PKY] Enable TRANS Debug (VIA)

%home=[PKY] Primary key: Set/disable physical key

%prev=[PKY] Previous record/page: Set/disable physical key

%next=[PKY] Next record/page: Set/disable physical key

%pbrk=[PKY] Previous break: Set/disable physical key

%nbrk=[PKY] Next break: Set/disable physical key

%subs=[PKY] Subscreen key: Set/disable physical key

%menu=[PKY] Menu bar key: Set/disable physical key

%look=[PKY] Lookup key: Set/disable physical key

%same=[PKY] Reenter same val.(keyfld):Set/Disable phys. key

%help=[PKY] Help key: Set/disable physical key

%apnd=[PKY] Toggle Append/Update: Set/disable physical key

%del=[PKY] Delete record: Set/disable physical key

%ins=[PKY] Insert record: Set/disable physical key

%trf=[PKY] Transfer record: Set/disable physical key

%err=[PKY] Error key: Set/disable physical key

%rmo=[PKY] Extra RMO call: Set/disable physical key

%prt=[PKY] Print Screen: Set/disable physical key
ADMINS User Guide  6 - 43



The TRANS Environment File
6.15.16.2  Edit Mode

%ref=[PKY] Refresh screen: Set/disable physical key

%msg=[PKY] Message: Set/disable physical key

%fsm=[PKY] Field Select Mode: Set/disable physical key

%brnc=[PKY] Accept Branch code: Set/disable physical key

%xret=[PKY] Return to last branch: Set/disable physical key

%edit=[PKY] Invoke edit mode: Set/disable physical key

%nrec=[PKY] Accept # of records: Set/disable physical key

%test=[PKY] Toggle test mode: Set/disable physical key

%key2=[PKY] Sub-key 1: Set/disable physical key

%key3=[PKY] Sub-key 2: Set/disable physical key

%copy=[PKY] Copy: Set/disable physical key

%plus=[PKY] Plus: Set/disable physical key

%shfk=[PKY] Show function keys: Set/disable physical key

%cmps=[PKY] Compose characters: Set/disable physical key

%ed.rght=[PKY] Right: Set/disable physical key

%ed.left=[PKY] Left: Set/disable physical key

%ed.begl=[PKY] Beginning of line: Set/disable physical key

%ed.endl=[PKY] End of line: Set/disable physical key

%ed.ebeg=[PKY] Erase to beg of line: Set/disable physical key

%ed.dend=[PKY] Delete to end of line: Set/disable physical key

%ed.pwrd=[PKY] Previous word: Set/disable physical key

%ed.nwrd=[PKY] Next word: Set/disable physical key

%ed.eraw=[PKY] Erase word: Set/disable physical key

%ed.delw=[PKY] Delete word: Set/disable physical key

%ed.erac=[PKY] Erase character: Set/disable physical key

%ed.delc=[PKY] Delete character: Set/disable physical key

%ed.iovr=[PKY] Toggle insert/over: Set/disable physical key

%ed.trpc=[PKY] Transpose characters: Set/disable physical key

%ed.shfk=[PKY] Show function keys: Set/disable physical key
6 - 44   ADMINS User Guide



The TRANS Environment File
6.15.16.3  Edit subroutine

%ed.up=[PKY] Up: Set/disable physical key

%ed.down=[PKY] Down: Set/disable physical key

%ed.insl=[PKY] Insert line: Set/disable physical key

%ed.dell=[PKY] Delete line: Set/disable physical key

%ed.norm=[PKY] Normalize: Set/disable physical key

%ed.exit=[PKY] Exit: Set/disable physical key
ADMINS User Guide  6 - 45



The TRANS Environment File
6.15.16.4  Menu Bar

6.15.16.5  Sub menu

%bm.up=[PKY] Up: Set/disable physical key

%bm.down=[PKY] Down: Set/disable physical key

%bm.rght=[PKY] Previous: Set/disable physical key

%bm.left=[PKY] Next: Set/disable physical key

%bm.exit=[PKY] Exit: Set/disable physical key

%bm.menu=[PKY] Menu: Set/disable physical key

%bm.sel=[PKY] Select: Set/disable physical key

%bm.ref=[PKY] Refresh: Set/disable physical key

%bm.shfk=[PKY] Show function keys: Set/disable physical key

%bm.msf1=[MB#] Mouse click: Set/disable mouse button

%sm.up=[PKY] Up: Set/disable physical key

%sm.down=[PKY] Down: Set/disable physical key

%sm.rght=[PKY] Previous: Set/disable physical key

%sm.left=[PKY] Next: Set/disable physical key

%sm.exit=[PKY] Exit: Set/disable physical key

%sm.menu=[PKY] Menu: Set/disable physical key

%sm.sel=[PKY] Select: Set/disable physical key

%sm.ref=[PKY] Refresh: Set/disable physical key

%sm.shfk=[PKY] Show function keys: Set/disable physical key

%sm.msf1=[MB#] Mouse click: Set/disable mouse button
6 - 46   ADMINS User Guide



The TRANS Environment File
6.15.16.6  Lookup Menu

6.15.16.7  Lookup

%lm.up=[PKY] Up: Set/disable physical key

%lm.down=[PKY] Down: Set/disable physical key

%lm.exit=[PKY] Exit: Set/disable physical key

%lm.menu=[PKY] Menu: Set/disable physical key

%lm.sel=[PKY] Select: Set/disable physical key

%lm.ref=[PKY] Refresh: Set/disable physical key

%lm.shfk=[PKY] Show function keys: Set/disable physical key

%lm.msf1=MB# Mouse click: Set/disable mouse button

%lk.up=[PKY] Up: Set/disable physical key

%lk.down=[PKY] Down: Set/disable physical key

%lk.prev=[PKY] Previous screen: Set/disable physical key

%lk.pbrk=[PKY] Previous break: Set/disable physical key

%lk.next=[PKY] Next screen: Set/disable physical key

%lk.nbrk=[PKY] Next break: Set/disable physical key

%lk.exit=[PKY] Exit Lookup: Set/disable physical key

%lk.sel=[PKY] Select (return value): Set/disable physical key

%lk.menu=[PKY] Menu: Set/disable physical key

%lk.key=[PKY] Enter key value: Set/disable physical key

%lk.prt=[PKY] Print Lookup window: Set/disable physical key

%lk.ref=[PKY] Refresh: Set/disable physical key

%lk.shfk=[PKY] Show function keys: Set/disable physical key

%lk.msf1=[MB#] Mouse click: Set/disable mouse button

lk.prev_symbol=string Set scrolling up indicator/button label

lk.more_symbol=string Set scrolling down indicator/button label

lk.mouse_find=string Set Find button label

lk.mouse_exit=string Set Exit button label

lk.mouse_select=string Set Select button label

lk.more_position=RIG
H|TOP|OFF 

Set position of/disable scroll indicator/buttons
ADMINS User Guide  6 - 47



The TRANS Environment File
6.15.16.8  Branch and Sub-screen Menus

6.15.16.9  Viewtext

%mu.up=[PKY] Up: Set/disable physical key

%mu.down=[PKY] Down: Set/disable physical key

%mu.rght=[PKY] Right: Set/disable physical key

%mu.left=[PKY] Left: Set/disable physical key

%mu.prev=[PKY] Previous screen: Set/disable physical key

%mu.next=[PKY] Next screen: Set/disable physical key

%mu.menu=[PKY] Menu: Set/disable physical key

%mu.exit=[PKY] Exit Branch menu: Set/disable physical key

%mu.sel=[PKY] Select branch: Set/disable physical key

%mu.ref=[PKY] Refresh: Set/disable physical key

%mu.shfk=[PKY] Show function keys: Set/disable physical key

%mu.msf1=[MB#] Mouse click: Set/disable mouse button

%vu.up=[PKY] Up: Set/disable physical key

%vu.down=[PKY] Down: Set/disable physical key

%vu.rght=[PKY] Right: Set/disable physical key

%vu.left=[PKY] Left: Set/disable physical key

%vu.prev=[PKY] Previous screen: Set/disable physical key

%vu.next=[PKY] Next screen: Set/disable physical key

%vu.exit=[PKY] Exit: Set/disable physical key

%vu.srch=[PKY] Find next: Set/disable physical key

%vu.sel=[PKY] Enter search string: Set/disable physical key

%vu.tpbo=[PKY] Top/Bottom Line: Set/disable physical key

%vu.ref=[PKY] Refresh: Set/disable physical key

%vu.edit=[PKY] Edit: Set/disable physical key

%vu.shfk=[PKY] Show function keys: Set/disable physical key

%vu.msf1=[MB#] Mouse click: Set/disable mouse button

vu.mouse_find=[string] Set/disable FIND button label

vu.mouse_search=[stri
ng]

Set/disable SEARCH button label

vu.mouse_exit=[string] Set/disable EXIT button label

vu.button_hil=video[+v
ideo]

Set video attributes of button
6 - 48   ADMINS User Guide



Mouse Support in TRANS
6.15.16.10  Help in TRANS

6.16  Mouse Support in TRANS

If your terminal environment is able to instruct your GUI windows manager to send 
the mouse position in a format TRANS can recognize44 whenever a mouse button 
(usually the left mouse button) is pressed, TRANS is able to act upon this mouse-click 
in two modes, Automatic Mouse and Programmable Mouse.

6.16.1  Automatic Mouse

If the TRANS$ENV file contains a line in the form

    %msf1=MB_#45

where # is:

     1  left mouse button
     2  middle mouse button
     3  right mouse button
       (right mouse button is identified by the
        number 3 even on a two button mouse)

For example:

    %msf1=MB_1

%hp.up=[PKY] Up: Set/disable physical key

%hp.down=[PKY] Down: Set/disable physical key

%hp.prev=[PKY] Previous screen: Set/disable physical key

%hp.next=[PKY] Next screen: Set/disable physical key

%hp.exit=[PKY] Exit Help: Set/disable physical key

%hp.tpbo=[PKY] Top/Bottom Line: Set/disable physical key

%hp.ref=[PKY] Refresh: Set/disable physical key

%hp.edit=[PKY] Edit: Set/disable physical key

%hp.shfk=[PKY] Show function keys: Set/disable physical key

%hp.msf1=[MB#] Mouse click: Set/disable mouse button

44.   See Section 6.16.3 “Implementation Notes”
45.   The %msf1 command in the TRANS$ENV file enables mouse-clicking for field-

to-field movement, and is also used to signal to TRANS that the TRANS session 
will utilize the mouse, before any mouse-clicking actually occurs. This allows 
TRANS to set up clickable buttons in, for example, the VIEWTEXT display before 
the mouse is clicked.
ADMINS User Guide  6 - 49



Mouse Support in TRANS
then TRANS will respond to mouse clicks "automatically" in a easily understood, 
intuitive way.  No change to the TRO or RMO, and no re-compilation is required.  

6.16.1.1  Moving from Field to Field
TRANS will move the cursor to any field in which the mouse is clicked, if the cursor 
can go there. If F$UNCKEY is present in the RMO, the RMO will get an 'FX' call, just 
the same as for any other TRANS or "unmapped" (non-TRANS) keystroke function. 
F$UNCKEY is set to 'msf1' if the MB_# identified in the TRANS$ENV file is clicked. 
F$UNCKEY is set to 'MB_#' if any of the other mouse buttons is clicked.
6 - 50   ADMINS User Guide



Mouse Support in TRANS
For example, if

  %msf1=MB_2

is in the TRANS$ENV file, then when mouse button 2 is clicked at a field F$UNCKEY 
is set to "msf1" and the cursor will go to the field that was clicked on. If mouse button 
1 or 3 is clicked at a field F$UNCKEY is set to "MB_1" or "MB_3" but the cursor does 
not move.

If the click occurs in a single record screen at a position where no field is displayed, 
nothing happens (no RMO call, no cursor movement). If the click occurs at a field that 
the cursor cannot go to (e.g. a D-field) the RMO call occurs, F$UNCKEY is set, but the 
cursor does not move.

If a TRANS application is designed to be "modal", i.e. if it contains logic that depends 
on fields being entered in a particular order, "automatic" field-to-field movement via 
the mouse can be disabled by removing the %msf1 command from the TRANS$ENV 
file. 

6.16.1.2  Multi-Record screens
If the click occurs in a multi-record screen TRANS will automatically and 
immediately go to the record clicked on (if the cursor can go to the field clicked on in 
that record, it will; otherwise it will go to the first editable field of the record clicked 
on). Fields in the header portion of multi-record screens are considered part of the 
first record displayed.

Like field-to-field movement, navigating via the mouse in a multi-record screen is 
disabled if the %msf1 command is not present in the TRANS$ENV file.

6.16.1.3  Edit Mode
If the click occurs somewhere in the field at which the cursor is already located, 
TRANS will go into "edit mode" on the current field, and place the cursor at the 
position in the field at which the mouse is clicked (just as if you pressed the EDIT key 
and used the RIGHT and LEFT arrow keys to position the cursor.) While in edit mode 
on a field, a mouse click at another position in the field will move the cursor to that 
location.  A mouse click outside the field while in edit mode acts as a terminator (just 
as if you pressed return), if you clicked at a field the cursor can go to and the cursor 
will be positioned at that field (otherwise the cursor will be positioned just as if you 
pressed return).

Like field-to-field movement, edit mode via the mouse is disabled if the %msf1 
command is not present in the TRANS$ENV file.

6.16.1.4  Menus
In TRANS menu presentations, e.g. Menu Bar, Branch menu, Subscreen menu etc., 
you may select an item by pressing a mouse button when pointing at that item on the 
screen (commonly called "clicking on the item"). If you mouse click on a menu bar 
item with the mouse "option Q" behavior is the default, i.e. submenus pop 
immediately, etc.. See Section 6.10.1 “Alternate Menu Bar Behavior - "Option Q"”.
ADMINS User Guide  6 - 51



Mouse Support in TRANS
6.16.1.5  LOOKUP
LOOKUP windows may be activated by clicking on the <LKUP> symbol in the lower 
right corner of the screen. You may select an item in LOOKUP by clicking on it. If you 
click on the area of the LOOKUP window above or below the first record displayed, 
the LOOKUP window will display the previous or next "page" of records in the 
LOOKUP file. If you click outside the LOOKUP window TRANS exits LOOKUP 
without selecting a value (just as if you pressed the HOME key).

By default, two clickable scrolling buttons, "v" and "^" appear on the border of the 
LOOKUP window to indicate when records exist prior to or after the records 
displayed. 

TRANS   recognizes following three TRANS$ENV file commands for control and 
customization of this "scroll bar" graphic:

     lk.more_position=[top|right|off]        
     lk.more_symbol=<character-string>
     lk.prev_symbol=<character-string>

lk.more_symbol=+
lk.prev_symbol=-

replaces the labels "^" and "v" with "-" and "+". 

Three "soft" mouse buttons can be enabled in the TRANS$ENV file:

If you include the command

   

lk.more_position=right puts the previous and more scroll symbols on 
the right border of the lookup, instead of on the 
top/bottom borders.

lk.more_position=top puts the previous and more scroll symbols on 
the top/bottom borders, i.e. it restores the 
default.

lk.more_position=off turns off display of the scrolling buttons.

lk.more_symbol changes the label of the clickable "more" button 
to the character-string specified, and

lk.prev_symbol changes the label of the clickable "previous" 
button to the character-string specified, i.e.:

lk.mouse_find="FIND" a clickable button, marked "FIND" or whatever else you 
specify, will appear on the LOOKUP window border 
(lower left). When this button is clicked, TRANS will 
prompt for key values to search for, just as if you pressed 
the LOOK key.
6 - 52   ADMINS User Guide



Mouse Support in TRANS
If you include the command

If you include the command

6.16.1.6  VIEWTEXT
VIEWTEXT windows display clickable scroll buttons by default.  If the %msf1 
command is present in the TRANS$ENV file VIEWTEXT by default also displays 
clickable buttons with the labels "FIND", "SEARCH" and "EXIT".  The FIND button 
initiates a search for a text string by prompting for a target: "Search string:", just as if 
the TRANS VIEWTEXT function key VU.SEL had been used.  The SEARCH button 
searches (or searches again) for the last target string specified, just as if the TRANS 
VIEWTEXT function key VU.SRCH had been used.  The EXIT button causes 
VIEWTEXT to exit, returning to TRANS, just as if the TRANS VIEWTEXT function 
key VU.EXIT had been used.  If you click outside the VIEWTEXT window 
VIEWTEXT exits (just as if you pressed VU.EXIT).

The following TRANS$ENV file commands enable control and customization of 
these clickable buttons:

vu.mouse_find=<character-string>            !relabels FIND
vu.mouse_search=<character-string>          !relabels SEARCH
vu.mouse_exit=<character-string>            !relabels EXIT
vu.button_hil=<video-attr>[+<video-attr>+…] !change video   
attributes
                                                 !for viewtext buttons
i.e.:

     vu.mouse_search="Find Next"
     vu.button_hil=BL+UL

replaces the labels "SEARCH" with "Find Next" and changes the video attribute of the 
three VIEWTEXT buttons to "blink and underline".

lk.mouse_exit="CANCEL" a clickable button, marked "CANCEL" or whatever else 
you specify, will appear on the LOOKUP window 
border (lower left). When this button is clicked, 
LOOKUP will exit just as if the HOME key had been 
pressed.
If lk.mouse_exit is enabled clicking outside the 
LOOKUP window produces only a warning tone, but no 
action.

lk.mouse_select="SELECT" a clickable button, marked "SELECT" or whatever else 
you specify, will appear on the LOOKUP window 
border (lower left). When  this  button  is clicked, 
LOOKUP will select the highlighted entry just as if the 
SELECT key had been pressed. (RETURN value (if any) 
and TRANSFER values (if any) are loaded and LOOKUP 
exits.)
ADMINS User Guide  6 - 53



Mouse Support in TRANS
6.16.1.7  Help in TRANS
Help in TRANS windows display clickable scroll buttons by default.  If you click 
outside the Help in TRANS window HELP in TRANS exits, returning to TRANS, just 
as if the HELP in TRANS  function key HP.EXIT had been used.

6.16.1.8  TED in TRANS
TED may be activated for an internal text field by clicking on the <TEXT> symbol in 
the lower right corner of the screen 

TED supports positioning the cursor in the TED window using the mouse  If you click 
outside the TED in TRANS window TRANS pops the "Command:" prompt.

6.16.2  Programmable Mouse

Usually TRANS’ “Automatic Mouse” functionality will be suitable to enable mouse-
support with your TRANS applications. “Programmable Mouse” functionality is 
provided for those cases where the automatic functionality is not suitable (e.g. 
application logic depends on fields being edited/entered in a specific order).

Whether or not "%msf1=MB_#" is present in the TRANS$ENV file, a mouse click in 
a field will cause a call to the RMO, provided F$UNCKEY is defined in the RMO. 
(Mouse-clicks on <LKUP>, in the LOOKUP window, in menus, and in the menu bar 
always work, whether or not "%msf1=MB_#" is present, and whether or not 
F$UNCKEY is present.)

If "%msf1=MB_#" is in TRANS$ENV F$UNCKEY will contain "msf1"; if not, 
F$UNCKEY will contain 'MB_1', 'MB_2' or 'MB_3', depending on which mouse 
button was pressed.

If the field ADM$MOUSE/An is declared in the RMO, it will be loaded with the 
name of the field in which the mouse button was  pressed.  In multi-record screens, 
if the field ADM$MOUSEREC/I is declared in the RMO, it will be set to the record 
number of the record that was clicked on46. The RMO may then perform whatever 
processing is required, e.g. set C$C to the value of ADM$MOUSE if it wants to move 
the cursor there. (Note: In "Programmable Mouse" mode TRANS does nothing but 
provide information about the mouse click to the RMO, no automatic cursor behavior 
takes place.)

ADM$MOUSE and ADM$MOUSEREC are reset (to blank and zero respectively) 
immediately after the call in which they are set (i.e. they are reset before the next 
RMO call occurs)

For example if mouse button 1, 2, or is clicked at any field (even if the cursor would 
not go to it) F$UNCKEY is set to "MB_1", "MB_2", or "MB_3" and ADM$MOUSE is 
set to the name of the  field  that was clicked on. If the screen is a multi-record screen, 
ADM$MOUSEREC is set to the position the record clicked on has in the multirecord 
display (header fields will return value 1 in ADM$MOUSEREC). If the click occurs at 
a position where no field is displayed, nothing happens (no RMO call, no fields are 
set).

46.  ADM$MOUSEREC should not be used when S$SEL is being used to select 
records.
6 - 54   ADMINS User Guide



Mouse Support in TRANS
6.16.3  Implementation Notes

Different environments activate the mouse in various ways.  For XTERM, TRANS 
turns on reporting of the mouse position when the mouse button is clicked by 
sending an enabling escape sequence to XTERM when TRANS starts (and when 
TRANS exits it sends a disabling escape sequence).  TRANS does this if you place the 
following lines47 in TRANS$ENV:

mouse_init=\033[?9h
mouse_exit=\033[?9l  !the last character is lowercase L

KEA! 420, or any other non-XTERM emulator must be told to send the following 
escape sequence when a mouse button is pressed48.

<ESC>[Mbcr

where:

b  is the ASCII character with a decimal code equivalent to
   "button number + 31", e.g. 'space' for button 1, '!' for
   button 2 and '"' for button 3.

c  is the ASCII character with a decimal code equivalent to
   "column + 32", e.g. '+'(ASCII decimal code 43) for column 11.

r  is the ASCII character with a decimal code equivalent to "row
   + 32", e.g. '$'(ASCII decimal code 36) for row 4.

thus the following sequence sent by a mouse click:

    <ESC>[M!+$

would indicate to TRANS that mouse button 2 was clicked at column 11, row 4. 
(TRANS then internally figures out what TRANS element was clicked on, if any).

In the KEA! 420 terminal emulator environment mouse support in TRANS is enabled 
by attaching a macro to (usually) the "left button up" event (this can be done using 
KEA! 420 menu commands/dialog boxes).  The macro, written in KEA! macro 
language, sends a string in the above form to TRANS:

//bdtry1.ktm
// Version KEA! 4.10
XX = Int(Arg[1]) + 32
YY = Int(Arg[2]) + 32
MB = Int(Arg[3]) + 31
Send("^[[M"+Chr(MB)+Chr(YY)+Chr(XX) )

Then configure the mouse to call the macro at the mouse click (left button up): 

Menu Command: Configure Mouse 
   Action: Left Button Up
   Map To: Macro
   Value: bdtry1(ROW,COL,1)

47.  You could send KEA! 420 mouse enabling and disabling calls in this way also.
48.  This sequence is what XTERM sends when the mouse button is clicked.
ADMINS User Guide  6 - 55



File Access Optimization: Files Left Open at Branch
The following is a sample TRANS environment file to enable the mouse.

! sample trans$env file for mouse environment
%msf1=MB_1             !enable "automatic" mouse support 
!mouse_init=\033[?9h   !mouse enable for Xterm (not needed for 
KEA!)
!mouse_exit=\033[?9l   !mouse enable for Xterm (not needed for 
KEA!)
lk.mouse_exit="CANCEL" !sample syntax for EXIT button in LKUP, 
disables click outside

lk.mouse_find="FIND"   !sample syntax for FIND button in LKUP

6.17  File Access Optimization: Files Left Open at 
Branch

When TRANS opens a file (e.g. a link file), it asks OpenVMS file services to perform 
the file open operation. First. the file name is expanded into a full file specification 
and then the file directories are searched for the particular entry corresponding to the 
file name. These searches are optimized by OpenVMS via such techniques as sorted 
file directories and keeping active file directories present in virtual memory. 
Nevertheless, a search for a file name would be slowed down by a large file 
directory49 or by the use of a multi-level file directory name.

In general, this minimal overhead required to open a file should be of little 
consequence. Branching screens, however, usually open a number of files; and in 
some applications the user may be branching quite frequently. TRANS provides a file 
access optimization facility that can provide major throughput benefits where the 
same group of files is continually being opened and closed as users branch around in 
a family of screens.

TRANS can be given a list of files that are to be left open by OpenVMS Record 
Management Services (RMS). Once a listed file is opened by TRANS it is not closed 
or re-opened for the remainder of the TRANS session. Use of this facility can 
significantly speed up branching, especially where screens use numerous files, 
because the files on the list are only opened once, the first time they are needed, and 
are not subsequently closed or re-opened by RMS during branches.

Please note that these files are left "open" in the sense that RMS has already located 
and made the file available for use, but they are not "locked" for ADMINS use of any 
kind unless and until they are referenced again in an active screen. In other words, if 
TRANS leaves a file open in this manner when it branches out of a screen, that file 
could then be opened exclusively by another process, because no other process 
would actually be using the file.

49.   OpenVMS directories should not exceed 128 blocks in size. Searching directories 
larger than 128 blocks seriously slows down file access time.
6 - 56   ADMINS User Guide



TRANS Scripting Facility
The list of permanently open files is a text editable file with one file name on each line, 
identified by the logical name ADM$PERM_OPEN. (The protection on the list file 
must be set so that all TRANS users can read it). The file specifications in the list must 
be spelled exactly as they appear in the TRS, except that file opening codes (-R, -M, 
etc., described in Chapter 19: “Concurrency Control: Multi-User Files”) should not be 
present. The list may contain the names of RMO and TRO files as well as data files.

There is a limit of 100 files on this list.

The user's RMS open file quota (FILLM) must be large enough so that all files on the 
list, plus any others which TRANS uses in any given screen, can be open at once. A 
FILLM value equal to the number of files on the list plus 30 should be more than 
adequate (i.e. 130 should be adequate if your ADM$PERM_OPEN list has 100 
entries).

6.18  TRANS Scripting Facility

TRANS has the ability to record all the keystrokes of a TRANS session into a file, and 
to "play back" the recorded keystrokes from the file later on to exactly duplicate the 
TRANS session. This "scripting" facility provides an excellent application testing, 
teaching, and debugging tool.

To turn on the record function, use the logical name ADM$SCRIPT_OUTPUT to 
designate a file to receive the keystrokes, e.g.:

     $ assign myscript.fil adm$script_output     

TRANS will process, and then record each keystroke it receives.

To turn on the playback function, use the logical name ADM$SCRIPT_INPUT to 
designate the file that contains the script of keystrokes, e.g.:

     $ assign myscript.fil adm$script_input      

TRANS will read the entire ADM$SCRIPT_INPUT file before it reads the keyboard.

TRANS also has the ability to write all its output to a file, instead of writing it to the 
screen. To turn on this function use the logical name ADM$SCREEN_OUTPUT to 
designate a file to receive the screen output, e.g.:

     $ assign myscreenout.fil adm$screen_output

 No output appears on the screen when ADM$SCREEN_OUTPUT is enabled; it is all 
sent to the ADM$SCREEN_OUTPUT file.

To use these features for testing or benchmarking first assign 
ADM$SCRIPT_OUTPUT, then run the screen being tested, recording the keystrokes 
you want performed in the test, and then exit TRANS.

To run the test, deassign ADM$SCRIPT_OUTPUT and assign ADM$SCRIPT_INPUT 
to point to the script file previously recorded. Make sure that any data files altered 
during the test are in the correct initial state, and then run the screen.

The script runs much faster than the recorded session. Two options are available to 
slow down the playback to "human speed". First, if you assign any value to the logical 
name ADM$SCRIPT_PAUSE, the playback will pause after every keystroke, waiting 
for you to press any key. When you press a key TRANS will play back the next 
recorded keystroke, and so on.
ADMINS User Guide  6 - 57



VIA: View Internals of ADMINS
The second option is to edit the recorded file, entering a negative value at the points 
in the script where you want the playback to pause. The absolute value of the number 
is used as the length of the pause in ticks.

If you also assign ADM$SCREEN_OUTPUT to divert the screen output for the test to 
a file, you can then compare (e.g. with a "differences" utility) 
ADM$SCREEN_OUTPUT files produced by the same script on different platforms or 
environments, for example to verify application performance.

The keystroke codes written into the script files are internal codes for TRANS 
functions - not physical keystrokes, making the script files portable to any platform. 

6.19  VIA: View Internals of ADMINS

The ADMINS VIA (View Internal ADMINS) facility50 can be called directly from 
TRANS.  VIA provides detailed information about the currently open ADMINS data 
files, the application’s “virtual record”, and the current application environment.

To enable VIA place a command in the TRANS$ENV file assigning a physical key to 
the TRANS keystroke function TDBG, e.g.:

  %tdbg=F12

to use F12 to enter VIA.

By default, VIA is disabled (TDBG is not assigned to any physical keystroke). 

50.   See Section 9.11.3 “VIA: View Internal ADMINS”.
6 - 58   ADMINS User Guide



Chapter 7:AdmREPORT: Creating 
Reports

The reporting tool (AdmReport.EXE) is a comprehensive tool for preparing a wide 
variety of printed reports. REPORT contains the tools for preparing simple lists, multi-
level hierarchical subtotals, form letters, bills and checks on preprinted forms, cross-
tabulations, schedules, etc. REPORT contains facilities for record selection, sorting, 
computation, table lookup, record linkage between files, and complex procedural 
logic.

REPORT reads the report instruction file (REP), and produces a report according to 
the instructions found there. There are two modes of formatting usable in a report, 
namely "automatic format" mode, and "explicit format" mode.

Automatic format mode is appropriate for detail listings in columnar format and/or 
summary reports, and is often used for ad hoc reports that are written quickly to be 
used only once.

Explicit formatting is used when the person writing the report needs to specify the 
exact output format.

Reports can produce files which are themselves instruction files for other ADMINS 
commands.
ADMINS User Guide   7 - 1



Outline of a Report Instruction File (REP)
7.1  Outline of a Report Instruction File (REP)

Most reports use only a small subset of the REPORT facilities. The following outline 
shows the skeleton of a generic report, and is meant to provide a first look at the 
REPORT statements and their order of usage1 in a report instruction file. All report 
instruction files are required to have a file type of ".REP".

     REPORT              report name

     FILE                file being reported from

     SINGLE              single space the printout
     PAGE                control pagination
     LENGTH              non-standard page length
     WIDTH               non-standard page width
     INDENT              non-standard indentation of printout
     OUTPUT              set output device
     LP                  set printout options
     SCALE               scale decimal values
     NRECS               number of records to read (for testing)
     FORMAT              use automatic formatting of output

     SORT                reorders records on new sort fields
                    
     CREATE,SELECT,KEY,LINK,TABLE,RECODE,EXECUTE

     HEADING
     ...                 print layout for heading of each page
     END

     DEF                 display file definitions on-line
     CREATE              create a virtual field
     SELECT              select records for printing
     KEY                 select record based on key fields
     LINK                get fields from a record in another file
     TABLE               table lookup for descriptors or values
     RECODE              logical constructs for cross-tabulation
     EXECUTE             call the RMO

1.    CREATE, SELECT, KEY, LINK, TABLE, RECODE, and EXECUTE may appear 
before the HEADING. They usually appear after the HEADING (where they are 
explained). The placement of these statements can have a significant impact on 
both the report logic and the report speed. These issues are discussed in Section 
7.13 “Processing Statements”.
7 - 2   ADMINS User Guide



REPORT Statement
     DETAIL statement    print values for each detail record 
                         using automatic columnar format
     DETAIL section      print values for each detail record
     ...                 based on explicitly specified format
     END                 

     TOTAL key/sort      designate control break for: subtotalling
           EOF           grand totals
           [PAGE]        page totals
           n             total after n records

     SUPPRESS            suppress subtotal printout on single detail
     RESET PAGE n        reset page counter after control break
     EJECT               eject page after control break printing
     EJECT BEFORE        eject page before control break printing 
                         summaries
     EJECT n             eject page after control break if n or less
                         lines left on page

     CREATE              create a virtual field

     PREVIEW
     ...                 print layout to preview subtotalled detail
     END

     SUMMARY
     ...                 print layout for each subtotal summary
     END

7.2  REPORT Statement

Each report may have a name. The REPORT statement, if included in the REP 
instruction file, is the first statement in a report and is used to name the report:

     REPORT name

The REPORT statement is optional if there is only one report in the REP instruction 
file. However, a REP instruction file may contain several different named reports. If 
the REP instruction file includes several reports, then the REPORT statement is 
optional only for the first report in the REP instruction file. All subsequent reports 
within the REP instruction file require a REPORT statement.

     *  PAYROLL.REP
     *
     REPORT REGISTER
     ...
     END
     *
     REPORT EARNINGS
     ...
     END
     *
     REPORT DEDUCTIONS
     ...
     END

To run a report the user types "REPORT" to the system prompt. REPORT then 
prompts for a "REPORT FILE NAME:". The user types the file name of the report 
instruction file (REP-file-name) and the name of the particular report within the 
report instruction file which is to be run. For example:

    $ report
     REPORT FILE NAME:payroll earnings
ADMINS User Guide  7 - 3



FILE Statement
To run the first report in a REP instruction file, only the name of the REP instruction 
file needs to be typed. Unless a specific report is requested after the REP-file-name, 
REPORT runs the first report in the REP instruction file. For example:

     $ report
     REPORT FILE NAME:earnings

The REP-file-name and the report name may be included on the command line. For 
example:

     $ report payroll earnings

REPORT can optionally print a row of asterisks to show its progress through the file 
by placing the qualifier "STAR" at the end of the REPORT command line:

     $ report payroll earnings/star

if the REPORT contains a SORT statement (see Section 7.12 “SORT Statement”), 
REPORT prints two rows of asterisks: one for the SORT pass, and one for the report 
pass. The “star” qualifier on the REPORT command line is ignored unless REPORT 
is producing a report output file (e.g., it does nothing if OUTPUT KB is specified).

Note that AdmReport for Windows can optionally display a “progress bar” or  
“activity indicator” as described in Section 7.22 “The REPORT Environment File”

7.3  FILE Statement

Each report runs on an input file. The FILE statement is used to name the input file 
for the report. Records from other files may be linked into the report. The order of the 
records presented in the report follows the order of the records in the input file, 
unless a SORT statement is used to reorder the output (see Section 7.12 “SORT 
Statement”). Also, the input file may be an index file, as described in Section 7.13.4.1 
“LINK Example”, or it may be an RMO, as described in Section 7.19 “EXECUTE 
Statement: RMO Processing”.

The name of the input file follows the name of the report (if there is a REPORT 
statement):

     REPORT BENEFITS
     FILE PAY.MAS

If the REPORT statement is omitted, the FILE statement is the first statement in the 
report.

7.4  HEADING Section

Each report usually has a heading. A heading consists of information printed on the 
top of each page of the report. The heading can contain literal text and/or data. The 
"layout" of the heading follows in the lines after "HEADING" until the "END" 
statement is encountered. For example:

     HEADING
     CE   PAYROLL BENEFIT REPORT
     BL
7 - 4   ADMINS User Guide



HEADING Section
          DEPT EMPL# NAME           SICK BALANCE VACATION BALANCE
     BL
     END

The heading layout consists of lines of text that will be printed on top of every report 
page. Generally speaking, the heading will be printed as it appears in the layout. 
Layout information is indented five (5) spaces in the REP instruction file. The first 
five spaces are left blank or used for one of the following instructions:

•  CE - instructs REPORT to "center" the line on which the "CE" appears. All 
centering is performed with respect to the active WIDTH and INDENT 
values.2

•  BL - instructs REPORT to insert a blank line at that point in the report.
•  L/C - instructs REPORT to act as if the next line in the layout were at line "L" 

and column "C" in the heading. "L/C" appears on its own line.
•  L%C - use the line/column method described above, but the next output line 

will not "float" up if any previous lines are suppressed because they are 
completely blank. That is, any line designated with "L%C" will ALWAYS 
appear at the line designated (unless it is completely blank).3 This feature is 
especially useful on pre-printed forms.

• L/R 
• L%R - use "R" (for "right justify") in place of a column number in the L/C or 

L%C syntax. to print the layout line flush with the right margin. If a right 
justified line ends with a field, the field itself should be right justified (e.g., --
-FLD).

The previous example using the "L/C" notation would appear as follows:

     HEADING
     CE   PAYROLL BENEFIT REPORT
     BL
          DEPT EMPL# NAME
     3/31
          SICK BALANCE  VACATION BALANCE
     BL
     END

Multiple lines of literal text following a line and column designation ("L/C") are 
interpreted to be positioned at "L/C", "L+1/C", "L+2/C", etc. That is, the line number 
increments by one, and the column setting (or right justification) stays in effect until 
it is changed by another "L/C" or the END is encountered. Also, if a line and column 
designation is used, it must be reset to column 1 before a "CE" line may be used, as is 
illustrated in the next example.

2.    The WIDTH statement is described in Section 7.17.4 “WIDTH Statement”, the 
INDENT statement is described in Section 7.17.6 “INDENT Statement”.

3.    Note that the line following L%C will be suppressed if it is completely blank, i.e. 
subsequent non-blank lines (until the next L/C or L%C) float up to the line and 
column indicated by L%C.
ADMINS User Guide  7 - 5



DETAIL Statement
Headings may include today's date (TODAY), current time (NOW), and the current 
page number (PGNO). These "internal" fields are described in Section 7.16 “Internal 
Field Names”. The following example shows these fields being used. The significance 
of the dashes is described in Section 7.6 “DETAIL Section”.

     HEADING
     1/50
          TODAY----  NOW-----  PAGE: PGNO--
     2/1
     CE   STATUS OF ACCOUNTS
     ...
     END

The HEADING section can also print data from records in the file. That is, the 
HEADING layout can contain print field designators as described in Section 7.6 
“DETAIL Section”. The data printed in the heading is taken from the first detail 
record printed on the page containing the heading. Data fields should be placed in 
the HEADING only if there is a DETAIL statement or DETAIL section.

REPORT automatically prints column headings for the data fields to be displayed 
when using automatic formatting. (Automatic formatting is invoked by the presence 
of a FORMAT statement (see Section 7.17.12 “FORMAT Statement”) or a DETAIL 
statement (see Section 7.5 “DETAIL Statement”).) The column headings consist of 
either the field names from the DEF, or they are taken from a data file previously 
prepared for this purpose (see Section 7.20 “Data Description File for Automatic 
Formatting”). These automatically generated column headings appear below the 
user specified heading in the report output.4

7.5  DETAIL Statement

The DETAIL statement is used when REPORT is to perform automatic formatting of 
the report output. In contrast, the DETAIL section (see Section 7.6 “DETAIL Section”) 
allows the user to precisely format fields and literal text in the report output. The 
DETAIL statement and the DETAIL section are mutually exclusive: only one of these 
two features may be used within a single report.

The DETAIL statement is a single line beginning with the word "DETAIL" followed 
by the field names and literal strings5 in the order they are to appear, and (optionally) 
the print widths of the fields to be displayed.

The general syntax of the DETAIL statement is:

DETAIL [*keyword] fld1[/n] [literal] fld2[/n][literal] fld3[/n]...

Literals that have imbedded blanks must be enclosed in single quotes. One detail line 
is printed for each report record.

In the following example the fields FIRST LAST and CITY are to be printed, along 
with the some literal character strings:

     DETAIL 'Mr./Ms.' FIRST LAST 'of' CITY 'U.S.A.'

4.    The automatic columnar headings can be suppressed using the *NOHEAD 
keyword in the DETAIL statement. See Section 7.5 “DETAIL Statement”.

5.    Any character strings in the DETAIL statement that do not match field names (or 
abbreviations of field names) are printed as literals.
7 - 6   ADMINS User Guide



DETAIL Statement
Note that character strings enclosed in quotes are always treated as literals.

In the DETAIL statement, field names may be abbreviated to the initial letters which 
unambiguously identify the field.

     DETAIL EMP# FIRST LAST STR NU

The DETAIL statement above instructs report to print the fields EMP#, FIRST, LAST, 
STREET and NUMBER in that order from left to right on the detail line.

When the DETAIL statement is followed by an asterisk "*", all fields in the input file 
definition are placed on the detail line in the report output. The fields appear in the 
order found in the internal input file definition.

DETAIL *

Each of the fields listed in the DETAIL statement is printed in columnar format in the 
report output, underneath a column heading. Since the columns of field values must 
fit on one line, the display is limited to the output page width specified in the WIDTH 
statement (see Section 7.17.4 “WIDTH Statement”). Once that width has been 
reached any remaining field columns cannot be printed. REPORT displays a message 
that the width is not sufficient and that the layout will be truncated. Hence, the "*" 
option would only be used on data files with few fields.

The automatically generated column headings consist of either the field names from 
the DEF, or they are taken from a data file previously prepared for this purpose (see 
Section 7.20 “Data Description File for Automatic Formatting”). These headings 
appear below the user specified HEADING in the report output. The automatic 
generation of column headings is disabled using the NOHEAD keyword, as follows:

DETAIL *NOHEAD FIRST LAST CITY

The asterisk used to identify NOHEAD is a special keyword, and is required. 
"*NOHEAD" may be abbreviated to "*N".

Ordinarily if a field name appears more than once in the DETAIL statement, the later 
occurrences are ignored. If you want fields to be repeated in the DETAIL statement, 
you must include the REPEAT keyword, then repeat the field name in the desired 
sequence, as in the following example.

DETAIL *REPEAT CITY LAST FIRST CITY

As with NOHEAD, the asterisk is required, and "*REPEAT" may be abbreviated to 
"*R".

The DETAIL statement is limited to one line in the REP instruction file and is not 
followed by an END statement.
ADMINS User Guide  7 - 7



DETAIL Statement
7.5.1  Specifying Field Widths in the DETAIL Statement

REPORT uses default display widths to determine the size of the columnar layout for 
each field. These widths are similar to those used by TRANS in GENED Mode as 
described in Section 6.15.2 “User Specified Field Widths”., with the exception of "Dn" 
which bases the field width on the number of decimal places; also integer fields are 7 
characters wide.

These default field widths may be overridden by appending "/n" after the field name 
in the DETAIL statement where "n" is the desired field width in characters.

     DETAIL field1/n field2 field3/n ...

In the DETAIL statement above, field1 and field3 widths are explicitly specified 
while field2 is displayed with its default width.

In the second example above, the DETAIL statement provides EMP# (X9999) with 
four places, LAST (A16) with sixteen places, and overrides the default print width of 
FIRST (A16) by allowing only one place. Note that the column heading for FIRST is 
truncated to the specified print width of one character. Meaningful column headings 
and alternative print widths may be set up in a table file used by REPORT to perform 
automatic formatting. This is described in Section 7.20 “Data Description File for 
Automatic Formatting” below.

Field Type Default Width

I - Integer 7

Ln - Longword decimal 9 + number of decimal places

Dn - Decimal 9 + number of decimal places

Fn - Four-word decimal 26

DA - Date 9

DT - Date 11

An - Alphanumeric characters in field (n)

Xpic - Picture characters in picture (pic)

Detail Statement Result

DETAIL EMP# FIRST LAST EMP# FIRST                LAST
1021    Audrey             Allen

DETAIL EMP#  FIRST/1  LAST EMP#  F   LAST
1021    A   Allen
7 - 8   ADMINS User Guide



DETAIL Statement
7.5.2  DETAIL *CSV: Output in CSV Format

REPORT supports direct output of CSV-format files6 via the *CSV keyword in the 
DETAIL statement. 

Syntax:

DETAIL *CSV[AUTO] * 

or

DETAIL *CSV[AUTO]  fld1  [fld2…] [:]

To output all the fields in the REPORT virtual record7 use 

DETAIL *CSV * 

To generate an automatic "header line" (see below) use 

DETAIL *CSVAUTO * 

All the elements that follow the *CSV keyword in the DETAIL statement must refer 
to fields previously identified in the REPORT virtual record8.  No "literals" are 
permitted.

The DETAIL *CSV statement displays non-numeric data-type fields in wrapped in 
quotes.  Trailing blanks are discarded.

For example (continuation lines are permitted): 

DETAIL *CSV block lot unit acct 1addr 2addr :
       value sdate sprice

Here is an excerpt from the output produced by this statement:
"100","24","","106050","176 PLEASANT STREET","",182000,"30-Jul-1980",.00
"100","25","","292100","SEYMOUR SLIVE & ZOYA S. SLIVE","174 PLEASANT ST",200200,"23-Sep-1988",.00
"100","26","","366050","172 PLEASANT ST","",278500,"17-Jul-1978",.00
"100","29","","491850","CORPORATION, THE","C/O FIRST ESTATE REALTY",315000,"25-Jul-1989",.00
"100","30","1","996016","TRUSTEE OF XERIC TRUST","31 SHEPARD ST",139300,"23-Sep-1997",.00
"100","30","2","996017","TRUSTEE OF XERIC TRUST","31 SHEPARD ST",139300,"23-Sep-1997",.00
"100","30","3","996018","TRUSTEE OF XERIC TRUST","31 SHEPARD ST",154700,"23-Sep-1997",.00
"100","30","4","996019","222-224 CHESTNUT ST. UNIT #4","",170200,"23-Sep-1997",180000.00
"100","30","5","996020","222-224 CHESTNUT ST. UNIT #5","",170200,"29-Sep-1997",190000.00

Often applications that import CSV files can use field-identifying information 
("header" information) if it is placed on the first line of the output in comma-
separated format.  REPORT allows you to specify the CSV format header line directly 
in the .REP instruction file, or generates one automatically on request. 

Substituting *CSVAUTO for *CSV in the detail statement tells REPORT to 
automatically generate a header line.  

DETAIL *CSVAUTO block lot unit acct 1addr 2addr :
       value sdate sprice

6.     CSV or "comma separated values" format files are ASCII text files with one record 
per output line, and data values separated by commas.  CSV-format files provide 
easy data exchange with spreadsheet applications such as Microsoft Excel, 
database applications such as Microsoft Access, and 3rd party reporting 
applications such as Crystal Reports.

7.    A maximum of 250 fields is allowed.
8.    Field names may be abbreviated to the initial letters, which unambiguously 

identify the field.
ADMINS User Guide  7 - 9



DETAIL Statement
The automatically generated header line contains the labeling text provided for each 
field in the Data Dictionary. If no labeling text for a field is found in the data 
dictionary (or if the Data Dictionary is not active) the field name is used.

The following example shows how to specify a "hard-coded" CSV-format header line 
directly in the .REP:

file gisreal.mas
NRECS 100
LP 0 1 0 - doc.csv
WIDTH 250
HEADING
     Block,Lot,Unit,"Account Number",Address1,Address2,
     "Assessed Value","Sale Date","Sale Price"
END
DETAIL *CSV block lot unit acct 1addr 2addr value sdate sprice

Note in this example that the HEADING section contains multiple lines. HEADING 
lines are handled in a special way when DETAIL *CSV is in use: they are 
concatenated together to produce a single output line9.

 By default AdmReport uses “,” (comma) as the field separator when producing CSV 
output10. Many applications (especially outside the US) have special requirements, 
so any character can be specified as the field separator via the logical name 
ADM$CSVSEPARATOR. You may assign any printable character except the 
numbers 0-9 to this logical name, or assign the decimal ASCII code for the character. 

For example: 

AdmLcr ADM$CSVSEPARATOR ;

and

AdmLcr ADM$CSVSEPARATOR  59

will both use “;” (semicolon) as value separator.  And

AdmLcr ADM$CSVSEPARATOR 9

will use TAB as separator character.

9.Note that when the REPORT instruction file is read, the HEADING section is 
encountered before the DETAIL *CSV statement. If the HEADING line extends 
beyond the WIDTH (default 131) of the report, REPORT exits with the diagnostic 
message 

rep976 Print page width error

To avoid this use the "-CSV" command line option (see Section 7.5.2.1 “Embed
CSV syntax in "multi-purpose" report”) so that REPORT "knows" its outputting
CSV format when the HEADING is encountered, or increase the WIDTH.

10. If Option K (see Appendix A: “Options”) is active a TAB character is used as the 
delimiter.
7 - 10   ADMINS User Guide



DETAIL Statement
There are some other "special behaviors" in effect when DETAIL *CSV is in use. 

7.5.2.1  Embed CSV syntax in "multi-purpose" report
Build multi-purpose REPORT instruction files by using the "*!CSV!" token in the 
.REP file and the "-CSV"  REPORT command line option. The *!CSV! token identifies 
lines in a report that are to be read only when the -CSV command line option is 
invoked.  This option allows developers to assemble a REPORT virtual record and 
output the data in either traditional or CSV format. 

Command line syntax is:

ADMREPORT -CSV [=file] reportname

For example:

ADMREPORT -CSV BUDGET

produces an automatically named output file, e.g. “admins000111a.lis”, or

ADMREPORT -CSV=MYFILES:BUD.CSV  BUDGET

!to specify the name of the output file (BUD.CSV)

Consider the following .REP file:

*  FEDEDUCT.REP
*
FILE DEDUCT.MAS
SINGLE
WIDTH 80
HEADING
1/1
     TODAY------
2/1
CE   STATE AND FEDERAL DEDUCTION CHECK REPORT
END
LINK NAME ADDR CITYST ZIP DESC 2DESC FROM NAMES.MAS KEY IS CODE
LINK 3DESC 4DESC 5DESC FROM NAMES.MAS KEY IS CODE
CREATE XFICA/D2 FICA + CFICA
CREATE XMED/D2 MED + CMED

Special Behavior Explanation

Limits Ordinarily DETAIL statements or "automatically 
formatted reports" are limited to a maximum of 50 
fields. When DETAIL *CSV is in use you may 
reference up to 250 fields. 
Ordinarily REPORT output lines are limited to 254 
characters long. When DETAIL *CSV is in use 
output lines may be any length.

REPORT instructions DETAIL *CSV report output is always one line per 
record output to a file. Formatting, (e.g. WIDTH, 
LENGTH, etc.) and TOTAL statements are ignored.
Continuation lines are permitted  (for DETAIL  
*CSV line)

HEADING Layout lines concatenated

-CSV switch *!CSV! token enables multi-purpose reports (see 
next section)

Option “P” Ignored (negative values are always displayed with 
a preceding “-”, e.g. -43.75)

Option “K” Decimal point in numeric field is a “comma”, fields 
are separated by a tab character.
ADMINS User Guide  7 - 11



DETAIL Section
* 
*!CSV!DETAIL *CSVAUTO TODAY NAME ADDR CITYST ZIP AMT :
*!CSV!        WITH XFICA XMED DESC 
DETAIL
BL
BL
     CKDATE-----
       NAME------------------------------------ ----------AMT
       ADDR------------------------------------
       CITYST----------------------------------
       ZIP--
BL      
       DESC-------------------------------------------------
BL
1     ( WITHHOLDING: ------WITH )
2     (        FICA: -----XFICA )
3     (    MEDICARE: ------XMED ) 
BL
           --------------------
END

When run conventionally this report will produce conventional output: an 
(automatically named) .LIS laid out as specified in the .REP file's DETAIL section. 
REPORT will ignore the lines beginning with *!CSV! because they are marked as 
comments. However, when this instruction file is run with the -CSV command line 
option, as follows:

> ADMREPORT -CSV=MYFILES:FED.CSV FEDEDUCT 

REPORT searches for and reads the lines that begin with the *!CSV! token. These lines 
are processed (with the *!CSV! token removed) and  conventional REPORT layout 
and formatting instructions are ignored.  REPORT -CSV effectively "sees" the 
following instruction file:

FILE DEDUCT.MAS
LINK NAME ADDR CITYST ZIP DESC 2DESC FROM NAMES.MAS KEY IS CODE
LINK 3DESC 4DESC 5DESC FROM NAMES.MAS KEY IS CODE
CREATE XFICA/D2 FICA + CFICA
CREATE XMED/D2 MED + CMED
DETAIL *CSVAUTO TODAY NAME ADDR CITYST ZIP AMT :
        WITH XFICA XMED DESC 

7.6  DETAIL Section

The DETAIL section is used instead of the DETAIL statement when one needs to 
specify exactly how the values in the report records are to be printed. The DETAIL 
section allows the user to specify the layout of the fields for each record in the input 
file. Unlike the DETAIL statement, the DETAIL section allows multiple lines of detail 
output for each record and the placement of literal text among the detail fields.

The DETAIL section, which begins with a line consisting of the word "DETAIL" and 
ends with the "END" statement, instructs REPORT what to print for each record in 
the report input file. The layout in the DETAIL section looks similar to the HEADING 
section, i.e., it is indented five (5) spaces and it can contain "CE", "BL", "L/C", and 
literal text. Of course, the DETAIL section can also print data from the records in the 
report input file. The user instructs REPORT what data is to be printed, and where it 
is to appear on the output page, by typing the data field name with left-leading or 
right-trailing dashes in the layout section. The data field name together with the 
7 - 12   ADMINS User Guide



DETAIL Section
dashes is called a "print field designator". The print field designator is positioned in 
the DETAIL layout at the place where the data is to be printed in the report. There are 
several rules associated with the convention for the print field designator:

1. The number of characters printed for each field is equal to the total number of 
characters (data field name plus dashes) in the print field designator.

2. The data field name need not be complete. Rather the data field name should 
contain sufficient initial letters from the full primary field name (as it appears in 
the DEF) to distinguish this data field name from all other primary names in the 
DEF. Provision of sufficient letters is the user's responsibility. REPORT will take 
the first data field name from the DEF which it finds that matches the print field 
designator. The order of the search follows the order of the names in the DEF.
A problem arises when there are two field names in a DEF where one is 
included as a substring of the other, e.g. if the field "ST" follows the field 
"STREET" in the DEF. When specifying a print field designator one can add a 
period (".") to a field name to indicate that one is specifying the full field name, 
and not a partial name. In our example, "ST" is ambiguous as to whether the 
reference is to "ST" or "STREET", whereas "ST." is specifically a reference to "ST" 
and "STR" is a reference to "STREET".

3. Left or right justification in the printing field is controlled by the placement of 
the dashes. Left dashes means right justification. Right dashes means left 
justification. For example, "---SICKB" right justifies the sick balance value 
whereas "SICKB---" left justifies the sick balance value. Dashes should appear 
either to the right or to the left of the data field name. A string containing both a 
beginning and an ending dash or dollar sign (see below) will be treated as a 
literal. Hence a string of all dashes is a literal.

4. The "$" may be used interchangeably with the "-". For example, by using 
"$$$$$GROSS" instead of "-----GROSS", a single dollar sign will precede the 
value and be printed flush against the value.

5. The actual value is placed in the designated print field during report generation. 
If the actual value is larger than the designated field, it will be truncated from 
the right. If the actual value is smaller than the print field, blanks will fill out the 
field either in the leading or trailing position depending on the justification.

6. All numeric data is automatically edited for commas and decimal point where 
appropriate.

DETAIL section example:

     DETAIL
          D--  EMP-- NAME----------------
     1/31
            ---SICKB         ---VACB
     END

The discussion between here and Section 7.6.1 “Text Fields” is for the more advanced 
readers of this manual, and can be skipped by the beginning reader.

Using the field names and the dashes you can easily visualize how the report is going 
to look. However, there are times when because of the length of the field name 
needed to uniquely identify the field or because we wish to fully utilize a print line, 
the "line/column" technique is required. Using the "line/column" technique, the 
print line may be defined a character at a time if necessary. Also, blanks that are 
between print field designators do not erase data characters already placed in the 
line. The following examples expand on the use of the "line/column" technique.

     HEADING
           ACCOUNT DESCRIPTION
     END
     DETAIL
ADMINS User Guide  7 - 13



DETAIL Section
          FUND-
     1/3
          DEPT-
     1/6
          OBJ-
     1/1
                   DESC---------------
     END

Note that in the above example, three fields (FUND, DEPT, and OBJ) are packed 
together without any blanks. Also, note that the column was "reset" back to 1 for the 
DESC field so that it could be lined up visually with the column heading 
(DESCRIPTION). The blanks in the line leading up to DESC--- do not erase the 
account number already formatted. For FUND 01, DEPT 514, and OBJ 110 the above 
example would print:

      ACCOUNT DESCRIPTION
     01514110 BROOMSTICK HANDLES

If the line/column designation is absent, printing will continue on the next line but 
at the same column position contained in the previous line/column designation. So 
that:

     2/27
          -----AMT1
     3/27
          -----AMT2
     4/27
          -----AMT3

is more succinctly written:

     2/27
          -----AMT1
          -----AMT2
          -----AMT3

7.6.1  Text Fields

Blocks of text from a document stored in or associated with a text field11 (TInn or 
TXnn field type) can be integrated into REPORT outputs. The block of text can be 
either the entire document, or limited to a specific maximum number of lines, using 
the following syntax:

TEXTFIELD-----------height---

For example, to print up to 6 lines of text stored in the TI field ADDRESS:

ADDRESS--------------6-----------------------------------

The height can be anywhere within the dashes of the field designator (but it must be 
surrounded by dashes). Since the maximum length of a section (DETAIL, 
SUMMARY, etc.) is 63 lines, the number of lines to be output in the text block, plus 
the line number within the section where the text block begins, minus 1, cannot 
exceed 63.

If the height specified is 0:

FIELD-------------0---

REPORT prints the entire text regardless of its length (unconstrained by the 63 line 
limit described above). If this syntax is used, nothing else can be placed in the same 
columns as the text field on lines below it in the layout section, because this might 

11.    See Appendix K: “Using Text Fields”.
7 - 14   ADMINS User Guide



DETAIL Section
result in overprinting (see below). If this open-ended text block syntax causes page 
breaks, the HEADING will be correctly paginated (i.e. the PGNO is correctly 
maintained); but other data in the HEADING may be late. Except for PGNO, 
HEADING sections caused by open-ended text block page breaks are simply copies 
of the HEADING section on the page where the text field began.

Text blocks are always left justified. "CE" (center) is not supported for blocks of text.

You can use text fields in LINK, TABLE, and TOTAL statements. You can use text 
fields with automatic link field renaming. You cannot use text fields as SORT fields.

In TOTAL statements, the aggregation operators /FI, /LA, and /E are available for 
TI and TX fields; others result in an error message. Each text field in the file, in a 
LINK, TABLE, and/or a TOTAL with /FI or /LA counts as TWO fields12 against 
REPORT's limit of 1000 fields.

Text block formatting uses the "L" or "J" justification code in the ruler stored with the 
text, and uses the print width specified in the layout. "L" lines (no justification) are 
truncated if they are too long.13

If, when you lay out a text block, you specify a maximum number of lines to be 
displayed which is greater than the number of lines in the document, the remaining 
lines of the text block are "displayed" as blank. If this results in a completely blank 
line, it is suppressed (as always in REPORT). But if the text contains embedded blank 
lines, they are not suppressed.

When laying out fields which are directly underneath a text block, be sure to allow 
enough lines under the text block to prevent overprinting. For example:

 WRONG: may overprint             RIGHT: won't overprint
 ====================             ======================
 1/1                              1/1
       TXT1----------4--                TXT1----------4--
 4/1                              5/1
          FIELD-------                     FIELD-------

REPORT detects overprinting in text fields and issues an error message if it occurs.

12.    Each text field has an internal field (TI$field_name of TX$field_name) associated 
with it, as described in Appendix K: “Using Text Fields”.

13.    Rulers are explained in J.2 “Rulers”.
ADMINS User Guide  7 - 15



DETAIL Section
7.6.1.1  Substituting Values into Text Fields at Run Time
Values from the current virtual record can be merged into a block of text at run time 
by referencing the field in the text document as follows:

<%%FIELDNAME>

JANBUD, a field in REPORT's virtual record, would be substituted into the text block 
when the text field that contains the following lines is printed using REPORT:

    The total budget for January is $<%%JANBUD>, we will be
    considering at our next meeting how to allocate these
    funds in an equitable manner. We hope you can be there.

If JANBUD contained the value $2,408.50, the REPORT outputs the lines from the 
document as follows:

    The total budget for January is $2,408.50, we will be
    considering at our next meeting how to allocate these
    funds in an equitable manner. We hope you can be there.

7.6.2  Zero Suppression

Any print line may contain zero suppression. This means that zero values for all 
numeric, date, time, and picture fields print as blanks. To instruct zero suppression 
place a "Z" in column 1 of the line containing the print field designators where zeroes 
are to be suppressed. For example:

     DETAIL
     Z      -----ENCUMB  -----EXPEN  -----BAL
     END

7.6.3  Comma Suppression

Commas may be suppressed when decimal or integer values are being printed in a 
report. The letter "C" is inserted in the first column of the line containing the print 
field designators in which commas are to be suppressed. Zero and comma 
suppression may be requested together. For example:

     DETAIL
     1/40
     C    ------AMT
     ZC   ------BAL
     END

The AMT field will have its commas suppressed. The BAL field will have its commas 
suppressed and a value of zero will print as blanks.

7.6.4  Explicit Print Field Designator

In certain cases the use of dashes in the print field designator is unwieldy. For 
example, if the printout field is only one or two spaces wide. A "D" in column 1 of a 
line containing print field designators instructs REPORT that each string on this line 
is a print field designator, even though there may be no dashes present in the string. 
For example:

     DETAIL
     D      FU     DEP     OBJ    SERV--
     END
7 - 16   ADMINS User Guide



DETAIL Section
7.6.5  Explicit Print Field Width

Notwithstanding the "D" feature just described, the assignment of field width via the 
field name in the print designator may still in certain cases be unwieldy. For example, 
a one character print field is required for a field name whose initial letter leaves the 
identity of the field ambiguous. When REPORT sees "Dn", as in "D1", on a line 
containing print field designators this instructs REPORT that the string(s) on this line 
are field names that should be printed in print fields of width "n". An example of this 
could be where only part of a field was to be printed. For example, if we had several 
code fields, each of the type "A4", and we only wanted to print the first character of 
each field, the following could be used:

     DETAIL
     D1     S1 S2 S3 S4 S5 S6 S7 S8
     END

7.6.6  DETAIL Subheadings

In some reports, it is desirable to print some additional information at the beginning 
of each control break or at the beginning of each page, on the same line or lines as 
some of the DETAIL information, as follows:

         KEY = 1  DETAIL ----------------------------------
                  DETAIL ----------------------------------
                  DETAIL ----------------------------------

         ====== SUMMARY for KEY = 1 ======

         KEY = 2  DETAIL ----------------------------------
                  DETAIL ----------------------------------
                  DETAIL ----------------------------------

                        *******************
                        **** HEADING ******
                        *******************

         KEY = 2  DETAIL ----------------------------------
                  DETAIL ----------------------------------

         ====== SUMMARY for KEY = 2 ======

         KEY = 3  DETAIL ----------------------------------
                  DETAIL ----------------------------------

In this example, "KEY = n" is printed on the first DETAIL line after each control break, 
and on the first DETAIL line on each page.

To provide this capability REPORT has two options for use in DETAIL paragraphs. 
These options are controlled by two codes in the left margin. 'P' tells REPORT to print 
the contents if the layout line only for the first record on each page.14 'F' tells REPORT 

14.    The 'P' code to print a detail subheading for the first detail section on each page 
should not be used in combination with multiple output files (the DIRECT 
statement, see Section 7.17.14 “DIRECT Statement: Multiple Output Files”). 
REPORT determines when to print 'P' lines according to the page breaks in the 
original report; so, unless the final output files containing DETAIL sections have 
page breaks before the same detail records, the 'P' subheadings will not be placed 
correctly in the final output.
ADMINS User Guide  7 - 17



DETAIL Section
to print the contents of the layout line only for the first record in each control break. 
'P' and 'F' can be combined, as in the example above, which would be produced using 
the following layout:

 HEADING
                        *******************
                        **** HEADING ******
                        *******************
 BL
 END
 DETAIL
 PF      KEY = K- 
 1/1
                  DETAIL ----------------------------------
 END
 TOTAL KEY
 SUMMARY
 BL
         ====== SUMMARY for KEY = K- ======
 BL
 END

Subheading information can appear on any line or lines within a multi-line DETAIL 
section. 'F' and 'P' can be used in combination with the 'C' and 'Z' codes, and these 
codes can be given in any order. 'F' and/or 'P' must appear in the left margin of 
EACH LAYOUT LINE which is to be controlled by these options.

The 'F' subheading code can be followed by a number between 1 and 10, indicating 
that the line should be printed following each control break for the given total. For 
example:

 DETAIL
 PF2   KEY1-
 1/1
 PF1         KEY2- 
 1/1
                   Detail line ---------------------------
 END
 TOTAL KEY2
 ...
 TOTAL KEY1

In this example, KEY1 is printed whenever there is a control break on the second 
TOTAL or there is a page break; and KEY2 is printed at each control break on the first 
TOTAL and each page break. Since a control break on the second TOTAL always 
causes a control break on the first one, this produces output such as:

         Key_1 Key_2 Detail
         ----- ----- ------------------------------------------
           1     1   One, one
                 2   One, two
           2     1   Two, one
           3     2   Three, two
                     Another three, two
                 4   Three four
            4     1   Four, one

If there is no total number after the 'F' code, REPORT defaults to the first total.
7 - 18   ADMINS User Guide



TOTAL Statement
7.7  TOTAL Statement

REPORT can perform up to ten (10) levels of subtotaling, unless RECODE or 
SUPPRESS is used, in which case REPORT can perform up to six levels of subtotaling. 
The TOTAL statement specifies the control break, and which subtotaling operations 
are to be applied to which fields. At each TOTAL break REPORT can sum values, 
count values, take an average, find the largest or smallest value within the run of the 
subtotal, or take the first, second, third, fourth, or last value in the run. Many fields 
can be subtotaled, and several subtotaling operations can be applied to the same 
field.

The general syntax of the TOTAL statement is:

     TOTAL control  field1[/operation] field2[/operation] etc.

The "control" is a key field or sort field from the file or a derived key from a SORT 
statement (see Section 7.12 “SORT Statement”), or one of the control break options 
described below. The "control" instructs REPORT when to break and perform 
subtotaling operations. For example, when the control break is a field name (e.g. a 
key field) REPORT will break each time the value of that key field or a higher key 
field changes.

The TOTAL statement may be continued on another line using the colon (:) 
continuation syntax only when explicit formatting mode is active.

The subtotaling operations that can be performed on fields are /V, /E, /AVG, /
MAX, /MIN, /FI, /2, /3, /4, and /LA which stand respectively for (sum) values, 
(non-null) existences, average, maximum, minimum, first, second, third, fourth, and 
last. (The purpose of the "/n" operations are illustrated in Section 7.10.2 “Multi 
Column Reports”.)

Summing values (/V) is the default operation for numeric fields if no operation code 
is present. For all other data types the first occurrence in the control break (/FI) is the 
default operation. If the maximum value for an integer field (i.e. 32,767) is reached by 
summing the values for that field, a warning message displays and the field is set to 
0. This condition does not stop the report from running to completion.

The TOTAL statement may be used with either automatic formatting or explicitly 
specified formatting of the report output. The use of the TOTAL statement with 
automatic formatting is described in Section 7.8 “Subtotaling with Automatic 
Formatting and DETAIL” and Section 7.9 “Subtotaling with Automatic Formatting 
without DETAIL”. SUMMARY and PREVIEW sections which allow the user to 
explicitly specify the layouts of subtotaled data are described in Section 7.10 
“SUMMARY Section” and Section 7.11 “PREVIEW Section”. SUMMARY and 
PREVIEW sections may not be used when automatic formatting is invoked.

Both actual fields and fields derived at the detail level (i.e., via CREATE, LINK, 
TABLE, and RECODE described below) may be totaled at any break. However, fields 
derived at one control break may not be totaled at another break.

There are various options possible for the "control" break. These options can be used 
when either automatic formatting or explicit formatting is selected. These "control" 
break options are as follows:
ADMINS User Guide  7 - 19



TOTAL Statement
7.7.1  Break At A Key or Sort Field Change

The "control" may be a key field (or a sort field, see Section 2.4.3 “Sort and Access 
Control”) of the file named in the FILE statement, or a key derived by the SORT 
statement (see Section 7.12 “SORT Statement”). Fields that are included in the 
TOTAL statement cannot precede the control field in the sequence of key fields from 
the DEF or the SORT statement. For example, if the break was on the KEY3 field then 
the KEY2 field could not be summed in that TOTAL statement.

For example:

     TOTAL DEPT SICKB VACB

The above example subtotals sick and vacation balance for each department.

     TOTAL DEPT SICKB SICKB/E SICKB/MAX SICKB/MIN SICKB/AVG

The above example subtotals sick balance per department, counts the non-null 
existences ("E") of sick balances per department, finds the largest ("MAX") and the 
smallest ("MIN") sick balance per department, and takes the average ("AVG") sick 
balance per department.

TOTAL sections must appear in order from minor to major key/sort fields.

There may be more than one TOTAL statement using the same key or sort control 
field. This is useful in the case where a control break might only include a single 
detail record. If the user desired to only print the total when there was more than one 
record, but wanted a blank line at each break, the following technique could be 
applied. (SUMMARY and SUPPRESS are presented completely in Section 7.10 
“SUMMARY Section” and Section 7.18.1 “SUPPRESS Statement”)

     TOTAL OBJ AMT
     SUPPRESS
     SUMMARY
     1/50
          --------
          -----AMT
     END
     TOTAL OBJ
     SUMMARY
     BL
     END

7.7.2  Break At End of File

The "control" may be "EOF". This means at the end of file produce the subtotaling 
operations based on the whole file, i.e. produce grand totals. For example:

     TOTAL EOF SICKB VACB

would produce grand totals of sick balance and vacation balance.
7 - 20   ADMINS User Guide



TOTAL Statement
7.7.3  Break At End of Page

The "control" may be "[PAGE]". This means print page totals at the end of each page. 
The "[PAGE]" control break supersedes other key/sort field control breaks. Also 
"[PAGE]" is only meaningful if DETAIL is also active in the report. For example:

     TOTAL [PAGE] SICKB VACB

would produce page totals for sick and vacation balance. Generally "[PAGE]" is not 
used with breaks on sort fields; "[PAGE]" is usually used with DETAIL and TOTAL 
EOF.

7.7.4  Break At A Fixed Number of Records

 The "control" may be a number, "n". This means take a control break after each n 
records have been printed. This feature may be used to produce multi-column 
reports (illustrated in Section 7.10.2 “Multi Column Reports”) or to produce batch 
subtotals for fixed-length batches.

7.7.5  Break At Partial Field

The "control" may be of form "sort-field partial". Partial is a code for taking a subtotal 
when only part of the control field changes. The codes for partial follow, and depend 
on the data type for the control field. The partial code is prefixed with an "=" to 
instruct REPORT that it is a partial.

1.  Control field is a date. Partial can be "=YY" or "=YY-MMM" to subtotal by year 
or month. The date should be in the standard ADMINS date format, DD-MMM-
YY or DDMMMYYYY. For example:

TOTAL INVDATE =YY-MMM ...
TOTAL AGE =YY ...

2. Control field is "pictured". Partial is the leading part of the picture showing the 
part of the data that should change to produce the subtotal. For example, "=9" or 
"=AA9" are partials for full pictures of "999" or "AA9999".

     TOTAL FUND =9 ...
     TOTAL CODE =AA9 ...

3. Control field is alphanumeric, i.e. An. Partial code is of form "=XXXX" where the 
number of X's in the code controls the number of alphanumeric characters, from 
the left, that make up the partial field whose change activates the subtotal.

     TOTAL NAME =X HOUSE LOT OUTBLDG STORE :
       FACTORY ACRES :
       VETERAN BLIND DISABLD ELDERLY

4. When the control field is has sub-fields the partial key can be a subfield.  For 
example, if ACCOUNT.DEPT is a subfield of ACCOUNT:

    TOTAL ACCOUNT =.DEPT...
     
ADMINS User Guide  7 - 21



Subtotaling with Automatic Formatting and DETAIL
7.8  Subtotaling with Automatic Formatting and 
DETAIL

When a DETAIL statement is present in the REP instruction file, the TOTAL 
statement uses the columnar layout derived from the DETAIL statement. The 
SUMMARY section is not allowed.

The minimum requirement for the automatic formatting of totals is a designated 
control break. All decimal and four-word decimal fields from the DETAIL statement 
are automatically summed and printed at each TOTAL break, without having to 
include these field names in the TOTAL statement. The user may override the 
automatic subtotaling of these fields as described in Section 7.20 “Data Description 
File for Automatic Formatting” below.

     TOTAL control

Specific aggregation operators (e.g. /MIN, /LA) may be requested as described in 
Section 7.7 “TOTAL Statement” on the TOTAL statement.

     TOTAL control field1/operation field2/operation etc.

When automatic formatting is active, REPORT automatically applies the "/V" 
operation to numeric fields (i.e. decimal and four-word decimal fields), and the "/FI" 
operation to all non-numeric fields, included on the TOTAL statement. Decimal and 
four-word decimal fields do not have to be included on the TOTAL statement to be 
automatically subtotaled. Integer fields, which are not automatically totaled by 
default, may be explicitly requested by including them on the TOTAL statement.

When a numeric field is summed, the result is placed below a line of dashes, in the 
column containing detail values for that field. If any other field operation is requested 
(e.g. /MAX), REPORT automatically generates a separate additional column for each 
aggregated field value. The column heading indicates the field and the operation, 
and the results are placed on the total output line.

The print width of fields included in the TOTAL statement may be explicitly 
specified. To override the default display width of aggregated fields, append "/n" 
after the field/operation instruction where "n" is the desired width in characters. ("N" 
must be greater than 4, so as not to be confused with the "/2", "/3" or "/4" operation 
described in Section 7.10.2 “Multi Column Reports”.)

     TOTAL control field1/operator/n field2/operator/n ...

Field names in TOTAL statements must be fully spelled out. The TOTAL statement 
is restricted to one line (i.e. colon continuation is not supported) when automatic 
formatting is active. REPORT will automatically format a maximum of 50 fields, 
including DETAIL fields and TOTAL fields.

7.8.1  Automatic Formatting Examples, DETAIL and Subtotals

 In the following example, the field SALARY (D2) is automatically subtotaled with a 
"control" break of end of file (EOF).

     DETAIL DEPT EMP# LAST SALARY
     TOTAL EOF                                   
      
     DE EMP# LAST                   SALARY
     12 1021 Allen               23,000.00
     12 1254 Cosmos              34,500.00
7 - 22   ADMINS User Guide



Subtotaling with Automatic Formatting without DETAIL
     ...                               ...
                              ------------
                                277,000.00

In the next example, the print width for the field LAST is set to 10 characters in the 
DETAIL statement. The report subtotals each department, displays the first 
occurrence of the department name (DNAME) for that control break, and 
automatically subtotals the SALARY field.

     DETAIL DEPT EMP# LAST/10 SALARY
     TOTAL DEPT DNAME/FI

     DE DNAME/FI        EMP# LAST            SALARY 
     12                 1021 Allen        23,000.00
     12                 1254 Cosmos       34,500.00
     12                 1256 Short        27,000.00
                                         ----------
     12 Personnel                         84,500.00
     ...

In the next example, the department name (DNAME) is truncated to 9 characters. The 
report prints a department subtotal for SALARY, and at the end of the file, a grand 
total for salary plus the maximum SALARY.

   
     DETAIL DEPT EMP# LAST/10 SALARY
     TOTAL DEPT DNAME/FI/9
     TOTAL EOF SALARY/MAX

     
     DE           EMP# LAST            SALARY  SALARY/MAX 
     12           1021 Allen        23,000.00  
     12           1254 Cosmos       34,500.00
     12           1256 Short        27,000.00
                                   ----------
     12 Personnel                   84,500.00   
     ...
                                 ------------
                                       277,000.00  34,500.00

7.9  Subtotaling with Automatic Formatting without 
DETAIL

If a report which does not contain a DETAIL statement is to automatically format 
subtotaled values, then the FORMAT statement (see Section 7.17.12 “FORMAT 
Statement”) preceding the TOTAL statement is necessary to invoke automatic 
formatting.

Since there is no information from a DETAIL statement as to print widths, the 
TOTAL statement uses the default widths, or the user specified overrides on the 
TOTAL fields, or the widths found in the ADM$FORMAT file as described in Section 
7.20 “Data Description File for Automatic Formatting”.
ADMINS User Guide  7 - 23



SUMMARY Section
7.10  SUMMARY Section

The SUMMARY section allows the user to specify the layout of fields and literal text 
for subtotaled data derived by the TOTAL statement. SUMMARY precedes the 
layout for the subtotal printout. For each TOTAL statement, i.e. control break, there 
may be a SUMMARY "paragraph" of printout. The format of the SUMMARY 
printout may be the same as, or similar to, the format used in the DETAIL section 
printout, or may be formatted entirely differently from the DETAIL section printout. 
Also, a particular report may contain only SUMMARY section printout, and no detail 
section printout.

The layout of the SUMMARY is formatted using the same rules as in the HEADING 
and DETAIL layouts. That is, one uses "CE", "BL", "L/C", print field designators, and 
literal text. However, only the following fields are usable in the SUMMARY 
paragraph to make a print field designator in a SUMMARY layout.

1. Any field in the line of sort up to and including the control field in the TOTAL 
statement for this SUMMARY paragraph. For example, if the control field is the 
KEY2 field, then the KEY1 and KEY2 fields may be used. In order to use the 
KEY3 field it must be placed on the TOTAL statement with a subtotaling 
operation.

2. Any field used in the TOTAL statement for this SUMMARY paragraph with a 
subtotal operation.

3. Any field introduced by a CREATE statement that occurs between the TOTAL 
statement and the SUMMARY paragraph.15

For example:

     TOTAL DEPT SICKB VACB DEPTNA/FI
     SUMMARY
     BL
          DE--  DEPTNA/FI---   TOTAL SICK BAL: -----SICKB
     2/80
          TOTAL VACATION BAL: ------VACB
     END

Note the use of the "/FI" operator to bring DEPTNA (department name), which may 
have itself been brought into the report via a TABLE statement, into the scope of the 
SUMMARY paragraph via the TOTAL statement.

Fields derived at one control break may not be totaled at another break.

15.   Link and table fields, discussed in Section 7.13.4 “LINK Statement” and Section 
7.13.5 “TABLE Statement”, should be introduced at the detail level and brought 
into a SUMMARY paragraph via the "/FI" operation.
7 - 24   ADMINS User Guide



SUMMARY Section
7.10.1  Positioning The SUMMARY Section

REPORT can start the SUMMARY printout at a specified line. This feature is 
especially useful when output is to a preprinted form. For example, to print a total at 
line 40 when printing onto purchase order forms, the line number where the 
SUMMARY paragraph is to start is placed in the SUMMARY statement.

     TOTAL VENDOR ITEMS AMOUNT
     SUMMARY 40
          TOTAL FOR ORDER:  -----IT ITEMS, $$$$AMOUNT
     END

7.10.2  Multi Column Reports

Sometimes the need arises to print multi-column reports. For example, consider the 
following file definition:

     *   LIST.DEF
     MAS 10000
     NAME A20 KEY1     "name"
     ADDR A20          "address"
     CITY A20          "city, state, zip"

We wish to print mailing labels, two to a row on the printed output page. This could 
be done as follows:

     SUMMARY
          NAME/FI-------------     NAME/2--------------
          ADDR/FI-------------     ADDR/2--------------
          CITY/FI-------------     CITY/2--------------
     END     REPORT LABEL
     FILE LIST.MAS
     HEADING
     BL
     END
     TOTAL 2 NAME/FI ADDR/FI CITY/FI NAME/2 ADDR/2 CITY/2

"TOTAL 2" means take a control break every 2 records.

Three additional operators are available with TOTAL to facilitate printing 2, 3, or 4 
column reports. These operators, "/2", "/3", "/4" respectively, are used to extract a 
value from the 2nd, 3rd, or 4th records preceding the control break. For example, to 
print the names from the mailing list in four columns, the following report could be 
run. (The report could easily be extended to print the full label.

 REPORT NAMES
     FILE LIST.MAS
     HEADING
     CE   LIST OF NAMES
     END
     TOTAL 4 NAME/FI NAME/2 NAME/3 NAME/4
     SUMMARY
          NAME/FI------ NAME/2------ NAME/3------ NAME/4------
     END

In these last two examples we again saw the technique of using a TOTAL operation 
(e.g. /FI, /2, /3, /4) to bring detail data "into" the scope of the SUMMARY statement, 
in this case to mix and spread the contents of several records evenly across report 
lines.

The TOTAL n facility should only be used in reports with one level of totaling. Do 
not use this multi-column summary syntax in conjunction with other TOTAL breaks.
ADMINS User Guide  7 - 25



SUMMARY Section
7.10.3  Summary *CSV statement : CSV output based on TOTALs

Data aggregated by a TOTAL statement can be output in CSV format by using the 
SUMMARY *CSV statement instead of a SUMMARY paragraph.

The general syntax is:

SUMMARY *CSV[AUTO] field1 [field2 …]

or

SUMMARY *CSV[AUTO] *16

Fields specified on a TOTAL statement are known within the range of the TOTAL 
statements as FIELDNAME/AGGOP, where AGGOP is one of the REPORT 
aggregation operators V, E, AVG, MAX, MIN, FI, LA, 2, 3, 4.  The default aggregation 
operator for a field depends on the field type.  For numeric fields (I, L, D, F) it is /V, 
for non-numeric data fields it is /FI.

When you specify fields on the SUMMARY *CSV it is a good practice to include 
aggregation operator with the field name, e.g. AMOUNT/V rather than just 
AMOUNT, because if you e.g. have

TOTAL EOF AMOUNT/MAX AMOUNT
SUMMARY *CSV AMOUNT

you will get the first occurrence of AMOUNT on the TOTAL line, which is 
AMOUNT/MAX and not AMOUNT/V as might be expected.

If you use the SUMMARY *CSVAUTO syntax to automatically generate field name 
heading labels for the fields on the SUMMARY *CSVAUTO line, the aggregation 
operator will be appended to the field name heading label after an '_' (underscore) 
rather than a '/' (slash), since many applications accepting CSV input discard a '/' in 
a field name (or label).  

So if you e.g. have:

TOTAL EOF AMT AMT/AVG
SUMMARY *CSVAUTO AMT/V AMT/AVG

you may expect to se a heading like:

AMT_V,AMT_AVG

If you reference a created field (from a CREATE statement after the TOTAL 
statement) in the SUMMARY *CSVAUTO statement, no aggregation opertaor is 
appended to the field name heading label.

Observe that if you want to write multi-purpose reports, i.e. reports that can be used 
to produce "normal" and CSV (and possibly XML) output you will have to precede 
each CSV output line with the *!CSV! tag.  These reports have to be run with the -CSV 
command line switch.  Also, since all "normal" output statements are discarded when 
run with the -CSV switch you will also have to include a *!CSV! TOTAL statement in 
front of the *!CSV! SUMMARY *CSV statement, since any un-tagged TOTAL 
statement will be discarded.

16.The *CSV[AUTO] * syntax will output all fields known to the TOTAL paragraph, 
including all key/sort fields down to this break level (.i.e. if you break on key 2, 
key 1 and key 2 will be included, while no key fields are included for TOTAL 
EOF).
7 - 26   ADMINS User Guide



PREVIEW Section
7.11  PREVIEW Section

The PREVIEW section is similar to a SUMMARY section in that its role is in relation 
to a control break, and the PREVIEW section is similar to the DETAIL section in that 
it is concerned with data from an individual record. In effect, the PREVIEW section 
operates as a DETAIL section that is applied only to the first record in a subtotal run. 
This is in contrast to SUMMARY sections which always follow the DETAIL lines that 
they summarized. This "previewed" record is printed before the actual DETAIL of the 
records that make up the particular subtotal run. The PREVIEW section may not be 
used if automatic formatting is active.

For example, if we had the following DEF for a (simplified) payroll file.

     *   PAYROLL.DEF
     *
     MAS 3000
     DEPT   X999   KEY1  "department number"
     EMPL   X99999 KEY2  "employee number"
     NAME   A30          "employee name"
     ANSALY D            "annual salary"

We wish to produce a report with a layout that shows the department number before 
the detail of each department. In other words, we wish to preview the department 
number.

               DEPARTMENT 010

     00110     Jones, Bob          11,000
     00120     Smith, Frank        12,000
     00125     Wright, Bill         9,500
                                 --------
                                   32,500

               DEPARTMENT 030

     00135     Green, John         14,500
     00165     Thomas, Peter       10,500
                                 --------
                                   25,000

     ...

The report instruction file which generates the above report would be as follows.

 REPORT SALARIES
     FILE PAYROLL.MAS
     SINGLE
     DETAIL
          EM---     NAME------------- --ANSALY
     END
     TOTAL DEPT ANSALY
     PREVIEW
     BL
                    DEPARTMENT D--
     BL
     END
     SUMMARY
                                      --------
                                      --ANSALY
     END
ADMINS User Guide  7 - 27



PREVIEW Section
7.11.1  TOTAL EOF PREVIEW

PREVIEW sections are associated with TOTAL statements. A PREVIEW section 
following a TOTAL EOF statement will print only once; after the HEADING on the 
first page and prior to the first DETAIL record. This is useful in three different ways.

1. A TOTAL EOF PREVIEW may be used in place of a HEADING resulting in a 
"heading" on the first page only. This could be useful for preparing a 
memorandum or letter where the PREVIEW contained the "To:", "From:", etc. 
and the opening paragraph; the DETAIL listed line items; the TOTAL EOF 
SUMMARY contains totals, and the closing remarks.

2. A TOTAL EOF PREVIEW may be used in conjunction with a HEADING to 
supplement the "heading" on the first page. For example, a TOTAL EOF 
PREVIEW could contain all of the reasons why a record would be selected for 
printing on a report. This could be useful for printing error messages associated 
with error codes. The recipient of the report would not have to refer to 
supplementary documentation to understand the report and the additional 
information is only printed on the first page. Normal page headings may be 
concise to conserve space.

3. A TOTAL EOF PREVIEW may also be used with or without a HEADING to 
create a "cover sheet" for a report. This may be descriptive information as 
described in (2) above, but also might contain distribution information. For 
example:

         Copy  Recipient    Location         Distribution Method

          1    John Doe     Accounts Payable       Deliver

           2    Jane Smith     Purchasing             Mail

To create a "cover sheet" effect, include enough blank lines at the end of the 
PREVIEW to cause a page eject before printing the first detail record. The first page 
of the report would then be a "cover sheet" and the data would begin on page 2.
7 - 28   ADMINS User Guide



SORT Statement
7.12  SORT Statement

The SORT statement instructs REPORT to reorder the records from the input file 
according to specified sort fields. The new sort order applies only to the report 
presentation and does not change the input file. SORT fields can come from LINK, 
TABLE, and CREATE statements and from the input file.

     SORT field1 field2 ...

The records are sorted in ascending order based on these fields, in major to minor 
sequence. That is "field1" is analogous to KEY1 in a DEF, "field2" is analogous to 
KEY2 in a DEF etc. To sort based on descending order of a field, append "/R" or "/
DESC" to the field name.

     SORT SALARY/R LASTNAME

This SORT statement reorders the records for use in the report first by SALARY/D2 
from highest to lowest and then by LASTNAME/A20 in alphabetical order.

7.12.1  Relationship of SORT Statement to Other Statements

The SORT statement precedes the HEADING section. The SORT field names must be 
encountered by REPORT in the REP instruction file before the SORT statement is 
encountered. That is, fields defined in CREATE (see Section 7.13.1 “CREATE 
Statement”), TABLE (see Section 7.13.5 “TABLE Statement”), and LINK (see Section 
7.13.4 “LINK Statement”) statements, must be defined before the SORT statement in 
which they are used.

If a KEY statement (see Section 7.13.3 “KEY Statement”) is present, it must be placed 
before the SORT statement. If a SELECT statement precedes SORT, only the selected 
records are reordered. Statements after the SORT statement operate on the records in 
the new sorted order.

CREATE statements placed before the SORT statement are evaluated both prior to 
the SORT pass, and again following the SORT pass. IMPORTANT: Placement of 
certain types of CREATE statements before a SORT statement can produce errors 
in output. CREATEd fields that accumulate values (for example, counter fields), 
placed before a SORT statement would accumulate each value twice, and therefore 
CREATE statements of this type should always be placed after the SORT statement.

LINK MULTIPLE (see Section 7.13.4.4 “LINK One To Many (MULTIPLE)”), and 
"NX$" fields (see Section 7.16 “Internal Field Names”) cannot be used with the 
SORT statement.

The TOTAL statement specifies control breaks for subtotaling based on the new sort 
field order. All of the TOTAL options may be used.

For example, an input file keyed on employee number (EMP#) is reordered by 
department (DEPT) and last name (LASTNAME) as follows:

     SORT DEPT LASTNAME

The following TOTAL statement will take a control break for each department 
counting the number of employees, the total salaries and the average salary per 
department.

     TOTAL DEPT EMP#/E SALARY SALARY/AVG
ADMINS User Guide  7 - 29



SORT Statement
7.12.2  Comparison of SORT Statement and SORT Command

 In Section 7.13.4.1 “LINK Example” a real estate file keyed on customer account 
number is sorted into an index file ordered by the property address (LOCNAME 
LOCNO). The index file is then used as the input file for a street address report and 
fields are linked in from the original account file.

The SORT statement simplifies this operation by eliminating the need for an index 
file and by eliminating the LINK statement.

     REPORT LOCATION
     FILE RE.MAS
     *
     SORT LOCNAME LOCNO
     * ----------------
     HEADING
     CE   TOWN OF ENFIELD
     CE   PROPERTY OWNERS BY PROPERTY LOCATION
     BL
                   LOCATION           OWNER
     4/40
          OWNER ADDRESS     VALUE
     END
     DETAIL
          -LOCNO LOCNAME------- NAME---------------      
     1/40
          OWNADR--------  ----GROSS
     END

The real estate records are sorted by LOCNAME and LOCNO, street name and 
number, and presented in this new order in the DETAIL layout.

This would be an efficient approach if we ran this report only occasionally. However, 
if the report was run frequently, and especially if it was run with the KEY statement 
(see Section 7.13.3 “KEY Statement”) to pick out particular property addresses, then 
we would only want to sort the file once (see Section 4.5 “SORT Example Creating an 
Index File”), saving the sorted property addresses in the index file. Note, the KEY 
statement cannot be used after the SORT statement.

 The maximum number of records that REPORT with SORT can handle is 100,000,000 
(one hundred million) by default. However, this limit can be set at any desired value 
on a system wide basis. You might want to set a limit to prevent taxing system 
resources by sorting huge numbers of records. Assign the maximum number of 
records for REPORT SORT to the system logical name ADM$REPSRT, as in the 
following example: 

$ ASSIGN /SYSTEM 60000 ADM$REPSRT 

Keep in mind that sorting a very large number of records inside REPORT via the 
SORT startment may be less efficient than pre-sorting the file prior to running the 
REPORT using the sorted output.
7 - 30   ADMINS User Guide



Processing Statements
7.12.3  Conditional SORT Statement

SORT statements in REPORT can be executed conditionally at run time, controlled by 
the reply to a parameterized prompt. Use the following syntax:

     SORT <parameter> = value sortfield1...

If the response to the parameterized prompt matches the value specified in the SORT 
statement, the SORT is performed. If not, the SORT statement is ignored. For 
example:

    SORT <List by last name (L) or number (N)> = L LNAME
     SORT <List by last name (L) or number (N)> = N EMPNO

ordered either by last name or employee number, controlled by the response to a 
single run-time prompt.17

7.13  Processing Statements

This section describes the use of processing statements in a report. The statements 
include CREATE, SELECT, KEY, LINK, TABLE, RECODE, and EXECUTE. The 
placement of a processing statement in the REP instruction file determines the order 
of the execution. The statements may be in any position in the REP instruction file as 
indicated in the outline (Section 7.1 “Outline of a Report Instruction File (REP)”) and 
should be put in the order the user desires the statements to be executed. The usual 
position for processing statements is between the HEADING section and the DETAIL 
section which means the statements are processed after the record is read and before 
the detail is printed. The statements might be placed before the HEADING section if 
they influence the data being printed in the heading. The CREATE statement may be 
included in a TOTAL paragraph, but then may only operate on fields that may be 
used in the SUMMARY paragraph. SELECT and KEY statements may not appear 
after a TOTAL.

The order of the processing statements can have a significant impact on performance 
and even the accuracy of the report. For example, if a report contains a LINK 
statement and a SELECT statement, placing the SELECT statement first would 
improve throughput because the link operates on the selected records only. 
However, if the SELECT statement is based on fields obtained via the link, then the 
LINK statement must precede the SELECT statement to obtain accurate results.

17.  Note that because the substitutable parameter is identical in both SORT 
statements only a single prompt will be generated. The reply will be substituted 
into both locations (see Section 7.14 “Parameterization”).
ADMINS User Guide  7 - 31



Processing Statements
7.13.1  CREATE Statement

The CREATE statement is used to create a virtual field that is then usable as if it were 
an actual field. The field name of the newly created field must be unique, i.e., not 
included in the DEF of the file referenced in the FILE statement and not included in 
a previous processing statement. The syntax of the CREATE statement is:

     CREATE new-fieldname/type [expression]

For example:

     CREATE NEWFLD/A10
  
     CREATE XFUND/X9999 0100

     CREATE MSG/A7 'Overdue'

     CREATE TAXAMT/D2 6.75

     CREATE NET/D GROSS - EXEMPT

     CREATE DUP/D2 IF JULY GT 50.00 THEN JULY / 2 ELSE JULY END

     CREATE MSG/A8 IF PAID LT DUE THEN 'OWES' ELSE :
       IF PAID GT DUE THEN 'CREDIT' ELSE ' ' END

From these examples we can see that CREATE may be used to create constants, 
perform conditional computations or create an alphanumeric string for display. Note 
that the CREATE may extend beyond one line using the "colon" continuation 
convention. Also note in the above example that nested IF conditionals in a CREATE 
have only one terminal END.

A reference to a Data Dictionary element may be substituted for the field type 
specification as described in Section 1.4.5, e.g.

      CREATE XITEM/@ITEM IF PO# NE ' ' THEN ITEM ELSE '99' END

The CREATE statement is typically used before the DETAIL statement to create 
values for individual record printout or after a TOTAL and before its SUMMARY. 
The CREATE may precede a SELECT (described below) to set up a virtual field to be 
used by the selection criterion. Alternatively, the CREATE may follow the SELECT, 
in which case the value is only "computed" after a particular record is actually 
selected.

A CREATE statement before the DETAIL section may be used to hold values from 
record to record for use in creating other fields. For example, a repeating description 
could be printed only when the value changed using the following example:

     ...
     CREATE XDESC/A20 IF FUND NE XFUND THEN FDESC ELSE ' ' END
     CREATE XFUND/X999 FUND
     DETAIL
         XDESC--------------- ...
     ...
7 - 32   ADMINS User Guide



Processing Statements
7.13.1.1  CREATE Statements after TOTAL Statements
CREATE statements used after a TOTAL statement are subject to the same 
restrictions that apply when designating fields for a SUMMARY paragraph, i.e. they 
can refer only to fields introduced in or after the last TOTAL statement. These 
include:

1. any field in the line of sort up to and including the control field in the last 
TOTAL statement. For example, if the control field is the KEY2 field, then the 
KEY1 and KEY2 fields may be used. In order to use the KEY3 field it must be 
placed on the TOTAL statement with a subtotaling operation.

2. any field used in a subtotal operation in the last TOTAL statement. Subtotaled 
fields in CREATE statements should always be referenced by appending the 
subtotaling operation suffix from the TOTAL statement to the field name (e.g. 
DESCRIPTION/FI, COST/V). Use the suffix in the CREATE statement even if it 
is not explicitly used in the TOTAL statement.18 Without the subtotaling suffix 
REPORT cannot reliably identify the field in its internal field name table. See the 
example below.

3. any field introduced by a previous CREATE statement that occurs after the last 
TOTAL statement.

In the example below note that the subtotaling suffix is necessary to reference TIME/
V in the CREATE expressions and in the summary paragraph even though it is not 
explicitly present in the TOTAL statement.

     TOTAL TOPIC TIME/AVG TIME 
     CREATE TFLAG/A12 IF TIME/V GT 0.99 THEN :
                  'EXCESS TOTAL' ELSE ' ' END
     CREATE AFLAG/A12 IF TIME/AVG GT 0.40 THEN :
                  'EXCESS AVG' ELSE ' ' END
     SUMMARY
           ---------Total------Avg---------------------------
           TOP--- -TIME/V -TIME/AVG AFLAG------- TFLAG------- 
           --------------------------------------------------
     END

7.13.2  SELECT Statement

SELECT is used to select records for processing, i.e. printing or subtotaling. The 
SELECT is usually placed between the HEADING section and the DETAIL section. 
However, as mentioned before it may precede the HEADING section if it would 
influence the data printed in the heading. SELECT may not appear after a TOTAL.19 
The syntax of the SELECT statement is as follows:

     SELECT logical-expression

18.   If no suffix is present the default subtotaling operation for numeric fields is "/V". 
For all other fields it is "/FI". See Section 7.7 “TOTAL Statement”. When you use 
RECODE in TOTAL statements make sure that all RECODE fields in the TOTAL 
statement precede the non-RECODE (subtotal) fields.

19.  To prevent a summary from printing use the conditional SUPPRESS statement, 
described in Section 7.18.1 “SUPPRESS Statement”.
ADMINS User Guide  7 - 33



Processing Statements
Field names in the logical expression must either be defined in the file or have been 
previously set up by CREATE, LINK, or TABLE. For example:

     SELECT CK BET 1000 AND 2000

     SELECT EMPLDA GT 01-JAN-70

     SELECT OBJ EQ 00 AND :
       APPR GT 10000

The "colon" convention for continuation lines is provided in SELECT. For more 
information on expressions see Chapter 8: “Expressions”.

If more than one SELECT statement appears in a REPORT they are logically "AND-
ed", i.e. only those records that meet all the select criteria are processed.

7.13.2.1  ORSELECT Statement
Use ORSELECT statements to logically "OR" selection criteria in situations where the 
criteria must be given in multiple statements. REPORT converts any number of 
consecutive ORSELECT statements into a single SELECT statement, where the 
ORSELECT expressions are joined with OR.

The ORSELECT statement is designed especially to make parameterized reports 
more flexible and easier to use; but it can be used without parameterization.

The following example shows a typical application of ORSELECT. A repeating 
parameter20 is used to prompt for an open-ended series of customer numbers to be 
selected. The object is to select records that match any of the customers numbers 
entered to one of the prompts.

     ORSELECT CUST# EQ <<Enter Customer Number>>~

There is no limit on the number of consecutive ORSELECT statements.

7.13.2.2  No Record Selected
When a KEY or SELECT statement results in no record being selected for output, 
AdmReport may not output anything. If output is to a file, no file would be created.

Reports with at least one summary will produce output (the summaries and the 
heading, if any) even when no records are selected. This output can be suppressed by 
putting "o" (lowercase) in the string assigned to the logical name OPTION (see 
Appendix A: “Options”).  

FORCE_HEADING (see Section 7.17.13 “FORCE_HEADING Statement”) will 
output the heading even when "o" is in OPTION.

When no records are selected for output (i.e. by combinations of SELECT, 
ORSELECT, or KEY) REPORT creates a logical name, ADM$NONE_SELECTED, set 
with the value "Y". This logical name is deleted when AdmReport starts, and will 
only be exist if no records are selected when the report finishes.

Note that if the main report file is empty, AdmReport will not generate any output 
and will never create a file (FORCE_HEADING has no effect when the main file is 
empty), and will not set the logical name ADM$NONE_SELECTED.

20.  See Section 7.14.1 “Repetitive Parameterization”
7 - 34   ADMINS User Guide



Processing Statements
7.13.3  KEY Statement

The KEY statement is used to select records where the selection is by values in key 
field(s) and can therefore use the direct-access mechanisms.21 There may only be one 
KEY statement in the report. If a SORT statement (see Section 7.12 “SORT 
Statement”) is included in the report, the KEY statement must precede the SORT 
statement. KEY must precede any TOTAL statement. The syntax of the KEY 
statement is as follows. (Although two lines are necessary to show the syntax of the 
statement, the actual statement must be on one line.)

     KEY key-field1 key-field2 etc. VALUE value1 value2 etc.
        AND/TO value1 value2 etc.

21.  Direct access is a method for locating a record in a file by searching the internal 
index of the file for specific key values. This is a more efficient method for 
searching for a record than using the SELECT statement which must read all of 
the data records in the file. See Section 2.4.3 “Sort and Access Control” and 
Appendix E: “File Concepts”.
ADMINS User Guide  7 - 35



Processing Statements
The word KEY is followed by the names of key fields. These must be key fields in the 
report input file, and they must be in major to minor order. After the key field 
name(s), the value(s) are specified, using either constants or special "KEY$" logical 
names.22 Each KEY$ logical name can hold one key value. KEY$ and constant values 
can be mixed in the same KEY statement. If there are more sets of values, they appear 
separated from each other by "AND" or "TO". "AND" means find each of the records 
whose key field(s) have value(s). "TO" means find all records whose key field(s) have 
value(s) that lie between the value(s) to the left and right of the "TO".

For example:

     KEY EMPL VALUE 00135

     KEY EMPL VALUE KEY$EMPL

     KEY EMPL VALUE 00135 AND 00172 AND 00245

     KEY EMPL VALUE 00135 TO 00245 AND KEY$EMPL

     KEY FUND DEPT VALUE 01 075

     KEY FUND DEPT VALUE 00 060 TO 00 350

     KEY FUND DEPT EMPL VALUE KEY$F KEY$D1 0 TO KEY$F KEY$D2 99999

A KEY selection criteria may encompass only part of the actual key fields in the file, 
although KEY must always begin with the major key which can then be followed by 
minor keys. An example showing a KEY select on partial keys is included in Section 
7.13.4.2 “Interaction of LINK and KEY Statements”.

If there is more than one record with the specified key values, KEY works as follows:

     KEY EMPL VALUE 00135

Selects only the first record for EMPL 00135.23

     KEY EMPL VALUE 00135 AND 00208

Selects only the first record for EMPL 00135 and EMPL 00208

     KEY EMPL VALUE 00135 TO 00135

Selects all EMPL 00135 records.

     KEY EMPL VALUE 00135 TO 00135 AND 00208 TO 00208

Selects all EMPL 00135 and EMPL 00208 records

22.  Since the KEY values determine which records REPORT will process, KEY$ 
logical names are translated before REPORT begins processing records. 
Therefore, KEY$ logical names must be assigned before REPORT is run. If a 
report is only being compiled (see Section 7.21 “Pre-Compiled Reports”), the 
KEY$ logical names do not need to be assigned.

23.  Note, there may be several records with 00135 in the EMPL key field.
7 - 36   ADMINS User Guide



Processing Statements
7.13.4  LINK Statement

The LINK statement is used to obtain field values in files other than the file named in 
the FILE statement in order to include these linked fields in the report. The file named 
in the FILE statement could be an index file, where data fields from the master file are 
linked into the report via the LINK statement. The syntax for the LINK statement24 
is as follows. (Although two lines are necessary to show the syntax of the statement, 
the actual statement must be on one line.)

     LINK link-field-name(s) FROM link-file-name
        KEY IS/KEYS ARE key-field-name(s)

For example:

     LINK DESC FROM FUND.TAB KEY IS FUND

     LINK FUND ACCT OBJ FROM TCODE.TAB KEYS ARE T1 T2

The word LINK is followed by the names of the fields to be linked from another file. 
Field names that appear in this part of a LINK statement are then usable in the 
remainder of the report as if they were present in the actual record. In other words, 
LINK is another way to "CREATE" virtual fields for a report. The values for the 
virtual fields are supplied via the link procedure.

Following the link-field-names is the word FROM and the name of the link file. The 
field names being linked must all exist in this link file. Finally, after the KEY IS/KEYS 
ARE phrase are the names of fields already defined in the report that are to be used 
to form an identification which is treated as the key into the link file.

There is an option to assign another name (rep-field-name) for use in the report to 
fields created via the LINK statement. This is necessary if the link-field-name already 
exists in the report. The syntax for renaming link fields is as follows:

     LINK rep-field-name(s) IS/ARE link-field-name(s)
     FROM link-file-name KEY IS/KEYS ARE key-field-name(s)

For example:

     LINK NEWDESC IS DESC FROM FUND.TAB KEY IS FUND

The field DESC from the data file FUND.TAB is renamed to NEWDESC for use in the 
report.

Finally there is an option to access the link file via the record position of the record in 
the link file. This is done by including the "relative-pointer-name" in parentheses 
after the key-field-name(s). This option is completely described in Section 7.13.4.1 
“LINK Example”. The complete syntax of the LINK statement is as follows:

    LINK [ rep-field-name(s) IS/ARE ] link-field-name(s)
        FROM link-file-name KEY IS/KEYS ARE key-field-name(s)
        [ (relative-pointer-name) ]

The LINK statement does not support a continuation line. Use the LINK paragraph 
syntax when linking a large number of fields (see Section 7.13.6 “LINK and TABLE 
Paragraphs: Alternative Syntax”).

24.  There is an alternative LINK "paragraph" syntax that provides the same 
functionality as the LINK statement. You may find the LINK paragraph syntax 
easier to use and maintain, especially when LINKing a large number of fields (see 
Section 7.13.6 “LINK and TABLE Paragraphs: Alternative Syntax”).
ADMINS User Guide  7 - 37



Processing Statements
There may be several LINK statements with the same or different file and/or key 
names. That is, the input file to the report may contain more than one pointer to 
another file (e.g. a pointer to a husband's record and his wife's record), or the report 
record may contain pointers to several different files. In either case the report input 
records are read by REPORT (as per the FILE statement) and the related fields in the 
target files are pulled into the "virtual" report record via the LINK statement, 
whereupon they can be manipulated as part of the same report record.

If the LINK is unsuccessful, the linked fields are set to null values. As always when 
accessing files by key value, the LINK file must be in sort order for the link to succeed.

7.13.4.1  LINK Example
For example, in a real estate assessment application we wish to print the owner's 
name and address, and the assessed value of a property from a real estate record. We 
wish the printout to be ordered by the location (address) of the property.

First, we must build an index to the file via the following file definition, into which 
we SORT the real estate file.

     *     STREET.DEF
     *
     IDX 15000
     LOCNAME A24 KEY1        "name of street"
     LOCNO I KEY2            "number of street"
     ACCT# XA99999           "real estate acct no."

The following report instruction file would produce the desired result. Note the 
report reads the index file as its input file, and uses the index file to access records in 
the master file via the LINK statement.25

     REPORT LOCATION
     FILE STREET.IDX
     HEADING
     CE TOWN OF ENFIELD
     CE PROPERTY OWNERS BY PROPERTY LOCATION
     BL
                 LOCATION           OWNER
     4/40
          OWNER ADDRESS    VALUE
     END
     LINK NAME OWNADR GROSS FROM RE.MAS KEY IS ACCT#
     DETAIL
          -LOCNO LOCNAME------- NAME------------
     1/40
          OWNADR-------- --GROSS
     END

A sample of the report printout might be as follows:

         LOCATION           OWNER        OWNER ADDRESS    VALUE

       1 ABBE ROAD      SMITH, PETER     17 ELM STREET   20,700
       3 ABBE ROAD      JONES, HAROLD    3 ABBE ROAD     24,300
     ...
     114 AMES STREET    WALLACE, FRANK   114 AMES ST     31,600
     116 AMES STREET    BILLINGS, STEVE  2 CARTER AVE    35,300
     ...
      82 WARREN DRIVE   FRANKLIN, AL     48 ENFIELD ST   41,000
      88 WARREN DRIVE   JAMES, HAROLD    7 BROADWAY      32,600

25.  Section 7.12.2 “Comparison of SORT Statement and SORT Command” presents 
a similar example which uses a SORT statement rather than an index file and a 
LINK statement.
7 - 38   ADMINS User Guide



Processing Statements
7.13.4.2  Interaction of LINK and KEY Statements
To illustrate the use of the KEY statement in relation to LINK and index files we could 
insert the following line just before the LINK statement in the above "LOCATION" 
report.

     KEY LOCNAME VALUE <STREET NAME> TO <STREET NAME>

By using parameterization, described completely in Section 7.14 “Parameterization”, 
we have created a report that can list the owners and values for any given street, 
without reading either the entire index file (STREET.IDX) or master file (RE.MAS).

Note the use of the KEY statement on only part of the STREET.IDX key, namely the 
street name and not the street number.

7.13.4.3  LINK with the NULL Keyword
 Typically, REPORT bypasses the LINK statement when the key(s) for a particular 
record is "null". That is, the LINK is not even tried and the link fields are set to null 
values.

The "NULL" instructs REPORT to try the LINK even if the key value(s) is null. There 
may be a valid record in the link file with null keys. For example:

     LINK NULL ARRESTDA FBINO DOB FROM HIST.MAS KEY IS CRIMID

7.13.4.4  LINK One To Many (MULTIPLE)
LINK can be used to link a single report record to multiple target records. This is 
typically done by supplying a part of the target key in the LINK statement. For 
example, if we have an incident record keyed by case number, and a file of people 
involved in an incident keyed by both case number and a sequence number:

*     CASE.DEF
     MAS 1000
     CASE XA99999 KEY1    "Case number"
     DATE DA              "Date when the incident occurred"
     TIME A8              "Time when the incident occurred"
     LOCATION A20         "Location where the incident occurred"
     OFFICER A20          "Officer reporting the incident"

     *     PERS.DEF
     MAS 5000
     CASE XA99999 KEY1    "Case number"
     SEQ I KEY2           "Sequence number for this record"
     LNAM A20             "Last name of the person involved"
     FNAM A10             "First name of the person involved"
     ADDR A20             "Address of the person involved"
     CITYST A20           "City and state of the person involved"
     ROLE A1              "Role of the person in the incident"
     ID XA99999           "ID of the person if on file"
ADMINS User Guide  7 - 39



Processing Statements
We wish the report to read cases, print something about them, and then show 
something about the people involved. We use the word MULTIPLE in the LINK 
statement for PERS.MAS to instruct REPORT that CASE is only a partial key in 
PERS.MAS, and that there may be several records in PERS.MAS for each CASE in 
CASE.MAS. (The TABLE statement is described in Section 7.13.5 “TABLE Statement” 
below.)

     REPORT CASE
     FILE CASE.MAS
     HEADING
     CE   CASES AND PERSONS INVOLVED
     BL
     END
     LINK MULTIPLE SEQ LNAM FNAM ROLE ID FROM PERS.MAS KEY IS CASE
     TABLE ROLENM IS DESC FROM ROLE.TAB KEY IS ROLE
     TABLE OFFNAME FROM OFFICER.TAB KEY IS OFFICER
     DETAIL
          -SEQ LNAM----------- FNAM------ ROLENM----- ID----
     END
     TOTAL CASE DATE/FI TIME/FI LOCATION/FI OFFNAM/FI
     PREVIEW
          -------------------------------------------------------
          CASE--- DATE-----  TIME------ LOC--------- OFFNAM------
     BL
     END

Sample printout might be as follows:

     -------------------------------------------------------
     R00753  03-DEC-75  15:33:00   300 MAIN ST  PTL JONES

        1 PETERSON        ROBERT     VICTIM
        2 JAMES           FRANK      WITNESS
        3 WILLIS          HARRY      PERPETRATOR  M00736

     -------------------------------------------------------
     T00736  03-DEC-75  15:42:00   425 ELM ST   PTL MINOR

        1 ANGELO          BURT       DRIVER
        2 GRIFFIN         PETER      PASSENGER
        3 MCCORMICK       KATHY      WITNESS
        4 FIELDS          FRANK      WITNESS

When doing a LINK MULTIPLE, REPORT reprocesses each record from the input 
file for each repeating link record in the LINK MULTIPLE target file. There may be 
only one LINK MULTIPLE per report. LINK MULTIPLE may not be used in a report 
containing a SORT statement (see Section 7.12 “SORT Statement”).

7.13.4.5  LINK Without an Exact Match
The LINK statement will either find an exact match in the link file or, if no match is 
found, will return with null values for the link fields. Four alternative linkage 
operations are also available when an exact match may not be found but when an 
actual link is desired. These operations compare the link key values to the key values 
in the link file and link to the next higher or lower record in the link file when there 
is no exact match, or even if there is an exact match.

1. LINKGT - Link Greater Than: Links to the next higher record in the link file 
even if there is an exact match. If there is none higher, null values are returned 
for the link fields. This happens when the link key values are equal to or exceed 
the last record in the link file.

2. LINKGE - Link Greater Than or Equal to: Links to an exact match, or if one is 
not found, links to the next higher record in the link file. If there is none higher, 
null values are returned for the link fields. This happens when the link key 
values exceed the last record in the link file.
7 - 40   ADMINS User Guide



Processing Statements
3. LINKLT - Link Less Than: Links to the next lower record in the link file even if 
there is an exact match. If there is none lower, null values are returned for the 
link fields. This happens when the link key values are lower than or equal to the 
first record of the link file.

4. LINKLE - Link Less Than or Equal to: Links to an exact match, or if one is not 
found, links to the next lower record in the link file. If there is none lower, null 
values are returned for the link fields. This happens when the link key values 
are lower than the first record of the link file.

The following schematic example illustrates these link operations. The REPORT 
main file is NULL.MAS, which contains 10 records keyed by integers from 1 to 10. 
The link file, ODD.MAS, contains 6 records and is keyed by odd integers ranging 
from 1 to 11. The REPORT links from NULL.MAS to ODD.MAS using the five link 
operations, linking in the appropriate SP (the number spelled out) descriptive fields.

     * NULL.DEF  Data in NULL.MAS     * ODD.DEF   Data in ODD.MAS
     * --------  ----------------     * -------   --------------- 
     MAS 100     I     NULL           MAS 100     N  SP
     I I  KEY1   -     ----           N I KEY1    -  --
     NULL A1     1                    SP  A10     1  ONE
                 2                                3  THREE
                 3                                5  FIVE
                 4                                7  SEVEN
                 5                                9  NINE
                 6                                11 ELEVEN
                 7                                
                 8                                
                 9                                
                 10

     * DEMO.REP
     *
     FILE NULL.MAS
     SINGLE
     HEADING
          DEMO OF LINK, LINKLT, LINKLE, LINKGT, LINKGE
     BL
               LINK      LINKLT    LINKLE    LINKGT    LINKGE
               --------  --------  --------  --------  --------
     END

 LINK SP1 IS SP FROM ODD.MAS KEY IS I
     LINKLT SP2 IS SP FROM ODD.MAS KEY IS I
     LINKLE SP3 IS SP FROM ODD.MAS KEY IS I
     LINKGT SP4 IS SP FROM ODD.MAS KEY IS I
     LINKGE SP5 IS SP FROM ODD.MAS KEY IS I
     DETAIL
          I-   SP1-----  SP2-----  SP3-----  SP4-----  SP5-----
     END
      
     REPORT RESULT
     =============
     DEMO OF LINK, LINKLT, LINKLE, LINKGT, LINKGE
     
          LINK      LINKLT    LINKLE    LINKGT    LINKGE
          --------  --------  --------  --------  --------
     1    ONE                 ONE       THREE     ONE
     2              ONE       ONE       THREE     THREE
     3    THREE     ONE       THREE     FIVE      THREE
     4              THREE     THREE     FIVE      FIVE
     5    FIVE      THREE     FIVE      SEVEN     FIVE
     6              FIVE      FIVE      SEVEN     SEVEN
     7    SEVEN     FIVE      SEVEN     NINE      SEVEN
     8              SEVEN     SEVEN     NINE      NINE
     9    NINE      SEVEN     NINE      ELEVEN    NINE
     10             NINE      NINE      ELEVEN    ELEVEN
ADMINS User Guide  7 - 41



Processing Statements
The LINK statement only returns values when there is an exact key match between 
the main file and the link file. The LINKLT command only returns the SP value for 
the next lower keyed record in the file. Since there is no record in ODD.MAS with a 
key value less than 1, no SP value is returned for the key value of 1 in the main file. 
In this example, the LINKLE command always returns a value since it operates either 
using the exact key match (on the odd numbers in the main file), or by linking to the 
next lower key value (the even records in the main file). The same principles are 
applicable to the LINKGT and LINKGE operations.

7.13.5  TABLE Statement

The TABLE statement is used to create a field (or fields) by performing a look-up on 
a table, which is itself an ADMINS file. The LINK and TABLE statements are quite 
similar. However the internal programs behind each one are optimized for different 
purposes. LINK should be used when the record in the report and the record being 
looked up are more or less in one-to-one correspondence, whereas TABLE should be 
used when many report records can look up the same table record, i.e. when there is 
a genuine table involved.

Typical uses of TABLE are to get meaningful descriptions for code values, e.g. a 
vendor name and address for a vendor number, or to get table values for an 
identified item, e.g. a reorder point for a commodity. The syntax26 for the TABLE 
statement is the same as the LINK statement and is as follows. (Although two lines 
are necessary to show the syntax of the statement, the actual statement must be on 
one line.)

     TABLE [ rep-field-name(s) IS/ARE ] table-field-name(s) FROM
       table-file-name KEY IS/KEYS ARE key-field-name(s)

For example:

     TABLE VENDOR CITYST ZIP FROM VENDOR.TAB KEY IS VEND

     TABLE DEPTNAME IS DESCRIPTION FROM DEPT.TAB KEY IS DEPT

     TABLE VALUE FROM USEDCAR.TAB KEYS ARE YEAR MAKE MODEL

There may be several TABLE statements in a report instruction file.

If a TABLE (or LINK) field is to be used in a CREATE statement or a SUMMARY 
layout following a TOTAL statement, the field must be made accessible via the 
TOTAL statement. A TABLE (or LINK) field is brought into a TOTAL paragraph by 
using the "/FI" or "/LA" function (see Section 7.7 “TOTAL Statement”) in the TOTAL 
statement.

Unlike the LINK statement (see Section 7.13.4.5 “LINK Without an Exact Match”), the 
TABLE statement does not have options for accessing records when there is not an 
exact match between the key values and the table file. The complete key must be 
specified when using the TABLE statement. Table files (and link files) must always 
be in sort order.

26.  As with LINK, there is an alternative TABLE "paragraph" syntax that provides 
the same functionality as the TABLE statement (see Section 7.13.6 “LINK and 
TABLE Paragraphs: Alternative Syntax”).
7 - 42   ADMINS User Guide



Processing Statements
7.13.6  LINK and TABLE Paragraphs: Alternative Syntax

There is an alternative syntax for LINK and TABLE statements, which is very similar 
to the LINK syntax in SCREEN (see Section 5.4.1 “LINK Paragraph”). A LINK may 
be specified in the following paragraph format:

       LINK [NULL or MULTIPLE]  FILE_NAME
       K KEY_FIELD
       ...
       L LINK_FIELD [SECONDARY_NAME]
       ...
       END

Similarly a TABLE may be specified in paragraph form, as follows:

       TABLE FILE_NAME
       K KEY_FIELD
       ...
       L LINK_FIELD [SECONDARY_NAME]
       ...
       END

The alternative "paragraph" syntax has advantages over the statement syntax in a 
variety of circumstances:

1. Paragraph syntax is much "cleaner" for specifying complicated links. Very long 
LINK or TABLE statements can be difficult to read, edit, and print.

2. Secondary names only need to be specified for the fields which need them. In 
the statement syntax, if one field needs a secondary name all fields must be 
given secondary names.

3. Unlike the statement syntax, there is no limit on the length of a LINK or TABLE 
paragraph, unless it is a LINK MULTIPLE.27

7.13.7  Automatic Field Renaming in LINK, TABLE Statements

Automatic LINK and TABLE field renaming makes it possible to write a very short 
LINK or TABLE statement, regardless of how many LINK (or TABLE) file fields the 
REPORT will use. This makes the .REP instruction file more concise, and makes it 
possible to change the REPORT without changing the LINK or TABLE statement, 
which is a convenient feature for developers. This feature can also make it easier to 
write heavily parameterized reports and other ad hoc reports where the specific 
fields used from a set of files may vary.

Syntax for automatic LINK or TABLE renaming is:

     LINK =prefix FROM filename KEYS ARE key_fields
                         
                          or

     TABLE =prefix FROM filename KEYS ARE key_fields

This is identical to the usual LINK/TABLE syntax except that the list of fields and 
secondary names is replaced with an '=' followed by a prefix to be added to LINK/
TABLE field names. Also, the keyword 'FROM' is not required (although it can be 
used) with this syntax.

27.  The LINK MULTIPLE paragraph must translate into a LINK MULTIPLE 
statement of no more than 255 characters.
ADMINS User Guide  7 - 43



Processing Statements
Any (or no) fields in the LINK/TABLE file can be referenced in the REPORT, or in 
the RMS as local fields, using the prefix. For example, if a LINK file has a field called 
'FLD', and the prefix is 'A_', you can print FLD by referring to it in the DETAIL section 
as 'A_FLD'. You could also reference several other fields in this LINK file using the 
'A_' prefix. The LINK statement does not change, regardless of how many LINK 
fields the REPORT actually uses (it may use none).

There can be several LINK or TABLE statements which use different renaming 
prefixes in the same report. Of course, the prefixes must be unique.

Automatically renamed LINK/TABLE fields can be used anywhere in REPORT that 
explicitly renamed LINK/TABLE fields can be used.

During the compilation phase of REPORT, all files named in LINK/TABLE 
statements are open simultaneously. However, during the execution of the report, 
the file named in an automatic LINK/TABLE statement is only opened if one or more 
fields in it are referenced in the REPORT. Only the fields which are referenced are 
actually linked in; so there is no performance penalty for using this feature.

The prefix string should be short, and when it is added to the LINK/TABLE file field 
names, the resulting names should be unique with respect to all the other fields 
involved in the REPORT. If not, REPORT uses the first field it finds with a given 
name. The prefix plus any field name in the LINK/TABLE file combined must be 18 
characters or less in length. The prefix cannot begin with '-' or '$' and cannot contain 
a slash(/), a period (.), an apostrophe ('), or parentheses. A good prefix is a short 
string which ends with a delimiter character which is unlikely to appear in a field 
name: for example "A:".

When using the '=' syntax for automatic renaming, you cannot specify any explicit 
fields or secondary names in the LINK/TABLE statement.

LINKs or TABLEs using automatic renaming cannot appear below a TOTAL 
statement.

Automatic renaming is not available when using the alternative LINK/TABLE 
paragraph syntax in REPORT, described in Section 7.13.6 “LINK and TABLE 
Paragraphs: Alternative Syntax”.

7.13.8  RECODE Statement

The RECODE statement is used to create subsets for cross-tabulations based on a 
logical expression. "Recoded" fields can then be totaled28 separately for each subset, 
and the subset totals individually designated for printing in the SUMMARY.

This is done by appending a ".n" to the print field designator in the SUMMARY 
paragraph, where "n" refers to the nth RECODE statement, i.e. ".1" refers to the subset 
created by the first RECODE statement, ".2" refers to the subset created by the second 
RECODE statement, etc. Up to 63 RECODE statements are supported.

28.  RECODE cannot be used with a /AVG total field.
7 - 44   ADMINS User Guide



Processing Statements
RECODE statements are best explained with an example. Consider the following file 
definition.

     *   PAYROLL.DEF
     *
     MAS 1000
     *
     DEPT   X999   KEY1  "department number"
     EMPL   X99999 KEY2  "employee number"
     SEX    A1           "M=male F=female"
     RACE   A1           "W=white O=other"
     SAL    D            "annual salary"

Next, consider the following table:

         # of Employees, Minimum Salary, and Maximum Salary
                    By DEPT, RACE, and SEX

                        WHITE                     OTHER
     DEPT         MALE        FEMALE        MALE        FEMALE

     100   #       17            4            2            1
          MIN    14,960        6,750       11,440        7,800
          MAX    18,350       12,575       17,225        7,800

     200   #       45           10            6            2
          MIN    16,510        8,600       14,405        7,200
          MAX    19,970       16,550       16,775       10,500

The table shows that in department "100" there are 17 white males ranging in salary 
from $14,960 to $18,350.

The report instruction file that could produce this table from the file PAYROLL.MAS 
would look as follows.29

               MAX ----MAX.1   ----MAX.2   ----MAX.3   ----MAX.4
     END     REPORT XTAB
     FILE PAYROLL.MAS
     SINGLE
     HEADING
              # of Employees, Minimum Salary, and Maximum Salary
                         By DEPT, RACE, and SEX
     BL
                            WHITE                  OTHER
          DEPT         MALE       FEMALE      MALE       FEMALE
     BL
     END
     RECODE SEX EQ 'M' AND RACE EQ 'W'
     RECODE SEX EQ 'F' AND RACE EQ 'W'
     RECODE SEX EQ 'M' AND RACE EQ 'O'
     RECODE SEX EQ 'F' AND RACE EQ 'O'
     *
     CREATE ECNT/I EMPL
     CREATE MINSAL/D SAL
     CREATE MAXSAL/D SAL
     *
     TOTAL DEPT RECODE ECNT/E RECODE MINSAL/MIN RECODE MAXSAL/MAX
     SUMMARY
          DE--  #    -EC.1       -EC.2       -EC.3       -EC.4
               MIN ----MIN.1   ----MIN.2   ----MIN.3   ----MIN.4

29.  The CREATEd fields ECNT, MAXSAL, and MINSAL are included in XTAB.REP 
to simplify identification of recoded fields in the SUMMARY paragraph. 
Designation of recoded fields in the summary paragraph and in CREATE 
statements after the TOTAL (see example below) can become confusing and 
sometimes ambiguous. Using unique CREATEd fields for each RECODE field in 
the TOTAL statement precludes any ambiguity and is recommended practice.
ADMINS User Guide  7 - 45



Processing Statements
There is another method for specifying cross-tabulations which is particularly useful 
when there are a large number of cells in the table. Set up a prototype line and place 
an "R" in column one of that line. This instructs REPORT to generate the line for each 
RECODE statement. Using this method a SUMMARY paragraph for the table in the 
previous example could look as follows:

     ...
     HEADING
     1/22
             # OF       MINIMUM     MAXIMUM
             EMPL.      SALARY      SALARY
     ...
     SUMMARY
          DEPT DE--
     2/10
          WHITE MALE
          WHITE FEMALE
          OTHER MALE
          OTHER FEMALE
     2/22
     R      -ECN.1      -MIN/MI.1   -MAX/MA.1
     6/1
     BL
     END

This instructs REPORT to produce four lines (corresponding to the four RECODE 
possibilities), at 2/22, 3/22, 4/22, and 5/22. Double spacing could have been 
instructed by specifying "R2" instead of "R", and then the lines of figures would 
appear at 2/22, 4/22, 6/22, and 8/22. The "Z" for zero suppress function can be 
specified with the "R" as in "ZR" and "ZR2".

The table produced by this alternative SUMMARY paragraph would look as follows. 
It contains the same information as in the other table, but presented in a different 
format.

                              # OF       MINIMUM     MAXIMUM
                              EMPL.      SALARY      SALARY

     DEPT 100
              WHITE MALE        17        14,960      18,350
              WHITE FEMALE       4         6,750      12,575
              OTHER MALE         2        11,440      17,225
              OTHER FEMALE       1         7,800       7,800

     DEPT 200
              WHITE MALE        45        16,510      19,970
              WHITE FEMALE      10         8,600      16,550
              OTHER MALE         6        14,405      16,775
              OTHER FEMALE       2         7,200      10,500

     ...

The R prototype line must contain only field designators for recoded fields, no literals 
or non-recode field designators should be included as they will not be repeated on 
the lines generated.

Care should be taken to reserve space for the output lines to be generated (one line 
per RECODE statement, two lines if double spacing). Note in the above example that 
literals were specified for lines 2 through 5 of the SUMMARY. These literals create 
the 4 lines for the output to be generated by the 4 RECODE statements, which cannot 
generate new output lines by themselves.
7 - 46   ADMINS User Guide



Processing Statements
Created fields following a TOTAL statement may use recoded fields from that 
TOTAL.30 This is done by subscripting the recoded field in order to access the 
recoded values. For example, to include the average salary for males and females 
(both other and white) to the report above, the following statements are added to 
XTAB.REP.

 CREATE TOTSAL/D SAL
   ...
 TOTAL DEPT RECODE ECNT/E RECODE TOTSAL RECODE MINSAL/MIN :
         RECODE MAXSAL/MAX
 CREATE MAV/D   (TOTSAL(1) + TOTSAL(3)) / (ECNT(1) + (ECNT(3))
 CREATE FAV/D (TOTSAL(2) + TOTSAL(4)) :
               / (ECNT(2) + ECNT(4))
 SUMMARY
   ...
 BL
      AVERAGE SALARY MALES      -------MAV
      AVERAGE SALARY FEMALES    -------FAV
 BL
 END

7.13.9  Quit Before the End of File: Q$Q

Normally REPORT processes the input file from beginning to end. However, there 
will be times when REPORT is only required to process the file up to a particular 
record and processing of subsequent records is not needed.

If a field Q$Q of type integer is CREATEd prior to the first TOTAL statement then 
Q$Q can be used to instruct REPORT to stop processing at a given record and act as 
if it reached the end of file, i.e. processing of all TOTAL statements occur, etc. The 
"CREATE Q$Q/I" statement should contain logic which sets Q$Q to "1" at the record 
where REPORT is to quit. The record where Q$Q = 1 is NOT processed and output 
by REPORT.

If Q$Q is CREATEd before a SORT statement, it ends the SORT pass as if the end of 
file has been reached. Thus Q$Q can be used to prevent REPORT from sorting the 
entire file when it is not necessary to do so.

30.   When you use expressions after TOTAL statements make sure that all RECODE 
fields in the TOTAL statement precede the non-RECODE (subtotal) fields. 
Failure to do so could prevent REPORT from distinguishing non-RECODE 
subtotal fields from RECODE fields based on the same fieldname. See Section 
7.13.1.1 “CREATE Statements after TOTAL Statements” for more information 
about using created fields after TOTAL statements.
ADMINS User Guide  7 - 47



Processing Statements
7.13.10  Layout Statement: Variable Formatting

REPORT can print output in different formats, depending on Boolean expressions 
which are evaluated as the report runs. This ability to select alternative output 
formats based on the data provides additional flexibility in the formatting 
capabilities of REPORT.

Variable print formats are controlled using the LAYOUT statement, and a special '#' 
syntax in the DETAIL sections (or HEADING, PREVIEW, SUMMARY).

The LAYOUT syntax is:

           LAYOUT   #n   Expression

Each LAYOUT statement is identified by a number (#n), and can control one or more 
pieces of the layout. The '#' notation in the layout section identifies the corresponding 
part(s) of the layout. For example:

 LAYOUT #1 RECTYPE EQ 100
 LAYOUT #2 RECTYPE EQ 200
 HEADING
 CE   Variable Formatting
 #1
      Record Type 100 FLD1---- FLD2----
 #2
      Record type 200 FLD6------------- FLD3----
 #
 CE   TODAY----
 END
 DETAIL
      First two lines of detail
      always contain this text.
 #1
 1/40
      Detail format for record type 100
 #2
 1/40
      Detail format for record type 200
      Any number of lines
 END
7 - 48   ADMINS User Guide



Processing Statements
The LAYOUT statements mean, for example, when RECTYPE EQ 100, then print 
using parts of the layout numbered "#1". That is, when the LAYOUT expression is 
true, use the correspondingly numbered parts of the layout; and when the expression 
is false, ignore those parts of the layout. The LAYOUT statement numbers are 
arbitrary except that they must be between 1 and 32767. LAYOUT can be placed 
anywhere in a report where a CREATE would be valid; but the LAYOUT statement 
must appear above (before) the first layout paragraph which it controls.31 The syntax 
of the LAYOUT expression is the same as for SELECT. A colon (:) can be used to 
continue the expression on one or more additional lines.

To control part of the layout with the LAYOUT statement numbered '#n', place "#n" 
at the left margin on a line by itself above the part of the layout which "LAYOUT #n" 
will control. After the "#n" line, any number of output lines may be specified in the 
usual way. The end of the layout being controlled by "LAYOUT #n" is indicated 
either by another line beginning with "#", or by the END which ends the layout 
paragraph. In the example above, the part of the HEADING controlled by LAYOUT 
#1 ends at the "#2" line, which also begins the control of "LAYOUT #2". The end of 
"LAYOUT #2" control is denoted by a line with just '#', meaning that the next line(s) 
are not under the control of any LAYOUT statement.

A single LAYOUT statement can control any number of pieces of the layout, which 
can be in different layout paragraphs (there might be pieces of the layout numbered 
"#1" in both the HEADING and the DETAIL; they are both controlled by the 
LAYOUT #1 expression). There is no limit on the number of LAYOUT statements or 
on the number of pieces of the layout which a LAYOUT statement can control.

Parts of the layout which are not numbered with the '#' syntax are not controlled by 
a LAYOUT expression, and are always printed in the normal manner. In the example, 
the first and last lines in the HEADING paragraph are always printed.

For testing the layout, LAYOUT statements can be commented out, so all print layout 
sections they control will be included in the output.

31.   It is not recommended that LAYOUT be used to produce output sections whose 
length can vary greatly, because this may cause unnecessary page ejects. 
REPORT always checks to see whether the next print section (DETAIL, 
PREVIEW, or SUMMARY) will fit on the current page; and if not, REPORT does 
a page eject before printing the next section. When REPORT makes this 
calculation, it does not "know" whether any lines in the section will be 
suppressed because they contain only blank fields; or because they contain blank 
floating fields; or because LAYOUT may suppress them. If the layout section 
specifies ten lines of layout, REPORT performs a page eject if it cannot fit ten lines 
on the current page, regardless of whether some of the lines are later suppressed. 
In this respect, suppression with LAYOUT behaves the same way as the 
suppression of lines of blank fields or floating fields. When different layout 
sections of varying length are used in a mutually exclusive way, this problem can 
be avoided by using precise placement, so that each section begins at the same 
line. When this technique cannot be used, DIRECT (see Section 7.17.14 “DIRECT 
Statement: Multiple Output Files”) can be used (DIRECT every section to the 
same spooler). Except when deciding whether to eject before a PREVIEW, 
DIRECT determines pagination according to the actual printed length of each 
section, not its maximum possible length.
ADMINS User Guide  7 - 49



Parameterization
7.14  Parameterization

The user issues the REPORT command, types the name of the report instruction file 
(REP), and may also type the name of the particular report within the REP instruction 
file. REPORT reads the source text of the REP instruction file, translating the 
statements in the REP instruction file into various internal tables and executable 
structures. Finally, REPORT reads the data file and begins to generate the actual 
report.

Parameterization is a feature that permits user-oriented editing of the report 
instruction file as it is being read and interpreted by REPORT. When the REP 
instruction file is prepared, strings in the report that are to be supplied by the user at 
run time are replaced by names, or "prompts", for these strings. These names or 
prompts are enclosed in "angle brackets". At run time, while the report instruction 
file is being read and interpreted by REPORT, these angle bracketed strings are given 
special treatment. Every time they are encountered, the text between the angle 
brackets is promptedon the terminal and the user is expected to enter text that 
replaces the angle brackets and their contents in the report text. Once text has been 
supplied for a particular parameter, i.e. a particular angle bracketed string, then that 
text will be substituted for the parameter each time it is encountered. For example:

     *     DEPT.REP
     *
     REPORT SUMMARY
     FILE BUDGET.MAS
     SINGLE
     HEADING
     CE   SUBTOTAL <FIELD DESCRIPTION> BY DEPARTMENT
     CE   PRINTED <PRINTING DATE>
     BL
     END
     TOTAL DEPT <FIELD NAME>
     SUMMARY
          DEPT-   DEPTNA--------------    -----<FIELD NAME>
     END
     TOTAL EOF <FIELD NAME>
     SUMMARY
                                          ----------
                                          -----<FIELD NAME>
     END

In the above report there are three parameters: FIELD DESCRIPTION, FIELD NAME 
and PRINTING DATE. FIELD NAME occurs four times in the report. The dialogue 
to run the report to summarize the appropriations by department would be as 
follows.

     $report
     REPORT FILE NAME: dept summary
     FIELD DESCRIPTION: appropriations
     PRINTING DATE: 24-sep-77
     FIELD NAME: appr

               SUBTOTAL APPROPRIATIONS BY DEPARTMENT
                         PRINTED 24-SEP-77

     020   MANAGER             42,075
     030   TOWN ATTORNEY       18,150
     ...
     420   POLICE             756,150
     ...
                            ---------
                            4,642,512
7 - 50   ADMINS User Guide



Parameterization
If a parameter is in single angle brackets (<>), and the user does not supply a run time 
string, i.e. the user presses return in response to the prompt, then REPORT will 
terminate. If however, the parameter is in double brackets, as in "SELECT <<type 
selection>>", and the user does not supply a run time string then REPORT will ignore 
the entire instruction line which contained the double bracketed string. Any other 
occurrences of this unresponded-to double bracketed parameter causes REPORT to 
ignore every line containing a copy of that parameter.

If the string enclosed in the angle brackets begins with the characters "L$" (e.g. 
<L$fieldname>), REPORT first attempts to translate this string as a logical name 
rather than prompting the user. Logical parameters are described in Section 7.14.2 
“Logical Parameters”.

Parameter values can optionally be changed (via RETRY) in an interactive dialogue 
as described in Section 7.14.4 “Rerunning Parameterized Reports, RETRY”. Also 
parameter values can be substituted to be run at a later time, using the SAVE feature 
described in Section 7.14.3 “Saving Report Parameters for Later Use”.

7.14.1  Repetitive Parameterization

If REPORT finds a ~ (tilde) to the right of the first right double angle bracket on the 
line (e.g. >>~), REPORT will continue to re-prompt that line until the user presses 
return to indicate that no more responses will be made.

     SELECT <<TYPE 1 OR MORE EXPRESSIONS, C.R. WHEN DONE>>~

For this repetitively parameterized line, REPORT will continue to prompt for another 
SELECT expression until the user presses return.

     FILE <DATA FILE NAME>
     <<ENTER REPORT INSTRUCTIONS>>~

With this REP instruction file, a complete report can be composed with suitable 
responses to the repetitively parameterized prompt "<ENTER REPORT 
INSTRUCTIONS>".

While entering responses to report prompts, if the user decides to exit from the report 
(e.g. the previous response was incorrect) the backslash (\) character may be entered 
to any of the prompts. Pressing "\" exits from the report and closes all of the files 
opened by the report.

Repetitive parameterization can also be used with a series of logical names as 
described below.

7.14.2  Logical Parameters

If the parameter string contained in the angle brackets begins with the characters 
"L$", (e.g. <L$fieldname>), then REPORT first tries to translate the string as a logical 
name. If the logical name has been assigned in either the process, group or system 
logical name tables, the user is not prompted for the contents of the parameter. 
Instead the value of the logical name is substituted for the prompt. Parameters which 
begin with the characters "L$" and are assigned as logical names are called "logical 
parameters". If a parameter beginning with "L$" is not assigned as a logical name, 
then the user is prompted for a value as in standard parameterization (see Section 
7.14 “Parameterization”).
ADMINS User Guide  7 - 51



Parameterization
Prompting for values when the logical name is not assigned can be avoided entirely 
by supplying a default value in the parameter string, as follows:

<L$MINIMUM=0>

Specify the default value for the logical name by appending “=value” to the logical 
name inside the angle brackets. In the example above if the logical name 
L$MINIMUM is not assigned, the value “0” will be substituted for the parameter.

When the logical names exist, the display of logical parameter prompts and their 
values can be suppressed by assigning the lowercase letter "c" to the logical name 
OPTION (see Appendix A: “Options”).

If a logical name beginning with "L$" is used inside repetitive parameters (see Section 
7.14.1 “Repetitive Parameterization”), then REPORT tries to translate a series of 
logical names by appending successive integers to the L$ logical name. For example, 
if <<L$LINK>>~ appears in a REP instruction file, REPORT tries to translate the 
logical names L$LINK1, L$LINK2, etc., until the logical name L$LINKn is not found. 
These values are substituted in the report and the user is not prompted. If the logical 
name L$LINK1 does not exist, then REPORT prompts the user for L$LINK1, 
L$LINK2, etc. until the user presses return to the prompt.

7.14.3  Saving Report Parameters for Later Use

REPORT has a facility to save the report instruction file after the responses have been 
entered for parameters so that the report can be run at a later time. The "saved" report 
can be run on-line or submitted to the batch queue.

If the keyword SAVE appears on the command line after the name of the REP 
instruction file and the (optional) report name, then, after the report is compiled 
successfully and parameter values, if any, have been substituted, REPORT creates a 
new REP instruction file with all parameters substituted, but does not actually run 
the report.32 The general syntax for saving a report is:

     $ REPORT REP_FILE_NAME [REPORT_NAME] SAVE [SAVE_NAME]

If SAVE is the last word on the REPORT command line, REPORT creates a new file 
named SAVE.REP which contains the report with substituted parameters. The user 
may supply a meaningful name for the "saved" report, by placing a first name for the 
"saved" report after the SAVE keyword. REPORT then writes SAVE_NAME.REP 
instead of SAVE.REP. If the save-name is the same as the report file name, REPORT 
creates SAVE.REP. It does not create a new version of the original REP instruction 
file, which could then be purged and inadvertently lost.

32.  Any existing reports named "SAVE" will conflict with this syntax. For example, 
if the command REPORT BAL84 SAVE was intended to run a report named 
SAVE in BAL84.REP, it would instead now create a SAVE.REP which is a copy 
of the first report in BAL84.REP. Any reports named SAVE should be renamed. 
Note that this affects only the report name in the REPORT statement, not the 
name of the REP instruction file itself.
7 - 52   ADMINS User Guide



Parameterization
Let's look at a simple example of a parameterized report called PASTDUE.REP which 
prints a list of overdue invoices:

     * Overdue invoices
     REPORT PASTDUE
     FILE INVOICE.MAS
     SINGLE
     SELECT INVDATE LE <INVOICE DATE>
     SORT VENDOR INVDATE INVNO
     HEADING
     CE   Invoices Payable on or after <INVOICE DATE>
     BL
     END
     DETAIL
          VENDOR----------------- INVDA---- INVNO----- --------NET
     END
     TOTAL VENDOR NET/V
     SUMMARY
                                                       -----------
                                                       --------NET
     BL
     BL
     END

The SAVE dialogue to create a version of the report named JUNE.REP, which will list 
invoices dated June 30, 1985 or earlier, is:

     $ REPORT PASTDUE SAVE JUNE
     INVOICE DATE: 30-JUN-85
     JUNE.REP WRITTEN

The result, a new file named JUNE.REP, contains the following REPORT instructions:

     * PASTDUE.REP saved on  5-SEP-85 at 12:46:36
     *REPORT PASTDUE
     FILE INVOICE.MAS
     SINGLE
     SELECT INVDA LE 30-JUN-85
     SORT VENDOR INVDA INVNO
     HEADING
     CE   Invoices Payable on or after 30-JUN-85
     BL
     END
     DETAIL
          VENDOR----------------- INVDA---- INVNO----- --------NET
     END
     TOTAL VENDOR NET/V
     SUMMARY
                                                       -----------
                                                       --------NET
     BL
     BL
     END
ADMINS User Guide  7 - 53



Parameterization
The resulting "saved" REP instruction file (e.g. JUNE.REP) contains the following 
modifications from the original REP instruction file.

1. A comment line inserted at the top of the instruction file which shows the 
original REP instruction file name and the date and time the report was saved.

2. The REPORT statement from the original report appears as a comment.33

3. All parameters have been substituted with the user supplied responses.
4. Comment lines (i.e. lines beginning with an asterisk "*") from the original report 

have been omitted.

The "saved" report can be run by simply requesting REPORT JUNE.

The SAVE facility can be used together with the RETRY feature described next in 
Section 7.14.4 “Rerunning Parameterized Reports, RETRY”.

7.14.4  Rerunning Parameterized Reports, RETRY

The RETRY facility in REPORT enables a user to immediately rerun a parameterized 
report and interactively change, or retain, one by one, the values of parameters which 
were previously supplied. RETRY may be used whether or not the report compiled 
successfully, so it can be used either to correct syntax errors in parameters, or to 
adjust the values of parameters in a report which ran successfully. Like the SAVE 
keyword (see Section 7.14.3 “Saving Report Parameters for Later Use”), the RETRY 
keyword must be given on the REPORT command line.

     $ REPORT REP_FILE_NAME [REPORT_NAME] RETRY

RETRY is implemented by storing the values of parameters in the REPORT 
temporary file for reuse. A lowercase "r" must be present in the string assigned to the 
logical name OPTION (see Appendix A: “Options”) to enable the RETRY feature.34 
If "r" is in OPTION, REPORT does not delete the temporary file when it exits. Instead, 
RPxx.TMP will contain parameter values and other "compiled" information from the 
last time the report was run. (Note that only the last temporary file in a directory for 
a particular terminal number is saved.) Since parameter values are stored in the 
temporary file, and the temporary file is reused or recreated whenever REPORT is 
run, RETRY can only be used to rerun the last report which a user has run at a given 
terminal. If RETRY is specified on the command line but RPxx.TMP does not exist, 
REPORT prompts normally for parameters.

When RETRY is specified on the command line, REPORT finds RPxx.TMP. For each 
parameter, REPORT displays the value found in the temporary file and prompts the 
user. To keep the existing value, the user presses return. If anything other than return 
is entered, REPORT reprompts and the user may enter a new value for the parameter. 
When the RETRY dialogue ends, the report runs using the new parameter values.

33.  The REPORT statement is optional for the first report in a REP instruction file. If 
no report name is supplied on the command line, REPORT defaults to the first 
report in the REP instruction file, whether or not there is a REPORT statement.

34.  The REPORT temporary file has an automatically-generated name in the form 
RPxx.TMP. See C.1.1 “Differences in Print File and Temporary File Naming”.
7 - 54   ADMINS User Guide



Parameterization
If the response to an optional parameter (i.e. a parameter enclosed in double angle 
brackets, <<parameter>>) is a return, the RETRY dialogue displays CR as the current 
value. This may be retained by pressing return, or may be changed by entering a 
value for the parameter. On the other hand, if the original response to an optional 
parameter is a value, it can be changed to a return by entering the letters CR (meaning 
Carriage Return) as the new value in the RETRY dialogue.

If logical parameters are in use, (see Section 7.14.2 “Logical Parameters”) and the 
logical names for those parameters are defined, then the RETRY dialogue displays 
the prompt and its value (the contents of the logical name) but does not give the user 
an opportunity to change the value.

Finally, SAVE (see Section 7.14.3 “Saving Report Parameters for Later Use”) and 
RETRY may be used together, so that parameter values supplied in the RETRY 
dialogue can be SAVEd for later use, rather than being run immediately. The general 
syntax for using the RETRY and SAVE facilities together is:

     $ REPORT REP_FILE_NAME [REPORT_NAME] RETRY SAVE [SAVE_NAME]

The following report dialogue using PASTDUE.REP from Section 7.14.3 “Saving 
Report Parameters for Later Use”, shows how someone might create an overdue 
invoice report, after making a typing error on the first try. In this example, the SAVE 
facility is also used.

     $ REPORT PASTDUE RETRY SAVE JULY
     INVOICE DATE: 31-JUK-85
     exp931  Error decoding constant
     Line 5 INVDA LE 31-JUK-85

Again the report is run, this time correcting the typing error for the INVOICE DATE. 
Note that although the report did not compile successfully the parameter response 
was saved.

     $ REPORT PASTDUE RETRY SAVE JULY
     INVOICE DATE: 31-JUK-85  CR=OK? N
     INVOICE DATE: 31-JUL-85
     JULY.REP WRITTEN

Because the SAVE facility is used, the report is not run. Instead JULY.REP is written 
with the substituted parameter value for later use.
ADMINS User Guide  7 - 55



Floating Fields
7.14.5  DEF Statement

The DEF statement displays the file size, number of fields, field names, field types 
and key designators on the user's terminal for one or more files. The information is 
taken from the data file directly, not from the DEF instruction file. The DEF statement 
may be placed anywhere in the REP instruction file outside of a section (e.g. the 
HEADING section). It is typically placed before parameterized FILE, CREATE, 
SELECT, LINK or TABLE statements:

     DEF file1 file2 ...

For example, if a REP instruction file includes the following DEF statement,

     DEF DEPTEMP.MAS

REPORT prints the following file definition information for DEPTEMP.MAS:

     ----------------------------------------------------
     DEPTEMP.MAS has 3 fields, 100 records.
     1. DEPT X99 KEY1  2. EMP# X9999 KEY2  3. SALARY D2

The DEF statement is intended to be used on-line when preparing parameterized 
reports and/or automatically formatted reports. See Section 7.14.1 “Repetitive 
Parameterization” for a description of repetitive parameterization and Section 7.5 
“DETAIL Statement” for a description of automatically formatted reports. For 
example:

     REPORT ADHOC
     DEF <<Want to see some file definitions? Enter file name>>~
     FILE <Enter file name>

7.15  Floating Fields

REPORT contains a feature called floating fields to handle the printing of a large 
number of fields many of which may be empty of data for any particular record being 
printed. The purpose is to allow a vertical column of fields in the report to be 
"collapsed" to significant (non-null) entries without gaps, and to allow associated 
literals to not be printed when the fields are null.

This is best illustrated with an example.

     DETAIL
             ASSESSMENTS            EXEMPTIONS
     1 8   (HOUSE   ---HOUSE)     (ELDERLY   ---ELD)
     2 9   (LOT     -----LOT)     (BLIND     ---BLI)
     3 10  (OUTBLDG ---OUTBL)     (VETERAN   ---VET)
     4 11  (STORE   ---STORE)     (FARMER    ---FAR)
     5     (FACTORY ---FACTO)
     6     (ACRES   ---ACRES)
     END

We are to print a record which contains assessment and exemption fields. A 
particular account usually has one or two assessment fields that are non-null, i.e. 
actual assessments. However, some records may contain more or even all of the 
assessments. Similarly, none, some or all of the exemptions may be active for a 
particular account.
7 - 56   ADMINS User Guide



Floating Fields
Now let us examine the example. The numbers in the left margin of the DETAIL 
paragraph show the relation of the parenthesized "floating fields" that appear in the 
body of the DETAIL paragraph. That is the "1" applies to "(HOUSE ---HOUSE)", "8" 
applies to "(ELDERLY ---ELD)", "2" applies to "(LOT ---LOT)", "9" applies to "(BLIND 
---BLI)", and so on.

Floating fields that are not one apart in their left margin number are fully 
independent of each other. That is, number the floating fields in a group 
consecutively and skip a number before starting the next group. In the above 
example, the ASSESSMENTS are represented by the set of numbers from 1 to 6 and 
the EXEMPTIONS are represented by the set of numbers from 8 to 11. No more than 
two sets of floating fields can be set up on one line of the report instruction file, but 
an output report line can be constructed from several lines in a report instruction file 
(e.g. by using the line/column notation). The numbers on the left margin can be 
between 1 and 63, and each number may be used only once in the entire report, that 
is, REPORT supports a maximum of 63 floating fields.

The logic of floating fields is as follows: If at least one data field enclosed in a pair of 
parentheses is non-null, the entire contents of the parentheses are printed. (The 
parentheses themselves are not printed.) If, however, every data field enclosed in a 
particular pair of parentheses is zero, the entire contents of the parentheses are not 
printed. When the contents of the parentheses are not printed, the fields in the next 
pair of parentheses "float" upward into the printout positions that would have been 
occupied by the zero fields.

For example, an account with house, lot, acreage, and a veteran and farmer 
exemption would print out as follows:

          HOUSE    24,000          VETERAN   1,000
          LOT       6,000          FARMER    5,000
          ACRES    45,000

An account with a factory and no exemptions would look as follows:

          FACTORY 130,000
ADMINS User Guide  7 - 57



Internal Field Names
7.16  Internal Field Names

REPORT provides several special internal field names that can be used in layout 
paragraphs as field designators. These are:

•  PGNO for current page number.

•  TODAY35 for today's date.

•  NOW36 for current time (in military time HH:MM:SS).
•  [TR] for total records printed thus far.
•  [PR] for records printed this page.
•  NX$fieldname, "lookahead", set to the value of field "fieldname" from the 

next record. NX$fieldname cannot be used if a SORT statement is present 
in the REPORT.

•  NX$EOF,37 "lookahead", an integer field that is set to -1 if the current record 
is the last record in the file. NX$EOF cannot be used if a SORT statement is 
present in the REPORT.
[TR] and [PR] are particularly useful with the PAGE control break in TOTAL. 
The square brackets enclosing TR and PR are part of the syntax. When the 
internal field names are used to form print field designators, they must be 
spelled out fully.

7.17  Report Options

There are several options applicable to the entire report which are placed in the REP 
instruction file between the FILE statement and the HEADING statement. Any or all 
may be included as required.

35.  TODAY may be used in REPORT processing statements and expressions without 
being declared. By default, TODAY is field type DA. If "d" (lowercase) is present 
in the string assigned to the logical name option, TODAY will be created as field 
type DT (see Appendix A: “Options”).

36.  To be used in REPORT processing statements and expressions, (i.e. DETAIL 
statement, CREATE statement, SELECT statement, etc., NOW/A8 or NOW/TM 
must be declared, using either a CREATE statement without an expression or a 
local RMO field.

37.  The NX$ fields that support the "lookahead" facility in REPORT should be 
declared by writing CREATE statements without expressions, or they can be 
RMO local fields.
7 - 58   ADMINS User Guide



Report Options
7.17.1  SINGLE Statement

Report text is normally double spaced, that is REPORT places a blank line after the 
report output lines generated by each DETAIL record. The SINGLE statement 
instructs single spacing for DETAIL output, i.e. don't insert the extra blank lines 
between detail section output.

7.17.2  PAGE Statement

The PAGE statement can initialize the page counter (PGNO) to a value other than the 
(assumed) one of 1.

7.17.3  LENGTH Statement

The LENGTH statement specifies the number of lines to print on each page. The 
margin is the remainder when the length is subtracted from the number of lines per 
inch times the form length in inches. For example, to print 8 lines per inch on 
standard forms of length 11 inches with a standard 8 line margin the user would use 
LENGTH 80.

REPORT prepares output pages that are 60 lines in length by default. This length is 
intended for standard length forms (11 inch), standard 6 lines per inch printing, and 
a total top and bottom margin of 6 lines. All REPORT is actually doing is inserting a 
mechanical form feed between pages.

Any length paper or special forms may be used by resetting the page length with the 
LENGTH statement. LENGTH N sets the number of lines to be printed per page to 
N. After N lines are printed, a mechanical form feed is generated, and the report 
continues on the next page.

Printers normally have several settings for various form lengths and a switch which 
alters printing from 6 lines per inch to 8 lines per inch. The user is responsible that 
the LENGTH statement in the REPORT and the physical setting of the printer are 
consistent.

There may be situations when the physical length of the required form does not 
coincide with a length setting of the printer. If this is true then the mechanical eject 
feature of the printer should not be used. If N is negative, e.g. LENGTH -30, then 
REPORT assumes the output to be on continuous forms of non-standard length. Each 
form is assumed to be -N (30) lines long and REPORT s the printed output page to 
that form length using spacing and does not use the mechanical eject feature of the 
printer. Negative lengths are also useful when the printing device doesn't have 
mechanical form feed capability. Negative length may also be used when no margin 
is desired. For example, for a 3 1/2 inch form, printing 6 lines per inch and no margin, 
would require LENGTH -21.

If N is zero, LENGTH 0, then REPORT prints continuously without any page breaks.
ADMINS User Guide  7 - 59



Report Options
7.17.4  WIDTH Statement

The default width for REPORT is 132 columns (80 columns for OUTPUT VT). Use the 
WIDTH statement to alter the width of the output line.

You may specify a WIDTH value up to 1023, both for queuing and direct printing. 
For example:

WIDTH 150

specifies a line width of 150 characters.

The INDENT value (see Section 7.17.6 “INDENT Statement”) plus the WIDTH 
value may not exceed 1023.

If WIDTH is greater than 80 and the REPORT is directed to a DEC VT-compatible 
terminal using OUTPUT VT or OUTPUT LA, REPORT automatically sets the 
terminal (and the terminal printer port) to 132-character mode. When REPORT 
finishes printing it re-sets the terminal to its original settings. If the page width was 
reset, OUTPUT VT causes REPORT to pause after the last page is printed before 
restoring the page width.

7.17.5  IPAD Statement

The PAD statement acts like the WIDTH statement, but will also ensure that all report 
output lines will be padded with blanks to the width specified by the PAD statement.  
E.g.

PAD 376

will create an output file with exactly 376 characters in each line.

No INDENT or WIDTH statement should be present if the PAD statement is used.

7.17.6  INDENT Statement

Use the INDENT statement to set alternate indentations. e.g.

INDENT 10

means start printing the output lines in column 10.
7 - 60   ADMINS User Guide



Report Options
7.17.7  OUTPUT Statement

The OUTPUT statement is used to instruct report where to direct the output of the 
report.

7.17.7.1  Report Output
In prior releases, REPORT Output statements KB, VT, LA, and TI d report output to 
SYS$OUTPUT under the OpenVMS operating system.

REPORT Output KB/VT/LA/TI statements now write to SYS$COMMAND under 
VMS. SYS$COMMAND is normally directed to the user’s terminal interface.

The logical name, ADM_PRT0 may be used to redirect OUTPUT KB/VT/LA/TI 
output to one of the user’s choosing, should SYS$COMMAND be unavailable for a 
particular application.

7.17.7.2  OUTPUT LP (Line Printer)
If the OUTPUT statement does not appear in the REP instruction file or the statement 
is "OUTPUT LP", the output will be directed (queued) to the device assigned to the 
logical name ADM$SPOOL0, or to the device number specified by the LP statement 
(see Section 7.17.8 “LP Statement”).  If the designated ADM$SPOOLn logical name is 
not assigned, or if the queue designated does not exist, the output file is simply 
written to disk.

By default, the output file’s record format is “stream linefeed”.  Open OpenVMS 
systems you can change the record format of the output file to “variable length 
records” by assigning the string “var” to the logical name ADM$OUTPUT_RFM:

     $ass “var” adm$output_rfm         !OpenVMS only!

7.17.7.3  OUTPUT TI (User's Terminal)
If the statement is "OUTPUT TI" (or "OUTPUT KB"), the output will be directed back 
to the user's terminal and physical form feeds are issued between pages. By setting 
the characteristics of your terminal to perform form-feeds,38 you can achieve perfect 
page to page spacing of reports.

Before REPORT begins sending output to the terminal it prompts

adjust paper

to allow the user to check alignment of the paper supply.

38.  If the terminal is of a type that will recognize and execute a form-feed the setup 
command is "$ SET TERMINAL /FORM_FEED".
ADMINS User Guide  7 - 61



Report Options
7.17.7.4  OUTPUT VT (Video Terminal)
One can also display the report at a video terminal and let the user read the report 
page by page. This is done by giving the REPORT command from a video terminal. 
The first page of the report is displayed, and then REPORT pauses until the user 
presses return. Then the next page is displayed and so on.

In order to invoke this option the user places the statement "OUTPUT VT" in the 
report instruction file.

REPORT automatically defaults to a WIDTH of 80 and a LENGTH of 24 when it reads 
OUTPUT VT. The user may alter these automatic settings by placing WIDTH or 
LENGTH statements after the OUTPUT statement.

7.17.7.5  OUTPUT LA (Terminal's Printer Port)
"OUTPUT LA" is similar to "OUTPUT TI" except that the output is directed to the 
"printer port" of DEC VT-compatible terminals39.

7.17.7.6  OUTPUT SO (Direct Output to Standard Output)
"OUTPUT SO" is similar to "OUTPUT TI" except that no “adjust paper” prompt is 
displayed.  Output begins to standard output (SYS$OUTPUT on OpenVMS) as soon 
as REPORT can format it.  Use this alternative to directly display REPORT’s output 
in a process where the standard output is not a terminal and/or is to be redirected or 
“piped”. 

7.17.7.7  OUTPUT TT0 (Direct Output to Physical Device)
It is possible to send report output directly to any physical device.

If the statement "OUTPUT TT0" is used, the output is directed to the device assigned 
to the logical name ADM$PRT0 (see Section 21.4 “Output to Non-queued device, 
ADM$PRT0”).

39.Usually the "terminal" is a terminal emulator these days. Most Windows-based 
terminal emulators send "printer port" output to the Windows "default 
computer".
7 - 62   ADMINS User Guide



Report Options
7.17.8  LP Statement

The LP statement controls the various options associated with reports directed to any 
printing device, usually a line printer. The LP statement should follow the OUTPUT 
LP statement.

When report runs and the output is to be to a line printer, report creates a file called 
"ADMINSxx.LIS" where "xx" is the string assigned to the logical name ADM$TERM 

This file is then queued using the system queuing facilities. Spooling is discussed in 
detail in  Chapter 21: “Printer Queues”. The LP statement options are presented here.

The keywords of the LP statement are positional, i.e. if the second keyword is used 
then the first keyword must be included. The syntax of the LP statement is as follows:

     LP [NCOPIES] [LOGICAL QUEUE#] [#OVERPRINTS] [NO/FORMS TYPE]

7.17.8.1  Multiple Copies
The first LP keyword specifies the number of copies to be printed.

     LP [NCOPIES]

     LP 2

The number of copies is an integer value placed immediately after the LP. If there is 
no LP statement, or if there is an LP statement with a 1 in the first position after the 
LP, one copy of the report will be printed. Multiple copies in this context does not 
refer to multi-part paper, but to the number of originals. Multiple copies of reports 
are only supported via queuing and are not applicable if the output is not queued by 
REPORT. Up to 99 copies can be requested.

7.17.8.2  Logical Queuing Device Number
The second keyword on the LP statement is the logical print queue number. The 
default queue number for a report is 0, i.e. the output is sent to the queue specified 
by the logical name ADM$SPOOL0.

The "LOGICAL QUEUE#" can be used to output the report to any queue. The output 
is sent to the queue assigned to ADM$SPOOLn where "n" is the logical queue#. This 
keyword has no effect if the output is not queued by REPORT.

     LP [NCOPIES] [LOGICAL QUEUE#]

     LP 1 7

This would send the output to the queue assigned to ADM$SPOOL7. Note that even 
though the "NCOPIES" keyword was not used, a "1" was included because the 
keywords are positional.

See Chapter 21: “Printer Queues” for more information on spooling.

7.17.8.3  Overprinting
Overprinting is instructed via the third keyword on the LP statement. Overprinting 
consists of printing the same line on the printing device more than once. It is used to 
produce darker copies at slower printing speeds. Overprinting is not associated with 
queuing, but rather REPORT writes each output line multiple times.

     LP [NCOPIES] [LOGICAL QUEUE#] [#OVERPRINTS]
ADMINS User Guide  7 - 63



Report Options
     LP 1 0 2

This would mean to print each line twice. Again, note the "1" for "NCOPIES" and the 
"0" for "LOGICAL QUEUE#" to position the "2" for "#OVERPRINTS".

7.17.8.4  Bypass Queuing; Specify Form Type, File Name
The fourth and fifth keyword positions of the LP statement are used  for three 
purposes. REPORT can be instructed to bypass queuing its output file for printing, a 
forms type can be specified for a queued report, or the output file (normally 
ADMINSxx.LIS) for a queued report can be given another name.

The presence of the word "NO" as the fourth element of the LP statement instructs 
REPORT not to queue the report’s output. The number of copies and the queuing 
device number keywords are only used as placeholders if the report is not queued by 
REPORT.

LP [NCOPIES] [LOGICAL QUEUE#] [#OVERPRINTS] [NO/FORMTYPE] 
[FILENAME]

     LP 1 0 0 NO

Alternatively the fourth element of the LP statement can be used to designate (by 
name or number) the form that should be used to print the document.

     LP 1 2 0 6

The presence of a form name in the fourth position of the LP statement queues the 
output file with a specific form name.40

     LP 1 2 0 PAYCHECKS

The LP statement above instructs REPORT to output 1 copy to ADM$SPOOL2 with 
forms type PAYCHECKS.

If a fifth keyword appears on the LP statement it is used to name the output file that 
will be queued for printing.41 

     LP 1 2 0 - ACCOUNTS.LIS

The LP statement above instructs REPORT to print 1 copy of the output file 
ACCOUNTS.LIS on queue ADM$SPOOL2.

The file name argument may be a logical name.  When REPORT encounters the file 
name argument it always attempts to translate it as a logical name.  If it can translate 
the logical name it will use the translation as the name of the output file, otherwise it 
will use the argument directly to name the output file, i.e. if the logical name 
assignment:

    $ ASSIGN ABIGAIL.LIS MYFILE

was made prior to running a REPORT with the following LP statement:

    LP 1 0 0 LETTER MYFILE

REPORT would name the output file “ABIGAIL.LIS” (and queue it for printing on 
ADM$SPOOL0 with form type LETTER).

40.  Restrictions on a form name are necessary in the LP statement to avoid 
ambiguity.  A form name cannot be "NO", a form name cannot contain a period 
(if it does it is interpreted as the output file name).

41.  If no form type is given, use a hyphen “-“ as a placeholder before providing a file 
name specification to avoid ambiguity.  (If no hyphen is present the fourth 
argument will be interpreted as a file name rather than a form name if it contains 
a period.)
7 - 64   ADMINS User Guide



Report Options
7.17.8.5  LP Examples
Several keywords of the LP statement may be used at the same time as is shown in 
the following examples:

     LP 2 3 2     "queue 2 copies on device 3 with 2 overprints"

     LP 2 3       "queue 2 copies on device 3 with no overprints"

     LP 1 3 2     "queue 1 copy on device 3 with 2 overprints"

     LP 2 0 2     "queue 2 copies on device 0 with 2 overprints"

     LP 1 0 2 NO  "do not queue, but output 2 overprints"

     LP 2 6 0 3   "queue 2 copies on device 6 with forms type 3"

     LP 1 3 0 CHECKS CHECKS.LIS
                  "queue 1 copy on device 3, forms type is CHECKS;
                      output file to be called CHECKS.LIS"

A common use of the OUTPUT and LP statements is to parameterize (see Section 7.14 
“Parameterization”) the options so that when the report is run a determination can 
be made as to where and how it is to be printed. This is illustrated in the following 
example:

     OUTPUT <TI or LP?>
     LP <<Copies?>> <<SPn?>>

7.17.9  SCALE Statement

The SCALE statement is used to scale decimal fields for printout. Created fields are 
not automatically scaled, but the computation may be explicitly scaled by dividing 
and rounding. The syntax of the statement is "SCALE N" which means to scale "N" 
digits, i.e. to divide and round the value by 10 raised to the N power. All values that 
are (sub)totals are scaled automatically, regardless if they represent the totals of 
actual or derived fields (built by CREATE). For example, if SCALE 3 is in effect the 
value 1233.34 is scaled to 1, and 14566 is scaled to 15.

 SCALE NOP removes all decimal places from decimal fields, and rounds off the 
result. With SCALE NOP in effect 1233.34 is scaled to 1233, and 3.56 is scaled to 4.

7.17.10  PRINT ODD or EVEN

The PRINT ODD and PRINT EVEN statements are used to instruct REPORT to print 
only the odd numbered, or even numbered, pages of output. This feature is used to 
print output on both sides of the paper. First run the report with PRINT ODD. Then 
reload the output pages back into the printer so that the reverse side will be printed. 
Then run the same report with PRINT EVEN. The following example uses a 
substitutable parameter (see Section 7.14) to make the process even simpler:

     REPORT SIDES
     FILE BUDGET.MAS
     OUTPUT KB
     PRINT <Enter side to be printed, ODD or EVEN>
     .
     .
     .
ADMINS User Guide  7 - 65



Report Options
7.17.11  NRECS Statement

The NRECS statement instructs REPORT to only read a certain number of input 
records42 and then act as if it had reached EOF. The syntax of the statement is 
"NRECS N" where "N" is the number of records to read.

7.17.12  FORMAT Statement

Either one of two conditions can trigger automatic format mode as REPORT reads 
through the REP instruction file. Either REPORT encounters a DETAIL statement 
followed by field names or an asterisk "*" (see Section 7.5 “DETAIL Statement”), or 
REPORT encounters a FORMAT statement in the report options section.

     FORMAT

The FORMAT statement should be used when any of the following conditions exist.

1. If a TABLE or LINK statement is placed before the DETAIL statement, the 
FORMAT statement should precede the TABLE or LINK statement.

2. If a DETAIL statement is not being used (i.e. the report produces subtotals only), 
the FORMAT statement must be present before the TOTAL statement is 
reached.

When automatic formatting is active, REPORT checks if there is a file assigned to 
logical name ADM$FORMAT to be used as a data description file. If this logical name 
is unassigned, REPORT uses default column headings and print width for the fields 
in the report. The use of the ADM$FORMAT data description file is described in 
Section 7.20 “Data Description File for Automatic Formatting”.

42.  If a SELECT statement is present, NRECS reads the specified number of selected 
records.
7 - 66   ADMINS User Guide



Report Options
7.17.13  FORCE_HEADING Statement

When a KEY or SELECT statement result in no record being output, AdmReport may 
not output anything43. If output is to a file, no file would be created44.

The FORCE_HEADING statement changes this behavior. Even when nothing would 
otherwise be output AdmReport will print the HEADING.  This can be useful in 
circumstances where it is required that a file actually be created even when it contains 
data from no records, such as when CSV output is being generated.

7.17.14  DIRECT Statement: Multiple Output Files

REPORT has a flexible facility for directing different parts of its output to different 
files.

When a single report produces output which must be directed to more than one 
place, it is not necessary to run the report several times, or to run several different 
reports, or to pre-process the report file. For example (see below), a report might 
contain detail information, summary information on the department and division 
levels, and grand totals for the entire organization. The detail and totals for each 
department might go to various departmental managers; the department totals and 
division totals for each division might go to divisional managers; the division totals 
and grand totals might go to top management.

The DIRECT statement is used to control the destination of various sections of the 
output. Its syntax is as follows:

 DIRECT SECTION_NAME QUEUE [QUEUE2 QUEUE3...] 

43.Reports with at least one summary will produce output (the summaries and the 
heading) even when no record is selected. This output can be suppressed by 
putting "o" (lowercase) in the string assigned to the logical name OPTION (See  
Appendix A: “Options”.)  FORCE_HEADING will output the heading even 
when "o" is in OPTION.

44.Note that if the main report file contains no records, AdmReport generates no 
output and will not create an output file (FORCE_HEADING has no effect when 
the main file is empty)

SECTION_NAME: Identifies the section of the report output. SECTION_NAME 
is either the word 'DETAIL', or the name of one of the TOTAL 
fields in the report, or 'EOF', denoting the TOTAL EOF 
section. Because REPORT can have more than one TOTAL 
break on the same field, a subscript, in square brackets, 
identifies which TOTAL on a field is being referenced. For 
example, to specify that the second total statement on field 
EMPNO is to be queued to ADM$SPOOL5:

DIRECT EMPNO[2] 5
You need not specify '[1]' for the first TOTAL on a field.
ADMINS User Guide  7 - 67



Report Options
There can be as many DIRECT statements as there are sections in a report: one for the 
DETAIL and one for each TOTAL. If the output of a section is not DIRECTed 
anywhere, REPORT uses the queue number in the LP statement, or, if there is no LP 
statement, it uses queue 0 (ADM$SPOOL0). A DIRECT statement may appear 
anywhere in a report prior to the first DETAIL or TOTAL. DIRECT statements for 
different sections of the report need not be in any particular order.

DIRECT provides a high degree of flexibility. Each output section can be directed to 
a different destination. A single section can be directed to many places. Any 
combination of sections can be directed to the same place. Output destinations can be 
controlled by logic and data when the report runs, and can be changed at any time. 
The output files can be queued in any desired way: all queued on the same queue, all 
on different queues, not queued, some queued, queued with different options, etc.

When there is at least one DIRECT statement in a report, REPORT writes a temporary 
LIS file (named ADMINSxxx.LIS by default or specifically named via "FILE:" in the 
HEADING or the LP statement) which contains the normal output and a small 
amount of additional control information. This temporary file is used internally by 
REPORT to generate the DIRECTed output files, and is not printed.

The DIRECTed output file is named by appending an underscore and the spooler 
number to the original LIS file name (the output files always have the extension 
".LIS"):

 Original LIS File  Spooler  Output File      Queue
 -----------------  -------  ---------------  ----------
 ADMINSXXX.LIS         0     ADMINSXXX_0.LIS  ADM$SPOOL0
       "               8     ADMINSXXX_8.LIS  ADM$SPOOL8
 EMPLOYEE.OUT          3     EMPLOYEE_3.LIS   ADM$SPOOL3

The output files are sent to the ADM$SPOOLn queue corresponding to the QUEUE 
number.

When REPORT is finished splitting up the output, it prints a message giving the 
name and queue, if any, for each output file (this message is suppressed if BRIEF 
mode is enabled).

QUEUE: Between one and ten different queues can be specified, 
separated by blanks, using simple constants or the names of 
integer (I) fieldsa in the report. The values of QUEUE are 
between 0 and 255, corresponding to the queuing logical 
names ADM$SPOOL0 through ADM$SPOOL255.
When fields are used for QUEUE numbers, the output 
destination(s) can be changed as the report runs. REPORT 
might, for example, link the queue number for each 
department from a table keyed on the department code. If the 
linked queue number field is used in the DIRECT statements 
for DETAIL and the department TOTAL, REPORT directs 
those output sections to the queue number for that 
department.
If a QUEUE number has a value of -1, it is ignored until it is 
given a value between 0 and 255. This is useful in situations 
where you want to change the output destination "on the fly" 
and you may want to turn off certain output destinations. For 
example, you might specify four queues in a DIRECT 
statement, but, depending on your REPORT logic and your 
data, you might not always need to use all of them.

a.    When CREATEd or LINKed fields are used they must appear before the 
DIRECT statement in which they are used.
7 - 68   ADMINS User Guide



Report Options
If for some reason REPORT terminates while splitting up the output, it is not 
necessary to re-run the report. When the cause of the problem is remedied, the 
process of splitting up the output can be restarted using the original LIS file, with the 
following syntax on the command line:

     $ REPORT/MULTIPLE LIS_file_name       (OpenVMS)
      $ REPORT -MULTIPLE LIS_file_name        (Windows)

The "MULTIPLE" qualifier must be the first argument on the command line; and the 
name of the LIS file must be given. The "MULTIPLE" qualifier is used ONLY when 
you want to restart the splitting process using an existing LIS file which was 
produced using DIRECT statements.

With two exceptions, all REPORT features can be used in conjunction with DIRECT. 
Both TOTAL [PAGE] and TOTAL n (break every n records) are not compatible with 
DIRECT statements.

Several points about the content of DIRECT output files should be noted.

1. Each output file has its own pagination. If PGNO is used in the HEADING, 
correct page numbers are maintained and printed for each output file.

2. Except for the page number, the heading text in the output files is taken from 
the most recent heading in the original LIS file. For example, if a section starts 
on page 3 in the original LIS file, then, if the section begins a page in an output 
file, the output file will have the information from the original page 3 heading.

3. A PREVIEW and a SUMMARY at the same control break are considered to be a 
single section. There is no syntax for directing them to separate places.

4. Form feeds or blank lines generated by EJECT are considered to be part of the 
PREVIEW or SUMMARY which generates them, and they go in the same output 
file(s) as the PREVIEW or SUMMARY.

Several details:

1. When OUTPUT KB, TI, VT, or LA are used, REPORT checks the syntax and 
content of DIRECT statements, and checks the QUEUE numbers at run time, but 
displays the normal output and does not create any output files. This is for 
testing reports which have DIRECT statements.

2. If 'D' is in OPTION (see Appendix A: “Options”) and DIRECT is used, REPORT 
deletes the original LIS file and queues the output files to be deleted after 
printing.

3. To queue the output files with form types, use the form type qualifier in the 
ADM$SPOOLn assignments. Do not use the LP statement.

4. An output file is not queued if (1) the LP 'NO' keyword is used; or (2) the 
ADM$SPOOLn logical name for the file is not defined; or (3) ADM$SPOOLn 
does not point to a queue.

5. If a DIRECT statement contains multiple references to a QUEUE number, the 
duplicates are ignored.

6. No output file is created if nothing is sent to a DIRECT QUEUE.

7.17.15  DIRECT Statement Example

 REPORT BULLISH
 FILE ORG.MAS
 SINGLE
 HEADING
 1/75
       Page PGNO-
ADMINS User Guide  7 - 69



Report Options
 2/1
 CE    BULLISH ENTERPRISES UNLIMITED   TODAY----
 BL
 END
 TABLE DEPTSPOOL FROM DEPTSPOOL.TAB KEY IS DEPT
 TABLE DIVSPOOL FROM DIVSPOOL.TAB KEY IS DIV
 *
 DIRECT DETAIL DEPTSPOOL
 DIRECT DEPT DEPTSPOOL DIVSPOOL
 DIRECT DIV DIVSPOOL 10
 DIRECT EOF 10
 *
 DETAIL
        PCOD- ---------THISYR  ----------LASTYR  ---------VARIANCE
 END
 TOTAL DEPT THISYR LASTYR VARIANCE
 PREVIEW
 CE   Department DEPT---
 BL
 END
 SUMMARY
              ----------------------------------------------------
              ---------THISYR  ----------LASTYR  ---------VARIANCE
 END
 *
 

7 - 70   ADMINS User Guide



Report Options
TOTAL DIV THISYR LASTYR VARIANCE
 PREVIEW
 CE   Division DIV---
 BL
 END
 SUMMARY
              ====================================================
              ---------THISYR  ----------LASTYR  ---------VARIANCE
 END
 *
 TOTAL EOF THISYR LASTYR VARIANCE
 SUMMARY
              ====================================================
              ====================================================
              ---------THISYR  ----------LASTYR  ---------VARIANCE
 END

7.17.16  STYLE Statement: Insert Device Control Sequences

The STYLE statement provides a means for inserting control sequences ("escape 
sequences") in the REPORT output. STYLE statements can be utilized for resetting 
the printer after use, and printing or displaying various parts of the report in 
different fonts or with different video attributes. This facility has the following major 
features:

1. It is table driven. By using different tables at run time, the same REPORT 
instruction file can drive different types of printers or video terminals (which 
use different control sequences).

2. Font changes and all other printer or video characteristics can be triggered by 
logic and data as the REPORT runs.

3. REPORT layout paragraphs are written in the usual way. There is no need to 
compensate for columns occupied by control sequences when laying out a 
report.

The STYLE control sequences are contained in a text editable table file identified by 
the logical name ADM$STYLE. There should be a different control sequence table 
assigned to ADM$STYLE for each output device type (because different device types 
have different sets of control sequences to achieve the same characteristics).

Entries in the STYLE table of control sequences are laid out as follows:

     .CC   MNEMONIC    CONTROL_SEQUENCE

“Limited” support for parameterization is provided for entries in the ADM$STYLE 
table. For example in an entry of this form:

.CC INITPAGE1 MYDIR:IP1_<L$SITE>.FIL 

".CC" ("control code") indicates that a mnemonic and a control 
sequence are to be found on this line (lines which do not 
begin with "." are ignored, and can be used for 
comments)

MNEMONIC control sequence names, mnemonics made up by the 
user

CONTROL_SEQUENCE a representation of the control sequence associated with 
the (mnemonic) name.
ADMINS User Guide  7 - 71



Report Options
AdmReport will substitute <L$SITE> with the value of the logical name L$SITE if it 
exists. Only “logical” parameterization is supported (no prompting ever  takes 
place).  If the logical name does not exist, or the <> parameter starts with any other 
characters, no substitution takes place (AdmReport assumes that the <> string is part 
of the control sequence).

".CC" and the mnemonic are case insensitive. Neither the mnemonic nor the control 
sequence can contain embedded blanks. The mnemonic string may not exceed 18 
characters in length. The control sequence may be up to 255 characters in length.45

Nonprinting characters in the control sequence can be represented as "$nnn$", where 
"nnn" is a 1 to 3 character decimal ASCII character code between 1 and 255 (.e.g, $27$ 
represents the escape character).46 When this representation is used, the "$nnn$" 
counts as one character toward the limit of 18 characters in the control sequence. The 
value string $NULL$ in a control sequence table translates to nothing. This is for 
situations where some printers don't support a certain function. NULL must be all 
uppercase.

For example, a control sequence "REVERSE" could be defined as follows, to turn on 
reverse video on a VTxxx terminal:

     .cc    reverse    $27$[7m

When creating control tables for different printers, the control sequence names 
should be standardized so that a given name translates to equivalent sequences in the 
different tables. For example, if the sequence for 12 characters per inch is $27$[14m 
for an LN03 and $27$[2w for a LA120, then both these sequences should be given the 
same name in their respective tables. This naming practice makes it possible to run 
the same report on different printers without changing the report instruction file (you 
simply assign the new table name to the logical name ADM$STYLE).

The STYLE statement identifies and defines a printing "style" consisting of one to ten 
control sequence names. When the report runs, the control sequences are looked up 
by name in the table and inserted in the report output in the order they are specified 
in the STYLE statement. The STYLE control sequences are inserted in the output 
location specified using the "S=" style designator.

The STYLE statement syntax is:

 STYLE  style_name   up to 10 control sequence names

STYLE can be placed in the instruction file wherever a CREATE statement would be 
valid. The STYLE statement which defines a printing style must appear before the 
first layout paragraph where it is used. There is a limit of 29 STYLE statements in 
addition to SETUP, DEFAULT, and RESET.

The control sequence names can be the actual (mnemonic) names of control 
sequences which are in the table, and should then be enclosed in single quotes. They 
can also be alphanumeric (An) field names,47 whose value (the mnemonic names to 
be looked in the control sequence table) REPORT can change as it runs. The use of 

45.  Control sequence tables used for RNF (see N.5 “Control Code Facility”) also work 
with REPORT, subject to the limits mentioned above. A sample printer control 
table called LN03.TBL, which provides some control sequences for the DEC 
LN03PCL-compatible printers, is included in the ADMINS distribution kit.

46.  Non-printing characters, such as the escape character, can be "hard coded" in the 
table. However, the "$nnn$" representation is the recommended method for 
coding the table, because it is visible when the table is being inspected or edited. 
See H.2 “Integer Decimal Values for ASCII Characters” for a listing of decimal 
values for ASCII characters.
7 - 72   ADMINS User Guide



Report Options
field names enables the report to change the effect of a style, i.e. to change the control 
sequence to be inserted, depending on logic and/or data. The following simple 
report displays the BALANCE field in reverse video if it is negative.

     FILE ACCTS.MAS
     OUTPUT KB
     HEADING
           ACCOUNT BALANCES
     END
     CR NSTYLE/A8  IF BALANCE LT 0 THEN 'REVERSE' :
                      ELSE 'NORMAL' END
     STYLE DEFAULT 'NORMAL'
     STYLE VID NSTYLE
     DETAIL
           ACCT-----
     1/15
     S=VID
           $$$BALANCE
     END

A CREATE statement sets NSTYLE to 'REVERSE' when the balance is negative, and 
to 'NORMAL' otherwise. The STYLE statement:

     STYLE VID NSTYLE

specifies that the effect of style VID is to be determined by the contents of the 
NSTYLE field. As the DETAIL section for each record is output, the control sequences 
for style VID are inserted in the location specified in the DETAIL layout (S=VID). If 
BALANCE is negative, REPORT looks up the mnemonic "REVERSE" (the value of the 
field NSTYLE) in the ADM$STYLE control sequence table, and inserts the control 
sequence for that mnemonic in the output. If BALANCE is positive, the control 
sequence with the mnemonic "NORMAL" is inserted in the output. As a result, 
negative balances are displayed in reverse video, others in normal video.

There are three special style names: SETUP, DEFAULT, and RESET. If a STYLE 
statement for SETUP is specified, its control sequences are sent once before starting 
to output the report. SETUP should be used for initial device setup characteristics 
such as margin settings or landscape mode. Similarly, if a STYLE statement for 
RESET is specified, its control sequences are sent once at the end of the report, to reset 
the device for the next user.

If a STYLE DEFAULT statement is specified, it tells REPORT what to use when no 
explicit STYLE is otherwise specified for a part of the output (see the example above). 
REPORT sets the device using the DEFAULT style once immediately before starting 
the report output, and also before outputting fields and literals which are laid out 
above the first style designator ("S=") in a layout section.

In the example above, the HEADING and the ACCT field are printed in the 
DEFAULT style, because no style is explicitly given for them. STYLE DEFAULT or 
STYLE SETUP must be defined if any other STYLE statements are used. If STYLE 
SETUP is present and STYLE DEFAULT is not, STYLE SETUP is used as the default. 
Field names cannot be used in the definitions of the SETUP, DEFAULT, or RESET 
styles.

The style designator "S=stylename" is placed at the left margin of the layout 
paragraph, (HEADING, DETAIL, PREVIEW, or SUMMARY) on a line by itself, to 
indicate where the output STYLE is to change, as shown in the example above. This 
style remains in effect until it is changed with another "S=" instruction, or until the 
end of the layout section.

47.  If local field names are used in a STYLE statement, the fields must be created 
above the STYLE statement. 
ADMINS User Guide  7 - 73



Report Options
The following points should be noted when utilizing this facility:

1. Each output line, including control sequences, can contain no more than 255 
characters. The actual length of the lines varies with different control tables. 
REPORT checks the line length at run time and issues an error message if a line 
is too long to print.

2. Some device control codes, for example underlining or reverse video, change 
the appearance of blanks (e.g., underlined blanks, or reverse video blanks). 
When using such print styles, remember that while the style is set, blanks are 
affected.

3. When using STYLE, if a line contains any control sequences, it is not possible to 
"overprint" on the line (i.e., to position something to the left of what has already 
been laid out on the line). When using line/column precise placement in 
combination with STYLE, write the layout of each line in left to right order. For 
example, avoid laying out something on 1/50 and then, below, overprinting 
something else at 1/10. Instead, lay out 1/10 above 1/50. For essentially the 
same reason, it is not possible to use double column floating fields on lines 
where the print style might change.

4. When a STYLE controls the printing of information in a SUMMARY paragraph, 
and the STYLE statement includes one or more field names, the STYLE 
statement should appear under the TOTAL statement, and the fields in the 
STYLE statement should be referenced as fieldname/LA.

7.17.16.1  STYLE INITPAGE: Initialize Page
The reserved STYLE name INITPAGE allows you to specify a file to be dumped into 
the REPORT .LIS file between the formfeed and the first thing printed on each page.48 
STYLE INITPAGE is especially useful to generate a blank form before REPORT 
outputs data to a page. To do this, the file specified by STYLE INITPAGE would 
contain the printer control sequences which produce the blank form (usually a series 
of line graphics control sequences), ending with a "cursor control" sequence which 
sets the printing position back to the top of the page.

Lines in the STYLE INITPAGE file can be up to 254 characters long, and the file can 
contain any number of lines. This file is simply dumped, with no formatting or 
interpretation, into the REPORT output .LIS file at the top of each page.

The statement

    STYLE INITPAGE style_name

specifies that page initialization is enabled, and each page should be initialized using 
the file identified in the

     .cc style_name file_name

entry of the ADM$STYLE table. For example, when the statement

    STYLE INITPAGE W2_STATE

appears, REPORT will look for an entry in the ADM$STYLE table such as:

    .cc w2_state treas_forms:w2_state.repform

The above entry would cause REPORT to dump the contents of file49 
"TREAS_FORMS:W2_STATE.REPFORM" into the .LIS file at the beginning of each 
page.

48.  On the first page the SETUP or DEFAULT style control sequence always 
immediately follows the formfeed.
7 - 74   ADMINS User Guide



Report Options
STYLE INITPAGE should not be used with DIRECT (multiple output files, as 
described in Section 7.17.14 “DIRECT Statement: Multiple Output Files”) or with 
arbitrary length text fields (see Section 7.6.1 “Text Fields”) which may generate extra 
page breaks.

7.17.16.1.1  Using STYLE INITPAGE to Place An Image on Each Page of an 
ADMINS Report Output
AdmReport provides a way to include images (such as logos or pictures) in the blank 
form generated for every page of report output.

Lets say you have an image of your company logo or the official seal of your city or 
town that you want to place on each page of report output. The image is likely in one 
of the more common image formats, with a file type extension of BMP, JPG, GIF or 
TIF. To use this image with STYLE INITPAGE it must first be converted to PCL 
format.50   

Lets assume our file is called cityseal.pcl and we have placed it in a directory or folder 
referenced by the logical name MYFILES.

Our goal is to produce pages of AdmReport output that contain both a picture (logo, 
seal etc.) and the normal AdmReport output. If the PCL file produced by HiJaak ends 
with a form feed, the image would print by itself on a new page after every page of 
the AdmReport output. What we need is to change the PCL file to eliminate the 
unwanted form feed character, and to reset the cursor position back to the top of the 
page so that AdmReport starts its output in the usual place on the page (otherwise it 
would start the output at whatever position it was in after rendering the image).  One 
way (the hard way) to accomplish this is to manually edit the file, remove unwanted 
form feeds, and insert the control sequences necessary to put the cursor back at the 
top of the page.  This technique can be successful, but some text editors might change 
the file's format and contents in ways that make the image unusable (especially on 
OpenVMS systems). A better and far easier way is to use the ADMINS INITPAGE 
utility.

The INITPAGE utility is designed specifically to alter PCL files so that they can be 
used with AdmReport's STYLE INITPAGE capability. If you call INITPAGE without 
any arguments it displays the following:

>initpage

       The INITPAGE utility is used to add cursor positioning

       to a file containing PCL code to be used by the INITPAGE

       mechanism in ADMINS REPORT.

usage: initpage FILENAME ROW COLUMN

INITPAGE takes three arguments. The first is the name of the file to be altered. The 
second and third arguments are the row and column where the cursor is to placed 
after the INITPAGE file is output. When INITPAGE runs, it eliminates any final form 
feed from the file it is acting on, and then inserts the control sequences necessary to 
put the cursor at the specified location on the page. In the example below the file 
myfiles:cityseal.pcl would be altered so that the cursor position would be set to row 
1 column 0 (where AdmReport output starts on a page) after the contents cityseal.pcl 
are printed.

>initpage myfiles:cityseal.pcl 1 0 

49.  Any logical name in the file specification is translated only once, before REPORT 
begins printing.

50.  ADMINS has used HiJaak from Imsisoft to perform this conversion.
ADMINS User Guide  7 - 75



Report Options
Place an entry in the ADM$STYLE table file for the pcl version of the image.

For cityseal.pcl in the MYFILES directory that entry would look like this:

.cc seal myfiles:cityseal.pcl

where  "seal" is the mnemonic name that will be used to reference this entry in the 
STYLE INITPAGE statement of the report instruction file (.REP). The entry for 
cityseal.pcl would look like this:

STYLE INITPAGE SEAL

When this report is run, AdmReport uses the file you have specified to "initialize" 
each page, then overlays that page with the normal AdmReport output.

Example:  Put "The Unified Community" logo in report output

1. Convert the file uclogo.gif into a PCL file with HiJaak.  Here's what uclogo.gif 
looks like: 

 

2. Then run INITPAGE on uclogo.pcl so it works with AdmReport.

initpage uclogo.pcl 1 0
3. Put an entry in the ADM$STYLE table that references uclogo.pcl..  For this 

example we'll use test.tbl as the ADM$STYLE table. Here's the contents of 
test.tbl:

.cc SEAL uclogo.pcl

.cc RESET  $27$E 
4. Place the STYLE INITPAGE command in the report instruction file referencing 

uclogo.pcl via its mnemonic "seal".  Here's a sample report instruction file with 
the STYLE INITPAGE command inserted.
7 - 76   ADMINS User Guide



Report Options
FILE MYFILES:MYDATA.MAS-R

AUTO

SINGLE

OUTPUT LP

LP 0 0 0

WIDTH 80

STYLE INITPAGE seal

HEADING

1/15

     Report: TEST1

       Page: PGNO-

1/40

     The Unified Community

     PRINT STYLE TESTING

1/64

     Date: TODAY----

     Time: NOW--

BL

BL

BL

BL

END

DETAIL

       DMSG--------------------------------------------------

bl
ADMINS User Guide  7 - 77



TOTAL Paragraph Options
7.18  TOTAL Paragraph Options

Just as there are options which apply to the entire report, there are options which may 
apply to each TOTAL paragraph. The statements are placed in the TOTAL paragraph 
following the TOTAL statement. Any of the options may be used in any or all of the 
TOTAL paragraphs as desired.

7.18.1  SUPPRESS Statement

Generally speaking a subtotal summarizes several or many detail lines. In some 
instances, however, there may only be one detail line contributing to a subtotal. 
Usually when there is only one detail line in a subtotal the information provided by 
the SUMMARY paragraph and the information provided by the DETAIL paragraph 
to the reader of the report are the same, i.e. one of the two may be redundant.

The SUPPRESS statement is used to instruct REPORT not to print (i.e. to suppress) 
the SUMMARY paragraph whenever only one line of detail occurred in the run 
preceding the subtotal. For example, if in a budget printout we were printing object-
of-expense lines as our detail and subtotaling by class of object then those classes that 
only contained one instance could be printed without the class subtotal line by using 
the SUPPRESS statement. The SUPPRESS statement is placed between the TOTAL 
which REPORT is to "suppress" and the SUMMARY paragraph.

An option in the SUPPRESS statement is "SUPPRESS ZERO". "SUPPRESS ZERO" will 
not print the SUMMARY paragraph for total breaks where a "break field" of the type 
"Xpicture" is a value of zero. This can be significant for financial reporting systems 
with many levels of account coding where some transactions are not coded at the 
minor levels and totals are not desired for the transactions without codes.

SUMMARY sections can be suppressed conditionally by giving SUPPRESS a Boolean 
criterion. For example:

     TOTAL ORG DEPTOT/V
     SUPPRESS DEPTOT/V EQ 0
     SUMMARY

When the SUPPRESS expression is true, the SUMMARY is not printed. As in a 
CREATE under a TOTAL, the SUPPRESS expression should use explicit aggregate 
field names (like DEPTOT/V above). There can be only one conditional SUPPRESS 
per TOTAL; but a conditional SUPPRESS can be combined with a SUPPRESS or 
SUPPRESS ZERO statement in the same TOTAL section.

7.18.2  EJECT Statement

The EJECT statement tells REPORT to start a new page (i.e. "eject" the current page) 
after printing a SUMMARY paragraph. The EJECT is placed between the TOTAL 
statement and the SUMMARY statement of the subtotal control break at which it is 
to eject. There can be an EJECT for each TOTAL statement.

The EJECT BEFORE statement tells REPORT to start a new page before printing the 
SUMMARY paragraph.
7 - 78   ADMINS User Guide



EXECUTE Statement: RMO Processing
The EJECT AFTER statement tells REPORT to start a new page after printing this 
SUMMARY paragraph, or else after printing any other SUMMARY paragraphs that 
are pending and will print immediately below this SUMMARY.

The EJECT n statement instructs REPORT to start a new page if, after printing the 
SUMMARY paragraph, n or less lines remain on the page.

7.18.3  RESET PAGE statement

The RESET PAGE statement is used after a TOTAL statement to reset the internal 
page counter PGNO (see Section 7.16 “Internal Field Names”) after the control break, 
as follows:

       TOTAL PARCEL field1 field2 ...
       RESET PAGE 2

In this example the page counter PGNO would be reset to "2" after the control break.

If no value is given on the line after "RESET PAGE" PGNO will be reset to "1".

7.19  EXECUTE Statement: RMO Processing

REPORT may call an RMO at any number of processing points using the EXECUTE 
statement.51 Reports which are logically complex or require looping calculations can 
be streamlined by using an RMO to eliminate pre-processing steps, or to write the 
logic in a more compact way than is possible using the standard "GOTO-less" 
REPORT syntax. The RMO is fully compatible with other REPORT features.

EXECUTE statements call the RMO, which is named in the file statement in lieu of 
the main REPORT file (the main REPORT file is the file the RMO was compiled for). 
An EXECUTE statement can appear at any point in a report where a CREATE 
statement would be valid. Therefore, the RMO can be called at whatever processing 
points are desired: before a LINK, after a LINK, under a TOTAL, before a SELECT or 
a SORT, etc.

Optionally, any string of up to 6 characters can follow the EXECUTE verb. If it is 
present, this string is placed in the optional special RMO local field S$S/A6 when 
REPORT calls the RMO, so that different parts of the RMO logic can be executed at 
different calls, as in TRANS. (If there is only one EXECUTE statement in a report, 
then there is no need to use S$S in the RMO.) If there is no S$S string after the 
EXECUTE verb, REPORT calls the RMO with a blank value in S$S if S$S is a local 
field.

51.  An RMO is a Record Maintenance Procedure. See Chapter 9: “CMP: The Record 
Maintenance Compiler” for details on RMO syntax and preparation.
ADMINS User Guide  7 - 79



EXECUTE Statement: RMO Processing
For example:

 * RMO.REP
 *
 FILE STUFF.RMO
 *
 EXECUTE PRE
 *
 LINK XN FROM M.MAS KEY IS M
 *
 EXECUTE POST
 *
 DETAIL
      XN---------
 END

In the example, at each record REPORT calls the RMO with 'PRE' in S$S, then 
performs the LINK, then calls the RMO again with 'POST' in S$S, and finally prints 
XN.

LINKed, TABLEd, and CREATEd fields can be used in the RMO if they are declared 
as local RMO fields. Local RMO fields which are not declared in REPORT are 
available to REPORT, as though they were fields in the main file. For example:

 * STUFF.REP
 *
 FILE STUFF.RMO
 EXECUTE PRE
 LINK XM FROM M.MAS KEY IS MPRE
 EXECUTE POST
 TOTAL EOF MPOST/LA
 SUMMARY
       MPOST/LA----
 END

 * STUFF.RMS
 *
 FILE N.MAS
 LOCAL
 S$S/A6
 MPRE/I
 XM/I
 MPOST/I
 PROGRAM
 IF S$S EQ 'PRE' THEN MPRE = M + 100 ; STOP ; END
 IF S$S EQ 'POST' THEN MPOST = XM / 2 ; STOP ; END
 *

In this example, the RMO calculates the link field MPRE in the 'PRE' call. After the 
link executes, the RMO uses the linked field XM to calculate MPOST, which is 
totaled. Note that MPRE and MPOST are declared only in the RMO but can be used 
freely in the REPORT.

To invoke RMO test mode, place the qualifier "TEST" on the REPORT command line. 
The "TEST" qualifier can be used in conjunction with any other REPORT command 
line arguments, in any position.

The only special fields currently supported in REPORT RMOs are S$S, Q$Q, and 
TODAY. As before, Q$Q should only be set in the detail section of a report (that is, 
not beneath a TOTAL statement). P$P can be used to print values from the RMO 
when testing a report; but P$P should not be used in production reports because P$P 
produces output lines which are not counted by REPORT.

Elements of local arrays used in the RMO must be referenced in the REPORT via an 
ALIAS statement in the RMO, as described in Section 9.5.3 “ALIAS: Create Field 
Names for Local Array Elements”.
7 - 80   ADMINS User Guide



EXECUTE Statement: RMO Processing
REPORT opens files "-R" (read-only) by default. When an RMO is used in REPORT, 
the data file is opened "-R" unless there is an explicit file open mode in the RMS FILE 
statement (for example, FILE PHOGG.MAS-X).52

The initial setup and "compilation" phases of REPORT take slightly longer when an 
RMO is used. Once that is finished, the execution speed of REPORT is the same, 
whether one uses an RMO or the equivalent CREATE statements. The advantages of 
using an RMO lie not in simply replacing CREATE logic with RMO logic, but rather 
in streamlining the logic and eliminating pre-processing steps.

Note 1: Using Subtotals in the RMO

Subtotaled fields can be used in the RMO, but not directly. A field such as N/MAX 
cannot be declared as a local field in the RMS. Instead, the value of the subtotaled 
field is placed in a CREATEd field, and the CREATEd field is declared as a local field 
in the RMO. For example:

 * POOP.REP
 FILE POOP.RMO
     ...
 TOTAL N N/MAX N/MIN 
 CR RMID/I 1
 CR RMAX/I N/MAX
 CR RMIN/I N/MIN
 EXECUTE TOT
 SUMMARY
       RMID---------
 END

 * POOP.RMS
 FILE N.MAS
 LOCAL
 S$S/A6
 RMAX/I
 RMIN/I
 RMID/I
 PROGRAM
 IF S$S EQ 'TOT' THEN RMID = RMIN + ((RMAX - RMIN) / 2) ;
   STOP ; END

Note 2: Using RMO with SORT

When there is a SORT statement in the REPORT, each EXECUTE statement causes 
RMO calls either before or after the SORT is performed. EXECUTE statements before 
a SORT statement call the RMO before the SORT is performed, but not afterwards. 
Likewise, EXECUTE statements which follow a SORT statement call the RMO only 
in the post-sort pass.

52.  Alternative file open modes in REPORT are used to extend or restrict concurrent 
access to the file by other users while the REPORT is running. REPORT never 
writes to ADMINS data files.
ADMINS User Guide  7 - 81



EXECUTE Statement: RMO Processing
7.19.1  REP$SECLEN - Controlling Section Length in the RMO

When REPORT finishes printing an output section (a DETAIL, SUMMARY, etc.), it 
makes a decision about whether to start a new page before printing the next section. 
This prevents REPORT from splitting a section across pages, from printing a preview 
as the last thing on a page, and so forth.

When making these decisions, REPORT assumes that the next section(s) to be printed 
will contain as many output lines as are specified in the layout for the section(s).

It often happens, though, that because of floating fields and the suppression of blank 
fields, the actual number of lines printed is less than the number of lines in the layout. 
Usually, the difference is small, and makes little or no difference in how the output 
is paginated.

But a small number of reports have sections whose length varies greatly, which can 
cause REPORT to start a new page much earlier than it needs to, leaving an excessive 
number of blank lines at the end of the page. A special field, REP$SECLEN, can be 
used to tell REPORT how many lines a DETAIL or SUMMARY section will contain. 
This advance information lets REPORT make better decisions about pagination in 
reports with highly variable length sections.

REP$SECLEN/I can only be used with an RMO (see Section 7.19 “EXECUTE 
Statement: RMO Processing”), and should be declared as a local field in the RMS. To 
implement this facility, determine how many lines should be allowed for the current 
record's DETAIL section in the RMO, and set REP$SECLEN to this number.

If REP$SECLEN is set by an RMO call (EXECUTE statement, see Section 7.19 
“EXECUTE Statement: RMO Processing”) that occurs after a TOTAL statement, then 
REP$SECLEN specifies the number of lines to be allowed for that TOTAL's 
SUMMARY section.

REP$SECLEN can be used only with DETAIL and SUMMARY sections: it has no 
effect on HEADINGs or PREVIEWs.

REP$SECLEN is automatically set to -1 before each RMO call. If the RMO does not 
set it to some value between 0 and the number of lines in the layout section, 
REP$SECLEN has no effect, and the REPORT is paginated based on the length of the 
layout section.

REP$SECLEN is a specialized feature which should be used only when necessary, for 
unusual reports where the developer needs to have control over pagination. It 
requires an RMO, and the RMO must contain logic which calculates the number of 
lines in one or more layout sections as the report is running.

In some cases, REP$SECLEN may be useful in conjunction with the LAYOUT feature 
(see Section 7.13.10 “Layout Statement: Variable Formatting”). Using LAYOUT, a 
single layout paragraph can contain several different layouts, some of which may be 
considerably longer than others. REP$SECLEN can be used to set the length of the 
layout which will actually be used to print a given record or summary.

A general point about calling the RMO under a TOTAL: when the RMO is called 
under a TOTAL, REPORT has already read the next record in the file (otherwise, it 
would have no way to know that it's at the end of a control break). All fields available 
to the RMO except S$S and CREATEs under the TOTAL will have values reflecting 
the first record in the next control break.
7 - 82   ADMINS User Guide



Data Description File for Automatic Formatting
If you call the RMO under a TOTAL, and you need information from fields which 
have already been re-set by the first record of the next control break, you may be able 
to keep it in local fields in the RMS; but there is an easier way which involves less 
RMO programming and is much less confusing.

For example, assume there is a field N in the file, and you need the value of N for the 
last record in the control break in an RMO call under a TOTAL. If it's not already 
there, add N/LA to the TOTAL line, then CREATE a field under the total to hold this 
value, as follows:

      .
      .
      .
      TOTAL KEYFLD 1DATA 2DATA ... N/LA
      *
      CREATE NTOT/I N/LA
      EXECUTE SETLEN
      *
      SUMMARY

The CREATE statement must be before the EXECUTE statement.

If NTOT/I is then declared in the local section, the RMO will have the value from N/
LA when its called by the EXECUTE statement.53

7.20  Data Description File for Automatic 
Formatting

When automatic formatting as described in Section 7.5 “DETAIL Statement” is 
active, REPORT automatically builds column headings. These column headings can 
be prepared in a data description file and used in place of the field names that 
REPORT would otherwise use by default. To use a data description file during 
automatic formatting, assign a file name to the logical name ADM$FORMAT.

The DEF of a file which can be used as a data description file for REPORT, should 
include the following required fields.

     * ADMFORMAT.DEF
     * Required fields in data description file
     *
     MAS 100
     FILE An  KEY1     "File Name"
     FIELD An KEY2     "Field Name"
     HEAD1 An          "Heading, line 1"
     HEAD2 An          "Heading, line 2"
     HEAD3 An          "Heading, line 3"
     WIDTH I           "Column width"
     NT I              "Non-totalling"

As field names are encountered by REPORT when it is doing automatic formatting, 
REPORT checks the file assigned to the logical name ADM$FORMAT to see if these 
field names are present for the particular report master file. If they are present, 
REPORT uses the headings, column width, and non-totaling status information from 
ADM$FORMAT.

53.  The CREATE statement is necessary because you cannot declare a field named 
"N/LA" in the RMO.
ADMINS User Guide  7 - 83



Data Description File for Automatic Formatting
REPORT searches for fields in ADM$FORMAT under the report master file name, 
identified in the FILE statement in the REP instruction file. Created fields are 
searched for under this file name as well. Fields in link or table files are searched for 
under the link or table file name. REPORT will not know to look for link or table fields 
in the data description file unless automatic formatting has been activated prior to 
the LINK or TABLE statements. Since LINK and TABLE statements usually occur 
before a DETAIL statement, a REP instruction file which is to use automatic 
formatting should include a FORMAT statement before the LINK or TABLE is 
encountered.

Non-totaling status tells REPORT whether or not to automatically total numeric 
fields. Numeric fields (decimal and four word decimal field types) are automatically 
totaled only when the NT field equals zero.

The data description file may have other fields which will be ignored by REPORT.

In the following example, the file DATADESC.MAS which has been defined as 
above, is assigned to the logical name ADM$FORMAT. Once ADM$FORMAT is 
assigned REPORT will use it for retrieving information about the fields in a report.

     $ assign datadesc.mas adm$format

To disable REPORT from using DATADESC.MAS as the data description file, the 
logical name ADM$FORMAT should be deassigned.

7.20.1  Example Using a Data Description File

The file DEPTEMP.MAS has three fields, Department Number (DEPT/KEY1), 
Employee Number (EMP#/KEY2), and Salary (SALARY). The file EMPLOYEE.MAS 
has a key of EMP# and many fields including the Employee First and Last Name, 
FIRST and LAST. DEPTNAME.TAB is a table of Department Numbers and Names. 
DNAME is the Department Name.

The following data description file records are included in a file DATADESC.MAS.

     FILE         FIELD    HEAD1       HEAD2   HEAD3  WIDTH NT
     
     DEPTEMP.MAS  DEPT     DEPT        #              4     1
     DEPTEMP.MAS  EMP#     ID#                        8     1
     DEPTEMP.MAS  NAME     EMPLOYEE    NAME           24    1
     DEPTEMP.MAS  SALARY   SALARY      PER     YEAR   10    0
     DEPTNAME.TAB DNAME    DEPT        NAME           9     1
     EMPLOYEE.MAS EMP#     EMPLOYEE    NUMBER         8     1
     EMPLOYEE.MAS FIRST    FIRST       NAME           12    1
     EMPLOYEE.MAS LAST     LAST        NAME           12    1

The following report with automatic formatting will be produced first using the 
default automatic format, and then using the format information in the data 
description file, DATADESC.MAS.

     REPORT SALARIES
     FILE DEPTEMP.MAS
     FORMAT
     TABLE DNAME FROM DEPTNAME.TAB KEY IS DEPT
     LINK FIRST LAST FROM EMPLOYEE.MAS KEY IS EMP#
     CREATE BLANK/A1 ' '
     CREATE NAME/A24 NCAT(NAME,FIRST,BLANK,LAST)
     DETAIL DEPT EMP# NAME SALARY
     TOTAL DEPT DNAME/FI
     TOTAL EOF
7 - 84   ADMINS User Guide



Pre-Compiled Reports
Running the report prior to assigning the data description file to ADM$FORMAT 
results in the following:

 DE DNAME/FI  EMP# NAME                            SALARY
     
     12           1021 Audrey Allen                 23,000.00    
     12           1254 Cornelius Cosmos             34,500.00
     12           9256 Bruce Short                  27,000.00
                                                   ----------
     12 Personnel                                   84,500.00
     ...
     ...
                                                   ----------
                                                   277,000.00

Note that field names are used for the heading within the default field widths.

By assigning DATADESC.MAS to the logical name ADM$FORMAT, the following 
report is produced using the same REP instruction file above.

 
     DEPT DEPT      ID#  EMPLOYEE                SALARY
     #    NAME           NAME                    PER
                                                 YEAR
     
     12             1021 Audrey Allen             23,000.00
     12             1254 Cornelius Cosmos         34,500.00
     12             9256 Bruce Short              27,000.00
                                                 ----------
     12   Personnel                               84,500.00
     ...
     ...
                                                 ----------
                                                 277,000.00

The column headings and widths from the data description file are used. Note that 
the created field NAME has been included in the description file as one of the 
DEPTEMP.MAS field names. The non-totaling field, NT in DATADESC.MAS, has 
been set for no totaling in the non-numeric fields; but in this example these fields 
would not be totaled anyway because they are alphanumeric and integer fields.

7.21  Pre-Compiled Reports

REPORT normally compiles the .REP instruction form each time a report is run. 
REPORT can alternatively compile a report in an executable RPO file some time 
before the report is actually run, and then execute the pre-compiled RPO file at run 
time. Pre-compiled reports have two main benefits. (1) Complex reports which run 
on a small number of records take significantly less time to run, since the compilation 
phase is not repeated every time the report runs. (2) End users can run pre-compiled 
reports without having access to REPORT source instructions, which is desirable in 
some environments.

To compile a report without executing it, use the following command line syntax:

       $ REPORT  REP_file_name [REPORT_NAME] /COMPILE  (OpenVMS)
       $  REPORT  REP_file_name [REPORT_NAME] -COMPILE  (Windows)

REPORT_NAME is optional, and is needed only when the .REP file contains more 
than one report. The "COMPILE" qualifier must be the last argument on the 
command line, and there can only be two or three arguments.
ADMINS User Guide  7 - 85



The REPORT Environment File
When /COMPILE is specified, REPORT creates an executable .RPO file. If a 
REPORT_NAME is specified, then REPORT_NAME.RPO is created; otherwise, the 
.RPO file has the same first name as the .REP file, as in the following examples:

     $ REPORT TESTREP REPORT3/COMPILE   creates REPORT3.RPO

     $ REPORT TESTREP/COMPILE           creates TESTREP.RPO

 If no REPORT_NAME is specified, the .RPO file is created in the same directory as 
the .REP file. If a REPORT_NAME is used, the .RPO file is created in the user's default 
directory. However, if the logical name ADM$OBJECT is defined to point to a 
directory, then the .RPO file is always placed in the ADM$OBJECT directory.

To run a report using a .RPO file, the command line syntax is:

      $ REPORT RPO_NAME/RPO       (OpenVMS)
       $ REPORT RPO_NAME -RPO        (Windows)

The RPO_NAME is the first name of the .RPO file: do not include the ".RPO" 
extension. There can only be two command line arguments and the "RPO" qualifier 
must be the second argument.

When a report is run from a .RPO file, REPORT checks to make sure that the field 
names and types, and the order of the fields in the DEFs of all the files are the same 
as they were when the report was compiled. If the report uses an RMO, REPORT 
checks to see whether local fields in the RMO have been added, changed, rearranged, 
etc. If any of the file DEFs or the RMO local fields have changed since the .RPO was 
created, REPORT exits with a message and the report must be recompiled.

Values for substitutable parameters (see Section 7.14 “Parameterization”) are 
supplied during the compilation phase. They are stored in the .RPO file. When the 
report is run using the .RPO file there is no prompting for substitutable parameters. 
If it is necessary to supply a parameter to a pre-compiled report at run time, the 
parameter value can be assigned to a logical name. The report can then use the 
TRLOG subroutine to obtain the value of the parameter at run time. Unlike 
<parameters>, this method of passing information to a pre-compiled report is limited 
to passing the values of fields.

7.22  The REPORT Environment File

AdmReport has an environment file which can be used to customize its behavior, 
designed to work in the same way that the TRANS environment file modifies TRANS 
behavior (see Section 6.15 “The TRANS Environment File”). AdmReport uses the 
logical name REPORT$ENV to find the Report Environment File.
7 - 86   ADMINS User Guide



Report Overlay Feature (MERGE)
AdmReport supports the following keyords in the Report Environment File

7.23  Report Overlay Feature (MERGE)

The MERGE facility makes it possible to merge the results of several reports into one 
output printout. MERGE can often be used to simplify what would be a complex 
reporting operation by splitting it into two or more simpler reports, and then 
merging their outputs.

 Report overlay files are specified by placing the MERGE statement:54

MERGE:merge-file-name

by itself on the first line of the HEADING of the report.

keyword function

dmap has the same purpose and syntax as the dmap 
statement in TRANS$ENV: it remaps output 
characters so they display appropriately in a 
different character set than the character set they in 
which they are stored (see  Section 6.15.5 “DMAP 
and MAP” for a complete discussion of dmap 
syntax). If dmap is used, all REPORT output is 
remapped: literals as well as data

option Provides a way for AdmReport to “add or subtract” 
from the options specified in the logical name 
OPTION. For example:
option+0
ensures that “Option 0” behavior (display zero 
values in numeric fields as blanks) is specified, 
whether or not it is present in the logical name 
OPTION at run time, while:
option-0
ensures that “Option 0” behavior is not specified.

You may also use this method to locally enable or 
disable option "P" (use parentheses to indicate 
negative numbers) and option "," (comma: supress 
billions, millions, thousands delimiter in numeric 
fields).

exceloptions Rename the file typeof AdmReport -Excel output.
Syntax:

Exceloptions=ftype=XXX

Where XXX e.g. is “xls” (or “.xls”) to name the 
AdmReport -Excel output .xls instead of .xml.

(This would prevent "-XML" and "-EXCEL" output 
from being produced with the same name (and thus 
one overwriting the other), and also allow Office 
2002 to correctly launch Excel when double-clicking 
the file (Office 2003 correctly launches Excel when  
"XML" files are output using the "-EXCEL" option).
ADMINS User Guide  7 - 87



PCLtoPDF: Convert ".LIS" file to PDF format
After all REPORTs that are contributing files to be merged are run there will exist text 
files with the names "merge-file-name.DAT;1", "merge-file-name.DAT;2", etc., in the 
user's file directory. These files are overlaid, or "merged", by the MERGE command.

$ merge merge-file-name ti/lp [r]

Output can be to the terminal or the printer. If the output is to the printer, the output 
will be queued to the device assigned to ADM$SPOOL0, as described under the 
spooling system (see Chapter 21: “Printer Queues”). The presence of the "R" instructs 
MERGE not to delete the input .DAT files. (If "R" is absent, MERGE deletes these files 
after it has created the output report.) "R" would be used if the user wishes to run 
MERGE repeatedly on these files, or the user wishes to use the files for some other 
purpose after running MERGE. Note, however, that the user must see to it that these 
files are deleted before running the REPORTs again to recreate these .DAT files.

7.24  PCLtoPDF: Convert ".LIS" file to PDF format

Use the PCLtoPDF utility to conver standard report output55 to PDF format.

The syntax is:

PCLTOPDF LIS-file PDF-file 

Where the LIS_file (input) and PDF_file (output) path specifications may utilize 
ADMINS logical names. 

NOTE: PCLTOPDF.EXE requires a valid ADMINS license.

54.  Windows systems do not support file version numbers, so the developer must 
explicitly identify the "version" to be created by each REPORT in the MERGE 
statement for that REPORT (e.g. MERGE:CALENDAR.DAT;1 in the REPORT 
that creates the first file for merging, and MERGE:CALENDAR.DAT;2 in the 
REPORT that creates the second file for merging, etc.)On OpenVMS systems the 
file type and version number may be explicitly stated for each different REPORT. 
This method is recommended, as it ensures that the same REPORT will always 
produce the same version number, irrespective of the order in which the 
REPORTs are run.

55. Standard ADMINS Report format is a ".LIS" file which may contain "PCL" control 
sequences.
7 - 88   ADMINS User Guide



Report Command Line Options
7.25  Report Command Line Options

AdmReport supports command line options that allow you to create report output in 
various formats and/or view report output via various applications.

7.25.1  HTML: Create an HTML “wrapper” for output.

AdmReport can be run with the /HTML switch to place an HTML wrapper around 
the output from REPORT. This allows the output file to be viewed as a preformatted 
document in a browser.  The syntax is:

AdmReport /HTML[=filename]  REPNAME

The output file name has the file type .htm instead of the standard .lis.  If no filename 
follows the /html switch, a standard report output file name with the file type .htm 
is created, unless a file name is specified by the LP statement or a FILE: statement in 
the report source file, in which case this file name will be used.

The HTML tags generated by the /HTML switch are:

<html>
<head>
<style type="text/css">
@media print
{
pre.first {}
pre.notfirst {page-break-before: always}
</style>
</head>
<body>
<pre class="first">

Output from Report is inserted here 

</pre>
</body>
</html>

Most of the above HTML is there to support correct pagination of the report output 
when it is printed directly from the broswer.  AdmReport insert the following HTML 
tags at each point in the output where ordinary AdmReport output would start a new 
page:

</pre><pre class="notfirst">

The result is HTML output that displays correctly56 in the browser and prints 
correctly when using the browser’s print command. 

7.25.1.1  ADM$HTML_STYLEn:  Customized HTML wrapper
You can specify the HTML tages used to wrap the output from REPORT. Create a file 
with the following generalized format:

HTML tags/statements to be output before the output from REPORT

56.STYLE statements that cause, for example, PCL control sequences to be embedded 
in the report output should not be used with the HTML command line 
switch.The browser does not recognize them as control sequences so it will 
attempt to display them on the screen and in printed output.
ADMINS User Guide  7 - 89



Report Command Line Options
<!--REPORT_PAGEBREAK ccccc-->
<!--REPORT_OUTPUT-->
HTML tags/statements to be output after the output from REPORT

The line <!--REPORT_OUTPUT--> is replaced by the output from REPORT.

If you are concerned about proper pagination of this output when printed from the 
browser use the <!--REPORT PAGEBREAK  ccccc --> token to specify what 
HTML content to insert (ccccc represents the content to be inserted) at each point in 
the output where ordinary AdmReport would start a new page57.

Use this command line syntax:

AdmReport /HTMLn[=filename] REPNAME

where n is any positive number  or zero and is used to designate which logical name 
in the form:

     ADM$HTML_STYLEn

points to the “HTML wrapper” file you want to be used

7.25.1.2  Example: Customized HTML wrapper
The following customized HTML wrapper file would cause the report output HTML 
file to print in landscape mode, and paginate correctly, if printed from the browser.

<html>
<head>
<style type="text/css">
@media print
{
pre.first {writing-mode: tb-rl}
pre.notfirst {page-break-before: always;writing-mode: tb-rl}
</style>
</head>
<body>
<pre class="first">
<!--REPORT_PAGEBREAK </pre><pre class="notfirst">-->
<!--REPORT_OUTPUT-->
</pre>
</body>
</html>

Lets say this wrapper file is named “landscape_wrapper.htm” and resides in a folder 
identified by the logical name “myfiles”.  We  make the following logical name 
assignemnt:

assign myfiles:landscape_wrapper.htm adm$html_style8 
and then call report referencing our customized wrapper file:

admreport -html8 myreport
The output is “HTML-wrapped” using the customized wrapper file!

57.The “<!--REPORT_PAGEBREAK ccccc-->” line, if used,  must appear before 
the “<!--REPORT_OUTPUT-->” line.  The trailing "-->" is mandatory, and 
there must be a space following the ”<!--REPORT_PAGEBREAK “before the 
HTML content to output,  as shown in the example above.
7 - 90   ADMINS User Guide



Report Command Line Options
7.25.2  CSV: read special CSV instructions in the “.REP” file

AdmReport’s -CSV command line “switch” allows you to write specific code for CSV 
output in the same report that contains code for standard reports and/or XML 
output. This enables standard reports, XML reports, and CSV reports to use the same 
virtual record.

The command line syntax is:

AdmReport -CSV

AdmReport -CSV=outputfile

The .REP must contain standard CSV report lines starting with: 

*!csv!

(See Section 7.5.2 “DETAIL *CSV: Output in CSV Format” and Section 7.10.3 
“Summary *CSV statement : CSV output based on TOTALs” for details on how to 
specify CSV output from AdmReport.)

These lines will be seen as comments if the report is run without the -CSV switch.  The 
report instructions to be used when executed with the -CSV switch must immediately 
follow the *!CSV! prfix.  E.g.:

*!csv!HEADING
*!csv!     "ACCOUNT","TEXT","AMOUNT"
*!csv!END
*!csv!DETAIL *CSV ACCOUNT TEXT AMOUNT

When the “-CSV” command line option is used, all formatting instruction (DETAIL, 
TOTAL, SUMMARY etc) sections are discarded, while the virtual record remains 
intact).

7.25.3  Excel: Create output in Excel’s XML format

Use AdmReport’s -EXCEL command line option to create output in Microsoft Excel 
XML format58

XML for Excel is created from ordinary .REP syntax, and a single report instruction 
file (.REP) can be used to create standard REPORT (.LIS) output, and Excel XML 
output.  Because Excel is, after all, a spreadsheet, this capability is best suited for 
report layouts where the data are neatly aligned in columns.

The following simple report:
report taxbill
file RMOSUB:taxbill.mas
single
lp 1 0 0 no Taxbill.txt
select amount ne 0
*!Excel!style 70 parent=45 format=37

58.‘You’ll need Microsoft Office 2002 or later to use Microsoft Excel XML format. This 
XML format is also “recognized” by Windows as an Excel file. OpenOffice Calc 
can also handle Microsoft Excel XML format.  To specify that the browse option 
should launch Calc instead of Excel use the -CALC command line option instead 
of -EXCEL, or  (with -EXCEL on the command line) include the following in the 
REPORT Environment File (REPORT$ENV)

excel_browse=OpenOffice.org Calc
ADMINS User Guide  7 - 91



Report Command Line Options
heading
                           Tax Bills for My City today----
bl
                            Tax   Bill     Date
     Street Name         No Year  Number   Paid     Description               Amount
bl
end
detail
     street---------- ---no yea- bill#--- date----- descr----------- ---------amount
end
*!Excel!column 6 style=22
total no amount
summary
                                          Total No  no---            ---------amount
bl
end
*!Excel!column 7 style=45
total street amount
summary
                                                    Total for street ---------amount
bl
end
*!Excel!column 7 style=45
total eof amount
*!Excel!ignore line=1
*!Excel!ignore line=3
*!Excel!column 7,2 style=70
summary
                                                                     ---------------
                                                    Grand Total      ---------amount
                                                                     ===============
end

could create the following output:
                      Tax Bills for My City 03-JUL-07
 
                       Tax  Bill      Date
Street Name         No Year Number    Paid     Description               Amount
 
ABC LANE            17 2003 1234-1   01-OCT-02 2003 1. half            1,200.00
ABC LANE            17 2003 1234-2   01-APR-03 2003 2. half            1,150.00
ABC LANE            17 2004 1234-1   02-OCT-03 2004 1. half            1,250.00
ABC LANE            17 2004 1234-2   15-APR-04 2004 2. half            1,350.00
                                     Total No  17                      4,950.00
 
ABC LANE            23 2003 2345-1   25-SEP-02 2003 1. half            2,300.00
ABC LANE            23 2003 2345-2   29-MAR-03 2003 2. half            2,350.00
ABC LANE            23 2004 2345-1   01-OCT-03 2004 1. half            2,400.00
ABC LANE            23 2004 2345-2   15-APR-04 2004 2. half            2,450.00
                                     Total No  23                      9,500.00
 
                                               Total for street       14,450.00
 
CHERRY AVE           9 2003 3234-1   31-AUG-02 2003 1. half            3,200.00
CHERRY AVE           9 2003 3234-2   26-MAR-03 2003 2. half            3,200.00
CHERRY AVE           9 2004 3234-1   15-SEP-02 2004 1. half            3,250.00
CHERRY AVE           9 2004 3234-2   23-APR-03 2004 2. half            3,400.00
                                     Total No  9                      13,050.00
 
CHERRY AVE          11 2003 3345-1   16-SEP-02 2003 1. half            2,800.00
CHERRY AVE          11 2003 3345-2   16-MAR-03 2003 2. half            2,950.00
CHERRY AVE          11 2004 3345-1   13-OCT-03 2004 1. half            3,400.00
CHERRY AVE          11 2004 3345-2   03-APR-04 2004 2. half            3,450.00
                                     Total No  11                     12,600.00
 
                                               Total for street       25,650.00
 
                                                                ---------------
                                               Grand Total            40,100.00
                                                                ===============
7 - 92   ADMINS User Guide



Report Command Line Options
Run with the /Excel switch you would get Taxbill.xml which in Excel would show:

The lines starting with *!Excel! are seen as comments when the report is run in 
“normal” mode (creating and/or printing a “.LIS” file), but when run with the /Excel 
command line switch, these lines are interpreted as instructions to AdmReport’s 
Excel module that will modify its behavior.  The report would create an Excel 
spreadsheet without any *!Excel! modifiers, but you would then get default values 
for everything.

The syntax for creating an Excel XML file is:

AdmReport /Excel[=filename] reportname

The /Excel switch may be followed by a file name. If no file name is given the output 
file will be named via AdmReport's standard methods, but the file type will always 
be XML.59 , for example "admins0000561.xml". If run with the /browse switch 
AdmReport will launch Excel once the output file is produced. The /Excel switch may 
be followed by a file name, if none is supplied AdmReport will create a name for the 
output file name automatically The file type will always be modified to .XML.  If a 
report is run with the /Excel command line switch it will ignore option K (which - for 

59.The latest versions of Microsoft Office and Microsoft Windows will recognize the 
XML file as being formatted for Microsoft Excel. For earlier versions, that do not 
recognize the XML file as an Excel file, use the following statement in the 
REPORT$ENV file to tell AdmReport to instead use the file type XLS, which will 
be recognized as an Excel file.

Exceloptions=ftype=XLS
ADMINS User Guide  7 - 93



Report Command Line Options
use in Europe - reverses  the use  of "," and "." for thousand separator and decimal 
point). Also, if option E is present AdmReport uses "A4" as the Excel output 
spreadsheet’s print page size instead of "Letter" size).

When AdmReport calculates the width and data types of the columns it will use the 
layout of the DETAIL section if there is one.  If no DETAIL section is present it will 
use the first SUMMARY section.

It is very important that the output data in all sections are properly aligned and sized, 
as all output will be directed to the column where its first printable character falls.  As 
an example, look at the 7th column in our simple report above, where we specify the 
column size of the AMOUNT field.  If we in the DETAIL section had specified:

  -----AMOUNT

and in a SUMMARY section had specified:

-------AMOUNT

the SUMMARY section amount would have appeared in column 6, since its first 
(possible) printable character would fall within the boundaries of column 6 as 
calculated by the DETAIL section.

As for the HEADING section, the last and possibly the next to last, heading line will 
be tried to be used as column headers provided all text (or data) falls within the 
column boundaries as calculated from the DETAIL (or SUMMARY) section.  If any 
printable character crosses a column boundary the line is rejected as a column 
header.  If your column header text is wider than the data item in the DETAIL section, 
stretch out the space for the data item with dashes.  E.g. if you want to print a three 
digit FUND number in the DETAIL section and want the word Fund to appear as a 
column heading, specify FU-- not FU- in the  DETAIL section.

If a column header’s first character overlaps the first position of a column the column 
header is left justified.  If the last character of column header overlaps the last 
position of the column, and there are no character overlapping the first position the 
column header is right justified.  In all other cases the column header is centered.

When report would output a page break (Form Feed), a Page Break instruction for 
printing purposes is inserted into the Excel XML output. The heading section will be 
repeated at the top of each page printed from Excel, so if the report is printed from 
Excel you will get the same page breaks as you would if the report was run in 
"normal" mode to a printer. Alternatively, use the instruction 

*!Excel!pagebreak columnheaders=only

to tell AdmReport to display (and repeat at the top of each page of printed output) 
only the column headers it recognizes from the heading layout, rather than the entire 
heading. 

The appearance of the data in a column may be modified by using *!Excel!column 
statements.  These statements must follow the layout section they are modifying, and 
apply to that layout section only.  In the the simple .REP at the beginning of this 
document *!Excel!column statements follow the DETAIL and the TOTAL/
SUMMARY sections (for a TOTAL/SUMMARY section the *!Excel!column may be 
anywhere after the TOTAL statement as long as it appears before the next TOTAL 
statement).

The syntax of the *!Excel!column instruction is:

*!Excel!column column#[,line#] keyword=value
7 - 94   ADMINS User Guide



Report Command Line Options
Observe that the column number always refers to the columns as defined by the 
DETAIL section (or the first SUMMARY section if no DETAIL section is present).  The 
",line#" is only necessary if there is more than one line in the current section, and you 
are not referring to a column on line 1.

Currently the only implemented keyword is style.  To modify the style to use for a 
column, use e.g.:

*!Excel!column 6 style=22

to have column 6 appear left justified in italic.

7.25.3.1  Styles Available.
The default font is 8.5 point Arial. There are a number of styles provided to control 
how data (and literals) are presented.  Styles can specify the font, the point size, 
whether to use bold, italic or underline (or any combination of the three), whether to 
right justify, center or left justify the text, and how to format and present numbers 
and dates.

Styles are identified by a number.  Currently the following styles are available when 
outputting numeric fields:

10 Basic number displayed as 1,234 (decimal places in 
report output data are rounded to whole number)

11 Basic number rounded to 2 decimal places

12 Basic number with 2 decimal places, negative 
values in parentheses

13 Currency symbol, 2 decimal places

14 Currency symbol, 2 decimal places, negative values 
in parentheses

Value 
from 
Report

Display 
via...
Style 10 Style 11 Style 12 Style 13 Style 14

1234 1,234 1,234.00 1,234.00 $   1,234.00 $   1,234.00

1234.5 1,235 1,234.50 1,234.50 $   1,234.50 $   1,234.50

-117.506 -118 -117.51 (117.51) $     -117.51 $   (117.51)
ADMINS User Guide  7 - 95



Report Command Line Options
Styles 20 – 43 deal with various combinations of alignment and highlighting, and will 
usually be used for text data:

Some other "special purpose" styles:

Styles 45-49 can be combined with styles 20-43 for alignment and highlighting.  E.g.

*!Excel!style 70 parent=49 format=37

will create style 70 which displays numbers as whole numbers (no decimals), right 
alligned, bolded with a single line border on top and a double line border at the 
bottom.

Styles 50- 52 are used for date formats.  Using September 3, 2007 as an example, the 
formats are:

The default date style is 50.  The developer may choose one of the other two built-in 
styles by using the *!Excel!datestyle=ss, e.g.

*!Excel!datestyle=51

to choose style 51 for all date fields.

Developers may also modify the default date style 50 to format the date any way they 
want by using the *!Excel!dateformat=format instruction, e.g.

*!Excel!dateformat=d-mm-yyyy

Highlighting Aligned Left Aligned Center Aligned Right

Plain 20 28 36

Bold 21 29 37

Italic 22 30 38

Bold Italic 23 31 39

Underline 24 32 40

Bold Underline 25 33 41

Italic Underline 26 34 42

Bold Italic Underline 27 35 43

44 Bold, left justified, point size 10

45 Same as 11, but with a single border line on top, and 
a double border line underneath.

46 Like 45, but based on 12

47 Like 45, but based on 13

48 Like 45, but based on 14

49 Like 45, but based on 10

Style Code Description Example

50 Date 03-Sep-2007

51 Short date 9/3/2007

52 Medium date 3-Sep-07
7 - 96   ADMINS User Guide



Report Command Line Options
to format the date as 3-09-2005.  

The characters used to create the format mask are:

In addition, almost any character may be used as separator characters, e.g. yyyy-mm-
dd or mm/dd/yyyy.  To make sure that the separator character always is treated as a 
literal character to be inserted, precede the character with a \ (backslash), e.g. dd\/
mm\-yyyy.

Instead of having to specify the datestyle or the dateformat statements in the report 
source files they may be put in the REPORT$ENV file and thus take effect in all 
reports.  The REPORT$ENV syntax is:

Exceloptions=datestyle=ss

Exceloptions=dateformat=format

7.25.3.2  User Defined Styles.
The styles defined above basically fall into two categories: 

Styles that describes a data type (e.g. style 12) 
and

Styles that describes some highlighting and alignment options (styles 20-43).  

Developers can define their own styles by combining styles from these two 
categories, to specify number styles with highlighting (note: alignment options are 
ignored as number styles are always right justified).  The syntax is:

*!Excel!style ## parent=## format=##

E.g. 

*!Excel!style 70 parent=12 format=37

would create style number 70 that would display a number with two decimals right 
aligned in bold.

User defined styles must be numbered from 70 and up. Parent styles must be in the 
range 10-13 and formats in the range 20-43.  User defined style statements can be 
placed anywhere in the .REP instruction file, and the styles defined can be referenced 
in DETAIL and at all levels of TOTAL. 

7.25.3.3  Page Printing .

Excel reports have page printing setup capability.  This feature is controlled by the 
PageSetup keyword, in Excel reports coded as:

d 1 or 2 digit day.

dd always use 2 digits for day (i.e. 03, not just 3)

m 1 or 2 digit month number

mm always use 2 digits for month

mmm Use 3 characters for month name (e.g. Jan, Feb etc.)

mmmm Use full month name

yy 2 digit year

yyyy 4 digit year
ADMINS User Guide  7 - 97



Report Command Line Options
*!Excel!PageSetup

By default Excel Reports print

Page # of N printed date at time

PageSetup controls page headers and footers which will only show up on printed 
output (they can be viewed when the Excel window is open, but do not appear as part 
of the general display).

Following the *!Excel!PageSetup keyword are any number of lines describing what 
headers and footers to print. The general syntax is:

*!Excel!<pagepart>_<just> Text to print

where <pagepart> is either Header or Footer (controlling whether the text will be 
printed at the top or at the bottom of the page), and <just> is L, C or R controlling 
whether the text is right or left justified, or centered (you may think of the header and 
footer sections as having three panels, left, center and right, where each panel is 
controlled independent of the other panels).

An example of using the Page setup feature would be:

*!Excel!PageSetup
*!Excel!Header_L Report %%REPNAME%%
*!Excel!Header_C %%LONGNAME%%
*!Excel!Header_C For <%L_CUSTOMER>
*!Excel!Header_C Created <%TODAY> at <%NOW>
*!Excel!Header_R Page &amp;P of &amp;N
*!Excel!Footer_C Printed &amp;D at &amp;T

Field names from the virtual record are enclosed in double %-signs. <%L_name> will 
be replaced by the value of the logical name L_name.  <%TODAY> and <%NOW> 
will be replaced by the current date and time when the Excel report was created.  In 
addition you may use a number of internal Excel keywords to access certain features 
at print time.  Currently you may use:

&amp;PCurrent page number
&amp;NTotal number of pages
&amp;DCurrent date
&amp;TCurrent time

The example above might print something like:

Report Taxbills                         Preliminary Tax Bills                                  Page 1 of 6

                                            For City of High Hopes

                                      Created 11/13/2007 at 2:13 PM

                      Excel spreadsheet body ....

                     ....

                                     Printd 11/13/2007 at 6:45 PM

provided, of course, that the various L_name logical names have properly assigned 
values when the report is run.
7 - 98   ADMINS User Guide



Report Command Line Options
As can be seen from the example above, each new occurence of a reference to a panel 
will start a new line in that panel.  In our example there are three *!Excel!Header_C 
lines, which will create three lines in the center header panel.

The different lines for a panel need not be coded next to each other.  If we e.g. wanted 
to add a second line to the right header panel it could coded after the 
*!Excel!Footer_C line above, making it possible to define your "standard" heading in 
an include file, and then add individual lines to each panel after the include file, 
either in another include file, or hard coded in the .REP.

7.25.3.4  Miscellaneous Keywords.
The *!Excel! has to appear in front of all the following:

7.25.4  XML: create XML output

ADMINS now has a new "-xml" option that functions with  AdmReport. This “-xml” 
switch  changes REP's behavior so that it reads special XML preprocessor commands 
in the .REP instruction file and generates a valid XML document as output.

The -xml option can be called in three ways:

admreport -xml demo

admreport -xml=special demo

admreport -xml=SO

In the first case above -xml appears by itself.  Use this construct to have the resulting 
xml file take its name from the .REP file that is specified, so in this case demo.xml is 
generated.  

Use the second construct,  -xml=special, to explicitly name the file produced, e.g. 
"special.xml" would be created.  

Use  -xml=SO to specify direct ouput to standard output, no xml file to be created.  If 
any other string besides "SO" occurs after "-xml=" that string will be used to name the 
xml file produced.

7.25.4.1  Generation of XML
The idea is that you can write new .REP files that contain special XML preprocessing 
instructions (lines that begin with "*!xml!", "*!xmltotal!" or "*!xmlmore!"), or insert 
these special commands in existing REPORTs to take advantage of "virtual records" 
that have already been assembled. 

Here's a new .REP written expressly for XML-production: 

*demo.rep

*

ignore line=# Ignore (do not include) line number ‘#’ in this 
layout section (in our example we use it to get rid of 
lines 1 and 3 in the TOTAL EOF SUMMARY section 
(Instead we use "user defined style" 70).

layout landscape Use landscape mode when printing from Excel.

gridlines Print gridlines when printing from Excel
ADMINS User Guide  7 - 99



Report Command Line Options
REPORT VOTERSTREET

FILE VOTER.MAS-R

LINK PLACE FROM POLLING.TAB KEY IS DIST

CREATE XSN/I CCAT(XSN,#STR)

CREATE ASSEM_DIST/X999 ASSEM

SORT ASSEM STREET #STR

*!xml! #vot name xsn street #apt party dist assem

*!xmltotal! street assem_dist/FI #vot/E

*!xmltotal! assem #vot/E

The Report XML preprocessor converts this input into the following .REP, which is 
given to REPORT.

REPORT VOTERSTREET
FILE VOTER.MAS-R
SINGLE
WIDTH 254
LENGTH 0
OUTPUT LP
LINK PLACE FROM POLLING.TAB KEY IS DIST
CREATE XSN/I CCAT(XSN,#STR)
CREATE ASSEM_DIST/X999 ASSEM
SORT ASSEM STREET #STR
HEADING
     FILE:demo.xml
     «?xml version=ø1.0ø encoding=øiso-8859-1ø?»
     «?xml-stylesheet type=øtext/xslø href=øc:\bills\conf2004\demos\admdefault4lw.xslø?»
END
DETAIL
     «record»
      «no_vot» #vot---------------------------------------------------------------------------- «/no_vot»
      «name» name---------------------------------------------------------------------------- «/name»
      «xsn» xsn----------------------------------------------------------------------------- «/xsn»
      «street» street-------------------------------------------------------------------------- «/street»
      «no_apt» #apt---------------------------------------------------------------------------- «/no_apt»
      «party» party--------------------------------------------------------------------------- «/party»
      «dist» dist---------------------------------------------------------------------------- «/dist»
      «assem» assem--------------------------------------------------------------------------- «/assem»
      «/record»
END
TOTAL street assem_dist/FI #vot/E
PREVIEW
     «summary_1»
END
SUMMARY
      «street_total_1» street-------------------------------------------------------------------------- «/street_total_1»
      «assem_dist_fi_1» assem_dist/FI------------------------------------------------------------------- «/assem_dist_fi_1»
      «no_vot_e_1» #vot/E-------------------------------------------------------------------------- «/no_vot_e_1»
      «/summary_1»
END
TOTAL assem #vot/E
PREVIEW
     «summary_2»
END
SUMMARY
      «assem_total_2» assem--------------------------------------------------------------------------- «/assem_total_2»
      «no_vot_e_2» #vot/E-------------------------------------------------------------------------- «/no_vot_e_2»
      «/summary_2»
END
TOTAL EOF
PREVIEW
     «!DOCTYPE DOCUMENT ã «!ELEMENT DOCUMENT
     ((record¶summary_1¶summary_2¶summary_3¶summary_4¶summary_5¶summary_6¶summary_7¶summary_8¶summary_9)*)»
     «!ELEMENT record (no_vot,name,xsn,street,no_apt,party,dist,assem)»
     «!ELEMENT summary_1 (record*,street_total_1,assem_dist_fi_1,no_vot_e_1)»
     «!ELEMENT summary_2 (summary_1*,assem_total_2,no_vot_e_2)»
     «!ELEMENT no_vot (#PCDATA)» «!ELEMENT name (#PCDATA)» «!ELEMENT xsn (#PCDATA)» «!ELEMENT street (#PCDATA)»
     «!ELEMENT no_apt (#PCDATA)» «!ELEMENT party (#PCDATA)» «!ELEMENT dist (#PCDATA)» «!ELEMENT assem (#PCDATA)»
     «!ELEMENT street_total_1 (#PCDATA)» «!ELEMENT assem_dist_fi_1 (#PCDATA)» «!ELEMENT no_vot_e_1 (#PCDATA)»
     «!ELEMENT assem_total_2 (#PCDATA)» «!ELEMENT no_vot_e_2 (#PCDATA)»
     õ»
     «DOCUMENT»
END
SUMMARY
     «/DOCUMENT»
END

Here are some representative snippets from the output when this .REP is run: 
<?xml version="1.0" encoding="iso-8859-1"?> 
<?xml-stylesheet type="text/xsl" href="x:\admins\bin\admdefault4.xsl"?> 
<!DOCTYPE DOCUMENT [ <!ELEMENT DOCUMENT 
((record|summary_1|summary_2|summary_3|summary_4|summary_5|summary_6|summary_7|summary_8|summary_9)*)> 
<!ELEMENT record (no_vot,name,xsn,street,no_apt,party,dist,assem)> 
<!ELEMENT summary_1 (record*,street_total_1,assem_dist_fi_1,no_vot_e_1)> 
<!ELEMENT summary_2 (summary_1*,assem_total_2,no_vot_e_2)> 
<!ELEMENT no_vot (#PCDATA)> <!ELEMENT name (#PCDATA)> <!ELEMENT xsn (#PCDATA)> 
<!ELEMENT street (#PCDATA)> <!ELEMENT no_apt (#PCDATA)> 
<!ELEMENT party (#PCDATA)> <!ELEMENT dist (#PCDATA)> <!ELEMENT assem (#PCDATA)> 
<!ELEMENT street_total_1 (#PCDATA)> <!ELEMENT assem_dist_fi_1 (#PCDATA)> <!ELEMENT no_vot_e_1 (#PCDATA)> 
<!ELEMENT assem_total_2 (#PCDATA)> <!ELEMENT no_vot_e_2 (#PCDATA)> 
<!ATTLIST DOCUMENT repinfo_date CDATA #FIXED "12-Feb-2010"> 
<!ATTLIST DOCUMENT repinfo_time CDATA #FIXED "13:56:22"> 
<!ATTLIST DOCUMENT repinfo_who CDATA #FIXED "BD"> ]> 
<DOCUMENT> 
<summary_2> 
<summary_1> 
<record> 
 <no_vot> 018493</no_vot> 
 <name> MANDERVILLE, MARY L</name> 
 <xsn> 15</xsn> 
 <street> BEACON VIEW DRIVE</street> 
 <no_apt></no_apt> 
 <party> D</party> 
 <dist> 05</dist> 
 <assem> 127</assem> 
7 - 100   ADMINS User Guide



Report Command Line Options
 </record> 
<record> 
 <no_vot> 018491</no_vot> 
 <name> MANDERVILLE, CHARLES E JR</name> 
 <xsn> 17</xsn> 
 <street> BEACON VIEW DRIVE</street> 
 <no_apt></no_apt> 
 <party> U</party> 
 <dist> 05</dist> 
 <assem> 127</assem> 
 </record> 
<record> 
 <no_vot> 018492</no_vot> 
 <name> MANDERVILLE, HELEN M</name> 
 <xsn> 17</xsn> 
 <street> BEACON VIEW DRIVE</street> 
 <no_apt></no_apt> 
 <party> R</party> 
 <dist> 05</dist> 
 <assem> 127</assem> 
 </record> 
<record> 
 <no_vot> 019323</no_vot> 
 <name> MCEVILY, TODD M</name> 
 <xsn> 21</xsn> 
 <street> BEACON VIEW DRIVE</street> 
 <no_apt></no_apt> 
 <party> U</party> 
 <dist> 05</dist> 
 <assem> 127</assem> 
 </record> 
<record> 
 <no_vot> 025816</no_vot> 
 <name> RUTKA, BARBARA A</name> 
 <xsn> 58</xsn> 
 <street> BEACON VIEW DRIVE</street> 
 <no_apt></no_apt> 
 <party> U</party> 
 <dist> 05</dist> 
 <assem> 127</assem> 
 </record> 
<record> 
 <no_vot> 020654</no_vot> 
 <name> MORAWSKI, LILLIAN</name> 
 <xsn> 68</xsn> 
 <street> BEACON VIEW DRIVE</street> 
 <no_apt></no_apt> 
 <party> U</party> 
 <dist> 05</dist> 
 <assem> 127</assem> 
 </record> 
 <street_total_1> BEACON VIEW DRIVE</street_total_1> 
 <assem_dist_fi_1> 127</assem_dist_fi_1> 
 <no_vot_e_1> 6</no_vot_e_1> 
 </summary_1>
.
.
.
<record> 
 <no_vot> 018678</no_vot> 
 <name> MARMOR, HARRIS</name> 
 <xsn> 178</xsn> 
 <street> WYNN WOOD DRIVE</street> 
 <no_apt></no_apt> 
 <party> D</party> 
 <dist> 07</dist> 
 <assem> 134</assem> 
 </record> 
 <street_total_1> WYNN WOOD DRIVE</street_total_1> 
 <assem_dist_fi_1> 134</assem_dist_fi_1> 
 <no_vot_e_1> 3</no_vot_e_1> 
 </summary_1> 
 <assem_total_2> 134</assem_total_2> 
 <no_vot_e_2> 1,438</no_vot_e_2> 
 </summary_2> 
</DOCUMENT> 

The following shows a typical ADMINS .REP file to which XML preprocessor 
commands have been added:

REPORT RESALE

FILE RE.MAS-R

SINGLE

OUTPUT <<Enter Print Device TI or LP>>

LP 1 0 0 RESALE.LIS

*

nrecs 500

LINK NAME FROM REACCOUNT.MAS KEY IS 1ACCT

*

CO BL/A1

CO TLOT/A6 NCAT(TLOT,LOT,BL,EXT)

*

ADMINS User Guide  7 - 101



Report Command Line Options
SELECT PURCHASE GT 0

*

SORT LSTREET LHSE

*

STYLE SETUP LANDSCAPE 13_CPI SKIP_P LINESINCH8

*

HEADING

1/1

     ***RESALE***

1/45

     REAL ESTATE SALES REPORT

1/90

     TODAY----

1/120

     PAGE: PGNO-

BL

3/1

     Owner's Name              Sale Date   Vol  Page   Acct#

3/60

     Property Location      Map Lot    Unt   Assessment  Sale Price

BL

END

*

DETAIL

1/1  

C    NAME--------------------- ACQDA----  -VOL -VPAG   1ACCT-

1/60

     LHSE- LSTREET---------- MA- TLOT-- UNT- ------GROSS ---PURCHASE 

END

*

*!xml! name acqda vol vpag 1acct lhse lstreet 

*!xml! ma tlot unt gross purchase

*!xmltotal! lstreet gross/max gross/min purchase/max purchase/min

TOTAL EOF MAP/E

SUMMARY

BL

     *** Grand Total Parcels: MAP/E---

END

*

Note that the preprocessor commands look "commented", so that if this .REP were 
given to REPORT without using the "-xml" option the preprocessor commands 
would be ignored.
7 - 102   ADMINS User Guide



Report Command Line Options
7.25.4.2  REPORT's XML Preprocessor
REPORT's XML  Preprocessor works as follows.

If REPORT is called with the "-xml" option, all lines in the input file are ignored 
except the lines that begin with any of the following strings starting in column 1:

Report Statements

FILE

LINK

TABLE

CR                          (create)

CO                          (compute)

EX                           (execute)

NREC            

SEL                        (select)

ORSEL                  (orselect)

KEY          

SORT 

Any of the above lines that are encountered before an XML preprocessor command 
are passed to the output .REP without change. Once an XML preprocessor command 
is encountered, only preprocessor commands and CREATE/COMPUTE commands 
are recognized and processed.

XML Preprocessor Statements

Once an XML preprocessor command is encountered only XML preprocessor 
commands (and CReate or COmpute statements that occur after an XMLTOTAL) are 
processed (all other subsequent REPORT syntax is ignored).

7.25.4.3  XMLOPTIONS Statement
The XMLOptions statement is used to specify alternate behaviors. The following 
alternate behaviors are supported:

Currently only "nocomma" is supported.  Keywords are specified in a blank-
separated list, as follows:

*!xmloptions! keyword1 keyword2 keyword3

*!XMLSTYLESHEET! see "L$XSL_STYLESHEET: Specifying the stylesheet" below

*!XMLOPTIONS!

*!XML! XML preprocessor "DETAIL" command

*!XMLTOTAL! XML preprocessor "TOTAL" command

*!XMLMORE! XML preprocessor "TOTAL" continuation command

Keyword Behavior

NOCOMMA Suppresses commas in decimal and integer fields.
ADMINS User Guide  7 - 103



Report Command Line Options
7.25.4.4  XML Statement
The XML statement specifies an ADMINS Report DETAIL section to the 
preprocessor.

Multiple XML statements are allowed but they must be consecutive lines (no 
intervening lines of any kind). 

Multiple XML statements result in a single DETAIL section in the report instruction 
file output by the preprocessor. 

XML statements encountered after an XMLTOTAL statement are ignored.

Each time a DETAIL section is output an XML “record” element is created, with each 
of the fields specified in the XML statement output as “child” elements of the  
“record” element. 

Fields from the virtual record identified in the XML statement are output as XML text 
elements with the field name (all lowercase) used as the tag, unless the field name is 
an invalid tag.  If the field name begins with a number the tag for the text element will 
have the lead number replaced with the number spelled out, followed by an 
underscore, e.g. ADMINS field "0FLD" will have a tag of  "zero_fld" and ADMINS 
field "2ADDR" will have a tag of "two_addr".  If the field name includes the pound 
sign, "#", the string "no_" is substituted for the pound sign in the tag for that element 
(thus ADMINS field name VOTER#1 becomes XML tag voterno_1).  

As we saw in the example above the XML statement:

*!xml! #vot name xsn street #apt party dist assem

results in the following DETAIL section when output from the preprocessor:

«no_vot» #vot------------------------------------------------------------- «/no_vot»
«name» name------------------------------------------------------------- «/name»
«xsn» xsn-------------------------------------------------------------- «/xsn»
«street» street----------------------------------------------------------- «/street»
«no_apt» #apt------------------------------------------------------------- «/no_apt»
«party» party------------------------------------------------------------ «/party»
«dist» dist------------------------------------------------------------- «/dist»
«assem» assem------------------------------------------------------------ «/assem»
«/record»

This DETAIL section, in turn, results in XML like the following being output for each 
record when the report is run:

<record> 
 <no_vot> 018493</no_vot> 
 <name> MANDERVILLE, MARY L</name> 
 <xsn> 15</xsn> 
 <street> BEACON VIEW DRIVE</street> 
 <no_apt></no_apt> 
 <party> D</party> 
 <dist> 05</dist> 
 <assem> 127</assem> 
 </record> 

7.25.4.5   XMLTOTAL and XMLMORE Statements 
The XMLTOTAL statement specifies an ADMINS Report TOTAL statement and 
SUMMARY section to the preprocessor.  XMLMORE statements provide 
continuation lines for the XMLTOTAL statements that they follow.  Each group of 
XMLTOTAL and any subsequent XMLMORE statements specify a single TOTAL/
SUMMARY grouping.   
7 - 104   ADMINS User Guide



Report Command Line Options
The item after the *!xmltotal! token specifies the break field for the report TOTAL 
statement.  It may be either:

— a field name to specify a control break whenever that field changes (must 
be a key field or SORT field)

— EOF to specify a TOTAL EOF
— A number to specify that the report should output a SUMMARY 

whenever that number of records is output.  ***NOT YET 
IMPLEMENTED***

Each time an XMLTOTAL preprocessor section is encountered an XML 
"summary_n" element is created (where n is the summary number, first 
XMLTOTAL/XMLMORE group creates is summary_1, second creates summary_2, 
etc.), with each of the fields specified in the XMLTOTAL/XMLMORE statements 
output as "child" elements of the  "summary_n" element. 

All record elements (resulting from XML statements as described above) are 
"children" of  summary_1 elements if XMLTOTAL occurs.  In turn all summary_1 
elements are children of summary_2 elements if they exist, and so on for each 
succeeding higher level of summary created by each succeeding XMLTOTAL section 
encountered. Record and summary_n child elements occur before the child elements 
resulting from the fields specified in the XMLTOTAL/XMLMORE statements. 

Thus xml preprocessor statements in this form

*!xml!  fields…

*!xmltotal!  "total" fields…

*!xmltotal!  "total" fields…

*!xmltotal!  "total" fields…

produce a xml document with the following generalized structure

<summary_3> 

    <summary_2>

        <summary_1>

            <record> (field elements here) </record>

             one record element for each "DETAIL" record

            <record> (field elements here) </record>

            (summary_1 "total" field elements here)

        </summary_1>

        one summary_1 element for each 1st level TOTAL break

        <summary_1>

             one record element for each "DETAIL" record

            (summary_1 "total" field elements here)

        </summary_1>

        (summary_2 "total" field elements here)

    </summary_2>

     one summary_2 element for each 2nd level TOTAL break

    (summary_3 "total" field elements here)

<summary_3> 

one summary_3 element for each 3rd level TOTAL break
ADMINS User Guide  7 - 105



Report Command Line Options
If a field name is specified for a break the string "_total_" followed by the summary 
number is appended to the tag for that field.  For example, in the following 
XMLTOTAL line:

*!xmltotal! assem #vot/E amt 1addr

ASSEM is the total break field. If this line were the second XMLTOTAL encountered 
then the tag for ASSEM would be "assem_total_2".  Other (non-break) fields from the 
virtual record identified in the XMLTOTAL/XMLMORE statements that do not have 
aggregation operators will be output in the same way. In the example above the field

AMT would be output with the tag "amt_total_2". As explained above for the XML 
(DETAIL) statement, if the tag that would be generated would be invalid because the 
field name begins with a number or contains the "#" character, a valid tag is 
substituted. Thus in the example above field 1ADDR would be output with tag 
"one_addr_total_2".  When Adm Report’s aggregation operators are appended to the 
field name, e.g. #VOT/E above, valid tags are constructed by replacing the "/" with 
"_" and appending another "_" followed by the summary number. Thus #VOT/E is 
given the tag "no_vot_e_2". 

Thus the XMLTOTAL statement: 

*!xmltotal! street assem_dist/FI #vot/E

results in the following TOTAL statement, PREVIEW section and SUMMARY section 
when output from the preprocessor:

TOTAL street assem_dist/FI #vot/E
PREVIEW
     «summary_1»
END
SUMMARY
      «street_total_1» street---------------------------------------------------- «/street_total_1»
      «assem_dist_fi_1» assem_dist/FI-------------------------------------------- «/assem_dist_fi_1»
      «no_vot_e_1» #vot/E-------------------------------------------------------- «/no_vot_e_1»
      «/summary_1»
END

This TOTAL statement and SUMMARY section, in turn, results in XML like the 
following being output for each control break when the report is run:

 <summary_1>
.
.
.
 <street_total_1> WYNN WOOD DRIVE</street_total_1> 
 <assem_dist_fi_1> 134</assem_dist_fi_1> 
 <no_vot_e_1> 3</no_vot_e_1> 
 </summary_1> 

7.25.4.6  XML Attributes
XML "element attributes" can be specified in the XML Preprocessor commands, as in 
the following example:

REPORT RESALE

FILE RE.MAS-R

SINGLE

LINK NAME FROM REACCOUNT.MAS KEY IS 1ACCT

*

CREATE BL/A1

CREATE TLOT/A6 NCAT(TLOT,LOT,BL,EXT)

CREATE COLOR/A10 IF PURCHASE GT 500000 THEN 'YELLOW' ELSE ' ' END

CREATE FONT/A2 IF ACQDATE GT 'April 1, 1998' THEN '16' ELSE ' ' END

*

7 - 106   ADMINS User Guide



Report Command Line Options
SELECT ACQDATE BET 'January 1, 1998' AND 'December 31, 1998'

SELECT PURCHASE GT 0

*

SORT LSTREET LHSE

*

*!xml! name(desc="Buyer") acqdate(desc="Date of Sale") vol vpag 
1acct lhse lstreet 

*!xml! ma tlot unt gross(desc="Assessed Value" aln="R") 

*!xml! purchase(desc="Purchase Price" aln="R" color?=red font?=12)

*!xmltotal! lstreet(desc="summary for" aln=C) gross/max(desc="high 
valuation" aln=R) 

*!xmlmore! gross/min(desc="low valuation" aln=R ) purchase/
max(desc="high sale" aln=R) 

*!xmlmore! purchase/min(desc="low sale" aln=R sumbgcolor?=white 
sumfgcolor?=teal)

CREATE SUMBGCOLOR/A10 IF purchase/min gt 1000000 then 'Yellow' ELSE 
' ' END

CREATE SUMFGCOLOR/A10 IF purchase/min gt 1000000 then 'Red' ELSE ' 
' END

*!xmltotal! eof  gross/max(desc="high valuation" aln=R) 

*!xmlmore!  gross/min(desc="low valuation" aln=R ) purchase/
max(desc="high sale" aln=R) 

*!xmlmore!  purchase/min(desc="low sale" aln=R eofbgcolor?=white 
eoffgcolor?=teal)

CREATE EOFBGCOLOR/A10 IF purchase/min gt 1000000 then 'Yellow' ELSE 
' ' END

CREATE EOFFGCOLOR/A10 IF purchase/min gt 1000000 then 'Red' ELSE ' 
' END

In the XML Preprocessor statements note the contents of the parentheses, for example 
in the line:

*!xml! name(desc="Buyer") acqdate(desc="Date of Sale") vol vpag 
1acct lhse lstreet 

the grouping 

name(desc="Buyer")

tells the preprocessor that the XML child element "name" should have the attribute 
"desc" with a default value of "Buyer", while the grouping

acqdate(desc="Date of Sale")

tells the preprocessor that the XML child element "acqdate" should have the attribute 
"desc" with a default value of "Date of Sale".

Default attributes for child elements (fields in ADMINS Report) of the record 
elements (DETAIL sections) or the summary_n elements (SUMMARY sections) are 
implemented by outputting a an XML Document Type Definition (DTD) that 
specifies the default value for the attribute of the element. The entries in the DTD 
generated by the "name" and "acqdate" groupings  discussed above would look like 
this:

<!ELEMENT name (#PCDATA)> 

<!ELEMENT acqdate (#PCDATA)>

.

ADMINS User Guide  7 - 107



Report Command Line Options
. 

<!ATTLIST name desc CDATA "Buyer"> 

<!ATTLIST acqdate desc CDATA "Date of Sale">

Attributes can be determined dynamically by tying the attribute value to a field in the 
report virtual record with the REPORT XML Preprocessor "?=" operator:

*!xml! purchase(desc="Purchase Price" aln="R" color?=red font?=12)

This line tells the XML preprocessor that the element "purchase" has four attributes: 
"desc" with a default value of  "Purchase Price"; "aln" default value "R"; "color" default 
value "red"; and "font" default value "12".  In addition, the "?=" operator used for the 
color and font attributes means that the ADMINS virtual record will have fields 
named COLOR and FONT and if either of these fields have a non-null value then that 
value should be output for that attribute for that instance of the purchase element.  It 
is the developers responsibility to make sure the fields referenced with the "?=" 
operator are present in the report virtual record.  The sample report instruction file 
above includes these the two create statements:  

CREATE COLOR/A10 IF PURCHASE GT 500000 THEN 'YELLOW' ELSE ' ' END

CREATE FONT/A2 IF ACQDATE GT 'April 1, 1998' THEN '16' ELSE ' ' END

The combination of these CREATE statements and the use of the "?=" operator results 
in the purchase element being output with the color attribute set to "YELLOW" if  
PURCHASE has a value greater than 500,000 (and set to its default  of "RED" 
otherwise); and with the FONT attribute set to "16" if ACQDATE is after "April 1, 
1998" (and set to its default of "12" otherwise). 

The following shows what the resultant XML would look like for the purchase 
element with the COLOR and FONT attributes being set dynamically:

<purchase 
  color = " YELLOW                                                   " 
  font = " 16                                                        " 
 > 775,000</purchase> 

The XML preprocessor supports CREATE statements after XMTOTAL/XMLMORE 
groupings to facilitate the use of dynamically set attributes for child elements of 
summary_n elements.  The following lines, excerpted from the above sample report 
instruction file, illustrate this capability:
*!xmltotal! lstreet(desc="summary for" aln=C) gross/max(desc="high valuation" aln=R) 
*!xmlmore! gross/min(desc="low valuation" aln=R ) purchase/max(desc="high sale" aln=R) 
*!xmlmore! purchase/min(desc="low sale" aln=R sumbgcolor?=white sumfgcolor?=teal)
CREATE SUMBGCOLOR/A10 IF purchase/min gt 1000000 then 'Yellow' ELSE ' ' END
CREATE SUMFGCOLOR/A10 IF purchase/min gt 1000000 then 'Red' ELSE ' ' END
*!xmltotal! eof  gross/max(desc="high valuation" aln=R) 
*!xmlmore!  gross/min(desc="low valuation" aln=R ) purchase/max(desc="high sale" aln=R) 
*!xmlmore!  purchase/min(desc="low sale" aln=R eofbgcolor?=white eoffgcolor?=teal)
CREATE EOFBGCOLOR/A10 IF purchase/min gt 1000000 then 'Yellow' ELSE ' ' END
CREATE EOFFGCOLOR/A10 IF purchase/min gt 1000000 then 'Red' ELSE ' ' END

The variable attribute information could be utilized in a stylesheet (e.g. an XSL file 
described below) to create an HTML display of various elements in different colors 
and or fonts , determined by values present in the data.
7 - 108   ADMINS User Guide



Report Command Line Options
7.25.4.7  Special Handling of Text Fields
The XML Preprocessor  uses a special syntax to identify text fields, so that REPORT 
can handle them in a special way that avoids potential syntax errors in the .REP file 
generated by the preprocessor.

In the following XML statement:

*!xml! fremail(desc="Submitter's email") subject msg(text desc=Feedback aln=T) 

the grouping "msg(text desc=Feedback aln=T)" specifies that the field MSG should be 
output with the attributes

desc and aln set to "Feedback" and "T" respectively, as described previously, and the 
presence of the keyword "text" inside the attribute list identifies MSG as a field that 
should receive special "text field" processing. 

In the generated report, the instructions for outputting field MSG and its tags end up 
looking like this:
«msg»
msg-------------------------------------1---------------------------------------
«/msg»

The embedded "1" in the field designator for MSG (ordinarily the posiition of the "text 
height" specifier for text fields) signals special processing to REPORT, avoiding the 
normal restrictions imposed on text fields that would prevent, for example, two text 
fields from being displayed in their entirety in the same DETAIL or SUMMARY 
paragraph.

7.25.4.8  Special Document Attributes Store Report Info
Three attributes describing the circumstances of the creation of the XML file are 
automatically included in the XML created by the AdmReport "-XML" command line 
option. This information is stored in the on-board DTD (document type definition) of 
the XML file as fixed default attributes of the DOCUMENT element (the root 
element). 

The three fixed default attributes are:

repinfo_date: The date when the REP or RPX was run.
repinfo_time: The time when the REP or RPX was run.
repinfo_who: The username that ran the REP or RPX.

The attributes appear in the XML file's DTD as in the following snippet:

<!ATTLIST DOCUMENT repinfo_date CDATA #FIXED "12-Feb-2010"> 
<!ATTLIST DOCUMENT repinfo_time CDATA #FIXED "13:56:22"> 
<!ATTLIST DOCUMENT repinfo_who CDATA #FIXED "BD"> 

7.25.4.9  The XSL Stylesheet
ADMINS Inc. provides a "generic" XSL stylesheet , admdefault4.xsl, usually kept in 
the same directory as the admins "exe" files, that can be used with the XML output 
from any report produced by the XML preprocessor.  This  XSL stylesheet provides 
a template to display the XML produced by the XML-preprocessed REPORT as an 
HTML table made up of one row per record and one column per field. Summary 
elements of various levels are displayed in contrasting colors.

This stylesheet will look for six "hardwired" element attributes. 
ADMINS User Guide  7 - 109



Report Command Line Options
7.25.4.9.1  DESC: column heading and summary label
If an element has the attribute "desc" it will be used as a column header and as a label 
in summary elements (if no desc attribute is present the element  name from the XML 
document is used). 

7.25.4.9.2  ALN: cell formatting and display
If an element has an "aln" attribute it will be used to align the element's content in the 
table cell (L=left, C=center, R=right, P="preformatted", T="text box").  If  the aln 
attribute is set to "X" the element will not be displayed. If a "summary_n" element has 
an aln attribute set to the value "preview" it will be displayed before its child 
summary or record elements are displayed.

If the aln attribute is set to "link", the elements contents are rendered as a clickable 
hypertext link, with the target for the link specified by an another attribute for the 
same element that begins with the letters "href". For example:

*!xml!   HART(desc="Hovedart" aln=link HREFHART?="")

where the target of the link is to be specified in the attribute HREFHART which is 
blank by default and will be loaded with the contents of the field HREFHART in the 
REPORT virtual record.

 

7.25.4.9.3  CELLCLASS: color and font characteristics
If an element has a "cellclass" attribute it is used to set color and font characteristics 
for the table cell. The default stylesheet defines the following classes of cells:

Cellclass Foreground Background Font Style

Red Red White Default

Orange Orange White Default

Yellow Yellow White Default

Blue Blue White Default

Black Black White Default

Gray Gray White Default

Purple Purple White Default

Pink Pink White Default

Teal Teal White Default

White White Black Default

Warn White Red bold, italic
7 - 110   ADMINS User Guide



Report Command Line Options
This XML preprocessor statement specifies that field d2 should be output with the 
column description "money", right justified within the table cell, and displayed in 
orange text on a white background.

*!xml! d2(desc=money aln=R cellclass=orange)

You can use the "cellclass" attribute to make text and background color, as well as 
font style, data-dependent.

Use the XML preprocessor "?=" operator (described above) to specify different values 
for the cellclass attribute depending on data values, as in the following example.

This CREATE statement, in conjunction with the XML preprocessor statement that 
follows it, specifies that field n should be displayed as cellclass "warn" (white on red, 
bold, italic) if the value of field d2 is larger than 1,000, displayed as cellclass "alert" 
(black on yellow, bold, italic) if the value of field d2 is less than zero, and otherwise 
displayed as cellclass "yellow" (the default cellclass for field n).

create cellclass/a20 if d2 gt 1000 then 'warn' else if d2 lt 0 then 
'alert' else ' ' end

*!xml! n(desc=thekey aln=R cellclass?=yellow)

It is expected that developers will create additional cellclasses that meet their 
particular requirements by altering the default stylesheet, admdefault4.xsl.   The 
section of the default stylesheet that contains the cellclass definitions looks like this: 

<style>
  td.red    { color: red     }
  td.orange { color: orange  }
  td.yellow { color: yellow  }
  td.blue   { color: blue    }
  td.black  { color: black   }
  td.gray   { color: gray    }
  td.purple { color: purple  }
  td.pink   { color: pink    }
  td.teal   { color: teal    }
  td.white  { color: white; background-color: black  }
  td.warn   { color: white; background-color: red; 

Alert Black Yellow bold, italic

Cellclass Foreground Background Font Style
ADMINS User Guide  7 - 111



Report Command Line Options
              font-weight: bolder; font-style: italic}
  td.alert   { color: black; background-color: yellow; 
              font-weight: bolder; font-style: italic}
</style>   

7.25.4.9.4  ADM_HEADING: override default document heading
If any element has an "adm_heading" attribute it is used to override the default 
heading ("ADMINS Web Report") 

7.25.4.9.5  ADM_TITLE: override default document title
If any element has an "adm_title" attribute it is used to override the default title 
("ADMINS Web Report") 

7.25.4.9.6  ADM_BORDER: suppress display of table cell borders
If any element has an "adm_border" attribute it is used to set the border width of the 
table cells (the default is 1).

If you set adm_border = 0 then table cell borders are suppressed.

These XML preprocessor statements specify that the document heading is "Heading 
for Demo", that the document title (appears in the Windows banner) is "Demo Title", 
and that table cell borders should be suppressed.  Note that the adm_heading, 
adm_title, and adm_border attributes can be declared for any element - it does not 
matter which and they should be declared only once.  Note also that when 
adm_border is declared cell-padding is increased.
*!xml! n(desc=thekey aln=R cellclass?=yellow) 
*!xml! fld(desc=thefld adm_heading="Heading for Demo" adm_title="Demo Title")
*!xml! d2(desc=money aln=R cellclass=orange adm_border=0)

7.25.4.10  L$XSL_STYLESHEET: Specifying the stylesheet
The name of the XSL file that should be used to display the XML file produced by the 
XML Preprocessor is written into the XML file when it is created. Specify the XSL file 
you want to be used by assigning its path specification to the logical name 
L$XSL_STYLESHEET, e.g. to indicate that the generic stylesheet supplied by 
ADMINS is to be used you would make a logical name assignment similar to:

Admlcr l_xsl_stylesheet c:\progra~1\admins\bin\admdefault4.xsl 
7 - 112   ADMINS User Guide



Report Command Line Options
To use a different stylesheet, just load its path into the L$XSL_STYLESHEET logical:

Admlcr l_xsl_stylesheet stylecolor.xsl

As the preprocessor-generated .REP uses an ADMINS logical parameter 
<L$XSL_STYLESHEET>, if this logical name is not assigned REPORT will prompt for 
it. If no path information is provided with the file name, as in the above example, the 
XML interpreter will expect the XSL file to be in the same location as the XML file. 

7.25.4.10.1  Identifying the stylesheet inside the .REP file
Alternatively, the XSL file can be named inside the .REP, using the "*!xmlStyleSheet!" 
preprocessor statement, as follows:

 *!xmlStyleSheet! c:\bills\admdefault4lw.xsl

If the *!xmlStyleSheet! statement is present the L$XSL_STYLESHEET  logical name is 
not checked and REPORT will not prompt if it is not assigned.  "Hardcoding" the 
stylesheet specification in this manner ensures that no prompting for the unsupplied 
logical parameter is attempted (a valuable feature for automatic scripts that are used 
for instance in the webserver environment).  

7.25.4.10.2  Example: using the "default" stylesheet
Here's an example of what an XML file looks like when displayed using the 
ADMINS' default XSL stylesheet (of course you can write your own XSL to display 
the generated XML in any way you like).  For a good place to start learning about 
XSL, try  http://www.w3schools.com/xsl/.
ADMINS User Guide  7 - 113



Report Command Line Options
7 - 114   ADMINS User Guide



Chapter 8:Expressions

There are a number of situations in ADMINS where expressions are used. These 
include:

1. Record maintenance procedures (RMO's) used with TRANS, MAINT, MOVE, 
PROD, and REPORT

2. SELECT, CREATE, and RECODE statements in a report instruction file (REP)
3. Virtual and Message fields and the Check statements in a screen instruction file 

(TRS)
4. SELECT statements in a file definition (DEF)

The syntax and operators used in all these situations are essentially the same, with the 
exception that there are certain constructions (e.g. GOTO, labels, etc.) usable only in 
record maintenance procedures. These exceptions are reviewed in Chapter 9: “CMP: 
The Record Maintenance Compiler” on the Record Maintenance Compiler.

8.1  Constants

Constants may appear in any expression wherever a field name would be valid. The 
general convention for specifying a constant and its type is 'VALUE/TYPE' where 
VALUE is a string of data type TYPE and enclosed in apostrophes. TYPE can be any 
data type (Ln, Dn, Fn, I, DA, DT, TM, An or Xpic) as described in Section 2.4.2 “Field 
Data Types”, or a reference to a Data Dictionary element may be substituted for the 
field type specification as described in Section 1.4.5 “Referencing Data Dictionary 
Elements”.

The type of the constant is determined by the following rules.

1. If the constant contains a "/TYPE" designation then the type is taken as 
designated. For example:

     PERCENT = ( AMOUNT * '100/D' ) / TOTAL
2. If the constant contains a decimal point and no "/TYPE" designation, the 

constant is taken as a Dn where n is determined by the number of places to the 
right of the decimal point. That is, "100." is D but "100.1" is D1 and "100.10" is D2.

3. If the constant does not contain a "/TYPE" designation or a decimal point, the 
type is assumed to be the same as the type of the field (or constant) that appeared 
to the immediate left of the constant whose type is being determined.

Note the use of the apostrophes in the constant '100/D'. The apostrophes are 
necessary to determine whether a value is a constant or a field name. In the 
expression:

     NAME = JOHN
ADMINS User Guide   8 - 1



Arithmetic Operators
JOHN is assumed to be a field name and is only treated as a constant if there is no 
field named JOHN. However, in the expression:

     NAME = 'JOHN'

'JOHN' is always a constant. Numeric values such as 100 or 123.45, which are not 
valid field names because they begin and end with a digit, need not be enclosed in 
apostrophes.

When ADMINS analyzes a string in an instruction file to determine whether it is a 
field name, constant or operation, the following rules are used:

1. If the string is an operator (e.g. "+", "OR", "GT"), or punctuation (e.g. left 
parenthesis), or an operation name (e.g. GOTO), then ADMINS treats it as such.

2. If the string begins and ends with a digit, then the string is treated as a constant. 
Also, if the string contains a slash it is treated as a constant of the type 
designated after the slash.

3. Otherwise, the string is evaluated as an actual field name or as a local field 
name. If in fact the string is not the same as a field name, then it is treated as a 
constant. Remember, by the time ADMINS is analyzing expressions both the file 
to be read and all local fields are fully known.

Note, a "string" is defined as:

1. A sequence of consecutive non-blank characters or
2. those characters, including blanks, enclosed in apostrophes.

8.2  Arithmetic Operators

The arithmetic operators1 used in ADMINS are:

     

1.    The "modulus" expression "X % Y" produces the remainder when X is divided by 
Y, where X and Y are any ADMINS numeric field types. If necessary, the result 
is rounded.

Operator Function

+ add

- subtract

* multiply

/ divide and round

// divide and truncate

% modulus
8 - 2   ADMINS User Guide



Arithmetic Operators
These operators are for use only with numeric field types, i.e., integer (I), longword 
decimal (Ln), decimal (Dn), and four-word decimal (Fn) type fields. All the fields in 
an arithmetic expression must be of the same type and may never be mixed, although 
L, D or F fields may be defined with a different number of decimal places. However, 
data types can be converted one to another using the NCAT subroutine described in 
Appendix H.3.2 “NCAT - Converting Between Field Types”.

8.2.1  Decimal Operations

Internal intermediate results preserve the degree of precision of the most precise field 
or constant in the expression. (That is, the field with the greatest number of decimal 
places.)

For example, if FLD3 (type D3) equals 3.333 and FLD2 (type D2) equals 1.16; then if 
FLD1 is type D1 the addition FLD1 = FLD3 + FLD2 produces the result FLD1 = 4.5. 
The internal maintained as type D3 field would be 4.493, and it is rounded to 4.5 
because the result field is a D1.

If FLD2 equals 2.22 and FLD1 equals 1.1, then in the expression FLD1 = FLD2 * FLD1, 
the internal result of FLD2 * FLD1 as a D3 quantity would be 2.442. This result is 
rounded to FLD1 = 2.4.

If an internal result exceeds the maximum precision of any factor in the expression, 
it is rounded. For example, given FLD1/D1, FLD3/D3, FLD4/D4, and FLD5/D5 and 
the expression FLD1 = FLD3 * FLD4 * FLD5, the result of the first multiplication 
(FLD3 * FLD4) is accurate to 7 places. But the most precise factor is FLD5, so the 
intermediate result is rounded to 5 places before being multiplied by FLD5. This 
reduces the possibility of overflow in intermediate results (too many digits for a Ln, 
Dn or Fn field to hold).

If FLD2/D2 equals 3.00 and FLD1/D1 equals 2.0, then in the expression FLD1 = FLD1 
/ FLD2, the internal result of FLD1 / FLD2 as a D2 quantity is 0.67. It is rounded to 
FLD1 = 0.7. Intermediate rounding to the maximum accuracy of any factor works as 
in multiplication.

Note that divide and truncate (//) truncates the internal result. FLD1 = FLD1 // 
FLD2 produces the internal result 0.66, which is truncated to FLD1 = 0.6 in the result.

One final point: intermediate results are kept in L, D or F fields, and can therefore 
"overflow" out of these fields. As a rule of thumb, if your application does complex 
computations and you require 10 digits of precision, or more, use F fields.
ADMINS User Guide  8 - 3



Comparison and Special Operators
8.3  Comparison and Special Operators

The comparison operators used in ADMINS are:

     

For example:

     A EQ B
     C GT D
     E GE 50.00

Comparison operators work on all data types. However, field types cannot be mixed 
in comparison expressions. Alphanumeric ("An") fields must be of the same width to 
be compared. For example, given an expression of the form:

     IF AFLD EQ BFLD THEN ....

If AFLD is a field of type "A10", then BFLD must be of type "A10".

The syntax for between (BET) is A BET B AND C, where C is greater than B, as in:

     DATE BET 01-JAN-75 AND 31-DEC-75

A special syntax form is provided for use when EQ or NE comparisons are made to 
a list of values:

     A EQ B OR C OR D ...

is the same as

     (A EQ B) OR (A EQ C) OR (A EQ D) ...

and

     A NE B AND C AND D ...

is the same as

     (A NE B) AND (A NE C) AND (A NE D) ...

Operator Function

EQ equal to

NE not equal to

GT greater than

LT less than

GE greater than or equal to

LE less than or equal to

BET between

INCL find string constant in An (alpha) field
8 - 4   ADMINS User Guide



Comparison and Special Operators
The special operator INCL ("includes") works on alphanumeric fields only. It is used 
to find the position of an alphanumeric constant2 in an alphanumeric field. (If the 
constant does not occur in the field, the INCL operation returns a value of zero.)

The syntax for INCL is:3

     J = FIELD INCL 'constant'             (assignment statement)
       

     IF (FIELD INCL 'constant') GT '0/I'   (conditional expression)
          THEN...

where J is an integer result field, and FIELD is the name of an alphanumeric field. For 
example:

     ...
     J/I
     ...
     J = NAME INCL 'DAVID'

         or

     ...
     IF (NAME INCL 'Mr.') EQ '1/I' THEN GOTO STR_NAME END
     ...

A more general method for locating strings within strings is the LOCSTR subroutine 
described in Appendix H.5.6 “LOCSTR - Locate a String Within a String”.

8.3.1  WHILE Statements in RMOs

A while … endw statement has been added to the ADMINS RMO language.  The 
syntax is:

WHILE expression THEN ;

RMO statements ;

…

ENDW

where expression can be any of the expressions used in an IF statement.

A typical use of the WHILE statement is:

WHILE X LT Y THEN ;

   Do something ;

   X = X + 1 ;

   ENDW

A WHILE statement must be contained within the same paragraph (i.e. between the 
WHILE and the ENDW no statement may start in column one (same rule as for IF 
and END statements).

2.    The string that occurs after the INCL operator is always interpreted as a constant, 
even if it is not enclosed in quotes.

3.    Conditional expressions (i.e. IF, SELECT etc.) that use INCL must explicitly type 
a constant that follows the comparison operator as an integer (e.g. '0/I'). 
Otherwise the compiler, following the "look to the immediate left" rule (see 
Section 8.1 “Constants”), will return a field type mismatch.
ADMINS User Guide  8 - 5



Logical Operators
A down to earth use of the WHILE statement would be:

WHILE YEARS LT ADULT THEN ;

   GOSUB DO_SCHOOL ;

   YEARS = YEARS + 1 ;

   ENDW

Before WHILE statements this would have to be written something like:

WHILE: IF YEARS GE ADULT THEN GOTO IS_ADULT END

       GOSUB DO_SCHOOL  ;

       YEARS = YEARS + 1  ;

       GOTO WHILE ;

       END :

IS_ADULT: Continue other statements.

8.4  Logical Operators

The operators AND, OR, and NOT are provided for connecting comparison 
expressions to make Boolean expressions.

Examples

     DATE GT 01-JAN-75 AND AMT NE 0

     (ACCT# BET A0000 AND A9999) OR AMOUNT / 2. GT 100.00

     GROSS NE 0 AND (DEDUCT EQ 1 OR (TAXCD EQ 1 OR 2))

     NOT (A EQ B)

8.5  Conditional Statements

The IF_THEN_ELSE_END structure is used to conditionally compute a result. (The 
more broad use of conditional statements in record maintenance procedures is 
discussed in Section 9.6 “PROGRAM Section”). The IF_THEN_ELSE_END is not 
used in expressions which are explicitly conditional, such as the SELECT statement 
in the file definition, Message fields and Check statements in the screen instruction 
file, and SELECT and RECODE statement in reports. Rather the conditional structure 
is used in expressions which are expected to yield a value result, such as the virtual 
field computation in the screen instruction file and the CREATE statement in the 
report. For example:

     V TAXDUE/D2 IF TAX LE 50.00 THEN TAX ELSE :
       TAX / 2. END

     CREATE MSG/A7 IF THISDATE GT DUEDATE THEN 'Overdue' :
       ELSE ' ' END
8 - 6   ADMINS User Guide



Parentheses
When IF statements are nested only one terminal END is used. (This is not so for 
record maintenance procedures as is described in Section 9.6.1 “Record Maintenance 
Paragraphs”.) For example:

     V TAX/D2 IF XELD EQ 0 THEN GROSS * RATE ELSE :
       IF CB LT GROSS THEN CB * RATE ELSE GROSS * FROZRATE END

8.6  Parentheses

Parentheses are used to indicate precedence of expression evaluation. For example:

     D = A * B + C

could mean multiply and add or add and multiply. Following the general rules of 
expression evaluation the multiplication precedes the addition.

ADMINS evaluates operators in expressions from left to right with the precedence 
determined as follows:

     (1)  *   /   //  %
     (2)  +   -
     (3)  INCL
     (4)  EQ   NE   GT   LT   LE   GE   BET
     (5)  NOT
     (6)  AND   OR
      (7)  IF_THEN_ELSE_END

For example, multiply and divide have equal precedence but precede add and 
subtract. Use parentheses to make the order of evaluation explicit. In the above 
example, if the user wanted the addition to precede the multiplication the expression 
would be written as follows:

     D = A * (B + C)
ADMINS User Guide  8 - 7



Arrays
8.7  Arrays

Local fields can be treated as arrays in record maintenance procedures. This feature 
is exclusively used in record maintenance procedures, and therefore is described in 
Section 9.5.1 “Creating Local Fields”. However, there is also the ability to treat actual 
fields from the DEF as arrays. This can be used in expressions in CMP, REPORT, and 
SCREEN. In this facility the subscript is used to pick out a field from the file definition 
with respect to the field which is the base of the array. For example, consider the 
following DEF:

     *
     MAS 1000
     *
     ACCT# X999999 KEY1
     DESCRIP A30
     JAN D2
     FEB D2
     MAR D2
     APR D2
     MAY D2
     JUN D2
     JUL D2
     AUG D2
     SEP D2
     OCT D2
     NOV D2
     DEC D2

The following expressions are valid, where "J" is of type I (integer).

     AMT/D2 = JAN(0) + JAN(1)

     J = 0
     NXJ: TOTAL = TOTAL + JAN(J) ; J = J + 1 ; IF J LE 11 THEN
         GOTO NXJ END

In the first example AMT would contain the sum of the JAN and FEB amounts. In the 
latter example, which could only appear in a record maintenance procedure (RMS), 
TOTAL would contain the sum of all 12 monthly amounts.

A subscript of zero selects the array base itself. Negative subscripts are also 
permitted. The only restriction on subscripting is that the result field (after evaluating 
the array subscript) must fall within the DEF fields and be of the same type as the 
field at the base of the array. Also the subscript itself must be of type integer. Array 
notation on the DEF field names is supported in REPORT, CMP and SCREEN. (Note 
that in array expressions using fields from the file definition, the initial field is 
selected by a subscript of zero. In the array notation which operates on local array 
fields created in record maintenance procedures (RMS), the initial element of a local 
array is selected by a subscript of one.)
8 - 8   ADMINS User Guide



Subroutines
The apparent restriction that the base of the array and the result fields after subscript 
evaluation must be of the same type does not preclude "two dimensional" or "multi-
dimensional" array effects. For example, consider the following DEF.

     *
     MAS 10000
     *
     ACCT# X99999 KEY1
     TOTAL D
     1TYPE A1
     1AMT D
     2TYPE A1
     2AMT D
     3TYPE A1
     3AMT D
     4TYPE A1
     4AMT D
     5TYPE A1
     5AMT D

If we wanted to write a record maintenance procedure that accumulated in TOTAL 
all the amounts of type 'P'.

     J = 0
     LOOP: IF 1TYPE(J) NE 'P' THEN GOTO NEXT END
     TOTAL = TOTAL + 1AMT(J)
     NEXT: J = J + 2 ; IF J LE 8 THEN GOTO LOOP END

Notice, we increment the array subscript, J, by 2 each time through the loop, to move 
ahead two fields in the DEF, i.e. to the next nTYPE and nAMT fields.

8.8  Subroutines

ADMINS has a subroutine library to support many functions, some referred to in this 
Section, such as NCAT for converting between field types and STR for extracting part 
of a string. A complete description of all subroutines is included in Appendix H: 
“Subroutines”.
ADMINS User Guide  8 - 9



Subroutines
8 - 10   ADMINS User Guide



Chapter 9:CMP: The Record 
Maintenance Compiler

CMP is the compiler for record maintenance procedures. A record maintenance 
procedure is a program that acts on and can manipulate the records in an ADMINS 
data file. A record maintenance procedure is prepared by entering (usually via a text 
editor) the statements of the procedure into an instruction file with a file type of 
".RMS", e.g. "NAME.RMS". The compiled version of a record maintenance procedure, 
prepared by CMP, is stored in a record maintenance object file with a file name the 
same as the RMS and a file type of ".RMO", e.g. "NAME.RMO". If the logical name 
ADM$OBJECT is assigned the RMO is placed in the directory ADM$OBJECT 
otherwise it is placed in the same directory as the RMS. The RMO is then available for 
use with the MAINT, TRANS, PROD, and REPORT commands.     

9.1  CMP Dialogue

Compile RMS by entering CMP at the system prompt. The file name may be included 
on the command line or CMP will prompt for the name. If the compile is successful, 
CMP will print a message saying the RMO was written, the number of paragraphs in 
the RMS, the total size of the object file and the size of the constants used in the RMS. 
If the compile is unsuccessful, CMP will print an error message and terminate. For 
example, given an instruction file called "NAME.RMS":

     $ cmp name
     NAME.RMO WRITTEN. 2 PARAGRAPHS. OBJ-SIZE: 53  CONS-SIZE: 11

 or

     $ cmp
     PROG NAME:name
     NAME.RMO WRITTEN. 2 PARAGRAPHS. OBJ-SIZE: 53  CONS-SIZE: 11
ADMINS User Guide   9 - 1



Outline of A Record Maintenance Procedure (RMS)
9.2  Outline of A Record Maintenance Procedure 
(RMS)

The outline of a record maintenance procedure instruction file (RMS) is as follows:

     FILE file-name

     TABLE table-file-name [local-name(s)]

     LOCAL

     name/type [value]
     name/type(n) [value1 value2 etc.]
     ...

     PROGRAM

     executable statements
     ...

9.3  FILE Statement

The FILE statement names the file on which the record maintenance procedure will 
operate. For example:

     FILE PAYROLL.MAS

9.4  TABLE Statement

The TABLE statement causes CMP to create local arrays and load these arrays with 
the values from the TABLE file. The names and types of the local array fields are 
taken from the names and types of the fields in the TABLE file. TABLE statements are 
described in Section 9.8 “TABLE Statement”.
9 - 2   ADMINS User Guide



LOCAL Section
9.5  LOCAL Section

The LOCAL statement begins a section that includes "local" field names. A local field 
is a field that is not stored in the record but is maintained in memory and is usable in 
expressions along with constants and actual field names from the record. Local fields 
are not initialized for each new record that the record maintenance procedure 
receives for execution. Consequently local fields can be used to hold values that in 
some way relate the individual records of the file being processed, each to the next. 
For example,  use a local field to compare a particular field  with the same field in the 
next record.

9.5.1  Creating Local Fields

The definition of the local fields follows the LOCAL statement. Each local field has 
one of the following formats:

     NAME/TYPE [value]

     NAME/TYPE(n) [value1 value2 etc.]

The first format defines a local field by naming it, assigning it one of the ADMINS 
data types, and, optionally, initializing it with a value. For example:

     AMOUNT/D
     RATE/D2 2.75
     YEAR/I 75
     TODAY/DA 21-SEP-75
     NAME/A20
     #BILL/XA99999 M00000

The second format is used to define local arrays. Arrays are generally used for short 
tables. The "(n)" is the number of elements to be stored in the array. The contents of 
the array can be initialized by values on the line, or alternately the values can be set 
during record maintenance execution. The subscript value "1" selects the initial value 
in a local array. An example of a local array would be as follows:

     RATES/D2(5) 1.75 2.50 3.75 5.00 7.50

Using the above local array statement, "RATES(3)" would equal "3.75".

A reference to a Data Dictionary element may be substituted for the field type 
specification as described in Section 1.4.5 “Referencing Data Dictionary Elements”, 
e.g.

      RATES/@XRATE(5) 1.75 2.50 3.75 5.00 7.50
ADMINS User Guide  9 - 3



LOCAL Section
9.5.2  Checking the Subscript Value for Local Arrays

ADMINS checks for local array subscripts that are out of bounds: that is, at run time, 
the ADMINS image that is calling the RMO will prevent it from using a subscript 
value that would point beyond either end of a local array. If this situation is detected, 
ADMINS displays a message (xec011) giving the name and size of the array and the 
value of the offending subscript, and exits with fatal error status.

The error in the RMS must be corrected. If necessary, the specific RMO paragraph 
that causes the problem can be located by running the application in test mode until 
it gives the "xec011" message and exits.

Array subscript checking applies only to fields that are declared as local arrays in the 
RMS, including local arrays created by TABLE statements (see Section 9.8 “TABLE 
Statement”). It does not apply to the subscript (offset) notation that can be used with 
repeating sets of fields in the main file (see Section 8.7 “Arrays”) which are checked 
for validity by other means.

Run time array subscript checking is also performed when subscript notation is used 
with global (G$) fields (see Section 5.5.9 “Global Fields”) and group shared area 
(SH$) fields (see Section 5.5.10 “Group Shared Area Fields”). When a subscript is 
detected that attempts to reference beyond either end of the global record or group 
shared memory area, ADMINS displays a message ("xec012" for global fields, 
"xec013" for group shared area fields) and exits with fatal error status.

In an RMS these LOCAL field declarations:

MYFIELD/D

MYFILD/D(1)

are equivalent. They both declare the scalar variable MYFIELD, not an array. The 
informational message:

cmp979 A dimension of one (1) does not declare an array

followed by the source line and file name will be displayed by AdmCmp if it 
encounters a declaration that uses array notation but attempts to declare an array size 
of  “1”.

AdmCmp also checks and notes array notation when it is used to reference scalar 
fields in the PROGRAM section of the RMS, e.g. if MYFIELD is declared as above 
(either with or without array notation) and this statement was encountered in the 
PROGRAM section:

MYFIELD(I) = 7

AdmCmp will then display the error message:

cmp978 Dimension not allowed for scalar variable

followed by the source line and the file name, and error exit without completing the 
compilation. 

There are a number of exceptions to this rule:

1. If the field is part of the DEF for the file it is assumed you use subscripting to 
access one of a series of similarly defined fields in the record (e.g. BUDGET01/D 
- BUDGET12/D).

2. If the field is a global or shared global field (the field name starts with G$ or 
SH$) subscription of scalar variables are allowed.

3. If the field is from a TABLE statement.
9 - 4   ADMINS User Guide



LOCAL Section
4. For compatibility reasons AdmCmp will allow subscripting of a scalar variable 
with the constant 1 (one), e.g. MYFIELD(1), since this syntax will reference the 
one and only occurrence of the data for this field.  It will issue the cmp978 
message as a warning, but will continue the compilation.  If the subscript is 
anything but (1) (e.g. another constant, or a field name) the message cmp978 is 
issued and the compilation aborts.

9.5.3  ALIAS: Create Field Names for Local Array Elements

The ALIAS statement automatically creates a series of distinct local field names (or 
"aliases") for the elements of local arrays. ALIAS provides an easy way to refer to 
these array elements in situations where array notation cannot be used. For example, 
if you want to reference an array element in the DETAIL layout for a report, or in the 
APPEND paragraph of a TRS. Place the ALIAS statement in the LOCAL section of 
the RMS, using the following syntax:

     ALIAS ARRAY_NAME[(RANGE)]  [...]

where ARRAY_NAME is the name of a local array declared previously in the RMO, 
e.g.:

     ITEM/X9999(50)
     ALIAS ITEM

RANGE is optional. If RANGE is not present, ALIAS will create names for every 
element in the array. In the example above, ALIAS would generate field names 
ITEM_1 through ITEM_50 that can be used to refer to elements 1 through 50 of the 
local array ITEM.
ADMINS User Guide  9 - 5



LOCAL Section
Use RANGE to indicate where in the array to start and stop creating alias field names. 
RANGE can be specified in two ways:

     array_name(START) or  array_name(START:END)

where START and END are numeric constants. START by itself specifies where in the 
array to begin generating field names, while the START:END syntax specifies the 
range of array elements for which names are to be generated, e.g.:

    ITEM/X9999(50)
    ALIAS ITEM(26)

would begin creating names starting with ITEM_26 (for element 26) and continue 
through to ITEM_50 (for element 50, the last element of the array).

    ITEM/X9999(50)
    ALIAS ITEM(26:30)

would begin creating names starting with ITEM_26 (for element 26) and continue to 
ITEM_30 (for element 30).

Local fields created by ALIAS can be used like any other local fields, with one 
significant difference: there is only one copy of the data. The ALIAS field is just a 
second name for an array element. If the RMO changes AR(3), the ALIAS field AR_3 
immediately reflects the change; and, likewise, changing AR_3 causes an immediate 
change in AR(3), because AR_3 and AR(3) are just two ways of referring to the same 
data.

Since field names cannot be over 18 characters long, ALIAS may not work with a long 
array name. Array names of 12 characters or less will always work with ALIAS.1

ALIAS will not work for array names that begin with a non-alphabetic character, 
because adding the numeric character suffix would result in an invalid field name 
(see Section 2.4.1 “Field Names”).

Note: fields created with ALIAS count toward the limit of 1000 fields in a virtual 
record. So don't use ALIAS unless you need it; and don't ALIAS more array elements 
than you need.

1.    No local array size can be more than a 5-digit decimal number, so a 12-character 
array name, plus an underscore, plus an array subscript up to 5 characters long 
will always be 18 characters long or less and thus always work.
9 - 6   ADMINS User Guide



PROGRAM Section
9.5.3.1  Example: Using ALIAS with REPORT
An RMO written for use with REPORT

    LOCAL
    ...
    AR/I(10)
    ALIAS AR
    ...

ALIAS generates field names AR_1 through AR_10 that can be referenced in 
REPORT CREATE statements, printed, or used in any other way that a local field can 
be used. The REPORT instruction file might contain:

    ...
    EXECUTE
    ...
    CREATE EXTAMT/I AR_4 + 100
    ...
    DETAIL
         AR_1---  AR_2---  AR_3---
    ...

9.6  PROGRAM Section

The PROGRAM statement precedes an executable portion of the record maintenance 
instruction file. Executable statements consist of arithmetic and Boolean expressions 
that are formed using the rules described in Chapter 8: “Expressions”. In addition, 
the record maintenance compiler can compile particular statements unique to record 
maintenance.

The general expressions in ADMINS allow for constants, arithmetic operations (+ - * 
/ //), comparison operations (EQ NE GT LT LE GE BET INCL), Boolean connectives 
(AND OR NOT), and IF_THEN_ELSE_END conditional structures. These facilities 
are described in Chapter 8: “Expressions”. Subroutines may also be included in 
general expressions and are described in Appendix H: “Subroutines”.

In addition to these more general facilities provided throughout ADMINS, record 
maintenance has its own operations for moving data from one field to another (=), 
GOTO, GOSUB, and STOP statements, local array subscripting, statement labels, the 
RET instruction, and the semicolon to separate multiple statements appearing in the 
same paragraph.
ADMINS User Guide  9 - 7



PROGRAM Section
9.6.1  Record Maintenance Paragraphs

A record maintenance procedure consists of paragraphs of statements. A paragraph 
starts with a statement that begins in column one and consists of that statement plus 
all subsequent statements that are indented inward from column one, up to a non-
indented statement that starts in column one (i.e. the beginning of the next 
paragraph), or up till the end of the program, whichever comes first. Paragraphs 
serve several purposes.

5. Any nesting of conditionals occurs within the same paragraph. Therefore the IF 
and END statements in a paragraph must balance.

6. The only statement in a paragraph that can be labeled is the initial, i.e. the non-
indented, statement. Hence, every GOTO necessarily transfers control to the 
first statement in some paragraph.

7. During "test mode" (discussed with the MAINT command in Section 10.2 “Test 
Mode”), the instruction file statements are displayed on the screen a paragraph 
at a time. Hence a paragraph should be relatively small, never more than about 
seven or eight lines. Note, a line may contain several statements using the 
semicolon to separate individual statements on a line.

However, the end of a line does not terminate an individual statement. That is, 
statements can cross lines. The semicolon must be used to terminate statements even 
when the statement ends at the end of line. End of paragraph does automatically 
terminate a statement.

9.6.2  Record Maintenance Statements

1. The "=" operator is used to instruct movement of data from one field to another. 
The ";" is used to separate statements appearing in the same paragraph. For 
example:

     DATE = 01-SEP-75

     TOTAL = TOTAL + DETAIL

     CWITH = CWITH + BWITH ; CFICA = CFICA + BFICA
2. The GOTO statement is used to transfer control to a labeled paragraph. For 

example:

     GOTO FINIT

     GOTO NEXT
3. The STOP statement is used to stop execution on the particular record. That is, 

when STOP is executed the current record is re-written to the disk file and the 
next record is read for processing. An implied STOP is at the end of a record 
maintenance instruction file.

4. Statement labels are used to label particular statements at the head of a 
paragraph so they can be transferred to via the GOTO AND GOSUB statements. 
For example:

     START: IF IDENT BET P0000 AND P9999 THEN
      GOTO PURCHASE END
 Labels may be up to 20 characters long.
9 - 8   ADMINS User Guide



PROGRAM Section
5. Array subscripts are used to access a particular element of an array. The array 
subscript may be an actual integer field, a local integer field, or an integer 
constant. Arrays may be either local or actual fields from the DEF file. The 
former, local arrays, were described above. The latter, actual field arrays, are 
described in Section 8.7 “Arrays”.

     IF UNEXPA BET LO(J) AND HI(J) AND MARITL EQ MSTAT(J)
          THEN GOTO FOUND END

9.6.3  The GOSUB Statement

The GOSUB statement ("go to subroutine") enables an RMO to go to another 
paragraph, execute statements and then return to the statement following that 
GOSUB call. The GOSUB facility uses two reserved words which cannot be used as 
field names: GOSUB and RET.

Whenever GOSUB is invoked, the program goes to the indicated paragraph and 
executes statements until the instruction RET is encountered. When RET (for 'return') 
is executed, the RMO goes to the statement just after the last executed GOSUB and 
continues processing from that point.

Every RET is paired with the last executed GOSUB. GOSUBs can be nested up to 25 
consecutive GOSUB calls without an intervening RET. One GOSUB can go to a 
paragraph which contains another GOSUB, which in turn can go to a paragraph with 
yet another GOSUB, etc. Each RET will return to the statement following its 
corresponding GOSUB call.2

The syntax in the program portion of the RMO is:

        GOSUB statement-label

The statement-label is an RMO label as defined above in Section 9.6.2 “Record 
Maintenance Statements”. The GOSUB statement is similar to the GOTO statement 
except for GOSUB's capability to be returned (via RET) to the statement following the 
GOSUB call.

To illustrate one use of GOSUB:

     FILE INVITE.MAS
     LOCAL
     S$S/A6
     M$M/A2
     CODE/A2
     WORD/A20
     PROGRAM
     IF S$S EQ 'CODE1' THEN
        CODE = CODE1 ; GOSUB STEP1 ; WORD1 = WORD ; GOTO DONE END
     IF S$S EQ 'CODE2' THEN
        CODE = CODE2 ; GOSUB STEP1 ; WORD2 = WORD ; GOTO DONE END
     IF S$S EQ 'CODE3' THEN
        CODE = CODE3 ; GOSUB STEP1 ; WORD3 = WORD ; GOTO DONE END
     DONE: STOP
     STEP1: IF CODE EQ 'C' THEN WORD = 'CREDIT' ; RET END
            IF CODE EQ 'D' THEN WORD = 'DEBIT' ; RET END
            IF CODE EQ 'U' THEN WORD = 'UNKNOWN' ; RET END

2.     A paragraph reached via GOSUB can contain STOP. RET is not needed before 
STOP. All pending return destinations are discarded by STOP.
ADMINS User Guide  9 - 9



Parameterization
9.7  Parameterization

Any string in the record maintenance instruction file can be parameterized by placing 
the string in angle brackets. This means that the contents of the string, i.e. the text 
between the "<" and ">", is prompted on the user's terminal during compilation. The 
string typed in response to the prompt by the user is inserted into the instruction file 
for the purpose of the particular compilation in place of the parameter text. For 
example:

     FILE <FILE NAME>

     DATE/DA <CHECK DATE>

     IF ACCT# BET <LO> AND <HIGH>

Once text has been supplied for a particular parameter, i.e. a particular angle 
bracketed string, then that text will be substituted for the parameter each time it is 
encountered.

If however, the parameter is enclosed in double brackets, as follows:

IF ORDATE NE '<<Select Date or Press Return for All>>' THEN GOTO 
OUT END

and the user does not supply a response, then CMP will ignore the entire instruction 
line which contained the double bracketed string.

9.7.1  Logical Parameters

If the parameter string contained in the angle brackets begins with the characters 
“L$”,  (e.g. <L$fieldname>), then AdmCMP first tries to translate the prompt as a 
logical name. If the logical name has been assigned in either the process, group, or 
system logical name tables, the user is not prompted for the contents of the 
parameter. Instead the value of the logical name is substituted for the prompt. 
Parameters which begin with the characters “L$” and are assigned as logical names 
are called "logical parameters".

When the logical names exist, the display of logical parameter prompts and their 
values can be suppressed by assigning the lowercase letter "c" to the logical name 
OPTION (see Appendix A: “Options”).

If a parameter beginning with “L$” is not assigned as a logical name, then the user is 
prompted for a value as in standard parameterization (see Section 9.7 
“Parameterization”).

Prompting for values when the logical name is not assigned can be avoided entirely 
by supplying a default value in the parameter string, as follows:

<L$MINIMUM=0>

Specify the default value for the logical name by appending “=value” to the logical 
name inside the angle brackets. In the example above if the logical name 
L$MINIMUM is not assigned, the value “0” will be substituted for the parameter. 
9 - 10   ADMINS User Guide



TABLE Statement
9.8  TABLE Statement

The TABLE statement in a record maintenance procedure3 is used to read the 
contents of a modest sized ADMINS file into the local arrays of the record 
maintenance procedure. The field names from the "table file" then automatically 
become local array names in the record maintenance procedure. The TABLE 
statement in the following example will create local arrays for all the fields in 
WITHOLD.TAB:

     FILE PAYROLL.MAS
     TABLE WITHOLD.TAB
     ...

If a field name in the TABLE file is the same as a field name in the main RMO file CMP 
will exit with a diagnostic message. Consider the following payroll file and a 
withholding table definitions:

     *     PAYROLL.DEF
     MAS 1000
     EMPL# X99999 KEY1
     NAME A20
     ...
     AMT D2
     ...

     *     WITHOLD.DEF
     TAB 100
     MARITL A1
     LOW D2
     HIGH D2
     AMT D2
     PERCENT D2

Then attempting to compile an RMO that contains:

     FILE PAYROLL.MAS
     TABLE WITHOLD.TAB
     ...

would result as follows:

$ cmp deduct
cmp965 Field "AMT" in table file "WITHOLD.TAB" already present in
file "PAYROLL.MAS"
   Line 2: TABLE WITHOLD.TAB
  
cmp965 Explanation: Fields in a table file must either have
       different names than the fields in the file referenced by
       the FILE statement or they must be renamed on the TABLE
       statement.
        
       Reference: ADMINS Procedures Manual - 9.8
        
        User Action: Rename the table fields on the TABLE statement.

AMT is present in both the payroll master file and in the withholding table file.

3.     Although TABLE in an RMS and TABLE in a REPORT both have the same 
general kind of purpose, i.e. accessing files as "tables", the two TABLE 
instructions are quite different in the detail of their operation.
ADMINS User Guide  9 - 11



Declaring Local Fields in Indirect References
To deal with field name conflicts TABLE statements have a syntax4 to assign a new 
"local" names to the TABLE file's fields:

     TABLE table-file-name local-name1 local-name2 etc.

In the example above we could use

     TABLE WITHOLD.TAB MARITL LOW HIGH TABLEAMT

which assigns the new local name TABLEAMT to AMT for use in this record 
maintenance procedure. MARITL, LOW and HIGH are given the same names and 
are only present for syntactic purposes as place-holders to "space" up to TABLEAMT. 
PERCENT, the last field in the TABLE file, need not be present in the TABLE 
statement because it is not needed for place-holding and does not need to be 
renamed.

Tables are not dynamic. That is, the TABLE file is loaded into the RMO at compile 
time. If the contents of a TABLE file changes the RMS must be re-compiled to 
include the new data.

Use the ARSZ subroutine (see Appendix H.12.3 “ARSZ Subroutine”) to determine 
the dimension (size) of an array created by a TABLE statement, i.e. the number of 
records in the TABLE file. This information is necessary, for example, to control when 
looping through the elements of an array should stop.

9.9  Declaring Local Fields in Indirect References

In order to write generalized indirectly-referenced5 file "subroutines" (or "macros" or 
"modules") you need a way to declare local variables within the "@@file" which will 
be included in the RMS at compilation. To accomplish this, place a LOCAL statement 
and a list of the (additional) local field declarations before the PROGRAM statement 
inside the "@@file" (local fields must be declared before they are used in any 
procedural code).6

4.    Use the colon continuation convention to extend the list of field names beyond 
one line.

5.    See Section 1.4.3.1 “Passing Parameters in Indirect References”
6.    LOCAL/PROGRAM pairs are not limited to indirectly referenced program 

fragments, but may be used throughout the PROGRAM section of the main .RMS 
file. This might improve the readability of RMS files which have many local fields 
that are used only in specific parts of the program: such local fields could be 
declared in separate LOCAL sections just above the PROGRAM segments where 
they are used.
9 - 12   ADMINS User Guide



Declaring Local Fields in Indirect References
The following example illustrates the syntax:

    * GETDEPT.FIL: Routine to translate D$EPT logical name   
    *
    PARAMETER FLD1
    *
    LOCAL
    *
    STAT/I
    LNAM/A20 'D$EPT'
    FLD1/A40
    *
    PROGRAM
    *
    G_FNM: STAT = TRLOG(LNAM,FLD1)
    IF STAT LE 0 THEN ;
       .
       .

The .RMS file could include this section of code with an indirect reference:

    @@GETDEPT.FIL DEPT

(i.e. load the translation of logical name D$EPT into field DEPT) which would be 
compiled as if the RMS contained the following code:7

    *
    LOCAL
    *
    STAT/I
    LNAM/A20 'D$EPT'
    DEPT/A40
    *
    PROGRAM
    *
    G_FNM: STAT = TRLOG(LNAM,DEPT)
    IF STAT LE 0 THEN ;
       .
       .

Fields declared in the LOCAL section of an indirect reference file are compiled by 
CMP like any other local fields, and are available to the entire .RMS program. 
Therefore, local fields declared in "@@" files should use a field-naming convention 
ensure that they will not duplicate field names elsewhere in the RMS or in other 
include files referenced in the same compilation. In particular, if an "@@" file declares 
local variables and is referenced more than once in the same compilation, care should 
be taken to declare all local variables as parameters, because, as always, a local field 
can be declared only once (otherwise, CMP will exit with a "field already exists" 
message).

7.    As is described in Section 1.4.3.1 “Passing Parameters in Indirect References”, 
each occurrence of a string that appears in the PARAMETER statement of the 
indirectly referenced file is replaced with the corresponding parameter value 
given on the "@@filename" line, before it is read as an instruction by CMP.
ADMINS User Guide  9 - 13



Record Maintenance Examples
9.10  Record Maintenance Examples

The following procedure operates on a file of payments sorted by vendor number 
(#VEND). The procedure assigns a check number (CK#) to each payment. Each 
payment to the same vendor is assigned the same check number. The initial check 
number is parameterized.

     * Assign check numbers
     FILE PAYM.MAS
     LOCAL
     SEQ/I <STARTING CHECK NUMBER>
     LASTVEND/X9999 0000
     PROGRAM
     IF #VEND EQ LASTVEND OR LASTVEND EQ 0000 THEN GOTO SAME END
     SEQ  = SEQ + 1
     SAME: CK#  = SEQ ; LASTVEND = #VEND

The following procedure reads a withholding table from the file WITH.TAB and 
computes the withholding amount. The fields in WITH.TAB are MSTAT, LO, HI, 
AMT and PC. The rule for using the table is if the total pay lies between a LO and HI 
entry and the persons marital status is equal to MSTAT for that entry, then the 
withheld amount is AMT plus PC times the total pay minus the LO, all taken from 
that table entry. The last record in the withholding table file contains an AMT of -1.

     * Compute withholding. Store it in WITH.
     FILE PAYROL.MAS
     TABLE WITH.TAB
     LOCAL
     J/I
     PROGRAM
     J  = 1; WITH  = 0.00
     NEXT: IF MSTAT(J) EQ MARITL AND TOTPA BET LO(J) AND HI(J)
       THEN WITH  = AMT(J) + (TOTPA - LO(J)) * PC(J) ; GOTO FINIT
       ELSE IF AMT(J) NE -1 THEN J = J + 1 ;
       GOTO NEXT END END
     FINIT: STOP

A file contains dates in a DATE field. These dates are days in July or August. Each 
record is to be coded to show the number of the week in which its date lies.

     * Recode DATE to WEEKNO
     FILE ACTVTY.MAS
     LOCAL
     J/I
     MON/DA(8) 03-JUL-75 10-JUL-75 17-JUL-75 24-JUL-75
       02-AUG-75 09-AUG-75 16-AUG-75 23-AUG-75
     SUN/DA(8) 09-JUL-75 16-JUL-75 23-JUL-75 30-JUL-75
       08-AUG-75 15-AUG-75 22-AUG-75 30-AUG-75
     PROGRAM
     WEEKNO  = 0 ; J  = 1
     NEXT: IF DATE BET MON(J) AND SUN(J) THEN WEEKNO  = J ; STOP
       ELSE J  = J + 1 ; IF J LE 8 THEN GOTO NEXT END END

An accounting file contains an eight digit account number with fund (2 digits), 
department (3 digits), and object (3 digits) parts. Object codes in the range from 200 
to 299 in department 416 are to be re-filed under department 616. The NCAT and STR 
subroutines described in Appendix H.3 “Concatenation Subroutines” and Appendix 
H.5.1 “STR - Select Part of a Field” are used.
9 - 14   ADMINS User Guide



DEBUG Mode
     *  CHANGE DEPT FROM 416 TO 616 FOR OBJECTS 200 TO 299
     FILE STAT.MAS
     LOCAL
     FUND/X99
     DEPT/X999
     OBJ/X999
     PROGRAM
     FUND = STR(FUND,ACCT,'1/I','2/I') ;
       DEPT = STR(DEPT,ACCT,'3/I','5/I') ;
       OBJ = STR(OBJ,ACCT,'6/I','8/I')
     IF DEPT NE 416 OR OBJ LT 200 OR OBJ GT 299
       THEN STOP END
     DEPT = 616 ; ACCT = NCAT(ACCT,FUND,DEPT,OBJ)

Note that in the last example, if ACCT is the key to the file STAT.MAS, then 
STAT.MAS must be sorted in order to access the changed accounts by their new 
number.

9.11  DEBUG Mode

Commands that call an RMO can run the RMO in Debug Mode.  Debug Mode allows 
breakpoints and watchpoints to be set in the RMO when it is running, statement by 
statement execution of the code, examination and changing of current values of 
variables, and detailed examination of the environment where the RMO is running.

To use debug mode, the RMS must first be compiled with the -ADBG option8:

   cmp rms_name -ADBG

To enter debug mode, the logical name ADM$DEBUG_RMO must be assigned, and 
the command’s “Test Mode” must be enabled (if debug mode is active, it disables and 
replaces test mode).9

8.    The -ADBG option must come after the name of the RMS.  -ADBG makes the 
RMO larger, which slows down program initialization at run time, so once the 
program is debugged, it should be recompiled without the -ADBG option.

9.    Test mode does not have to be enabled in TRANS.  For example, in MAINT test 
mode is enabled by replying “Y” to the “Test mode? (Y/N)” prompt.
ADMINS User Guide  9 - 15



DEBUG Mode
9.11.1  Source Code Window

When the RMO is called with debug mode active, a listing of the source code is 
displayed, with possible breakpoints indicated by video highlighting10 of the first 
character in the statement (breakpoints can be at the start of any statement.).  
Breakpoints are places in the code that you can designate for the debugger to suspend 
execution of the program before processing.

Watchpoints can be set only where the start of the statement is a field receiving a 
value (e.g. FIELD = ...)11.  Watchpoints are field names for which the debugger is to 
suspend program execution after they are written to by the RMO12.  The debugger 
displays the value the field had before being written by the RMO, and the value after 
being written13  Program execution is suspended  immediately after the statement 
that changed the watchpoint field.

10.   By default, video highlighting is “bold”.  To specify another kind of highlighting, 
assign one of the following codes to ADM$DEBUG_RMO:
R - for Reverse video
U - for Underline
B - for Blink
S - for Bold (the default)
any other character assigned ADM$DEBUG_MODE will result in default 
highlighting of possible breakpoints.

11.  You cannot set a watchpoint at an array variable if the subscript is a variable (e.g. 
AR(3) is OK, but AR(N) is not)

12.  Debugger watchpoints will not detect changes in fields made outside the RMO, 
e.g. by moving to a new record, by typing in TRANS, etc.  You may, however, at 
any time use the Print command to print the current value of any field in the 
virtual record.  If you need to set a watchpoint on a variable not being set by the 
RMO, insert  a statement like:
              DUMMY = VARIABLE
 at an appropriate point in the RMO (e.g. at S$S EQ 
'BEGREC'), and set a watchpoint on DUMMY (remember to declare 
DUMMY in the LOCAL section).

13.  The before and after values at a watchpoint may be the same, as the debugger 
only checks that the RMO has written to a field, not if the value actually changed.
9 - 16   ADMINS User Guide



DEBUG Mode
Keystroke commands available in the source code window are:

9.11.2  Command Line

After you have set any desired breakpoints and watchpoints, type “G” to start 
program execution. Communication with the debugger resumes in the command 
line window, at the ADBG> prompt:  The following commands are available:

Keystroke Action

Arrow keys Move between statements/possible breakpoints

PREV/NEXT Move between pages

B Toggle: set/cancel a Breakpoint at cursor

W Toggle: set/cancel a Watchpoint at cursor

N Find Next breakpoint

P Find Previous breakpoint

T Go to Top of source

E Go to End of source

S Enter Search string (terminate with Ctrl/R to search 
backwards)

R Reverse search direction

C Continue search

G Continue execution

H or HELP Source code window help

Ctrl/W Refresh source code window

Command Action

S[tep] Step to next statement (execute current statement)

G[o] Continue execution to next breakpoint or next watchpoint 
change. If you type ‘Go’ at the ADBG> prompt without 
having to set a breakpoint or watchpoint, your RMO will run 
to completion without stopping the debug windows again.

N[ext] Continue execution to next paragraph

SO[urce] Go to source code window to set/cancel breakpoints/
watchpoints

H[elp] or HELP Help

P[rint] FIELDNAME 
[FIELDNAME…]

Display values of field(s).  Prints current value of a field or all 
elements of an array.
ADBG> P XAR(3)
will print the value of element 3 of array XAR, and
ADBG> P XAR(2:6)
will print the value of elements 2 through 6 of array XAR.
ADMINS User Guide  9 - 17



DEBUG Mode
9.11.3  VIA: View Internal ADMINS

View Internal ADMINS (VIA) provides detailed information about the currently 
open ADMINS data files, the application’s “virtual record”, and the current 
application environment14.  VIA starts by displaying a menu screen:

TRO: troname.tro15
SCREEN: SCREENNAME   SCREEN Vx.z Exe_build_date on TRO_compile_date
RMO: rmoname.rmo      CMP Vx.z Exe_build_date on RMO_compile _date
 
              1: File Information
              2: Logical Names and Values
              3: Internal Values and Limits
              x: Exit VIA
                      _

W[atch] 
FIELDNAME[N[:M] 
[FIELDNAME[N[:M]…
]

Set/cancel watchpoint(s).  FIELDNAME may be any field or 
array name manipulated by the RMO.  Array elements (i.e. 
AR(4) or AR(1:5)) are valid watchpoints: AR(4) sets a 
watchpoint on the 4th element in array AR, and AR(1:5) sets 
watchpoints on elements 1 through 5of array AR).

W[atch] Display watchpoints

A[ssign]  FIELDNAME 
VALUE

Put a VALUE into FIELDNAME

WH[atis] FIELDNAME 
[FIELDNAME…]

Show field type and dimension

C[ancel] W[atchpoints] Cancel all watchpoints

C[ancel] B[reakpoints] Cancel all breakpoints

V[ia] View Internal ADMINS structures and valuesa

Ctrl/W Refresh window

Q[uit] Quit execution

a.  See Section 9.11.3 “VIA: View Internal ADMINS”

Command Action

14.  VIA can also be accessed in TRANS outside of Debug Mode by placing a line of 
the  following form in the TRANS$ENV file:

       %tdbg=Keyname
       e.g.:
       %tdbg=F12
       to use F12 to enter VIA.
15. TRO name  and SCREEN name are displayed if application is running a TRO.
9 - 18   ADMINS User Guide



DEBUG Mode
9.11.3.1  VIA: File Information
Type “1” to display  the “File Information” menu screen, which lists all the ADMINS 
data files that the application currently has open:

File Information

Column 1 (FNO) shows the internal file number, column two (USE) indicates how 
the file is used, column three (OPN) indicates how the file has been opened, column 
four (FLDS) shows the number of fields in the file (or in the virtual record, for the 
main file), and column five (NAME) shows the file’s name, as specified in the 
application.

FNO USE OPN FLDS NAME

2 MAIN MU 15 mainfile.mas

3 LINK RM 3 linkfile.mas

4 INDX MU 2 indexfile.idx

5 APND MU 4 appendfile.mas

6 LKUP RO 6 lookupfile.tab

# = File Number, X = Return to Main menu:_
ADMINS User Guide  9 - 19



DEBUG Mode
The File Use column (USE) can have the following values:

           

Value Explanation

EXCL external codelist

MAIN main file

LINK link file

LNKW link with write-back (TRANS)

APND append paragraph file

INDX index paragraph file

LKUP lookup file

LOG field log

ERRM errmsg table (a TRANS link)

DET detail file

OUT output file

ADD add file

INP input file

TBL table file (REPORT)

FNDT lodtab/fndtab subroutines

FL32 file32 subroutine

OUTP output subroutine

MOVL movlnk subroutine

MOVF movfld subroutine

RECI recio subroutine

FNDR findrec subroutine

SEQI seqinc subroutine

DD data dictionary

LLINK lookup link

VLNK file linked into a VIEW
9 - 20   ADMINS User Guide



DEBUG Mode
File open status (OPN) will contain one of the following codes:

From this screen you may choose a file number to examine the fields in the file, or 
return to the previous menu.

Type the FNO number to view a listing of fields contained in that file.  For the main 
file of a screen (USE =MAIN) all the fields in the virtual record are displayed:

        Fields for file 2: mainfile.mas
 
   Number of records: 6, Number of blocks: 14  Use: main
 
   FLD COD NAME               TYPE
     1  E  PNO                I
     2  E  NAME               A20
     3  E  ADDR               A24
     4  E  ZIP                X99999
   -----------Added Fields-------------
     5  D  CITY               A20
     6  D  STATE              A2
     7     WZIP               X99999
   Field Number, or C.R.:

Column one (FLD) contains the field number, for screens (TROs) column two (COD) 
contains the field declaration section code for the field (if the column is blank, the 
field is not referenced in the screen declaration section), column three (NAME) 
contains the field name, and column four (TYPE) the data type of the field.

The “Added Fields” section appears only for the main file of a TRO, and then only if 
fields are added to the virtual record in the TRO or the RMO.

At the “Field Number, or C.R.:” prompt, you may enter a field number, and get the 
current value of the field displayed, e.g.:

   Field   5: 4272 6f6f 6b6c 796e 2020 2020 2020 2020 2020 2020
              Brooklyn
   Field Number, or C.R.:

The first line contains the field number, and the hexadecimal values contained in 
each two-byte word in the field, the second line displays the ASCII value of the field, 
interpreted according to its data type.

If you enter any value other than a valid field number to the prompt, you will return 
to the File Menu.

Value Explanation

RO Read-only

RM Multi-user read-only (no file locking)

RX Multi-user read-only (file locking)

SU Single-user

MU Multi-user

EX Exclusive
ADMINS User Guide  9 - 21



DEBUG Mode
9.11.3.2  VIA: Logical Names and Values
Type “2” in VIA’s main menu to view a list of the ADMINS logical names that are 
currently assigned, and all application logical names that are used to reference open 
files etc. This screen also gives you the option to type a logical name and get the 
translation for it.

             Logical Names and Values

ADM$DIST                HOME$DISK:[ADMV70}
ADM$HELPEDIT            edit/edt/command=mydir:edtini.edt
ADM$NAT                 HOME$DISK:[ADMNAT]
ADM$SPOOL0              SPARE
ADM$SYNC_HOLD           HOME$DIST:[ADMV70]
ADM$TERM                A3
OPTION                  AbDfLOSVXW7w
TRANS$ENV               SYS$LOGIN:KEAMAC.ENV
-----Application Used Logical Names-------
DEMO                    MILLY$DISK:[DEMO]
Logical name to translate, or C.R.:

9.11.3.3  VIA: Internal Values and Limits
Type “3” in VIA’s main menu to view ADMINS internal values, compared  to the 
maximum values allowed.

         TRANS Internal Values and Limits
 
   Number of fields in virtual record: 15          (1000)
   Meta DA area used.................: 1301        (32754)
   Data DA area used.................: 2220        (32754)
   Lookup internal array.............: 406         (16384)
   Boxes internal array..............: 5           (1251)
   Screen Table of Content this TRO..: 18          (100)

S to show screens in TRO
C.R. to return:

Press Return to go back to the main menu, or type S to see a listing of the screens 
contained in the TRO.
9 - 22   ADMINS User Guide



Chapter 10:MAINT: The Record 
Maintenance Processor

The record maintenance processor, MAINT, is used to execute procedures (RMO's) 
compiled by CMP. MAINT runs the procedure on the file designated by the FILE 
statement in the record maintenance procedure instruction file.

10.1  MAINT Dialogue

When the user calls MAINT the following dialogue ensues using "NAME.RMO" as 
the example:

     $ maint
     RECORD MAINT. NAME:name
     TEST? (Y OR N):n
     OPERATING ON NAME.MAS
     OK TO CONTINUE?y
     11:53:06.60
     ************************************************************
     311 RECORDS PROCESSED   11:53:26.00
     $

The "RECORD MAINT. NAME" may also be included on the command line as 
follows:

     $ maint name
     TEST? (Y OR N):n
     OPERATING ON NAME.MAS
     ...

MAINT will execute the procedure called NAME.RMO. This is the file produced by 
CMP from NAME.RMS. If the user is not running in test mode, that is "N" was entered 
to the "TEST?" prompt, then MAINT performs the following steps.

1. MAINT reads an input record from the file named in the FILE statement.
2. MAINT executes the procedure.
3. MAINT writes the record back to the file.
4. If the file still has records to be processed then MAINT continues at step (1).
5. The file is closed and MAINT prints the "number of RECORDS PROCESSED" 

message.

When not in test mode, MAINT prints a line of asterisks to show the on-line user the 
progress through the file. The user can type "NO *" to the initial prompt to inhibit the 
line of asterisks.1

1.    If the character "*" (asterisk) is included in the string assigned to the logical name 
OPTION, the printing of the line of asterisks to show progress through a file is 
suppressed in all ADMINS "batch" commands. See Appendix A: “Options”.
ADMINS User Guide   10 - 1



Test Mode
10.1.1  ADM$RECORDLOCK

If the RMO run by MAINT contains a field called ADM$RECORDLOCK/I, the RMO 
gets a call with ADM$RECORDLOCK set to 1 if the next record is locked.

The only possible actions at this call is to set ADM$RECORDLOCK to one of the 
following values: 

1 = Wait for record

8 = Ignore record lock (get the record in read only mode)

16 = Skip the record

If the RMO does anything else at this point, the results are unpredictable. For 
example, if ADM$RECORDLOCK is present, the first statement in the PROGRAM 
section should be:

IF ADM$RECORDLOCK EQ 1 THEN

ADM$RECORDLOCK = desired action ;

STOP  ;

END

10.2  Test Mode

MAINT provides a test mode for debugging an RMO. It is recommended that every 
RMO be run in test mode to the satisfaction of the user before using the RMO in non-
test mode on a production basis. As a matter of fact it is good practice to test run a 
few records before each production run of a fully tested RMO. This is especially good 
practice if there are several related RMOs, where one sets up conditions in the fields 
of the records for the others to use. The test run of a few records will show the user 
that in fact the proper set up preliminary RMOs have been run.

As should be evident from the previous paragraph the major purpose of test mode is 
to make execution of an RMO as visible as possible. In test mode each paragraph of 
an RMO is displayed on the screen2 as it is executed. As well, the values of all fields 
in the paragraph are also displayed. The values are displayed in two states: before 
execution of the statements in the paragraph and after execution of these statements.

2.   A video terminal is required to use test mode.
10 - 2   ADMINS User Guide



Test Mode
10.2.1  Test Mode Display Examples

                         RECORD: 5   STATEMENT: 1
     SEQ = SEQ + 1 ; J = J + 1 ; TOTAL = 0
     FIELD NAME     BEFORE                   AFTER

     SEQ             4                       5
     J               15                      16
     TOTAL           13,768                  0

                         RECORD: 14   STATEMENT: 8
     IF (TOTPA BET LO(J) AND HI(J)) AND MSTAT(J) EQ
       MARITL THEN WITH = AMT(J) + ( TOTPA -
       LO(J) ) * PC(J) ; STOP END
     FIELD NAME     BEFORE                   AFTER

     TOTPA           640.00                  640.00
     J               7                       7
     LO(J)           600.00                  600.00
     HI(J)           700.00                  700.00
     MSTAT(J)        M                       M
     MARITL          M                       M
     WITH            .00                     58.00
     AMT(J)          50.00                   50.00
     PC(J)           .20                     .20

10.2.2  Test Mode Operation

During test mode records are not written back to the file. Therefore test mode never 
changes any data values on the disk file.

When MAINT is entered in test mode the first record is read into memory, the first 
paragraph of the RMO is displayed on the screen along with the before and after 
values, and then MAINT awaits one of the following keystrokes.

1 to 9 The display of that number of paragraphs is skipped in the 
execution of the RMO on the current record. Note the 
skipped paragraphs are executed, but not displayed. This 
feature can be used to rapidly step through a repetitive loop.

R The letter “R” causes MAINT to skip to the next record. The 
remaining paragraphs are not executed on the current 
record. MAINT continues by displaying the first paragraph 
on the next record.

S The letter “S” causes MAINT to re-start the RMO at its first 
paragraph on the current record.

KEY (PF2) In response to the KEY keystroke (PF2) MAINT prompts 
with “TYPE:” at the bottom of the screen. The user then 
enters a key value for a particular record in the file and 
presses “enter”. If the records in this file have multiple keys 
then MAINT lets the user enter values for each key field. 
When MAINT has all the key value(s) necessary for 
searching out a particular record in the file, MAINT then 
finds that record, and continues by displaying the first 
paragraph of the RMO on that record. (If the record is not 
found, the nearest record, in sort order, is used.) This feature 
is particularly useful after an RMO is thought to be debugged 
but some records are still not coming out completely correct.

Ctrl/b MAINT closes the active file and terminates.
ADMINS User Guide  10 - 3



Operate on KEY Values
10.2.3  Test Mode Hints

1. Keep the RMO paragraph sufficiently small so that the paragraph plus the list of 
field names will not require more than the 24 lines of displayable space on the 
screen. When the displayable space is exceeded MAINT will display as many 
fields as possible, truncating the display of the paragraph.

2. If one wishes to display the values for fields that are not used in the paragraph, 
then include these field names in the paragraph in a way that does not effect the 
execution of the statements in the paragraph. For example, to include the 
display of an account number in a paragraph that initializes a total value to zero, 
one might have the following:

     ACCT# = ACCT# ; TOTAL = 0

10.3  Operate on KEY Values

MAINT can be instructed to operate only on those records in a file specified by their 
key value:

     $ maint calc key
     OPERATING ON PERS.MAS
     OK TO CONTINUE?y
     17:07:14.78

     KEY:

The feature is invoked by placing the word "KEY" after the name of the RMO to be 
executed on the command line as shown. This causes MAINT to prompt for a key 
value. If the key in the file has multiple fields then the key is specified as a set of key 
values, one per field, separated by a blank. If only part of a key is entered then all 
records that have that partial key will be executed. The line of asterisks is suppressed 
when the KEY feature is used.

MAINT then runs the RMO on the records requested via the key value. When these 
records have been processed MAINT then prompts for another key value, and so on, 
until the user answers the prompt for a key with a carriage return.

Any other keystroke. MAINT continues with the next paragraph on the current 
record. MAINT steps through the execution of the RMO on 
the data while the user watches. This stepping through 
proceeds at a pace controlled by the user pressing any 
keystroke.
10 - 4   ADMINS User Guide



Controlling Write Back: W$W
10.3.1  Operate on Key Range

MAINT can be instructed to operate only on those records in a file specified by a 
range of key values:

     $ maint
     RECORD MAINT. NAME:name
     TEST? (Y OR N):k
     OPERATING ON NAME.MAS
     LOW KEY VALUE: A
     HIGH KEY VALUE: D
     OK TO CONTINUE?y
     11:53:06.60
     ************************************************************
     311 RECORDS PROCESSED   11:53:26.00
     $

The feature is invoked by responding to the "TEST? (Y or N):" test mode prompt with 
the letter "K" (for Key Range). This response causes MAINT to prompt for the range 
specification, "LOW KEY VALUE:" and "HIGH KEY VALUE:". If the key in the file 
has multiple fields enter values for some or all of the multiple keys, separated by 
blanks. Null values are used for minor keys not entered.

MAINT will accept logical names for the LOW KEY VALUE and HIGH KEY VALUE 
prompts. If the response either prompt begins with the letters "L$" then MAINT will 
attempt to translate the response as a logical name. If such a logical name exists, 
MAINT will use the string assigned to it as the (low or high) key value, otherwise 
MAINT will use the response directly as it usually does.

When the range specification is complete, MAINT prompts for confirmation:

      OK TO CONTINUE?

If the response is "Y" MAINT then runs the RMO on the records within the specified 
range.

10.4  Controlling Write Back: W$W

When not in test mode MAINT writes each record back to the disk after the record 
has been processed. However, it is possible that the RMO only alters records 
selectively. In this case only the altered records need be written back to the disk. 
There is a way that the user can control selective write-back of records to the disk by 
MAINT.

A local field "W$W" of type integer is introduced. After each record is processed but 
before it is written back to the disk the local field W$W is examined by MAINT. If 
W$W has been set to "1" by the RMO statements in the course of execution of the 
RMO on the record, then and only then is the record written back to the disk. After 
the write-back MAINT will set W$W back to zero so W$W must be reset to "1" by the 
RMO for subsequent records to be written back. If W$W is not present at all as a local 
field in the RMO then all records are written back by MAINT.
ADMINS User Guide  10 - 5



Record Deletion: D$D
10.5  Record Deletion: D$D

The RMO has the ability to tell MAINT to delete the current record from the file,3 
using the special local integer field D$D. The default for the delete option is no delete 
(D$D = 0). For a record to be deleted, the RMO must set D$D = 1. If D$D is 1 after the 
RMO executes on a record MAINT will delete that record, and then reset D$D to zero.

10.5.1  NOFLUSH: No Disk Write After Deletion

MAINT normally writes ("flushes") the file header, index blocks, and data blocks to 
the disk after every deletion.4

This protects file integrity should MAINT abort or the system crash while MAINT is 
running. However, flushing to the disk slows down deletion dramatically. A 
command line qualifier, "NOFLUSH", can be used to tell MAINT not to flush the file 
blocks to disk. NOFLUSH can speed up MAINTs which do a lot of (D$D) deletion 
considerably, but it must be used with caution. If MAINT does not complete 
normally, the file may be left in an unusable state. NOFLUSH should only be used in 
situations where improved performance is important, and where MAINT can be 
restarted with a current backup copy of the file.

If this option is used, NOFLUSH must appear on the MAINT command line and 
must be the last thing on the command line, as in the following example:

      $ MAINT CLEANFILE/NOFLUSH

10.6  Quitting Before End of File: Q$Q

Normally MAINT processes the input file from beginning to end. However, there 
will be times when the RMO is only required to process the file up to a particular 
record and processing of subsequent records is not needed.

If the user introduces a local field Q$Q of type integer in the RMO then this field may 
be used to instruct MAINT to stop processing at a given record, close the file and 
terminate. That is, the RMO should contain statements which set Q$Q to "1" at the 
record where MAINT is to quit. MAINT examines Q$Q after each record, and when 
MAINT sees "1" in Q$Q, MAINT stops processing.

3.    The file must be in sort order.
4.    MAINT deletes records with the D$D facility, described in Section 10.5 “Record 

Deletion: D$D”.
10 - 6   ADMINS User Guide



Terminating a Command File: E$XIT
10.7  Terminating a Command File: E$XIT

A MAINT may be included in a series of commands called a "command file" 
described in Chapter 14: “Command Files”. A running command file may be 
terminated after the processing of a MAINT. If the user introduces a local field E$XIT 
of type integer in the RMO then this field may be used to instruct MAINT to 
terminate the command file. This is done by having the RMO set the E$XIT local field 
to "1". The command file will be terminated at the end of the step containing the 
MAINT.

10.8  Printing On-line Messages: P$P

The user may wish to print on-line messages from a running RMO. This is done by 
introducing a local field P$P of type "An". When an alphanumeric string is placed in 
P$P field, the alphanumeric string is printed on-line immediately, P$P is reset to 
blank, and the RMO continues with the next statement. The line of asterisks are 
suppressed when P$P is used.

10.8.1  Example Using P$P, W$W, and Q$Q

A procedure is to be written to find errors in a file of purchase orders. The file is 
keyed and sorted on purchase order number (PO#). The procedure is to find those 
purchase order records in a purchase order file where the expended amount 
(EXPEND) exceeds the encumbrance (ENCUMB). These purchase orders are to be 
marked with an 'X' in the ERROR field. The PO# for these purchase orders are to be 
printed on-line. This procedure is only to be applied to purchase orders up to PO 
"P0999" That is, MAINT may stop processing as soon as 'P0999' is reached.

The following RMO uses the W$W, Q$Q and P$P local fields to accomplish these 
objectives.

     FILE PO.MAS
     LOCAL
     W$W/I
     Q$Q/I
     P$P/A20
     MSG/A16 'IS INCORRECT'
     BLANK/A1 ' '
     PROGRAM
     IF PO# GE P0999 THEN Q$Q = 1 END
     IF EXPEND GT ENCUMB THEN
       W$W = 1 ; ERROR = 'X' ;
       P$P = NCAT(P$P,PO#,BLANK,MSG) ; END
ADMINS User Guide  10 - 7



Internal Fields: TODAY, NOW, and TICKS
10.9  Internal Fields: TODAY, NOW, and TICKS

TODAY/DA or TODAY/DT, NOW/A8 or NOW/TM, and TICKS/I may be 
introduced as local fields in the RMO. MAINT will see that they are set to the current 
date (TODAY), the current time to the hour, minute, and second (NOW/A8),5 and 
the hundredth of a second of the current time (NOW/TM or TICKS), before each 
record is read and the RMO is executed on that record.

10.10  Backspace Records: BACKSPACE

A running RMO can request that MAINT backspace any number of records. This is 
done by setting the local integer BACKSPACE field to the number of records to be 
backspaced. At the next call to the RMO the backspace will have been performed, and 
the BACKSPACE local field will have been reset to zero. Setting BACKSPACE to a 
negative value can be used to space forward a number of records.

10.11  Look Ahead: NX$fieldname

One can examine values of fields in the record following the current record. For each 
field that is to be examined declare a local field called "NX$fieldname". For example, 
to examine ACCT in the next record create NX$ACCT.

The "NX$fieldname" field will always be set to the value of "fieldname" from the 
record following. If the current record is the last record in the file then an integer field 
called "NX$EOF", if declared, will be set to "-1" and the "NX$fieldname" values will 
remain unchanged from their last setting.

5.     If NOW is declared as field type TM, NOW will be set to the current time to the 
hundredth of a second. TICKS requires the presence of the NOW local field.
10 - 8   ADMINS User Guide



Writing Other Files: OUTFILE/OUTRECS
10.12  Writing Other Files: OUTFILE/OUTRECS

Data present in tables, arrays and local fields can be output after MAINT completes 
the processing of the input data file. This is done by setting local fields OUTFILE/An 
and OUTRECS/I to the output file name and output number of records respectively. 
After MAINT finishes processing the input file it will check the contents of these two 
fields. If OUTFILE is not blank then it will open the file named in OUTFILE, and 
append the number of records specified in OUTRECS into the named file. Local 
fields from the RMO are placed in fields of the same name in the output file. (If 
OUTRECS is greater than 1, then local fields being appended should either be arrays 
or tables.) After closing the first output file, MAINT will call the RMO again with 
OUTFILE set to blank. If the RMO sets OUTFILE and OUTRECS again then MAINT 
will append records to the newly named output file. This process will continue until 
the RMO leaves OUTFILE blank. In this way the RMO can append data produced by 
processing the input file into multiple output files.

10.12.1  OUTFILE Example

The use of OUTFILE should be considered an advanced technique of ADMINS. 
Usually the file created by MAINT could just as well be created using more 
conventional ADMINS commands and techniques, although possibly somewhat less 
efficiently. For example, a primary file is being processed by MAINT as part of a 
routine process. The writing of an output file(s) may be used to produce summary 
records. This may be slightly more efficient then using SORT to create the summary 
records. However, the SORT method will invariably be easier to program and 
maintain.

Some of the potential uses of OUTFILE are:

1. Re-write a TABLE file that has been updated by MAINT. This is done by writing 
the TABLE array at end of file.

2. Create a file control record containing number of records and totaled values for 
several fields which may be needed for audit purposes. This is done by totaling 
into and then writing local fields.

3. Create control values for separate groups of records in a file, e.g. batch controls, 
to be used for audit purposes. This is done by building and then writing a local 
array.

4. Create one or more transaction records from a single master record based on the 
content of the master record. For example, generate all the applicable payroll 
earnings records for a terminating employee based on rules governing payoff of 
accrued vacation time, sick leave, holiday, compensatory time, etc. Again this 
done by writing a local array.
ADMINS User Guide  10 - 9



Writing Other Files: OUTFILE/OUTRECS
The following example shows the output of a TABLE which has been modified by 
MAINT. The case illustrated assigns a unique batch number to a file and a unique 
vendor sequence number to each record in a file. When finished, we output the 
TABLE record replacing the previous copy of the one record NBR.TAB file so that the 
next time the MAINT is used it will use the next available batch and vendor sequence 
number. We show the DEF of the table file, the RMS, and the dialogue which runs the 
procedure.

 * NBR.DEF
     *
     TAB 1
     *
     BATCH I KEY1   "Last Batch Number Used"
     VENDOR D       "Last Vendor Sequence Number Used"

     *  REFUND.RMS
     *
     FILE REFUND.MAS
     TABLE NBR.TAB BATCH VENDOR
     LOCAL
     COUNT/I
     SW/I
     OUTRECS/I 1
     OUTFILE/A16 'NBR.TAB'
     PROGRAM
     IF SW EQ 0 THEN SW = 1 ; BATCH = BATCH + 1 END
     BCH = BATCH
     COUNT = COUNT + 1 ; ITEM = COUNT
     VENDOR = VENDOR + 1 ; VEN# = VENDOR

First, compile REFUND.RMS loading the current record from NBR.TAB into the 
TABLE array.

     $ cmp refund
     TABLE NBR.TAB: 1 ENTRIES LOADED INTO DATA BLOCK
     REFUND.RMO WRITTEN. 4 PARAGRAPHS. OBJ-SIZE: 52  CONS-SIZE: 8

Second, change the name of NBR.TAB so we can create a new empty copy. 
(XNBR.TAB can be deleted after the procedure has been completed successfully.)

     $ rename nbr.tab xnbr.tab

Next, create a new empty copy of NBR.TAB for the MAINT to use.

     $ define
     FILE NAME:nbr
     NBR.TAB CREATED

Finally, run the MAINT writing the updated TABLE array to NBR.TAB. The updated 
NBR.TAB is ready for the next run of this process.

     $ maint refund
     TEST?  (Y OR N):n
     OPERATING ON REFUND.MAS
     OK TO CONTINUE?y
     20:51:54.74
                                                       **********
     1 RECORDS APPENDED INTO NBR.TAB
     10 RECORDS PROCESSED   20:51:55.44
     $
10 - 10   ADMINS User Guide



Rebuilding Indices After Batch Processing
10.13  Rebuilding Indices After Batch Processing

MAINT allows you to rebuild indices, on normal termination, that may have been 
invalidated by batch commands. This rebuild of the indices uses AdmSort and 
requires the use of the command line switch -SORT.

The option is also available in MOVE: Section 3.2.6 “SORT: Rebuild indexes after 
records moved”.
ADMINS User Guide  10 - 11



Rebuilding Indices After Batch Processing
10 - 12   ADMINS User Guide



Chapter 11:PROD: File Linkage 
Relational Product

The PROD command that operates on whole files at a time, links records in two 
different files, and then performs an action that can alter one (or both) of the records 
from the two input files, and/or produce a combined record that is output to a third 
file.

11.1  Conceptual Description

The first of the two input files is called the detail file. The records from the detail file 
are read in sequence from the start of the detail file to the end of the detail file. The 
second of the two input files is called the lookup file. The records in the lookup file 
are directly accessed via their key values.1 That is, they are looked up by their key 
values using fields from the record in the detail file to form the identifying key values.

After each detail record is read into memory, an attempt is made to find and read into 
memory the lookup record identified by the "link" fields in the detail record. When a 
record from the detail file and a record from the lookup file are linked together in 
memory there are several possible actions that can then be performed by PROD. (Any 
or all of these actions can be performed.)

1. Data can be moved from the lookup file record to the detail file record, and the 
record from the detail file record containing this new (or altered) data can then 
be written back onto the disk into the detail file.

2. Data can be moved from the detail file record to the lookup file record, and the 
record from the lookup file record containing this new (or altered) data can then 
be written back onto the disk into the lookup file.

3. Data from both the lookup file record and the detail file record can be combined 
into a new record that is appended to an output file.

1.    The lookup file must be in sort. Records not in sort order cannot be directly 
accessed.
ADMINS User Guide   11 - 1



Detail File
In any of these cases a record maintenance procedure can operate on the data in 
memory when a link is achieved between the detail and lookup files, and before the 
records are written back to the disk. The RMO is written to run on either the detail, 
lookup or output files. The records in the file for which the RMO is written are called 
the RMO records. If there is a record maintenance procedure active under PROD, 
then that record maintenance procedure can have "local" fields to receive data from 
the non-RMO record without necessarily filing that data in actual fields of the RMO 
record. The decision whether or not to file data from the non-RMO record received 
in a local field of the RMO record can be made by the record maintenance procedure 
itself when it is executing. (Data in local fields in record maintenance procedures 
exist only in memory and are never written out to the disk. Local fields are not 
initialized from record to record, i.e. they can be used to hold values as PROD 
proceeds in its record-by-record processing.)

The lookup file can contain multiple records with the same key value(s). In this case 
each matching record is processed against the detail record that generated the link 
fields.

The detail file need not be in any particular sort order. If, however, the detail file is in 
order on the link fields, i.e. the fields from the detail file that are used to form the key 
into the lookup file then PROD is optimized to take advantage of this and will run 
much faster.

11.2  Detail File

The dialogue that ensues when PROD is run is as follows:

     $ prod
       Detail file......:det-file-spec [w]
       Link fields....:lf1 lf2 lf3 etc.
       Transfer fields:tf1 tf2 tf3 etc.

The first part of the dialogue concerns the specification of the DETAIL file. First 
PROD asks for the name of the detail file, which the user types in response to the 
"Detail file:" prompt.

If a write-back is designated by placing the "W" after the detail file name then after 
data from the lookup file record is moved into the detail file record, the detail file 
record will be re-written to the disk.

When PROD is executing, it displays a line of asterisks to show its progress through 
the detail file. A "NO *" typed to the "Detail file:" prompt will suppress the line of 
asterisks and PROD will prompt for the detail file again.2

PROD can be instructed to skip n records in the detail file before starting the detail/
look-up linkage process. This is done by typing "skip n" to the "Detail file:" prompt. 
PROD displays "n RECORDS WILL BE SKIPPED", and then gives another "Detail 
file:" prompt.

2.     If the character "*" (asterisk) is included in the string assigned to the logical name 
OPTION, the printing of the line of asterisks to show progress through a file is 
suppressed in all ADMINS "batch" commands. See Appendix A: “Options”.
11 - 2   ADMINS User Guide



Detail File
After the detail file specification is entered, PROD prompts for the "Link fields:". 
These are names of fields in the detail file that taken together in the order they are 
typed, constitute a key value that can be searched for in the lookup file. (If the user 
types the letter "F" or "?" for fields in response to any "Link fields:" or "Transfer fields:" 
prompt, then PROD will print a list of all fields in the detail file, and re-prompt for 
the fields). The link fields need not have the same name as the key fields in the lookup 
file. However, they must match the lookup key fields in type.

Then PROD prompts for the transfer fields. These are the names for the fields in the 
detail file that will provide/receive data to/from the lookup record when the detail 
file record is linked in memory with the lookup file record. PROD can transfer up to 
200 fields. All transfer fields do not have to be entered on the same line. If PROD 
receives a line ending with a "colon" that is preceded with a blank, PROD will prompt 
for "Transfer fields" again. This continues until PROD receives a line that does not 
end with a "colon". For example:

       Transfer fields:tf1 tf2 :
       Transfer fields:tf3 
       Lookup file......:

A through notation ("-") in the transfer fields for both detail and lookup allows the 
transfer of a large number of fields with a simple instruction (i.e. "1FLD - 7FLD" 
rather than "1FLD 2FLD 3FLD etc....7FLD"). However, these fields must be in the 
same sequence and have the same field types in both files.

If neither file is being accessed via a record maintenance procedure then data is 
moved from the non-write-back record into the write-back record. If there is a record 
maintenance procedure involved, the field movement and write-back are described 
in Section 11.7 “Use of Record Maintenance Procedures”.

11.2.1  PROD with Key Range: PROD/KEY

If the qualifier "KEY" (for "key range") appears on the command line PROD will 
prompt for a key range to be processed. The key range specifies the records in the 
Detail file which are to be processed.3

After the name of the Detail file has been provided PROD will prompt for the "Start 
of key range", followed by a prompt for the "End of key range". If the input file has 
multiple keys, enter all or some of the key values, separated by a blank. Null values 
are used for minor keys not entered.

If the user responds to the "Start of key range" prompt with a question mark (?), 
PROD will display a list of the key fields and their field types, and then re-prompt for 
the starting value.

3.    Use of the key range requires that the file be in sort. PROD with key range exits 
as soon as it encounters a Detail file record with a key that exceeds the high key 
value of the specified range. Any subsequent (out of sort) records with key values 
in the specified range will not be processed.
ADMINS User Guide  11 - 3



Lookup File
 PROD will accept logical names for the key range prompts. If the response either 
prompt begins with the letters "L$" then PROD will attempt to translate the response 
as a logical name. If such a logical name exists, PROD will use the string assigned to 
it as the (low or high) key value, otherwise PROD will use the response directly as it 
usually does.

When the end of the key range value has been entered, PROD prompts for the Link 
fields.

11.2.2  Wildcard and Copy Syntax for Transfer Fields

PROD has a '*' wildcard notation for transfer fields. The '*' transfers all fields with the 
same names between the detail and the lookup file, or between the lookup and the 
output file. The fields can be in any order in the DEFs, or can be local RMO fields. The 
'*' should appear on the transfer fields line for each of the two files between which the 
wildcard transfer is to be made. The '*' can be combined with explicit transfer fields. 
If a field which has the same name in both files is explicitly named as a transfer field, 
the explicit transfer overrides the wildcard transfer. To protect file integrity, lookup 
key fields are skipped by wildcard transfers between detail and lookup (if desired, 
explicit transfer fields can be used to transfer lookup file keys). In all other respects, 
wildcarded transfer fields operate exactly as though you had specified the transfer 
fields explicitly.

The previous set of transfer fields can be copied by responding to the LOOKUP or 
OUTPUT "Transfer fields:" prompt with an equals sign (=), as in the following 
example:

     $ prod
     Detail file......:new.mas
       Link fields....:item 
       Transfer fields:sdesc unit unitpr shipwt category 
     Lookup file......:catalog.mas wi
       Link fields....:item
       Transfer fields:=

In the above example, the "=" response to the LOOKUP file transfer fields prompt is 
equivalent to typing in the same field names given to the previous (DETAIL) transfer 
fields prompt.

11.3  Lookup File

The next part of the PROD dialogue concerns the lookup file and proceeds as follows.

     Lookup file......:lkup-file-spec [w][i]
       Link fields....:lf1 lf2 lf3 etc.
       Transfer fields:tf1 tf2 tf3 etc.

This dialogue provides the same information for the lookup file as the previous 
dialogue provided for the detail file. The "colon" continuation method for entering 
the transfer fields applies as well.
11 - 4   ADMINS User Guide



Output File
However, more checking is performed here based on what is already known from the 
detail file specification. One, the LINK FIELDS must be key fields in the lookup file, 
and they must match in type, although not in name, with the LINK FIELDS provided 
in the detail file part of the dialogue. Two, the transfer fields must also match in type, 
although not in name, with the transfer fields provided for the detail file.

The write-back designation, "W", is possible even if the detail record is being written 
back as well. This is because when record maintenance procedures are used, write-
back can be requested both for records in the detail and lookup files.

Records from the detail file may be "inserted" into the lookup file if they are not found 
in the matching process. This is indicated with the optional "I" following the lookup 
file specification and is described fully in Section 11.6 “Inserting In The Lookup File”.

11.4  Output File

The final portion of the dialogue concerns the output file. (If there is not to be any 
output file then the user presses carriage return after the "Output file:" prompt.)

     Output file......:out-file-spec
       Transfer fields:tf1 tf2 tf3 etc.

If there is an output file then every time a detail record links in memory to a lookup 
record the fields listed under TRANSFER FIELDS for the lookup record are moved 
into the fields listed under TRANSFER FIELDS for the output file.

Also all fields of the same name are moved from the detail file to the output file. 
Therefore if there is an output file, the user does not type any transfer fields for the 
detail file; the user simply presses carriage return to the prompt.

The output file record then is appended to the output file.

It is possible to write back detail and/or lookup files while creating an output file. In 
this case the RMO would operate on the output file.

The output file does not have to be empty when a PROD that produces output 
records is started.
ADMINS User Guide  11 - 5



PROD Examples
11.5  PROD Examples

In this example, we wish to add vendor name and address into a purchase order file 
which is in no particular order. The purchase order record (detail file) contains the 
vendor number (VEND#) which is also the key field in a vendor table file (lookup 
file).

     $ prod
     Detail file......:po.mas w
       Link fields....:vend#
       Transfer fields:vendor addr
     Lookup file......:vendor.tab
       Link fields....:f
     VEND#/K1 NAME ADDRESS
       Link fields....:vend#
       Transfer fields:name address
     Output file......:cr
     17:54:31.04
     ************************************************************
     17:55:28.53
     188 records updated in PO.MAS
     $

Note the TRANSFER FIELDS have different names in the detail and lookup records. 
Also note the use of the "F" entry to display the field names from VENDOR.TAB.

In the following example, we wish to add records to a file used for printing 
"reminder" notices to customers with overdue accounts. The batch of overdue 
invoices (in no particular order) is the detail file, INV.MAS. It contains the invoice 
number (INVOICE), the customer ID number (CUSTID), the amount due (AMT) and 
due date (DUEDATE). The lookup file is the customer information file, 
CUSTOMER.MAS, which contains name and address information. 
CUSTOMER.MAS, has CUSTID as its key, and is in sort. When PROD links the 
record from CUSTOMER.MAS identified in the CUSTID field of INV.MAS, it will 
add a record to REMINDER.MAS, the output file. The reminder records will contain 
the customer ID, the invoice number, the amount and due date, as well as the 
customer's name and address.

     $ prod 
     Detail file......:inv.mas
       Link fields....:custid
       Transfer fields:cr  "note, no transfer fields are entered"
     Lookup file......:customer.mas
       Link fields....:f
     CUSTID/K1 NAME 1ADDR 2ADDR CITY STATE ZIP
       Link fields....:custid
       Transfer fields:NAME 1ADDR 2ADDR CITY STATE ZIP
     Output file......:reminder.mas
       Transfer fields:f
     CUSTID/K1 INVOICE NAME 1ADDR 2ADDR CITY STATE ZIP AMT DUEDATE
       Transfer fields:name 1addr 2addr city state zip
     15:31:06.15
      
**************************************************************
     244 records updated in REMINDER.MAS 
     15:32:08.96
     $

The lookup transfer fields are moved into the output transfer fields (in this example 
they have the same names). Note that no detail file transfer fields are entered when 
there is an output file. The fields in the detail file that have the same name in the 
output file (INVOICE, AMT, and DUEDATE) are moved from DETAIL to OUTPUT.
11 - 6   ADMINS User Guide



Inserting In The Lookup File
11.6  Inserting In The Lookup File

PROD can be instructed to insert records into the lookup file in those cases where the 
link from detail to lookup fails because the sought-after record is not present in the 
lookup file. This feature is invoked by placing "WI" after the lookup file specification. 
"W" for write-back on the lookup and "I" for insert if the record is not found. If there 
is an RMO on the lookup file, the RMO is executed on the inserted record.

For example, if we had the following two files:

         DET.MAS                 LKUP.MAS
     ACCT       AMT          ACCT        AMT
       1        110            1          25
       2        250            5           0
       5        860           10         500
       7        900           15           0
      10       1145

We could run the PROD as follows:

     $ prod
     Detail file......:det.mas
       Link fields....:acct
       Transfer fields:amt
     Lookup file......: lkup.mas wi
     Operating on LKUP.MAS
       Link fields....:acct
       Transfer fields:amt
     Output file......:cr
     13:12:36:97
                                                            *****
     5 records updated in LKUP.MAS
     13:12:37.13
     $

After PROD has been run the contents of LKUP.MAS would be as follows.

         LKUP.MAS
     ACCT        AMT
       1         110
       2         250
       5         860
       7         900
      10        1145
      15           0

PROD can also be instructed to insert unconditionally in the lookup file, i.e. insert a 
record in the lookup file for every record in the detail file whether or not a record with 
that particular key value is already present in the lookup. This is accomplished by 
placing "WA" following the lookup file specification. "W" for write-back on the 
lookup and "A" for always insert the record. As with "WI", if there is an RMO on the 
lookup file, the RMO is executed on the inserted records.

If "WA" had been specified in the above example the contents of the resultant lookup 
file would then be as follows:

         LKUP.MAS
     ACCT        AMT
       1         110   
       1          25
       2         250    
       5           0
       5         860  
       7         900    
      10         500
      10        1145
      15           0
ADMINS User Guide  11 - 7



Use of Record Maintenance Procedures
11.6.1  PROD/NOFLUSH: No Disk Writeback with Insert/Delete

PROD normally writes ("flushes") the lookup file header, index blocks, and data 
blocks to the disk after every insertion or deletion. This protects the integrity of the 
lookup file if the PROD should abort or the system crash while the PROD is running. 
However, flushing to the disk slows down insertion and deletion dramatically. There 
is a command line option, /NOFLUSH, that tells PROD not to flush lookup file 
blocks to disk. NOFLUSH can speed up PRODs which insert or delete by about a 
factor of three; but it must be used with caution. If the PROD does not complete 
normally, the lookup file may be left in an unusable state. /NOFLUSH should only 
be used in situations where improved performance is important, and where the 
PROD can be restarted with a current backup copy of the lookup file.

11.7  Use of Record Maintenance Procedures

Either the detail, lookup or output file name that is provided in the dialogue can be 
a record maintenance procedure object file name, where the record maintenance 
procedure has been set up to operate on the (detail, lookup or output) file. However 
only one RMO can operate in a PROD run. In this case the record maintenance 
procedure is executed after the records are linked in memory and before they are 
written back to the disk. The step by step process in which record maintenance is 
involved is as follows:

1. The records are linked in memory.
2. Data is moved from the non-RMO record to the RMO record.
3. The RMO is executed.
4. If the non-RMO record is to be re-written to the disk, data is moved from the 

RMO record to the non-RMO record.
5. The records designated for "write-back" are written to the disk.

11.7.1  Test Mode in PROD

PROD provides a Test Mode for testing RMO steps that operates in exactly the same 
way that Test Mode operates in MAINT (see Section 10.2.2 “Test Mode Operation”).4

Test Mode in PROD is requested by placing the qualifier "TEST" on the command 
line:

     $ PROD/TEST
     Detail file......:

4.  As in MAINT, PROD Test Mode does not actually update any of the files.
11 - 8   ADMINS User Guide



PROD Example Using An RMO
11.8  PROD Example Using An RMO

For example, the following record maintenance procedure posts payments to a 
general ledger. Also, if the identification (IDENT) of the payment is a purchase order 
number in the range of P0000 to P9999 then the encumbered field in the general 
ledger is liquidated for the value of the payment. Also, the VERIFY field on the 
payment record is set with 'P' for posted. Therefore, all payment records that don't 
have 'P' in the VERIFY field after PROD has been run were not able to link to a 
general ledger account, i.e. the payment record had an invalid account number.

     *          POSTPA.RMS
     *
     FILE GL.MAS
     LOCAL
     IDENT/XA9999
     PAY/D2
     VERIFY/A1
     PROGRAM
     PAID = PAID + PAY
     VERIFY = 'P'
     IF IDENT BET P0000 AND P9999 THEN
          ENCUMB = ENCUMB - PAY END

 $ prod
     Detail file......:paym.mas w
       Link fields....:f
     IDENT/K1 FUND DEPT SERV OBJ PAY VERIFY
       Link fields....:fund dept serv obj
       Transfer fields:ident pay verify
     Lookup file......:postpa.rmo w
     Operating on GL.MAS
       Link fields....:f
     FUND/K1 DEPT/K2 SERV/K3 OBJ/K4 APPR ENCUMB PAID IDENT
     PAY VERIFY
       Link fields....:fund dept serv obj
       Transfer fields: ident pay verify
     Output file......:cr
     12:25:56.03
     ************************************************************
     179 records updated in PAYM.MAS
     179 records updated in POSTPA.RMO
     12:26:48.44
     $
ADMINS User Guide  11 - 9



Internal Fields: TODAY, NOW and TICKS
11.9  Internal Fields: TODAY, NOW and TICKS

The special internal fields TODAY/DA or TODAY/DT, NOW/A8 or NOW/TM, 
and TICKS/I may be introduced as local fields in the RMO running with PROD. If 
they are present, PROD loads them with the current date (TODAY), the current time 
to the hour, minute, and second (NOW/A8),5 and the hundredth of a second of the 
current time (NOW/TM or TICKS), before each record is read and the RMO is 
executed on that record.

The following example is used to post payments from the detail file to the lookup file 
and keep a log of all payments posted in the output file. The output file is keyed on 
DATE, TIME and TK.

     *     DET.DEF
     *
     MAS 1000
     TNO I KEY1   "transaction #"
     ACCT# XA999999
     AMT D

     *     LKUP.DEF
     *
     MAS 500
     ACCT# XA999999 KEY1
     BAL D

     *     OUT.DEF
     *
     MAS 1000
     DATE DA KEY1
     TIME A8 KEY2
     TK I KEY3
     AMT D
     TNO I
     ACCT# XA999999

     *     OUT.RMS
     *
     FILE OUT.MAS
     LOCAL
     TODAY/DA
     NOW/A8
     TICKS/I
     BAL/D
     PROGRAM
     DATE = TODAY ; TIME = NOW ; TK = TICKS
     BAL = BAL - AMT

5.    If NOW is declared as field type TM, NOW will be set to the current time to the 
hundredth of a second. TICKS requires the presence of the NOW local field.
11 - 10   ADMINS User Guide



NOMATCH qualifier: Functionality without LOOKUP link
 The PROD dialogue would be as follows:

     $ prod
     Detail file......:det.mas
       Link fields....:acct#
       Transfer fields:cr
     Lookup file......:lkup.mas w
     Operating on LKUP.MAS
       Link fields....:acct#
       Transfer fields:bal
     Output file......:out.rmo
       Transfer fields:bal
     12:22:21.34
     ************************************************************
     388 records updated in LKUP.MAS
     388 records updated in OUT.RMO
     12.23.57.65
     $

11.10  NOMATCH qualifier: Functionality without 
LOOKUP link

The "NOMATCH" command line qualifier allows PROD to perform most of its 
functions even if no link is made to the lookup file. With NOMATCH in effect, PROD 
acts normally if there is a link to a record in the LOOKUP file. However, if there is no 
link and NOMATCH in effect, the RMO executes, the detail file can be written to, and 
records can be appended to the output file (if any).

NOMATCH has a facility for identifying records for which NOMATCH processing 
was in effect. If the special integer field PROD$LINK is a local field in the RMO, it is 
set to zero when there is no link, and is non-zero when a link is made. PROD$LINK 
can be used, for example, to identify and mark detail records which are not in the 
lookup file

The special NOMATCH RMO local integer field I$I enables the RMO to control 
insertion into the lookup file. To use I$I, NOMATCH must be in effect, and writeback 
("W", not "WI" or "WA") must be specified for the lookup file. The special field 
PROD$LINK, explained above, should be in the RMO. When PROD$LINK is zero, 
the record does not exist in the lookup file, and I$I can be set to 1 to insert the record 
in the lookup file. When I$I is set to 1, the record is inserted. PROD then automatically 
sets I$I to zero and sets PROD$LINK to a non-zero value, and the RMO is called 
again. At this second call, transfer fields can be set and normal updating can be 
performed.
ADMINS User Guide  11 - 11



Controlling Writeback and Output: W$W
11.11  Controlling Writeback and Output: W$W

There are situations where appending to the output file or writing back to the detail 
or lookup file is a conditional action depending on the values in the detail and/or 
lookup files. This conditional control functionality is available in PROD through the 
use of the special local field, W$W. To extend the previous example in Section 11.9 
“Internal Fields: TODAY, NOW and TICKS” to illustrate this facility say we did not 
wish to create output records if the balance in the lookup file was zero. We use the 
W$W/I field to instruct PROD whether or not to append to the output file. That is, if 
W$W is present in the output file RMO, then it must be set to 1 at each call to the RMO 
in order for PROD to create an output record.

Therefore we would alter OUT.RMS as follows:

     *     OUT.RMS
     *
     FILE OUT.MAS
     LOCAL
     TODAY/DA
     NOW/A8
     TICKS/I
     BAL/D
 --> W$W/I
     PROGRAM
     DATE = TODAY ; TIME = NOW ; TK = TICKS
 --> IF BAL NE 0 THEN W$W = 1 ; BAL = BAL - AMT ELSE W$W = 0 END

The following table lists the only valid settings for W$W, along with their 
corresponding control functions.

        For PROD with OUTPUT file:
          
           set W$W to:       Functionality 

                0         No append to OUTPUT are performed,
                          (DETAIL and LOOKUP writebacks 
                            ALWAYS occur in PROD with OUTPUT!)

                1         Append record to OUTPUT

        For PROD without OUTPUT file:
          
           set W$W to:       Functionality 

                0         No writebacks are performed

                2         Writeback to DETAIL only

                4         Writeback to LOOKUP only

                6         Writeback to both DETAIL and LOOKUP
11 - 12   ADMINS User Guide



Controlling Lookup File Insertion: DI$DI
11.12  Controlling Lookup File Insertion: DI$DI

There is facility for controlling the insert to the lookup file. The detail record can 
contain an actual field of DI$DI/I. If this field is set to zero in a particular detail 
record, then that detail will never create an insert into the lookup file.

11.13  Record Deletion: D$D

The RMO has the ability to delete records from the lookup file through the use of a 
local integer field named D$D. The default for the delete option is no delete (D$D = 
0). For a record to be deleted, the D$D field must be set to one. That is, after the RMO 
executes on the RMO record in the lookup file, the RMO can request that PROD 
delete that record from the lookup file by setting D$D to "1". PROD will delete the 
record and reset D$D back to zero.

11.14  Terminating a Command File: E$XIT

A PROD may be included in a series of commands called a "command file", which is 
described in Chapter 14: “Command Files”. A running command file may be 
terminated after the processing of a PROD. If the user introduces a local field E$XIT 
of type integer in the RMO then this field may be used to instruct PROD to terminate 
the command file. This is done by having the RMO set the E$XIT local field to "1". The 
command file will be terminated at the end of the step containing the PROD.

11.15  Quitting Before End of File: Q$Q

Normally PROD processes the detail file from beginning to end. However there will 
be times when PROD is only required to process the file up to a particular record and 
subsequent record processing is not needed.

If the user introduces a local field Q$Q of type integer in an RMO with the PROD, 
then this field may be used to instruct PROD to stop processing at a given record, 
close the file and terminate. That is, the RMO should contain statements which set 
Q$Q to "1" at the record where PROD is to quit. PROD examines the Q$Q after each 
record, and when Q$Q is "1", PROD stops processing.
ADMINS User Guide  11 - 13



Itemization and De-Itemization
11.16  Itemization and De-Itemization

PROD can also be used to place fields from several records of the same key value into 
one large record with repeating fields, and conversely place fields from one large 
record with repeating fields into several smaller records. We call this "de-itemizing" 
(several records into one record) and "itemizing" (one record into several records). 
The several itemized records produced from the same de-itemized record always 
contain the same key.

Let us consider a de-itemizing example. Individual payment records contain the 
vendor number, the invoice number and the payment amount. We wish to print 
checks where a vendor receives one check for all payments, and the check stub shows 
the individual amounts and invoice numbers. (Note the request for field names is 
optional and there is no lookup file.)

     $ prod
     Detail file......:paym.mas
       Link fields....:f
     VEND#/K1 INVOICE AMT
       Link fields....:vend#
       Transfer fields:invoice amt
     Lookup file......:cr
     Assuming ITEMIZE/DE-ITEMIZE
     Output file......:checks.mas
       Transfer fields:f
     VEND#/K1 CK# VENDOR ADDR CITYST INV1 AMT1 INV2 AMT2 INV3
     AMT3 INV4 AMT4 INV5 AMT5
       Transfer fields:inv1 - amt5

When using PROD to itemize/de-itemize there is no lookup file, and the link fields 
of the detail file are the keys in the detail file. The through notation (see the "-" in the 
output file transfer fields in the above example) is used to designate the repeating 
fields. When PROD is itemizing the repeating fields are designated by the through 
notation in the detail file, and when PROD is de-itemizing then the repeating fields 
are designated by the through notation in the output file. Repeating fields can only 
be designated in one or the other and through notation may only be used once. The 
repeating fields are always repeating consecutive sequences of fields that match the 
itemized fields in type and length.
11 - 14   ADMINS User Guide



Itemization and De-Itemization
PROD, when itemizing, will stop generating itemized records whenever a particular 
group of fields with null values in the transfer fields is reached. Therefore, if a file 
contains repeating groups of fields and is to be subsequently itemized, be sure that 
all the non-null groups of values are placed consecutively in the repeating groups.

When de-itemizing, the DETAIL file should be in sort because PROD will create a 
new OUTPUT record whenever the key changes in the DETAIL file. Itemized records 
with the same key value that are not adjacent will not be combined in the de-itemized 
output record.

If PROD runs out of fields in the de-itemized record, i.e. there aren't enough 
repeating groups of fields for all the repeating records in the detail, then PROD will 
generate an additional de-itemized record with the same key value(s) so as to include 
all the values from the detail (itemized) file.

Also, as in the general use of PROD, other fields of the same name are moved from 
the detail record to the output record.

Let us reverse the above example to illustrate itemization. We have a record that 
contains the vendor number, name, address and check number and five pairs of 
invoice numbers and amounts. We wish to create a record for each invoice/amount 
pair keyed on vendor number and also containing check number. We proceed as 
follows:

     $ prod
     Detail file......:checks.mas
       Link fields....:f
     VEND#/K1 VENDOR ADDR CIYTST CK# INV1 AMT1 INV2 AMT2 INV3
     AMT3 INV4 AMT4 INV5 AMT5
       Link fields....:vend#
       Transfer fields:inv1 - amt5
     Lookup file......:cr
     Assuming ITEMIZE/DE-ITEMIZE
     Output file......:detail.mas
       Transfer fields: invoice amt
     ...

This would produce detail records per each invoice/amount pair keyed on vendor 
number with the check number (CK#) included. Note, CK# is moved implicitly from 
CHECKS.MAS to DETAIL.MAS. That is, as we stated above, fields of the same name 
are moved from the detail to the output file. Note also, that although each record in 
CHECKS.MAS can contain up to five invoice/amount pairs, records are created in 
DETAIL.MAS for actual invoice/amount pairs, i.e. when PROD comes to an empty 
(i.e. zero) INVn/AMTn pair in a record of CHECKS.MAS, PROD goes on to the next 
record in CHECKS.MAS.
ADMINS User Guide  11 - 15



Multiple Lookup Files
11.17  Multiple Lookup Files

PROD can use more than one lookup file in relation to a detail file. This is done by 
keeping the name of the lookup file to which a detail record should be linked in a 
field of the detail record, and instructing PROD to get the lookup file name indirectly 
through this detail field as it is processing the detail records. Consider the following 
simple example:

     F.DEF           F1.DEF         F2.DEF          F3.DEF

     MAS 100         MAS 100        MAS 100         MAS 100
     ID XA99 KEY1    N I KEY1       N I KEY1        N I KEY1
     N I             SP A10         SP A10          SP A10
     SP A10
     FILE A10

These files are defined and the following data is placed in each:

     F.MAS                   F1.MAS      F2.MAS      F3.MAS

     ID  N SP    FILE        N SP        N SP        N SP
     A01 1 ONE   F1.MAS      1           1           1
     A02 2 TWO   F2.MAS      2           2           2
     A03 3 THREE F3.MAS      3           3           3

PROD can be used to post the spellings to the three files as follows: Note the use of 
the parentheses in the entry to the "Lookup file" prompt. The parentheses indicate 
that the entry is a field in the detail file. (The fact that the FILE field is an 
alphanumeric field indicates to PROD that FILE contains the name of the lookup file 
for each record.)

 $ prod
     Detail file......:f.mas
       Link fields....:n
       Transfer fields:sp
     Lookup file......:(file) w
       Transfer fields:sp
     Output file......:cr
     12:24:28.06
                                                              ***
     3 records updated in (FILE)
     12:34:30.20
     $

When we now inspect the contents of the 3 lookup files we find the following:

     F1.MAS        F2.MAS        F3.MAS

     N SP          N SP          N SP
     1 ONE         1             1
     2             2 TWO         2
     3             3             3 THREE

A Record Maintenance Procedure (RMO) is not allowed on any of the multiple 
lookup files. Also, PROD will skip the record if the field designated to contain the 
lookup file name is blank.
11 - 16   ADMINS User Guide



Multiple Lookup Files
11.17.1  Keeping Multiple Lookup Files Open

There is an alternate way to set up PROD to use multiple lookup files that is more 
efficient. However this alternate way could only be used with a limited number of 
lookup files.

When the lookup file is specified by name in a field of the detail file, only one lookup 
file is kept open at a time. That is, each time the lookup file is changed, the current 
one is closed and the next one is opened. This results in somewhat slower processing 
than if all the lookup files were kept open throughout the PROD run, but on the other 
hand there is no limitation placed on the number of lookup files referenced in the 
detail file.

The alternate method opens all the lookup files at once. The PROD will run faster 
because there will be no file closings and openings during the run.

In this alternate method the field in the detail record that specifies the lookup file is 
an integer field rather than an alphanumeric field. This field specifies whether a 
particular detail record links to the first, second, third, etc. lookup file. PROD will 
prompt for the names of the lookup files when it gets an integer "indirect file name" 
field.

In the previous example if F.DEF contained an integer field FILNO the PROD 
dialogue would go as follows:

 $ prod
     Detail file......:f.mas
       Link fields....:n
       Transfer fields:sp
     Lookup file......:(filno) w
     File name 1:f1.mas
     File name 2:f2.mas
     File name 3:f3.mas
     File name 4:cr
       Transfer fields:sp
     Output file......:cr
     12:24:28.06
                                                              ***
     3 records updated in (FILNO)
     12:34:30.20
     $
  

A Record Maintenance Procedure (RMO) is not allowed on any of the multiple 
lookup files. Also, PROD will skip the record if the field designated to contain the 
lookup file number is zero.
ADMINS User Guide  11 - 17



LOOKUP Without an Exact Match
11.18  LOOKUP Without an Exact Match

The link to the LOOKUP file normally either finds an exact match in the link file or, 
unless NOMATCH is in effect, goes on to the next record in the DETAIL file.

Four alternative linkage operations are available in situations when an exact match 
may not be found but when an actual link is desired. These operations compare the 
link key values to the key values in the LOOKUP file and link to the next higher or 
lower record in the LOOKUP file, when there is no exact match, or even if there is an 
exact match.

1. LINKGT - Link Greater Than: Links to the next higher (key value) record in the 
LOOKUP file even if there is an exact match. If there is none higher, PROD goes 
on to the next DETAIL file record. If multiple records in the LOOKUP file have 
the next higher key value, PROD links to each of these records.

2. LINKGE - Link Greater than or Equal to: Links to an all records in the LOOKUP 
file with an exact match, or if one is not found, links to all records with the next 
higher key value, as described above for LINKGT.

3. LINKLT - Link Less Than: Links to the next lower (key value) record in the 
LOOKUP file even if there is an exact match. If there is none lower, PROD goes 
on to the next DETAIL file record. If multiple records in the LOOKUP file have 
the next lower key value, PROD links to each of these records.

4. LINKLE - Link Less than or Equal to: Links to an all records in the LOOKUP file 
with an exact match, or if one is not found, links to all records with the next 
lower key value, as described above for LINKGT.

These alternative linking methods are activated using one of the four command line 
qualifiers, "LINKGT", "LINKGE", "LINKLT", or "LINKLE", as follows:

 $ prod -linkle
     Detail file......:det.mas
       Link fields....:acct
       Transfer fields:amt
     Lookup file......: lkup.mas w
     Operating on LKUP.MAS
       Link fields....:acct
       Transfer fields:amt
     Output file......:cr 
11 - 18   ADMINS User Guide



Chapter 12:ANALYZER: Generalized 
Data Analysis

The ANALYZER is a generalized data analysis tool. The ANALYZER may be used to 
examine a broad range of data from personnel or budgeting files to attitudinal 
surveys, from clinical records to inventory or accounting transaction files.

The ANALYZER may be used as an on-line ad hoc reporting tool for data retrieval, 
data checkout and report design, or as a tool to perform substantial analysis for policy 
and decision making purposes.

The ANALYZER consists of logic, calculation and aggregation operations that are 
used in a interactive step-wise fashion to examine, reorganize and reclassify data in 
ADMINS files according to some analytic purpose (the "analysis plan"). As well as 
providing the computational and manipulation facilities required for exploratory 
analysis, the ANALYZER is designed to act as a "professional assistant" for the end 
user data analyst.

The ANALYZER has a complete on-line HELP facility, which explains both the 
functions and the syntax of all the ANALYZER commands.

The ANALYZER remembers the steps that are used to manipulate data and can 
display the user's derived names and construction steps at any time. The ANALYZER 
keeps a log of all the work done in an analysis session, which allows the user to pick 
up from where the work was left, eliminating the concern of losing unsaved work. The 
step by step instruction log also allows the user to edit changes to an interactively 
developed analysis procedure and then re-run the whole procedure as a command 
file.

Usually after a brief training period, the data analyst begins to use the ANALYZER on 
his/her own data to accomplish some analytical or reporting objective.
ADMINS User Guide   12 - 1



Method of Operation
12.1  Method of Operation

The ANALYZER operates on the "logical file" which includes the physical (ADMINS) 
data file, linked fields obtained by linking from the physical file to other physical 
files, and created fields created by calculation or logical operations involving fields 
in these physical files. To begin using the ANALYZER, one builds sets with the 
SELECT command to subset the items in the data file, based on values in the items, 
according to the hypotheses or questions being examined. A set is a list of items from 
the logical master data file. (For example, employees in a personnel file.) Once the 
first level1 sets are built using codes and values in the data fields (e.g. a set of 
employees with five years or more of service) the set operations INTERSECT, 
UNION, COMPLEMENT and EXCLUSIVE-OR are used to combine and recombine 
the sets of items, according to one's analytical purpose. (For example, intersect the set 
of employees with over five years of service with the set of female employees.)

The MARGINALS instruction is used to have the ANALYZER automatically build 
first level sets either for coded data or numerical values. For numerical values the 
MARGINALS instruction builds interval sets, e.g. quartiles based on salary.

At any point in the process a detailed or summary table of the data in the sets can be 
requested in a variety of formats. These tables can include totaling operations, (some 
of which are automatic), percentages, and statistical indicators. After examining a 
table, the user can then build higher level sets based on what the table showed about 
the data.

If, during an analysis session, the user realizes that another related file is necessary 
for the analysis, the user simply links that file into the logical master file being 
analyzed and carries on with the analytical operations (e.g. linking in a salary history 
file).

Below some of the major concepts used in the ANALYZER are highlighted.

The "logical master file" includes all the fields from the physical ADMINS data file, 
linked fields, and created fields.

The ANALYZER starts with a physical ADMINS data file. PERSONEL.MAS contains 
personnel records.

        AN> FILE PERSONEL.MAS

Fields can be linked from other ADMINS data files. The department name field, 
DEPTNAME, is linked from another file, DEPT.TAB.

        AN> LINK DEPTNAME FROM DEPT.TAB KEY IS DEPT

Other fields can be created by defining a calculation or logical operation. The field 
YEARS contains the years of service.

        AN> CREATE YEARS/I 85 - HIREYR

1.    First level sets are expressed directly in terms of values in data fields, and are 
created using the SELECT or MARGINALS command. Second level sets are 
expressed both in terms of other second level sets and first level sets.
12 - 2   ADMINS User Guide



Method of Operation
A set is a logical combination of characteristics in the data. First level sets are created 
using the SELECT or MARGINAL commands, to make the basic data characteristics 
accessible to the higher level set building commands of the ANALYZER.

A set is a named list of items from the logical master file. Employees in department 
2020, are in the accounting dept. This set is named DEPT.ACCT.

        AN> SELECT DEPT EQ 2020 S:DEPT.ACCT

A set can be based on the value of a created field, e.g. the field YEARS defined in a 
create above. Employees with 5 or more years of service are in the set named YRS:5+.

        AN> SELECT YEARS GE 5 S:YRS:5+

Sets can be built automatically for coded or numerical values. A set of the female 
employees and a set of the male employees are automatically built (i.e. sets to the 
possible codes in the SEX field).

        AN> MARG SEX

Sets can be built automatically for intervals of values. Sets are automatically built to 
4 salary ranges, each with (approximately) the same number of people. That is, 
quartiles of salary.

        AN> MARG SALARY/I4

Higher level sets are built using the set operations INTERSECT, UNION, 
COMPLEMENT, and EXCLUSIVE-OR, allowing the user to construct new analytic 
combinations of characteristics from the data.

INTERSECT builds a set of items present in both sets. A new set of female employees 
with at least 5 years of service is built by intersecting the set of employees with 5 or 
more years of service with the set of female employees

        AN> INTERSECT YRS:5+ SEX.F = F.5+

UNION builds a new set of items present in either set. We create a set of employees 
with at least 5 years of service or in the 4th (the highest) salary range.

        AN> UNION YRS:5+ SALARY.4/4 = HISAL.5YRS

COMPLEMENT builds a new set of items not in the first set. We create a set of 
employees with less than 5 years of service.

        AN> COMPLEMENT YRS:5+ = YRS:UNDER5

The TABLE command is the tool for displaying the data and for summarizing the 
data via existing sets in preparation for further set construction.

Print a listing of the first and last names, addresses and salaries for all the employees 
in the personnel file, sorted by last name.

        AN> TABLE FNAM LNAM/S1 ADDR CITY STATE SALARY

Print a detailed list of name, addresses, salaries and average age for employees 
ordered by length of employment. The employees are grouped into sets based on 
length of employment under 2 years, 2 to 5 years, or 5 years or more.

        AN> TABLE YRS:<2 YRS:2-5 YRS:5+
        VALUES: LNAM/D ADDR/D SALARY/D AGE/AV YEARS/S1

Print a report comparing the average salaries for women and men in the accounting 
department.

        AN> TABLE
        ACROSS THE TOP: DEPT.ACCT
        DOWN THE SIDE:  SEX.F SEX.M
        VALUES: SALARY/AV
ADMINS User Guide  12 - 3



Method of Operation
The ANALYZER works as the user's assistant in managing the interactive analysis 
session.

SHOW can display the fields, sets, option settings, and the log of the analysis steps.

        AN> SHOW SETS

EXAMINE gives a detailed breakdown of a set.

        AN> EXAMINE HISAL.5YRS

The WRITE command packages the analysis into a text editable command file for 
future use.

        AN> WRITE ANALYSIS

12.1.1  Reporting and Outputting Data Files

The TABLE command is the analytical reporting facility in the ANALYZER. Reports 
can be printed on the screen or in hardcopy. There are several report formats 
available within the ANALYZER. The reports can be sorted on any fields before 
printing. In addition, a variety of summary operations can be requested (e.g. average, 
maximum, percentages, totals etc.) The table layouts provided by the ANALYZER 
include:

1. Detailed and/or summary tables for each item (record) in the logical master file. 
(For example, a list of names, addresses and salaries for employees in the 
personnel file, with salary totals.)

2. Detailed and/or summary tables for a single or a group of related sets within 
the logical master file. (For example, a list of names, addresses, salaries and 
average age for employees by length of employment; with length of 
employment subset into one year, two to five years, over five years of service.)

3. Detailed and/or summary tables for two dimensional cross-tabulations of 
groups of related sets. (For example, number of employees, average age, 
average salary by length of employment (as above) versus professional level; 
with professional level subset into clerical, administrative, junior scientist, 
senior scientist, executive.)

The ANALYZER provides an OUTPUT command which allows the user to 
reorganize and consolidate the analysis steps performed on a file. OUTPUT can be 
used to build subsets of the existing files to make using the ANALYZER more 
efficient by having it operate only with the data upon which the user wishes to focus. 
OUTPUT allows the conversion of "virtual" sets into "actual" field values so that 
ANALYZER results can be used with other ADMINS commands, or handed off to 
statistical packages. (For example, code the sets for low, medium and high career 
mobility into an actual field. These sets could have resulted from an analysis of 
promotion and salary history.)

In summary, the ANALYZER maximizes the user's productivity in analyzing data 
without requiring a technical grasp of ADMINS or a professional assistant to direct 
and manage the computer processing. The ANALYZER is the user's "assistant". The 
ANALYZER focuses on providing a user oriented environment, including on-line 
syntax assistance, naming and management of derived fields and sets, automatic 
formatting of reports and graphs, and production of analytical results in further 
usable ADMINS data files and external file formats.
12 - 4   ADMINS User Guide



Method of Operation
12.1.2  Conventions and Concepts

Before describing the syntax of the various ANALYZER commands, some 
conventions and concepts used in this manual are introduced.

1. A SET is an ordered list of item (record) numbers from the master file. (The 
numbers are the record positions of the records in the file.) A set has a short 
name and may have a descriptive label for use in reports. The set name must be 
one continuous string, i.e. a set name does not contain imbedded blanks, but 
may contain other punctuation characters such as "." or "-". Sets are specified in 
command syntax as "S:set-name" although the "S:" is only required where it is 
needed to resolve ambiguity in the command syntax.

2. The set "label" may contain blanks and may be up to sixty characters in length. 
A label can be designated on the same line as the set name or can be assigned to 
a set name subsequent to naming the set. Labels are used to describe columns or 
rows in reports. Set names and labels can be changed at any time, using the 
NAME command (Section 12.13.2 “Using the NAME Command With Sets”).

3. In cases where it is necessary to distinguish a field name from a constant or 
label, an "F:" precedes the field name. The "F:" syntax is used in the SELECT and 
NAME commands (Section 12.4.1 “Single Set Syntax” and Section 12.13.1 
“Using the NAME Command with Fields”).

4. The notation "abc*" refers to all set names that start with characters abc. (abc can 
be any number of letters.) That is, the "*" is a "wild card" symbol. Wild cards are 
supported in the TABLE, GRAPH, and SHOW commands.
Wild cards are a valuable tool for creating groups or classes of sets that are 
placed in reports or graphs as a unit. The wild card technique can be used to 
support simple hierarchical classifications of sets.

5. When the ANALYZER expects the user to type a command, it prompts with 
"AN>".

6. In the examples in this manual, the computer prompts appear in upper case, 
and the user's responses appear in lower case.

7. In the syntax descriptions used below square brackets (e.g. [ ]) around a syntax 
element are used to indicate that the particular syntax element is optional. For 
clarity the ANALYZER command names in this manual are fully spelled. 
However, the ANALYZER commands usually may be abbreviated to their 
initial 2 letters.

8. To specify any existing field name or set name it is sufficient to type only 
enough characters to unambiguously identify the field or set.

9. When using the ANALYZER, a list of all the set building and definitional 
commands are saved in a file named XXX.SAV. Thus, one can leave an 
ANALYZER session and later return to where the work was left. SAV files are 
described in Section 12.2.2 “The SAV File”.

10. The ANALYZER provides syntax assistance by simply typing the command 
name and a carriage return. For the SELECT, TABLE, and GRAPH command, 
type the command name followed by two carriage returns to see the syntax 
assistance. The ANALYZER also has on-line HELP, which describes the 
purpose as well as the syntax for each command. The on-line ANALYZER 
HELP is describe in Section 12.15 “The HELP Command”.
ADMINS User Guide  12 - 5



Method of Operation
12.1.3  Command Summary

The following commands are supported in ANALYZER.

Definitional

Set Operations

Output

Informational

FILE Names the master file.

LINK Asserts the link file, the keys to them, and the link 
fields

CREATE Create new fields based on calculations or logic, 
using same syntax as ADMINS report.

NAME Changes the name and/or assigns or changes the 
label for a field or set.

OPTION Sets various printing and reporting options.

SELECT Uses comparisons to build first level sets.

MARG Automatically builds first levels sets.

INTERSECT Logical “and” of two or more sets.

UNION Logical “or” of two or more sets.

COMPLEMENT Logical negation of a set.

EXCLUSIVE OR Exclusive “or” of two sets.

TABLE Produces detail or summary reports.

GRAPH Graphs values from a summary report.

OUTPUT Outputs records to an ADMINS data file from 
actual fields, linked fields, created fields, and sets.

WRITE Writes a command file.

SHOW Displays field, set or file descriptions

EXAMINE Shows a full step by step breakdown of a set.

HELP Assists user.

STOP Exits from the ANALYZER, saves latest changes.

QUIT Exits from the ANALYZER, does not save latest 
changes.
12 - 6   ADMINS User Guide



Method of Operation
  Inter-Process

12.1.3.1  Recall & Line Editing in the ANALYZER Session
During ANALYZER interactive sessions there is often a need to display a previously 
entered command to fix a typo, make a change, or simply to re-use the command, 
instead of retyping the whole line over again. The ANALYZER saves and allows you 
to access up to 20 most recently entered commands.2 Once you have recalled a 
command, you can use several editing keystrokes supported by the ANALYZER to 
facilitate changing the command.

Use the UP arrow key to recall previously entered commands, and use the DOWN 
arrow key to re-examine a command previously retrieved using UP arrow.

You may then edit the ANALYZER command line using the following keystrokes:

SPAWN Create subprocess.

ATTACH (OpenVMS) Switch control to existing (sub) process 
in your job.

2.   Recall and line editing are not supported in window mode.

Edit Key Function

CTRL/A or 
Insert-Here

Switches between overstrike and insert mode.
The default mode is overstrike.

LEFT arrow 
or CTRL/D

Moves the cursor one character to the left.

RIGHT 
arrow or 
CTRL/F

Moves the cursor one character to the right.

CTRL/H or 
F12

Moves the cursor to the beginning of the line.

CTRL/E Moves the cursor to the end of the line.

CTRL/U Deletes characters from the beginning of the 
line to the cursor.
ADMINS User Guide  12 - 7



Method of Operation
12.1.4  The Preventive Maintenance Example

Throughout the rest of this document, we will refer to a preventive maintenance 
study of 40 vehicles which was conducted in 1981. The file to be analyzed contains 
the following fields.

     ************** Preventive Maintenance File ***************
     MAS 100
     VEH#     X9999 KEY1   "vehicle identification number"
     MODYR    I            "model year, last 2 digits of year"
     TOTMILES D            "total miles"
     MILES    D            "miles driven in 1981"
     CLASS    I            "weight class, 1-5"
     TOTMAINT D2           "total maintenance cost"
     PARTS    D2           "cost for parts in 1981"
     LABOR    D2           "cost for labor in 1981"

The data for this file is as follows. Whenever you read an example, you can refer to 
this data listing and see how the ANALYZER performed a particular operation.

 VEH# MODYR TOTMILES   MILES CLASS     TOTMAINT     PARTS     LABOR 
      
 0001    76   36,456  12,762     5     3,465.54    132.00    231.50 
 0002    71   87,434   9,834     3     5,384.53    543.00    654.00 
 0003    73   38,004   5,476     5     5,378.00       .00    546.32 
 0004    75   54,538   7,623     1     4,648.00    546.12    675.00 
 0005    77   34,879  12,453     1     4,125.00    544.00    179.00 
 0006    79   15,437   7,634     3     1,437.76    345.76    578.00 
 0007    80   12,098   5,643     3       899.00    357.00    368.00 
 0008    81    7,234   3,425     4       749.00    127.00    433.00 
 0009    82    3,265   3,265     2       200.00    125.00     75.00 
 0010    73  125,987  32,555     4     4,855.00    234.00    765.80 
 0011    74   98,555  12,876     1     3,986.00    433.00    578.00 
 0012    76   58,098  13,564     5     3,122.00    400.00    350.00 
 0013    78   37,324  14,324     1     1,943.00    123.78    657.00 
 0014    80   14,786   7,456     1     1,080.00    345.00    455.00 
 0015    81    9,655   9,655     3       875.00    490.00    385.00 
 0016    69  150,886  21,376     2     7,311.00    577.00    308.00 
 0017    72   76,945  19,745     3     5,070.00    694.00    374.00 
 0018    74  105,886  16,543     5     1,044.00    487.00     75.00 
 0019    74   54,654  14,354     2     3,887.00    345.00    945.00 
 0020    74   86,442  12,543     5     4,872.00    497.00    855.00 
 0021    77   67,444   9,834     4     2,509.00    254.00    199.00 
 0022    79   43,765  11,546     1     4,886.00    627.00    362.00 
 0023    81    7,544   7,544     2     1,055.00    675.00    480.00 
 0024    80    7,634   3,564     1       456.00    211.00    190.00 
 0025    73   87,654  14,543     2     2,077.00    546.00    981.00 
 0026    75   75,330  12,546     1     3,576.00    263.00    946.00 
 0027    76   65,435  15,436     2     4,099.00    625.00    414.00 
 0028    78   65,333  12,088     4     3,462.00    524.00    836.00 
 0029    79   31,234   8,976     3     2,763.00    526.00    684.00 
 0030    79   23,734   8,456     4     1,077.00    376.00    132.00 
 0031    77   63,000   8,000     3     6,565.00    543.00  1,777.00 
 0032    80   17,000   7,500     2       675.00    400.00    275.00 
 0033    81   10,000  10,000     2       200.00     80.00    120.00 
 0034    78   44,000  12,000     4     2,050.00    200.00    420.00 
 0035    75   70,000  15,300     5     5,365.00    364.00    955.00 
 0036    69  120,000   8,000     5    15,080.00    600.00    150.00 
 0037    80   35,000  17,000     4     2,500.00    250.00    400.00 
 0038    79   25,000   7,500     3       900.00    100.00    200.00 
 0039    76   60,000  15,000     4     2,000.00    400.00    600.00 
 0040    82   67,000  10,500     5     1,940.00    290.00    175.00

Although the ANALYZER is capable of performing complex analyses, we have tried 
to keep the examples simple, focusing on simple illustrations of the features, rather 
than "real life" analysis techniques.
12 - 8   ADMINS User Guide



The FILE Command and SAV Files
12.1.5  Personnel File Example

Some of the examples used in this manual refer to a personnel file containing fringe 
benefit budgeting information. The file definition of this personnel file is included 
here for reference.

     ********* PERSONNEL FRINGE BENEFIT BUDGETING ***********
     MAS 500
     EMPL#      X999999    KEY1
     LNAM       A20                 "Last name"
     FNAM       A20                 "First name"
     ADDR       A30                 "Address"
     CITY       A20                 "City"
     STATE      A2                  "State"
     DEPT       X9999               "Department number"
     SLOT       X99999              "Position"
     JCLASS     X9                  "Job Class"
     HIREYR     I                   "Year Hired"
     SEX        A2                  "Sex"
     DOB        DA                  "Date of Birth"
     MARIT      A1                  "Marital Status"
     EDUCATION  A2                  "Education level"
     SALARY     D2                  "Total Salary"
     PENSION    D2                  "Actual Pension Amt"
     ASS        D2                  "Actual Social Security Amt"
     AHOSP      D2                  "Actual Hospitalization Amt"
     UNION      A5                  "Union # or exempt"

12.2  The FILE Command and SAV Files

This section discusses the FILE command and SAV files. The FILE command is used 
to name the ADMINS data file to be analyzed. SAV files are automatically 
maintained by the ANALYZER for the purpose of keeping track of the analysis steps. 
Because the FILE command and SAV files are interdependent, these two concepts are 
discussed together in this section.

12.2.1  The FILE Command

The analysis session begins by typing "AN" to the operating system prompt. The 
FILE command is used to identify the ADMINS data file to be used as the master file 
in the analysis. As one would expect, this is typically the first instruction the 
ANALYZER receives.

     AN> file file-name [/RANGE]

In the following example, the file PREV.MAS, which contains the vehicle 
maintenance data, is named as the master data file, right after the user enters the 
ANALYZER.

     $ an
     AN> file prev.mas

Alternatively, the master file can be included on the AN command line, so that the 
FILE command is not necessary. For example:

     $ an prev.mas
ADMINS User Guide  12 - 9



The FILE Command and SAV Files
It should be clear that without a master file on which to work, there is little that the 
ANALYZER can be told to do. Hence, identifying the master file is almost always the 
first step in using the ANALYZER.3

The RANGE qualifier allows you to define a virtual file limited to a key range (the 
file must be in sort order). RANGE prompts the user for the beginning and the end 
of the key range. If the main file has multiple keys, enter some or all of the key values, 
separated by blanks. Null values are used for any minor keys not entered. Range is 
useful when operating on a large data file when only part of it needs to be analyzed. 
This speeds up performance significantly.

The RANGE qualifier can only be used with a file name, either in the FILE command 
or on the AN command line:

     $an
     ANALYZA1.SAV CREATED
     AN>file prev.mas/RANGE
     Start of key range: KEY_VALUE(s) or ?
     End of key range..: KEY_VALUE(s) or ?

or alternatively,

     $an prev.mas/RANGE
     ANALYZA1.SAV CREATED
     Start of key range: KEY_VALUE(s) or ?
     End of key range..: KEY_VALUE(s) or ?

Replying to the range prompts with a question mark (?) displays the file's key fields 
and their field types.

12.2.2  The SAV File

The ANALYZER automatically maintains a log of all the definitional and set building 
commands used in the analysis session in a SAV file (e.g. ANALYZB3.SAV). That is, 
the ANALYZER always maintains the ability to re-create all of the instruction steps 
that brought the analysis to its current point. One can return to an analysis started 
previously, simply by typing the AN command. The ANALYZER then restores all of 
the steps which were used and saved in the default SAV file, and then allows the user 
to continue the analysis.

The following diagram illustrates what happens when an analysis session begins.

             $ AN  (or)
             $ AN SAV-file-name    (e.g. modelb)
                     |
                     |
                     v
         ------------------------     
        | Does SAV-file exist?   |   -------------
         ------------------------         No      |
                     |                            |
                     | Yes                        |
                     v                            v
         ------------------------     --------------------------     
        | AN restores previous   |   | AN creates new SAV file. |
        | analysis environment.  |   | User begins analysis, by |
        | User continues analysis|   | providing data file name |
         ------------------------     --------------------------

3.    The ANALYZER can be asked to show the field names in an ADMINS data file, 
before a master file is selected as the main file for the analysis. This use of the 
SHOW command is described in Section 12.12.3 “Show File-Name”.
12 - 10   ADMINS User Guide



The FILE Command and SAV Files
If the user simply types "AN" to the operating system prompt, the default SAV file 
(e.g. ANALYZB3.SAV) is automatically used.

New SAV files have either a default name or a user specified name. To create or use 
SAV file, with a name other than the default, include the name of the SAV file on the 
AN command line. The file type (.SAV) is not included on the command line. For 
example, to begin an analysis using a SAV file named MODELB.SAV type:

     $ an modelb

To resume working on an existing named SAV file, the name of the SAV file is once 
again included on the AN command line as in the example above.

Regardless of the SAV file name, the first time a non-existent SAV file is needed by 
the ANALYZER, it is created. Subsequent use of that file will recall all of the 
commands which had been added to the SAV file during its previous usages.

The FILE command is used with a new SAV file, either a named SAV file or a new 
default SAV file. There can be only one data file named with the FILE command 
within an analysis session. (Additional data files can be linked as described in Section 
12.3 “The LINK Command”)

The contents of the SAV file can be written into a text editable format for future use, 
by using the WRITE command (see Section 12.18 “The WRITE Command”).

If an ANALYZER SAV file is being reused and the ANALYZER detects that the 
records have been removed or added to the master file (i.e. the number of records or 
the last record position has changed) since its previous use, the ANALYZER will 
refuse to use the SAV file. But, it will automatically write a command file called 
SAVESAV.COM before it exits. By running the ANALYZER with this command file, 
the user is able to reconstruct the analysis steps that were in the SAV file on the 
updated data file.

A SAV file built before records have been removed from or added to the master file, 
is no longer usable. This is because the SAV file stores sets as a collection of pointers 
to the records in the master file. When a SAV file is reused, the sets are not rebuilt. 
Rather the ANALYZER uses the pointers to the records in a set as stored in the SAV 
file. Once records are added to or removed from the master file, the record pointers 
in the SAV file are no longer considered to be accurate. Therefore, the user can 
rebuild the sets for the altered data file, by running the command file 
SAVESAV.COM.

To reconstruct the SAV file using SAVESAV.COM, enter the following:

     $ an @savesav

Note that the ANALYZER is able to reuse a SAV file after the data in an existing 
record in the master file has been changed. However a change to an existing record 
may indeed cause changes to set membership criteria of which the ANALYZER is 
unaware. In general, a SAV file should not be used after any change has been made 
to the master file.

Also the ANALYZER is able to reuse a SAV file after records have been added or 
removed from a link file. It is the user's responsibility to reconstruct the SAV file if 
either of these conditions cause the analysis to be out of step with the actual data.
ADMINS User Guide  12 - 11



The FILE Command and SAV Files
12.2.2.1  Initializing the SAV File
There are three ways to initialize a SAV file. Once a SAV file has been initialized, all 
of its previous contents are lost. Therefore, one must be sure not to inadvertently 
initialize the SAV file.

1. If the data file is included on the AN command line, then an existing default 
SAV file (e.g. ANALYZA7.SAV) is initialized. For example, by naming the data 
file, PREV.MAS on the AN command line, the default SAV file is initialized, and 
contains only the file name included on the command line.

     $ an prev.mas
2. If an ANALYZER command file (see Section 12.21 “Command Files”) is 

included on the AN command line, then the default SAV file is initialized. Note, 
the command file name is preceded with the @ symbol. If the file type is not 
included, the ANALYZER will look for a file type of ".COM". For example, if 
ANALYSIS.COM and PREPARE.PRP are ANALYZER command files:

     $ an @analysis
        
     $ an @analysis.com

     $ an @prepare.prp

The following is a schematic diagram which illustrates the first two ways to initialize 
the default SAV file.

           $ AN @command-file           $ AN data-file 
                   |                           |
                   |                           |
                   v                           v
         ----------------------      ----------------------    
        | ANALYZER initializes |    | ANALYZER initializes |
        | default SAV file.    |    | default SAV file.    |
        | Command file should  |    | SAV file now contains|
        | start with the       |    | the data-file listed |
        | File command.        |    | after the AN command |
         ----------------------      ----------------------
                   |                           |
                   |                           |
                   v                           v
                  -------------------------------     
                 |    User continues analysis    |
                 |    and steps are logged in    |
                 |    the default SAV file.      |
                  -------------------------------

3. The ANALYZER does not automatically initialize a "named" SAV file. Deleting 
the "named" SAV file has the same effect, i.e. the ANALYZER session starts 
"initialized".

     $ delete modelb.sav;1

A default SAV file can also be deleted to start the ANALYZER session from the 
beginning.
12 - 12   ADMINS User Guide



The LINK Command
12.2.3  Accessing Data Views

To access a Data View defined specified using the ADMINS Data Dictionary (see 
Appendix I: “ADD: The ADMINS Data Dictionary”) append the qualifier "VIEW" 
after the name of the data view,4 either on the command line, or with the FILE 
command:

     $ an invoices/view
    
      or

     $ an invoices -view

                     
     $ an
     AN> invoices/view

Data Views are accessed in ANALYZER LINK commands (see Section 12.3 “The 
LINK Command”) by simply providing a Data View name in place of a file name.

12.3  The LINK Command

The LINK command is used to link to records in files other than the file named with 
the FILE command to include fields from these link files in the logical master file. The 
LINK command names a link file and the fields from the logical master file that 
should be used to form the key into the linked file. After the link is defined the fields 
from the link file are treated as part of the logical master file.

Links can have several purposes in the ANALYZER.

1. Links may be used to relate records in two files which are really about the same 
item. (E.g. last year's budget by line item versus this year's.)

2. Links can relate many records to one record in another file, as in the case of 
linking from codes in one data file to their descriptions in a code data file. (E.g. 
linking department codes to their descriptions.) Also links can be made to data 
files that contain attributes for the codes that will be used to select particular 
items. (E.g. linking employee records to the department record in which they 
work to obtain departmental information about the employee.)

3. Links can also be for the purpose of cross referencing, i.e. to relate records from 
two files via a cross reference file. (E.g. linking records in a file about vehicle 
owners to records in a file about their vehicles.)

Values brought in via one link can be used to form another link.

4.    The /VIEW qualifier is needed to avoid ambiguity. If the character string 
provided on the command line or in the FILE command does not contain a 
period (.) the ANALYZER treats it as the user-specified name for a save file to be 
created or re-opened.
ADMINS User Guide  12 - 13



The LINK Command
12.3.1  LINK Syntax

The syntax for the LINK command follows.

AN> link [nomem/mem] fields [or all] from file-name key is field(s)

If there is a naming match between fields already in the logical master file, and the 
new fields being added to the logical master file via the LINK command, then the 
ANALYZER will prompt to rename the matched field. If the new field is not 
renamed, i.e. the user presses ENTER to the "RENAME or SKIP:" prompt, the new 
field will not be added to the logical master file.

When entering the link field names, individual fields in the link file can be listed, 
separated by a blank. Alternatively, ALL can be used to link in "all" fields from the 
link file.

Note that links are performed before created fields are calculated. Therefore, created 
fields cannot be used to create a key for a link field. See Section 12.16 “The CREATE 
Command” for a discussion of created fields.

Examples of the link syntax follow:

     AN> link yracq from register.mas key is veh#
    
     AN> link all from violation.mas key is license
    
     AN> link nomem all from model.tab keys are make mod#

12.3.2  Efficiency Considerations

By default, the LINK command tries to read the entire link file into memory, to make 
the link processing more efficient.5 If there is insufficient space in memory for the link 
file, then links will be performed to disk. The user can instruct the ANALYZER not 
to try to load the link file into memory using the NOMEM option.

The ANALYZER only performs the link when another command (e.g. TABLE, 
INTERSECT, or OUTPUT) really requires the use of that field.

To summarize, there are two ways links can be processed.

1. Directly in memory. This is typically used for small link files and is very 
efficient. The ANALYZER attempts to load link files into memory by default.

2. The more general case, when the ADMINS data file key search techniques are 
used to fetch the link records. An alternative to this approach is to use the 
OUTPUT command (see Section 12.17 “Output Files”) to derive a file placing all 
the fields of interest into one physical file.

5.    By default the maximum number of records that the ANALYZER will read into 
memory is 2000. The system manager can vary this value by assigning a numeric 
value to the SYSTEM logical name ADM$LNKMEM, i.e. "ASSIGN/SYSTEM 
5000 ADM$LNKMEM".
12 - 14   ADMINS User Guide



SELECT
12.4  SELECT

The SELECT command is used to build sets by reading through the logical master file 
(i.e. the universe of items), and applying the criteria supplied by the user to build sets. 
SELECT can be used to give the ANALYZER instructions for building multiple sets 
at one time. This is more efficient than building one set at a time because multiple sets 
can be built with only one pass through the logical master file. The SELECT 
command can also be used to build sets with respect to the items in an existing set, 
rather than the whole logical master file.

12.4.1  Single Set Syntax

The syntax for building one set at a time follows.

     AN> select [s:set-name] criteria [s:set-name [label]]

The "criteria" consist of a syntax of form:

     field operator constant/f:field

The comparison operators used by the ANALYZER are:

EQ and NE can be compared to multiple values. In this case the implied syntax is "EQ 
A or B ..." and "NE A and B ...". For example, "SELECT CLASS EQ 1 2" means "select 
class is equal to 1 or 2", or "SELECT MODYR NE 79 80 81" means "select model year 
not equal to 79 and 80 and 81".

If a field is compared to another field, (e.g. "SELECT PARTS GT F:LABOR") the field 
to the right of the operator is preceded by "F:" to indicate that LABOR is a field name 
rather than a constant.

The "S:SET-NAME" (at the end of the line) is optional in this syntax to allow the user 
to name and save the set, or to discard the set after seeing how many items are in the 
set (the "item count"). Hence if no set name is given, SELECT prompts:

     n items, S:

after building the set. The user can type a name (and optionally a label) or simply 
press ENTER to tell SELECT not to keep the set. Whether or not a set name is 
supplied on the SELECT line, SELECT shows the item count after the set is built.

Operator Function

EQ equal to

NE not equal to

LE less than or equal to

GE greater than or equal to

LT less than

GT greater than

BET between

IN includes (alphanumeric and text 
fields only)
ADMINS User Guide  12 - 15



SELECT
If the set is named (and therefore saved), the SELECT displays the sequential set 
number, the set name, the item count and the percentage of the master file which this 
set represents.

The following examples illustrate the single set syntax for the SELECT command. 
The fields PARTS and LABOR contain the amounts (in dollars and cents) spent on 
repairing and maintaining the vehicles in the file for one year. Below, we build a set 
of vehicles with the cost of parts greater than $300.

     AN> select parts gt 300          
     26 ITEMS, S:hiparts        
     1  S:HIPARTS  26   65%

The set HIPARTS is built which contains 26 records, representing 65% of the total file 
(40 records). Next we build a set a vehicles in which the labor cost were greater than 
or equal to $300.

     AN> select labor ge 300 s:hilab  
     2  S:HILAB    27   67%

The set HILAB is built and named before the item count is displayed.

The IN (includes) operator is used to search for character strings in alphanumeric 
fields. Both of the following build a set of employees with a first name (FNAM) that 
includes the string "Barbara".

     AN> select fnam in 'Barbara' 

             or

     AN> create checknm/a7 'Barbara'
     AN> select fnam in f:checknm

Note that the IN (includes) operator is case sensitive when used with alpha fields, 
but case insensitive when used with text (TXnn or TInn) fields.

12.4.2  Multiple Set Syntax

In the multiple set or "batch" SELECT syntax, the set name is usually supplied on the 
same line with the criteria for that set. If the set name is omitted, SELECT prompts for 
a set name, e.g. "S:". Set labels are always optional, and can be added later to the set 
name.

     AN> select [s:set-name]
     SELECT> criteria s:set-name [label]
     SELECT> criteria s:set-name [label]
     ...
     SELECT> cr

SELECT keeps reading for criteria until the user presses ENTER to the SELECT> 
prompt. Then all the sets are built in one pass through the file. SELECT prints a 
sequential number for each set name with the number of items in the set, and the 
percentage of the master file.
12 - 16   ADMINS User Guide



SELECT
The following example illustrates the multiple set syntax for the SELECT command. 
The field MODYR contains a 2 digit model year for the vehicles. The field 
TOTMAINT contains the total maintenance costs, and the field TOTMILES contains 
the total miles for the vehicles.

     AN> select
     SELECT> modyr eq 81 s:y.81
     SELECT> modyr eq 80 s:y.80
     SELECT> modyr eq 79 s:y.79
     SELECT> totmaint lt 1000 s:lomaint
     SELECT> totmiles gt 50000 s:himile
     SELECT> cr

12.4.3  SELECT Using An Existing Set

The SELECT command can be used to select items by examining the items contained 
in an existing set, rather than examining the entire logical master file. Instead of 
reading through the entire logical master file to build the sets, SELECT only reads 
those items of the logical master file that are present in the specified set. This 
technique is a more efficient way to analyze a subset of a large master file.

Using SELECT with respect to an existing set can be done with either single or 
multiple set syntax. In either case the set name to be used in the sub-setting directly 
follows the SELECT command. If single set syntax is used, the SELECT criteria follow 
the set-name on the same line. For example:

 AN>select s:setname field operator constant/f:field 
[s:setname[label]]

If the multiple set syntax is used, enter the SELECT command and set name followed 
by pressing ENTER. At the SELECT> prompt, the rest of the syntax is the same as 
when no set-name is used on the command line. For example:

     AN> select s:set-name
     SELECT> criteria s:set-name [label]
     SELECT> criteria s:set-name [label]
     SELECT> ...
     SELECT> cr

In the following example, a set is built from the set HIPARTS (PARTS GT 300) in 
which the vehicles are from '76 or older.

     an> select s:hiparts modyr le 76    
     5 ITEMS, S: oldhipart

In the following example, the items in the set HILAB (LABOR GE 300) are used to 
build sets based on the weight class (CLASS) of the vehicles.

     AN> select s:hilab                
     SELECT> class eq 1 s:light  
     SELECT> class eq 2 3 s:med  
     SELECT> class eq 4 5 s:heavy
     SELECT> cr
ADMINS User Guide  12 - 17



The MARGINAL Command
12.5  The MARGINAL Command

The MARGINAL command (MARG) is used to have the ANALYZER automatically 
build first level sets either for coded data or numerical values. MARG generates the 
first level sets for one or several fields automatically, by reading through the logical 
master file and making a list of unique values for each field requested. Then MARG 
creates SELECT instructions, which the ANALYZER executes, to build sets to each of 
these values. After the MARG command is given, the process proceeds automatically 
without user intervention.

12.5.1  MARGINAL Syntax

The syntax for the MARG command is:

     AN> marg [s:set-name] field1[/n] [field2[/in]] ...

If a field contains coded data (e.g. position level or survey response) the "/n" notation 
is used to build sets for the "n" most frequently occurring values. One additional set 
is built containing all the other values. "N" can be a value between 2 and 249. If "/n" 
is omitted it is assumed to be "/10". That is, sets are built to the "n" most frequent 
values, and an "n+1-th" set is built to all the other values.

If a field contains numeric data (e.g. budgets or salaries), MARG builds sets for "n" 
intervals of values using the "/in" syntax as described in Section 12.5.2 “Using MARG 
to Build Interval Sets” below.

In the example which follows, the MARG command is instructed to build sets for the 
codes in the field SEX, as well as for the four most frequent codes for the field 
EDUCATION. MARG automatically builds a set for the codes in of the field 
EDUCATION not included in the first four EDUCATION sets. (In this example SEX 
only contains F or M.)

 AN> marg sex education/4
     400 RECORDS READ
         1    S:SEX.1           195    54%     SEX:F
         2    S:SEX.2           163    45%     SEX:M
         3    S:EDUCATION.1       8     2%     EDUCATION:PHD
         4    S:EDUCATION.2      80    20%     EDUCATION:MA
         5    S:EDUCATION.3     120    30%     EDUCATION:HS
         6    S:EDUCATION.4     160    40%     EDUCATION:BA
          7    S:EDUCATION.5      32     8%     EDUCATION:_OTHER

MARG names the sets by appending a sequential number to the field name (or 
abbreviated field name) supplied on the MARG command line. Each set is 
automatically given a label describing the code used to create that set. This set 
naming convention provides easy use of wild card notation when specifying set 
names for TABLES.
12 - 18   ADMINS User Guide



The MARGINAL Command
12.5.2  Using MARG to Build Interval Sets

If the field is a date or numeric type (integer, decimal or four word decimal), then 
MARG may be instructed to build "interval" sets, using the "/in" notation. Interval 
sets divide the items into halves, quarters, tenths, etc. (i.e. "n" parts) based on the 
numerical values in the requested fields. MARG is instructed to build interval sets by 
appending "/i" to the field name. The number of interval sets to be built may 
(optionally) be specified by the number (n) which the user types following the "/i". 
The value of "n" may be between 2 and 249. If "n" is omitted, MARG attempts to build 
10 interval sets.

In the following example, the MARG command is used to build sets for four salary 
range intervals. Then we compare average salaries for men and women and display 
the results in a table. (The TABLE command is described in Section 12.10 “The 
TABLE Command”.) We use the wild card notation to request all of the SALARY 
sets. Note, that in this example, the SALARY intervals sets are not equal in size, that 
is the population could not be divided into exact quarters. This is because MARG 
encountered multiple records with the same values. In this case MARG builds 
interval sets as equally sized as possible.

     AN> marg salary/i4
     358 RECORDS READ
         8    S:SALARY.1/4      92     25%    SALARY:5,020-11,640
         9    S:SALARY.2/4      95     26%    SALARY:11,641-13,457
        10    S:SALARY.3/4      89     24%    SALARY:13,458-18,439
        11    S:SALARY.4/4      82     22%    SALARY:18,440-

     AN> table
     ACROSS THE TOP: sex.1 sex.2
     DOWN THE SIDE: salary.*             
     VALUES: salary/av #int %tot

                             SEX.1 (195)             SEX.2 (163)
                                SEX:F                   SEX:M
                          SALARY/AV  #INT %TOT    SALARY/AV  #INT %TOT
 SALARY.1/4 (92)
 SALARY:5,020-11,640          9,856    56  15%        9,789    36  10%
 SALARY.2/4 (95)
 SALARY:11,641-13,457        12,671    59  16%       12,700    36  10%
 SALARY.3/4 (89)
 SALARY:13,458-18,438        15,613    46  12%       16,133    43  12%
 SALARY.4/4 (82)
 SALARY:18,439-43,900        23,195    34   9%       24,231    48  13%

We notice that there are 48 males (or 13% of the employees) as compared to 34 
females (or 9% of the employees) in the highest salary quartile. Also, the average 
salary for men in the highest salary range is over $1,000 higher than the average 
salary for women in this group.
ADMINS User Guide  12 - 19



The INTERSECT Command
12.5.3  MARGINAL Using An Existing Set

Like the SELECT command, the MARG command can be instructed to build sets 
based on a subset of the master file. In this case MARG only operates on the items in 
that set, rather than examining the entire logical master file. For example:

     AN> marg s:sex.1 maritstat

This example tells MARG that within the set named SEX.1, (which is equivalent to 
"SEX EQ F"), build sets to the different marital statuses.

Logically, building a set on a subset of the file (instead of the entire logical master file) 
is analogous to using the INTERSECT command (see Section 12.6.1 “INTERSECT 
Syntax”).

12.6  The INTERSECT Command

The INTERSECT command "intersects" two or more sets and places the resulting 
items in another set. Intersection consists of placing in the output set any item that 
was present in all of the two or more input sets.

12.6.1  INTERSECT Syntax

The INTERSECT command accepts two or more set names for input sets. The output 
set name is optional because the user may wish to decide whether or not to keep the 
output set after the user sees how many items result in the set. If the output set is 
named on the INTERSECT command line, the equal sign (=) is required.

     AN> intersect set-name1 set-name2 ... [= new-set-name [label]]

Unlike the SELECT or MARG commands which must first read through the data 
before creating the set, the size of the new set created by the INTERSECT command 
is viewed immediately. This is because unlike SELECT or MARG, INTERSECT (and 
UNION, COMPLEMENT, and EXCLUSIVE OR) are performed very rapidly because 
the ANALYZER does not read through the logical master file to perform set 
operations. The ANALYZER works directly with the sets in question.

For example the set HICOST is built with all of the items (vehicles) that are in both 
the sets HIPARTS (26 vehicles with high cost for parts) and HILAB (27 vehicles with 
high cost for labor).
12 - 20   ADMINS User Guide



The UNION Command
     AN> intersect hiparts hilab = hicost
        13      S:HICOST        18     45%

        |               |             |       |
        |               ---------------       |
        |                                     |
        ---------------------------------------               Figure 
1: Intersection Diagram

                      INTERSECTION A B

        ---------------------------------------
        |                                     |
        |        ---------------              |
        |        |             |              |
        |        |  A          |              |
        |        |      ********-------       |
        |        |      ********      |       |
        |        |      ********      |       |
        |        -------********      |       |
        |               |          B  |       |

The result of an INTERSECTION is the "shaded area", that is the items present in Set 
A and Set B.

12.7  The UNION Command

The UNION command is used to create a set which contains all of the items in any of 
its two or more input sets.

12.7.1  UNION Syntax

UNION uses the same syntax and usage rules as INTERSECT.

     AN> union set-name1 set-name2 ... [= new-set-name [label]]

The difference between INTERSECT and UNION is in the logic applied by UNION 
in selecting items to be placed in the output set. Whereas INTERSECT selects only 
those items present in all of the input sets, UNION selects those items present in any 
of the input sets. As one would expect, INTERSECT produces sets smaller than or 
equal to its smallest input set, whereas UNION produces sets larger than or equal to 
its largest input set. In either case an item is represented in the output set only once.

In the following example, the set 79HILAB is built with all of the items (vehicles) in 
HILAB (high labor costs) or in Y.79 (model year 1979) or in both of these input sets. 
The new set, 79HILAB, is named on the command line.

     AN> union hilab y.79 = 79hilab

In the next example, the set NEW is built with all of the items in the sets Y.81 (model 
year 1981), Y.80 (model year 1980) or Y.79 (model year 1979). Note that the set NEW 
is named after the item count was displayed.
ADMINS User Guide  12 - 21



COMPLEMENT
     AN> union y.81 y.80 y.79
      10 ITEMS, S: new

                     Figure 2: Union Diagram

                      UNION A B

        ---------------------------------------
        |                                     |
        |        ***************              |
        |        ***************              |
        |        ***A***********              |
        |        *********************        |
        |        *********************        |
        |        *********************        |
        |        *********************        |
        |               **********B***        |
        |               **************        |
        |               **************        |
        |                                     |
        ---------------------------------------

The result of the UNION is the "shaded area", that is the items present in either Set A 
or in Set B or in both.

12.8  COMPLEMENT

The COMPLEMENT command creates a set which is the negation of another set, i.e. 
COMPLEMENT creates a set which contains items not contained in another set. The 
COMPLEMENT of a set can be with respect to the entire logical master file or with 
respect to another set.

12.8.1  COMPLEMENT Syntax

COMPLEMENT uses the same syntax structure as INTERSECT, except 
COMPLEMENT can only operate on one or two input sets.

     AN> complement set-name1 [set-name2] [= new-set-name [label]]

12.8.1.1  One Set Syntax
In the one input set syntax COMPLEMENT builds an output set that contains all 
items from the logical master file that were not present in the input set. The equal sign 
is required if the new set name is included on the COMPLEMENT instruction line. 
For example the complement of the set HIMILE (high mileage vehicles) is the set 
LOMILE (low mileage vehicles).

     AN> complement himile = lomile

The new set can be named after the item count displays. The complement of the set 
of low maintenance vehicles (LOMAINT) is the set of high maintenance vehicles 
(HIMAINT).

     AN> complement lomaint
      12 ITEMS, S: himaint
12 - 22   ADMINS User Guide



COMPLEMENT
12.8.2  Two Set Syntax

In its two input set syntax COMPLEMENT produces all items that are present in its 
second input set but are not present in its first input set. For example the set 
LOMILE.LIGHT (light weight low mileage vehicles) is built to contain all the items 
(vehicles) in the set LIGHT (light weight vehicles) that are not in the set HIMILE 
(high mileage vehicles).

AN> complement himile light = lomile.light Low mileage light 
vehicles

            Figure 3a: Complement Diagram - One Set

                      COMPLEMENT A

        --------------------------------------
        |************************************|
        |**********---------------***********|
        |**********|             |***********|
        |**********|  A          |***********|
        |**********|             |***********|
        |**********|             |***********|
        |**********|             |***********|
        |**********---------------***********|
        |************************************|
        --------------------------------------

The COMPLEMENT of Set A is the "shaded area", that is the items present in the 
logical master file but not present in Set A.

           Figure 3b: Complement Diagram - Two Sets

                   COMPLEMENT A B

        ---------------------------------------
        |                                     |
        |        ---------------              |
        |        |             |              |
        |        |  A          |              |
        |        |      -------********       |
        |        |      |      ********       |
        |        |      |      ********       |
        |        -------+------********       |
        |               ***********B***       |
        |               ***************       |
        |               ***************       |
        |                                     |
        ---------------------------------------

The result of the COMPLEMENT of two sets. The "shaded area" represents the items 
in Set B (the second set) which are not present in Set A (the first set).
ADMINS User Guide  12 - 23



The XOR (Exclusive Or) Command
12.9  The XOR (Exclusive Or) Command

The Exclusive Or Command, XOR uses a two input set syntax and produces all items 
present in only one of its two input sets. XOR is the "exclusive or" operation in formal 
logic.

12.9.1  XOR Syntax

The Exclusive Or command is indicated by the letters XOR. The two input set names 
are required. The output set name is required only when saving the set.

     AN> xor set-name1 set-name2 [= new-set-name [label]]

In the following example, we build a set of vehicles that are either in the HIPARTS 
set (26 vehicles) or in the HIMILE set (20 vehicles). That is, the output set does not 
contain vehicles that are both "hiparts" (the set of vehicles with parts costing over 
$300) and "himile" (the set of vehicles with over 50,000 miles).

     AN> xor hiparts himile
      14 ITEMS, S: hiparts.or.himile

             Figure 4: Exclusive Or Diagram

                         XOR A B
        ---------------------------------------
        |                                     |
        |        ***************              |
        |        ***************              |
        |        ***A***********              |
        |        *******        *******       |
        |        *******        *******       |
        |        *******        *******       |
        |        *******        *******       |
        |               ***********B***       |
        |               ***************       |
        |               ***************       |
        |                                     |
        ---------------------------------------

The result of the EXCLUSIVE OR of two sets is the "shaded area", that is the items in 
only one of the two input sets.
12 - 24   ADMINS User Guide



The TABLE Command
12.10  The TABLE Command

The TABLE command is the reporting tool in the ANALYZER. The form of a report 
is to place set names "across the top" and "down the side" of the page, and then place 
values and/or summaries of the items from the logical master file into the "cells" of 
the table formed by the "intersection" of the sets in the rows and columns. By default, 
TABLE displays its output on the user's terminal, to re-direct that output use the 
"OPTION LP" command (see Section 12.19.7 “Line Printer”).

12.10.1  TABLE Syntax

There are three variations of the TABLE syntax. Below are the syntax variations 
followed by descriptions and examples of each.

12.10.1.1  TABLE on the Whole Logical File
If the TABLE command is followed directly by field names, then ANALYZER prints 
these field names using the "whole file" as the set, i.e. displaying detail and/or total 
values for these fields in the logical master file.

     AN> table field1[/op] [field2/op ...] [same]

The fields may include any of the fields in the original master file as well as created 
fields (see Section 12.16 “The CREATE Command”) and linked fields (see Section 
12.3 “The LINK Command”). Field names may be abbreviated as long as the fields 
can be unambiguously identified. If the TABLE command is followed by the word 
SAME, the previously entered values for the TABLE command are used. Field 
operations (/op) are described in Section 12.10.2 “Operations On Values” below.

The following example displays the detailed values for the fields VEH#, PARTS, 
LABOR, TOTMAINT and CLASS for all the items in the file. The fields PARTS, 
LABOR and TOTMAINT, which are decimal field types, are automatically totaled at 
the end of the table (see Section 12.13.1 “Using the NAME Command with Fields”).

     AN> table veh# parts lab totmaint class
     VEH#        PARTS        LABOR     TOTMAINT  CLASS
            
     0001       132.00       231.50     3,465.54      5 
     0002       543.00       654.00     5,384.53      3 
     0003          .00       546.32     5,378.00      2 
      ...          ...          ...          ...
     0040       290.00       175.00     1,940.00      5 
          ------------ ------------ ------------
             15,199.66    19,783.62   127,566.83
ADMINS User Guide  12 - 25



The TABLE Command
12.10.1.2  TABLE on a List of Sets, One Dimensional
If set names6 are included on the TABLE command line, then TABLE assumes that 
these sets will be either "across the top" or "down the side". For example,

     AN> table set-name1 [set-name2 ...] [same]
     VALUES: field1[/op] [field2/op %tot] [same]

If the TABLE command line includes the set names, TABLE assumes that this will be 
a one dimensional report on the sets named on the TABLE command line. TABLE 
does not prompt for "ACROSS THE TOP:" or "DOWN THE SIDE:" set names. Instead 
TABLE immediately prompts for "VALUES:" The user enters the field names to be 
displayed in the table. The fields may include created fields, linked fields as well as 
any of the fields in the original master file. %TOT may also be entered to the 
"VALUES:" prompt. This function is described in Section 12.10.3 “Int ersection 
Functions”.

If the word "SAME" is entered to any of the TABLE prompts, the previously entered 
response to that prompt is used.

When the TABLE command is followed by set names, TABLE selects an output 
format based on the following criteria:

1. If only one set is requested, then the set is placed "across the top" of the page and 
detail values (data from each record in the logical master file) for the requested 
fields are displayed by default. Overriding the default of detail values is 
described in Section 12.10.2 “Operations On Values”.

2. If multiple sets are requested, then the sets are placed "down the side" of the 
page and the default display is of total (aggregated) values.

In the following one dimensional report, detail values for the fields PARTS, LABOR 
and TOTMILES are displayed for the set HIMILE (high mileage vehicles). The set 
name HIMILE displays across the top of the page, followed by the item count 
(number of records in the set) enclosed in parentheses. Notice that totals also display 
for the fields PARTS, LABOR and TOTMILES, since they are numeric (decimal) 
fields. By default, decimal field types (Dn) automatically total in tables. See Section 
2.4.2 “Field Data Types” for a discussion of field data types.

     AN> table himile
     VALUES: par lab totmil

                  HIMILE (20)               
         PARTS        LABOR     TOTMILES 
   
        543.00       654.00       87,434 
        546.12       675.00       54,538 
        234.00       765.80      125,987 
           ...          ...          ...
     ---------    ---------    --------- 
      9,165.12    12,612.80    1,640,621

6.   If a set name is also a field name, then the "S:" must precede the set name.
12 - 26   ADMINS User Guide



The TABLE Command
In the next example, total values for the fields TOTMAINT and TOTMILES are 
displayed for all of the set names beginning with "Y." (i.e. the sets built to specific 
model years). Since several sets are requested, the sets names display "down the side" 
of the page. Each set name is followed by the item count in parentheses. Notice that 
the requested field names have been abbreviated in these examples.

 AN> table y.*
     VALUES: totmai totmi

                    TOTMAINT     TOTMILES  
     Y.81 (4)       2,879.00       34,433
     Y.80 (5)       5,610.00       86,518
     Y.79 (5)      11,063.76      139,170

12.10.1.3  Two Dimensional Table
In a two dimensional table, (i.e. a cross-tabulation) sets are placed both across the top 
and down the side. The values displayed in the cells are for the items in the 
intersection of the row and column sets displayed. These values may be totals, 
counts, averages, percentages, etc., based upon the items in the intersection of the 
row and column sets.

To create a two dimensional report, the TABLE command is followed by ENTER. 
Then TABLE prompts with "ACROSS THE TOP:" and "DOWN THE SIDE:". In each 
case TABLE expects the user to enter one or more set names or "SAME". (If SAME is 
used as a response to any of these prompts, TABLE will use the last response to the 
corresponding prompt.)

TABLE then prompts for "VALUES:", and the user enters names of fields from the 
logical master file, including actual fields, created fields, and linked fields. TABLE 
displays values based on these fields for the items in the intersection of the row and 
column sets.

     AN> table 
     ACROSS THE TOP: set-name1 [set-name2 ...] [total] [same]
     DOWN THE SIDE: set-name1 [set-name2 ...] [total] [same]
     VALUES: field1[/op] [field2/op ...] [int function] [same]
   
     Operations are: /D /V /E /AV /MA /MI /Sn /Rn /ME /SP /SD 
                     /%C /%R /%Cn /%Rn /%n
     Intersection functions are: #INT %TOT %ROW %COL SIG ALL

In the following table, the totals for fields PARTS, LABOR and TOTMILES are 
displayed for the intersections of the sets HIPARTS and HILAB (high parts cost and 
high labor cost vehicles) with the sets HIMILE and LOMILE (high and low mileage 
vehicles).

     AN> table
     ACROSS THE TOP: hiparts hilab
     DOWN THE SIDE: himile lomile
     VALUES: par lab totmile
                    HIPARTS (26)                  HILAB (28)    
               PARTS     LABOR  TOTMILES    PARTS     LABOR  TOTMILES
 HIMILE(20) 8,124.12 10,527.00 1,304,860 7,534.12 12,013.80 
1,280,291
 LOMILE(20) 4,685.76  3,898.00   210,132 4,066.54  5,768.32   
296,081
ADMINS User Guide  12 - 27



The TABLE Command
12.10.2  Operations On Values

When the user types the names of fields in response to the "VALUES:" prompt (or 
directly after the TABLE command) various field operations can be requested by 
appending a slash (/) and the operation to the field name. Multiple operations can be 
requested for a field. Each time a field is used successively for another operation, a 
ditto (") may be used instead of re-entering the field name. For example, PARTS/MI 
"/MA "/AV means display the minimum, maximum and average value for the field 
PARTS. The ditto means repeat the field to the immediate left.

The following list of simple aggregation and sorting operations can be appended to 
fields in any of the table formats except where noted.

       

In the following example, the minimum, maximum and average values for the field 
TOTMAINT are displayed for the set names beginning with "Y." When set names are 
requested using the wildcard (*), the sets display in the order in which they were 
built.

     AN> table y.*
     VALUES: totmaint/mi "/ma "/av

                  TOTMAINT/MI  TOTMAINT/MA  TOTMAINT/AV 
     Y.81 (4)          200.00     1,055.00       719.75 
     Y.80 (5)          456.00     2,500.00     1,122.00 
     Y.79 (5)          900.00     4,886.00     2,212.75

Operation Meaning

/D Display the value for this field for each item in the 
set or in the whole logical master file. This is the 
default operation if the field is requested on the 
TABLE command line or if only one set is 
requested. /D may not be used when there are 
multiple sets across the top.

/V Display total values for this numeric field. This is 
the default operation if multiple sets are requested 
or in a two dimensional table.

/E Count the existences of non-zero (or non-blank) 
values for this field.

/AV Display the average for this numeric field.

/MA Display the maximum value for this field.

/MI Display the minimum value for this field.

/Sn Sort the table in ascending order on this field. This 
field is the nth sort criteria. /Sn displays detail 
values for each item.

/Rn Sort the table in reverse (descending) order on this 
field. This field is the nth sort criteria. /Rn displays 
detail values for each item.

/ME Median Value: the middle value (numeric only)

/SP Standard Deviation of the population (n)

/SD Standard Deviation of a sample (n-1)
12 - 28   ADMINS User Guide



The TABLE Command
A field name without any operation code defaults to "/D" if the field is included on 
the TABLE command line, or if there is only one set displayed in the table. If there are 
multiple sets across the top and/or down the side, then a field name without any 
operation code defaults to "/V", totals.

In the next example, multiple sets are displayed down the side. The cells represent 
the totals for the fields PARTS, LABOR, TOTMAINT and TOTMILES for each of the 
set names beginning with "Y.", i.e. the sets to three model years.

     AN> table y.*
     VALUES: par lab totma totmi

                     PARTS     LABOR     TOTMAINT   TOTMILES  
     Y.81 (4)     1,372.00  1,418.00     2,879.00     34,433
     Y.80 (5)     1,563.00  1,688.00     5,610.00     86,518
     Y.79 (5)     1,974.76  1,956.00    11,063.76    139,170

In the next example, a two dimensional report displays the TOTMILES and the 
average TOTMILES for the intersection of the set HIPART with sets HIMILE and 
LOMILE. The ditto (") means repeat the field to the immediate left.

     AN> table
     ACROSS THE TOP: hipart                
     DOWN THE SIDE: himile lomile          
     VALUES: totmiles "/a                 

                     HIPARTS (26)       
                   TOTMILES TOTMILE/AV  
     HIMILE (20)  1,304,860     81,553
     LOMILE (20)    210,132     21,013

12.10.2.1  Percentages of Values
The operations which follow are used to display the field subtotals as a percentage of 
the column or row totals for that field, or as a percentage of the same field in another 
row or column, or as a percentage of another field in the same cell. These percentages 
are rounded to the nearest whole number.

Operation Meaning

/%C Displays the value as a percentage of the column 
total for that field. Automatically adds the “pseudo-
set” TOTAL to the “down the side” list of sets.

/%R Displays the value as a percentage of the row total 
for that field. Automatically adds the “pseudo-set” 
TOTAL to the “across the top” list of sets.

/%Cn Displays the value as a percentage of that same field 
in the nth column set of the table.

/%Rn Displays the value as a percentage of that same field 
in the nth row set of the table.

/%n Displays that value as a percentage of the nth field 
in the same cell of the table. A cell includes all the 
field names requested at the “VALUES:” prompt.
ADMINS User Guide  12 - 29



The TABLE Command
In the two dimensional table below, the operations /%R and /%C are used to display 
subtotals for the field TOTMAINT as a percentage of the row set and the column set 
totals. Note, the "pseudo-set" TOTAL is not explicitly included in the set name listing. 
However TABLE automatically includes the "pseudo-set" TOTAL when the 
operations /%R and /%C are requested.

     AN> table
     ACROSS THE TOP: lomaint himaint 
     DOWN THE SIDE: y.* 
     VALUES: totmaint "/%r "/%c

           LOMAINT (8)           HIMAINT(32)               TOTAL
      TOTMAINTTOT/%RTOT/%C  TOTMAINTTOT/%RTOT/%C  TOTMAINTTOT/
%RTOT/%C
 Y.81 1,824.00   63%   38%  1,055.00   36%    7%  2,879.00  100%   14%
 Y.80 2,030.00   36%   42%  3,580.00   63%   24%  5,610.00  100%   28%
 Y.79   900.00    8%   18% 10,163.76   91%   68% 11,063.76  100%   56%
 TOTAL4,754.00   24%  100% 14,798.76   75%  100% 19,552.76  100%  
100%

As we see in the example above, the total maintenance (TOTMAINT) for the cell 
formed by the intersection of sets LOMAINT and Y.81 is 1,824. This is 63% of the row 
total (2,879) and 38% of the column total (4,754).

In the next example, the total value for PARTS maintenance is compared to 
TOTMAINT (total maintenance) for the sets built for 3 model years (1979-1981). Since 
the field TOTMAINT is the second field listed, PARTS/%2 displays the percentage 
of the field PARTS with respect to the total for the second field (TOTMAINT).

     AN> table y.*
     VALUES: parts totmaint parts/%2

                      PARTS     TOTMAINT PAR/%2 
     Y.81 (4)      1,372.00     2,879.00    48%
     Y.80 (5)      1,563.00     5,610.00    28%
     Y.79 (5)      1,974.76    11,063.76    18%

In the table above, we see that PARTS comprises 48% of the total maintenance cost 
for vehicles built in 1981, whereas PARTS comprise only 18% of the total 
maintenance cost for vehicles built in 1979.

In the table below, the total maintenance for vehicles in weight classes 1 through 4 are 
each compared to the total maintenance for vehicles in weight class 5. That is, 
TOTMAINT/%R5 displays the total maintenance for each set of the first four row 
sets (CLASS.1-4) as a percentage of the total maintenance for the fifth row set 
(CLASS.5).

     AN> table class.*
     VALUES: totmaint totmaint/%r5
                        TOTMAINT TO/%r5 
     CLASS.1 (8)       24,700.00    61%
     CLASS.2 (8)       19,504.00    48%
     CLASS.3 (8)       23,894.29    59%
     CLASS.4 (8)       19,202.00    48%
     CLASS.5 (8)       40,266.54   100%

In the next example, we compare the total maintenance cost for low mileage vehicles 
to the total maintenance cost for high mileage vehicles by weight class. The total 
maintenance for the second column set LOMILE (low mileage vehicles) is compared 
to the total maintenance for the first column set HIMILE (high mileage vehicles) as a 
percentage, when these two sets are intersected with the sets for the 5 weight classes. 
#INT is the number of items in the intersection of the row and column sets. This 
function is described in Section 12.10.3 “Int ersection Functions” below.
12 - 30   ADMINS User Guide



The TABLE Command
     AN> table
     ACROSS THE TOP: himile lomile
     DOWN THE SIDE: class.*
     VALUES: totmaint totmaint/%c1 #int

                      HIMILE (20)                  LOMILE (20)
              TOTMAINT    TO/%C1  #INT    TOTMAINT    TO/%C1  #INT
CLASS.1 (8)  12,210.00      100%     3   12,490.00      102%     5
CLASS.2 (8)  17,374.00      100%     4    2,130.00       12%     4
CLASS.3 (8)  17,019.53      100%     3    6,874.76       40%     5
CLASS.4 (8)  12,826.00      100%     4    6,376.00       50%     4
CLASS.5 (8)  31,423.00      100%     6    8,843.54       28%     2

In the example above, the total maintenance cost in the cell representing the 
intersection of sets LOMILE and CLASS.3 is $6,874, which is 40% of $17,019.53. That 
is, for the eight vehicles of weight class 3, the total maintenance cost for the 5 low 
mileage vehicles is 40% of the maintenance costs for the 3 high mileage vehicles in the 
same weight class.

12.10.3  Intersection Functions

As well as specifying field names to the "VALUES:" prompt, the TABLE command 
may be used to display information about the size (item count) of the intersection of 
the column (across the top) and the row (down the side) sets.

In the next two dimensional table, the statistical significance of the intersection is 
determined by the Fisher Exact Test (SIG).

     AN> table
     ACROSS THE TOP: old new 
     DOWN THE SIDE: himaint lomaint
     VALUES: #int sig
                        OLD (24)           NEW (16)
                    #INT       SIG      #INT      SIG
     
     HIMAINT (32)     24     .9998         8     -.999
     
     LOMAINT (8)       0     -.999         8     .9998

This table tells us that vehicle age and vehicle maintenance costs are "very related" to 
each other. Hardly a surprise!

Function Meaning

#INT Size of the intersection, i.e. the number of items in 
the intersectio.

%TOT #INT as a percentage of the total items in the logical 
master file.

%ROW #INT as a percentage of the row set size.

%COL #INT as a percentage of the column set size.

SIG A measure of the statistical significance of the 
intersection size. A value (positive or negative) 
above .9000 indicates significance. SIG is 
determined using the Fisher Exact Test. (See Section 
12.10.5 for a discussion of the Fisher Exact test.)

ALL All of the above.
ADMINS User Guide  12 - 31



The TABLE Command
The following is a two dimensional table in which the item count in the intersection 
of the row sets and column sets is examined. In this example, the 4 items in the 
intersection of sets HIPARTS and HEAVY, represent 10% of total items (40), 15% of 
the row set HIPARTS (26) and 44% of the column set HEAVY (9).

     AN>table
     ACROSS THE TOP: light med heavy
     DOWN THE SIDE: hipart himaint
     VALUES: #int %tot %row %col
               LIGHT (4)            MED (18)           HEAVY (9)
           #INT %TOT %ROW %COL #INT %TOT %ROW %COL #INT %TOT %ROW %COL
 HIPARTS(26)  1   2%   3%  25%   14  35%  53%  77%    4  10%  15%  44%
 HIMAINT(32)  3   7%   9%  75%   12  30%  37%  66%    8  20%  25%  88%

12.10.4  Table Formats

The following diagram displays the various table formats.

 ---------------------------------------------------------------------
 |                    1. LISTING FOR THE ENTIRE FILE                  |
 |                                                                    |
 | field1 field2 field3 field4 ...                                    |
 |  ...    ...    ...    ...       Data can be sorted in any order    |
 |  ...    ...    ...    ...                                          |
 | ______ ______ ______ ______                                        |
 | total1 total2 total3 total4     (For T fields only, see            |
 |                                       Section 12.13.1)             |
 ----------------------------------------------------------------------
 |                         2. LISTING FOR A SET                       |
 |            Set 1                                                   |
 | field1 field2 field3 field4 ...                                    |
 |  ...    ...    ...     ...      Data can be sorted in any order    |
 |  ...    ...    ...     ...                                         |
 | ______ ______ ______ ______                                        |
 | total1 total2 total3 total4     (For T fields only)                |
 ----------------------------------------------------------------------
 |                           3. VALUE SUMMARY                         |
 |                     Horizontal Set by Set Format                   |
 |       Set1                  Set2          etc.                     |
 | fld1/op* fld2/op ..   fld1/op fld2/op ..                           |
 |   ...      ...          ...     ...                                |
 |   ...      ...          ...     ...                                |
 ----------------------------------------------------------------------
 |                           4. VALUE SUMMARY                         |
 |                       Vertical Set by Set Format                   |
 |       fld1/op*  fld2/op  fld3/op ..                                |
 | Set1    ...      ...     ...                                       |
 | Set2    ...      ...     ...                                       |
 | Set3    ...      ...     ...                                       |
 | ...                                                                |
 ----------------------------------------------------------------------
 |         5. TWO DIMENSIONAL CROSS TABULATION OF INTERSECTIONS       |  
 |                           Set x Set Format                         |
 |           Col_Set1  Col_Set2  Col_Set3 ...                         |
 | Row_Set1   ...**     ...       ...                                 |
 | Row_Set2   ...       ...       ...                                 |
 | Row_Set3   ...       ...       ...                                 |
 ----------------------------------------------------------------------
 |            6. TWO DIMENSIONAL CROSS TABULATION OF VALUES           |
 |                           Set x Set Format                         |
 |            Col_Set1          Col_Set2   ...     Total***           |
 |         fld1/op* fld2/op  fld1/op fld2/op    fld1/op fld2/op       |
 | Row_Set1   ...      ...      ...     ...        ...     ...        |
 | Row_Set2   ...      ...      ...     ...        ...     ...        |
12 - 32   ADMINS User Guide



The TABLE Command
 | Row_Set3   ...      ...      ...     ...        ...     ...        | 
 | Total***   ...      ...      ...     ...        ...     ...        |
 ----------------------------------------------------------------------

 *Operation (op) can be:
    o total value in set (/V)
    o average value in set (/A)
    o minimum value in set (/MI)
    o maximum value in set (/MA)
    o count of non-zero values in set (/E)
    o median of values in set (/ME)
    o standard deviation (population) (/SP)
    o standard deviation (sample) (/SD)
    o value in set as a percentage of the row sum (/%R)
    o value in set as a percentage of the column sum (/%C)
    o value as a percentage of same field in nth column set (/%Cn)
    o value as a percentage of same field in nth row set (/%Rn) 
    o value as a percentage of the nth field in the same cell (/%n)

 **The size of the intersection can be shown:
    o as itself  (#INT)
    o as a percentage of the column set size (%COL)
    o as a percentage of the row set size (%ROW)
    o as a percentage of the total file size (%TOT)
    o in terms of its statistical significance (SIG)
    o or any combination of these or all of these (ALL)

 ***Total is a pseudo-set name which is used to total the values 
 for each field in the column set or the row set or both.

12.10.5  The Fisher Exact Test

The intersection function SIG uses the Fisher Exact Test to measure the statistical 
significance of the intersection. The Fisher Exact Test (FET) is a measure of how the 
actual intersection size relates to an expected intersection size. The expected 
intersection size is determined by assuming the row and column attributes are each 
distributed randomly among the item population, i.e. that the row and column 
attributes are independent of each other. There is a probability associated with each 
logically possible intersection size. This probability distribution is a curved graph of 
what we might expect the intersection size to be.

The SIG value is the probability of obtaining the observed intersection size (or one 
more extreme) given the marginal totals of the two sets being intersected (assuming 
that there is no relationship between the attributes of the intersected sets). In other 
words, if the two sets being intersected are not related what is probability of 
obtaining the observed intersection value RANDOMLY. If that probability is low 
than SIG is high, meaning that the attributes for the two sets being intersected 
probably are related. A minus sign is displayed with SIG when the intersection size 
is less than one would expect randomly.

Hence, if the SIG is .9 or higher, this means that the actual intersection size fell at 
either the low or high ends of the curve. That is, it is very unlikely that the row and 
column attributes were independent of each other, and conversely, it is quite likely 
there is a relationship between them.
ADMINS User Guide  12 - 33



The GRAPH Command
12.11  The GRAPH Command

The GRAPH command is a reporting tool for displaying summary values in tables 
and graphs for the items in the requested sets. The syntax and table formats for the 
GRAPH are similar to those of the TABLE command (see Section 12.10 “The TABLE 
Command”), except that the GRAPH command has several restrictions (see Section 
12.11.2 “Graph Restrictions and Conventions”)

Graphs can be produced on all DEC VT-compatible video terminals, or on standard 
ASCII hard copy terminals.

12.11.1  GRAPH Syntax

There are two variations of the GRAPH command syntax, namely the one 
dimensional and the two dimensional graphs. Below are the syntax options followed 
by a description and examples.

12.11.1.1  GRAPH on a List of Sets, One Dimensional
If set names are included on the GRAPH command line, then GRAPH assumes that 
these sets will be "down the side". GRAPH (clears the screen on video terminals) and 
immediately prompts for "VALUES:" to which the user enters the names of the fields 
to be displayed. Fields may include actual fields, linked fields or created fields. The 
word SAME may be entered on the GRAPH command line or to the "VALUES:" 
prompt, which instructs GRAPH to use the previously entered response to that 
prompt. The general syntax for creating a one dimensional graph follows.

     AN> graph set-name1 [set-name2] [same]
     VALUES: field1[/op] [+] [field2/op] [#int] [same]

By default, the values being graphed are subtotals for the fields requested. That is, 
the field operation "/V" is assumed. The field operations "/AV", "/MI", and "/MA" 
may be appended to the field name to display the average, minimum and maximum 
values for that field. These field operations are described in Section 12.10.2 
“Operations On Values”. Note that unlike the TABLE command which can display 
detail and/or summary values, the GRAPH command displays summary values 
only. Other restrictions which apply to GRAPHS are described in Section 12.11.2 
“Graph Restrictions and Conventions”.
12 - 34   ADMINS User Guide



The GRAPH Command
In the following example the fields PARTS and LABOR are graphed for the sets built 
to three different model years (Y.81, Y.80, Y.79). The scale option (see Section 12.19.8 
“Scale”) is set to 2000.

     AN> graph y.81 y.80 y.79
     VALUES: parts labor

            PARTS    LABOR   <------------------2000-------------
------>
  
 Y.81 (4)  1,372.00 1,418.00 [===========================]
                                                
                             [XXXXXXXXXXXXXXXXXXXXXXXXXXXX]
           
 Y.80 (5)  1,563.00 1,688.00 [===============================]
           
                             [XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX]
      
 Y.79 (5)  1,974.76 1,956.00 
[========================================]
      
                             [XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX] 

12.11.1.2  Two Dimensional Graph
In a two dimensional graph (i.e. cross tabulation) sets are placed both "across the top" 
and "down the side". The values displayed in the cells of the table and in the bar 
graphs represent the items in the intersection of the row and column sets. The values 
displayed can be totals, counts, averages, minimums, and maximums, based upon 
the items in the intersection of the row and column sets.

To create a two dimensional graph, the GRAPH command is followed by pressing 
ENTER. GRAPH prompts for the "ACROSS THE TOP:" and "DOWN THE SIDE:" 
sets. In each case the user enters one or more set names or SAME. If SAME is entered, 
GRAPH uses the previously entered response to that prompt. GRAPH then prompts 
for "VALUES:" and the user enters the field names to be displayed which may include 
actual fields, created fields and linked fields.

The Intersection Functions #INT, %COL, %ROW, %TOT and SIG may be displayed 
in the table and on the graphs, where applicable.

The general syntax for two dimensional graphs follows.

     AN> graph
     ACROSS THE TOP: set-name1 [set-name2 ...] [same]
     DOWN THE SIDE: set-name1 [set-name2 ...] [same]
     VALUES: field1[/op] [+] [field2/op ...] [int function] [same]

     Intersection functions include #INT %TOT %COL %ROW SIG.
ADMINS User Guide  12 - 35



The GRAPH Command
12.11.1.2.1  One Set Across the Top

If there is one set "across the top", then multiple fields can be graphed. Each field 
displays as a separate horizontal bar graph. Fields may be added together on a single 
bar graph, and displayed in alternating shades by placing a plus sign (+) between the 
fields (see Section 12.11.3 “Adding Values on the Same Bar Graph”). If a field name 
is surrounded by parentheses, the field is displayed in the table but not in the graph.

In the following example, the set of high maintenance vehicles (HIMAINT) displays 
across the top. The sets to high and low mileage vehicles (HIMILE and LOMILE) 
display down the side. The values are the average cost for parts and labor (PARTS/
AV and LABOR/AV) for the items in the intersection of these sets. The scale option 
(see Section 12.19.8 “Scale”) is set to 1000.

      AN> graph
     ACROSS THE TOP: himaint
     DOWN THE SIDE: himile lomile
     VALUES: parts/av labor/av
     
                    HIMAINT (32)         
           PARTS/AV LABOR/AV <------------------1000-------------
------>
 HIMILE      458.25   630.64 [=================]

                             [XXXXXXXXXXXXXXXXXXXXXXXXX]

 LOMILE      345.37   427.06 [============]

                             [XXXXXXXXXXXXXXXX]

12.11.1.2.2  Multiple Sets Across the Top

If there are multiple sets "across the top", then only one field can be graphed. The 
fields within a row of the table are graphed in alternating shades.

In the following example, the sets HILABOR (high labor cost vehicles) and 
HIMAINT (high maintenance cost vehicles) display "across the top". The sets 
beginning with "Y". (three model years: 81, 80 and 79) display "down the side". The 
values to be graphed are the average maintenance cost (TOTMAINT) for the items in 
the intersection of the column and row sets. The scale option (see Section 12.19.8 
“Scale”) is set to 6000.

     AN> graph
     ACROSS THE TOP: hilab himaint
     DOWN THE SIDE: y.*
     VALUES: totmaint/av
  
         HILAB (28) HIMAINT (32)  
         TOTMAIN/AV TOTMAIN/AV<------------------6000------------
------->

 Y.81 (4)    893.00  1,055.00 [====|XXXXXX]

 Y.80 (5)  1,493.00  1,790.00 [========|XXXXXXXXXXX]

 Y.79 (5)  3,028.92  2,540.94 
[===================|XXXXXXXXXXXXXXXXX]
 

12 - 36   ADMINS User Guide



The GRAPH Command
12.11.2  Graph Restrictions and Conventions

There are several restrictions and conventions which apply to graphs but not to 
tables.

1. The fields to be graphed must be numeric.
2. Fields may be displayed in the table but not in the graph by enclosing the field 

in parentheses. (e.g. (MODYR))
3. Only summary values can be graphed. Detail values from each item in the set or 

from the whole file may not be graphed.
4. The only values operations which may be graphed are: "/V" (subtotal), "/AV" 

(average), "/MI" (minimum), and "/MA" (maximum). Other field value 
operations may be included in the table but not on the graph by enclosing the 
field in parentheses.

5. If there are multiple sets across the top, then only one field may be graphed.
6. If multiple fields are being graphed for each set, the bar graphs from top to 

bottom represent the fields from left to right.

12.11.3  Adding Values on the Same Bar Graph

As we saw in Section 12.11.1.2.2 “Multiple Sets Across the Top” above, if there are 
multiple sets across the top, each row is graphed with a single horizontal bar, in 
which the fields are displayed in alternating shades.

GRAPH can also be instructed to display several different fields on the same 
horizontal bar graph. If the fields entered to the "VALUES:" prompt are separated by 
a plus sign (+), GRAPH adds these fields together creating a horizontal bar graph 
where the fields are graphed in different shades in the same horizontal bar. We call 
this type of graph an Additive Horizontal Bar Graph.

In the following example, the fields PARTS and LABOR are added on the same 
horizontal bar graph for each of the sets to the model years 81, 80 and 79. Note that 
the scale option is set to zero for the graphs below.

     AN> graph y.81 y.80 y.79
     VALUES: parts + labor
     
             PARTS     LABOR
 Y.81 (4)   1,372.00  1,418.00 [=============|XXXXXXXXXXXXXX]
      
 Y.80 (5)   1,563.00  1,688.00 [===============|XXXXXXXXXXXXXXXXX]

 Y.79 (5)   1,974.76  1,956.00 
[===================|XXXXXXXXXXXXXXXXXXXX]
 

ADMINS User Guide  12 - 37



The GRAPH Command
12.11.4  Graphing Negative Values

The GRAPH command may be used to graph both positive and negative values. If 
the values to be graphed are negative, the zero point of the graph is the midpoint of 
the graph. Positive values extend to the right and negative values extend to the left 
of the midpoint.

For example, in the budget analysis, the field DIFF is created using the CREATE 
command (see Section 12.16 “The CREATE Command”) to represent the difference 
between a budget and actual amount. The budget and actual amounts are displayed 
on the table but are not graphed, by enclosing these fields names in parentheses. The 
field DIFF is graphed as follows. The scale option (see Section 12.19.8 “Scale”) is set 
to 22000.

     AN> graph dept*
     VALUES: (budget) (actual) diff

             BUDGET    ACTUAL      DIFF 11000-----------
+++++++++++11000
 DEPT1(43) 17,491.64 15,890.16  1,601.48                [=]
 DEPT2(49) 17,087.84 19,706.88 -2,619.04             [==]
 DEPT3(62) 22,551.54 17,329.68  5,221.86                [======]
 DEPT4(204)64,915.29 75,485.52-10,570.23 [==============]
 

12.11.5  Summary of Graphs Types

In summary there are four types of graphs.

1. Positive Horizontal Bar Graph
The positive horizontal bar graph displays individual fields with individual 
bars. The origin of these graphs is the left-most portion of the graph section of 
the screen.

2. Additive Horizontal Bar Graph
The additive horizontal bar graph displays two or more fields within a single 
horizontal bar. The size of the section for each field represented as a shade is 
based on the value of that field, and the scale option setting, if any. The fields on 
a additive graph are in the same left to right order as they are in the data 
display.

3. Signed Horizontal Bar Graphs
The signed horizontal bar graph is used to display negative and positive values. 
Typically, this graph displays differences or variance between estimated (or 
expected) and actual values (e.g. actuals over or under budget). In this type of 
graph the zero point is the midpoint of the graph. Graph sections for positive 
values extend to the right, and graph sections for negative values extend to the 
left of the midpoint.
12 - 38   ADMINS User Guide



The GRAPH Command
4. Multi-Set Horizontal Bar Graph
The multi-set horizontal bar graph displays how the "across the top" sets divide 
up a value (or simply the intersection size) for a list of "down the side" sets. For 
example, for the different weight classes of vehicles ("down the side"), how does 
the total maintenance cost (the "value") differ across model years ("across the 
top").
This graph is similar to the "Additive Horizontal Bar Graph" except this graph 
"adds" the same fields for different "across the top" sets, whereas the Additive 
Horizontal Bar Graph adds different fields for the same "across the top" set (or 
the entire logical file).

The following diagram shows the different graph types.

                      ANALYZER GRAPH FORMATS

 ----------------------------------------------------------------
------
 |                             1. BAR GRAPH                           |
 |                fld1/op  fld2/op     <---------1000--------->       |
 |           Set1  num1.1   num1.2     [======================]       |
 |                                     [XXXXXXXXXXXXXX]               |
 |                                                                    |
 |           Set2  num2.1   num2.2     [==================]           |
 |           ...                       [XXXXXXXXXXXXXXXXXXXXXX]       |
 ----------------------------------------------------------------
------
 |                        2. ADDITIVE BAR GRAPH                       |
 |                 fld1/op fld2/op ... <---------1000--------->       |
 |            Set1  num1.1  num1.2     [=========|XXXXXXXX]           |
 |            Set2  num2.1  num2.2     [=======|XXXXXXXXXXXXX]        |
 |            ...   ...     ...                                       |
 ----------------------------------------------------------------
------
 |                         3. SIGNED BAR GRAPH                        |
 |          fld/op fld/op fld/op       500---------+++++++++++500     |
 |     Set1  num    num    DIFF1               [===]                  |
 |     Set2  num    num    DIFF2                   [=======]          |
 |     Set3  num    num    DIFF3               [===]                  |
 |     ...                                                            |
 ----------------------------------------------------------------
------
 |                 4. TWO DIMENSIONAL ADDITIVE BAR GRAPH              |
 |          COL_SET1 COL_SET2 ... TOTAL                               |
 |           fld1/op  fld1/op     fld1/op     <---------1000--------->|
 | ROW_SET1   num1.1   num1.2      tot1.n     [==|XXX|===]            |
 | ROW_SET2   num2.1   num2.2      tot2.n     [==|XX|===]             |
 | ...                                        [===|XXXX|=====]        |
 | TOTAL      totn.1   totn.2      totn.n                             |
 ----------------------------------------------------------------
------
ADMINS User Guide  12 - 39



The GRAPH Command
12.11.6  Scale Option

There are two factors which influence the size of a particular graph. The maximum 
size of the graph is determined by the amount of space between the right most 
column of the table and the page width (see the OPTION command Section 12.19 
“The OPTION Command”). The scale option (see Section 12.19.8 “Scale”) also affects 
the size of the horizontal bar graph.

If the scale option is set to zero (the default), the scale of the graph is determined from 
the values of the fields being graphed. For each different field being graphed, the 
length of the graph is relative to the highest value for that field.

If the scale option is non-zero, then the width of each unit in the graph is based on the 
value of the scale option.

If the scale option is -1, the entire display width is used for the highest value being 
graphed, all other values in all fields are graphed relative to that highest value.

The types of graph outlined above may be used with the scale option either set to zero 
or to a non-zero value. Note that if the scale option is non-zero, then that scale value 
applies to all values being graphed. If the SCALE option is zero, i.e. graph scaling is 
derived directly from the data values, then each field in the graph determines the 
scaling only for the graphs for that field.

12.11.7  Graph Shadings

Each graphed field is assigned a shading. The shadings are graphed in the order 
described below.

     

TERMINAL SHADING

HARD COPY 1) open bar  2) filled bar (uses XXX)

VT (no advance 
video)

1) reverse video,  2) ###  (pound sign)

VT (advanced 
video)

1) reverse video,  2) bright reverse video
12 - 40   ADMINS User Guide



The SHOW Command
12.12  The SHOW Command

The SHOW command is an "informational" command to allow the user to review 
data names and operations. The SHOW command can display either all fields, all 
labeled fields, all created fields, all sets, all labeled sets, or particular sets or fields. 
SHOW can also display the status of various printing and reporting options. In 
addition, SHOW can display the log of the commands in the current "SAV" file. 
SHOW may also be used to display the fields in another ADMINS data file which 
may be named as the master file or linked into the logical master file.

12.12.1  Show Fields

Field names are displayed in the order in which they were "defined" in the original 
master file. Following the fields from the master file are the created and linked fields, 
if any.

12.12.1.1  Show All Fields, in Detail
To display a list of all fields, the number of characters in the print-width, the 
ADMINS field data type, the totaling status, the scaling factor,7 and the name of the 
link file (in the case of linked fields) the user types the "SHOW FIELDS" command. 
SHOW FIELDS may be abbreviated to "SHOW F".

     AN> show fields
         VEH#          4   NT  -  X9999
         MODYR         6   NT  -  I
         TOTMILES     12   T   -  D
         MILES81      12   T   -  D
         WTCLASS       6   NT  -  I
         TOTMAINT     12   T   -  D2
         PARTS        12   T   -  D2
         LABOR        12   T   -  D2
         YRACQ         6   NT  -  I            REGISTER.MAS
         YRSERV        6   NT  -  I            Created Field
         AGE           6   NT  -  I            Created Field

12.12.1.2  Show Fields, Briefly
A compact list of the fields in the logical master file is displayed by typing "SHOW 
BF":

     AN> show bf
     VEH# MODYR TOTMILES MILES81 WTCLASS TOTMAINT PARTS LABOR
     ANSEQ YRACQ YRSERV AGE

7.    Totaling status and scaling factor are described in Section 12.13.1 “Using the 
NAME Command with Fields”.
ADMINS User Guide  12 - 41



The SHOW Command
12.12.1.3  Show All Created Fields
A list of all the created fields with their derivation rule is displayed by typing "SHOW 
CRF". Created fields are described in Section 12.16 “The CREATE Command”.

     AN> show crf
         YRSERV        6   NT  -  I              Created Field          
              CREATE YRSERV/I 82 - YRACQ
         AGE           6   NT  -  I              Created Field          
              CREATE AGE/I 82 - MODYR

12.12.1.4  Show a Particular Field
To see a field (or several fields) with the details described in SHOW Fields type:

     AN> show field-name1 field-name2 ...

12.12.1.5  Show All Labeled Fields
A list of all the fields which have a descriptive label is displayed by typing "SHOW 
LF":

     AN> show lf

12.12.2  Show Sets

When a set is "shown", the item count, the sequential set number, the set operations 
used to build the set, and the set label (if any) is also displayed. Sets are displayed in 
reverse sequence order (i.e. the newest ones first).

12.12.2.1  Show All Sets
To display all the sets, type "SHOW SETS". SHOW SETS may be abbreviated to 
"SHOW S".

     AN> show sets
     .
     .
     .
     4       Y.80          5      MODYR EQ 80
     3       Y.81          6      MODYR EQ 81
     2       HILAB         27     LABOR81 GE 300.00
     1       HIPARTS       26     PARTS81 GT 300.00

12.12.2.2  Show All Labeled Sets
The user types the following command to display a list of only the sets which have a 
descriptive label.

     AN> show ls
12 - 42   ADMINS User Guide



The SHOW Command
12.12.2.3  Show the Last "n" Sets
To display only the last "n" sets which were built, type "show -n". For example, to 
display the last "5" sets type:

  AN> show -5
  18      NEWXHEAVY    16    XO NEW HEAVY
  17      LOMILIT       5    CO HIMILE LIGHT
  16      HIMAINT      37    CO LOMAINT
  15      LOMILE       30    CO HIMILE
  14      NEW          14    UN Y.81 Y.80 Y.79  Cars built since 79

12.12.2.4  Show a Particular Set
To display one specific set or several sets type:

     AN> show s:set-name1 [s:set-name2 ...]

The "S:" preceding the set name is only required if there is a field name which 
matches the set name. Otherwise the "S:" is optional.

Particular sets may also be displayed by entering the set sequence number. In this 
case the "S:" is required before the set number. For example, to display sets numbered 
5 and 8 type:

     AN> show s:5 s:8

12.12.3  Show File-Name

The SHOW file-name command displays a list of the fields from other ADMINS data 
files. This feature may only be used with data files with the MAS or TAB file type. For 
example, to see the data fields in the file PREV.MAS, type:

     AN> show prev.mas
     VEH# MODYR TOTMILES MILES81 WTCLASS TOTMAINT PARTS LABOR

12.12.4  Show Options, Show Command Log

The current ANALYZER options settings (see Section 12.19 “The OPTION 
Command” for a discussion of the various ANALYZER options) can be displayed by 
typing:

     AN> show op

The ANALYZER continuously logs all of the set building and definitional 
commands. The contents of this log may be viewed by typing:

     AN> show com

The contents of the command log is further explained in Section 12.18 “The WRITE 
Command”.

The SHOW command is also used to display the name of the active SAV file (see 
Section 12.2 “The FILE Command and SAV Files”).

     AN> show sav
ADMINS User Guide  12 - 43



The NAME Command
12.13  The NAME Command

The NAME command is used to rename and/or change field names, labels or field 
characteristics, set names or set labels.

12.13.1  Using the NAME Command with Fields

The NAME command is used to rename a field and/or assign or change the field 
label or any of the field characteristics.

AN>name field [f:new-fldname][prt-width[/prt-
len]][tnt][s.d][label]

When renaming a field, the new field name must be preceded by "F:". For example, 
to change the field name PARTS81 to the name PARTS, type:

AN> name parts81 f:parts

NAME can also be used to change the number of characters in the "print width" of a 
field for use in tables, or to change the print width and length of TXnn or TInn fields. 
Default print widths are derived from the ADMINS field type (e.g. integer=7, 
decimal=12, pictured=as specified, TI60=60, TX76=76, etc.). The length qualifier 
applies only to text fields. The default print length for a text field is 0, which means 
there is no constraint on the number of lines that may be printed from the text field. 
If the length qualifier is set to a negative number in the NAME command, the field is 
treated as an alphanumeric field (i.e. only the first line is displayed).

In the following examples, the print width of the field TOTMAINT is changed to 8 
characters, and the print width and length of the text field COMMENTS (a TX70 
field) are changed to 60 and 40, respectively.

     AN> name totmaint 8

     AN> name comments 60/40
  

NAME can be used to change the totaling status of numeric fields. By default, the 
ANALYZER designates all decimal fields (Dn) and four word decimal fields (Fn) as 
"T" for automatically totaling and all other fields as "NT" for non-totaling. In tables 
which display detail values, the total value is also displayed for any fields with a 
totaling status of "T".

In the following example the totaling status of the field LABOR is changed from 
automatically totaling to non-totaling.

     AN> name labor nt

NAME is also used to set a scaling factor for decimal fields. The scaling factor has two 
components, the scale and the decimal point. The number is divided (and rounded) 
by the power of ten corresponding to the scale, and then the new value is displayed 
with the new decimal point setting.
12 - 44   ADMINS User Guide



The EXAMINE Command
For example if the field BALANCE has values in the millions (e.g. 1,242,544) which 
the user would prefer to express as "1.24", the scale would be set to "6.2" for this field. 
This tells the ANALYZER to divide the values in the field by 1,000,000 (ten to the 
sixth power), and then express the result with two decimal places. This command 
follows:

     AN> name balance 6.2

To remove the scaling factor, the user sets the scaling factor to "0.0". For example:

     AN> name balance 0.0

12.13.2  Using the NAME Command With Sets

The NAME command is also used with sets to rename a set and/or assign or change 
a set label.

     AN> name s:set-name [s:new-set-name] [label]

Examples of the use of the NAME command with sets follow. In the first example 
NAME is used to change the set name. Notice that the "S:" is required before each set 
name. In the second example, NAME is used to assign (or change) a set label. In the 
third example, NAME is used to remove a set label.

     AN> name s:himile s:himileage      

     AN> name s:hiparts parts gt $300.  

     AN> name s:hiparts

To rename a group of sets that begin with the same string of characters use the 
asterisk (*) as a wildcard character:

     AN> name s:state.* s:xstate.*
     SET S:STATE.1 RENAMED TO S:XSTATE.1
     SET S:STATE.2 RENAMED TO S:XSTATE.2
     SET S:STATE.3 RENAMED TO S:XSTATE.3
     SET S:STATE.4 RENAMED TO S:XSTATE.4
     SET S:STATE.5 RENAMED TO S:XSTATE.5

12.14  The EXAMINE Command

The EXAMINE command is used to show the full breakdown of a set, i.e. the step by 
step construction used to build the set. This breakdown is displayed in a hierarchical 
fashion. The syntax for the EXAMINE command is:

     AN> examine set-name

For example in a vehicle maintenance application, individual vehicles are scheduled 
for extensive preventive maintenance based on criteria derived from analysis of past 
experience. The set of vehicles (S:PREV) was built as follows:

1. All vehicles with total mileage over 50,000.
2. Small vehicles built before 1973.
3. Medium and large vehicles built before 1977.
4. Vehicles relatively inactive in 1981 (5000 miles or less in 1981) that required at 

least $300 maintenance in labor or parts.
ADMINS User Guide  12 - 45



The EXAMINE Command
The EXAMINE command would show this as follows:

     AN> examine prev

 FIELD    INSTRUCTION               SET NAME       COUNT DESCRIPTION
 -------- -----------               --- ----       ----- -----------
 TOTMILES GT 50,000                   HIMILE          20 
 MODYR    LE 72                         YR72-          4 
 CLASS    EQ 1 2                        CL_1.2        16 
          IN YR72- CL_1.2             OLDSMALL         1 
 MODYR    LE 76                         YR76-         18 
 CLASS    EQ 3 4 5                      CL_3.4.5      24 
          IN YR76- CL_3.4.5           OLDBIG          11 
 PARTS    GT 300.00                       HIPARTS     26 
 LABOR    GE 300.00                       HILAB       28 
          UN HIPARTS HILAB              TOT300$       33 
 MILES    LE 5,000                      INACTIV        3 
          IN TOT300$ INACTIV          HI/INACT         1 
          UN HIMILE OLDSMALL OLDBIG PREV              23 
             HI/INACT

In the EXAMINE command, the first column, FIELD, indicates the field which was 
used in building the set (e.g. TOTMILES, MODYR...). The INSTRUCTION column 
displays the selection criteria or the set operation which was used to build the set.

The SET NAME column shows the most current name for each set. The indentation 
shows the structure of the set building. Set names with the same left margin 
justification were used to build the set beneath them with the margin justification two 
spaces to the left. For example, the sets YR72- AND CL_1.2 were used to build the set 
OLDSMALL. Also, the sets HIMILE, OLDSMALL, OLDBIG, and HI/INACT were 
used to build the set PREV.

The COUNT column shows the item count for each set, that is, the number of records. 
The DESCRIPTION column displays the set labels, if any.
12 - 46   ADMINS User Guide



The HELP Command
12.15  The HELP Command

The HELP command provides on-line assistance and explanations of the 
ANALYZER commands and their variations.

To display the command list, the user types "HELP" to the "AN>" prompt. For a more 
detailed explanation of a specific command the user types the HELP command 
followed by at least the first two letters of the command in question. Additional key 
words documented are listed at the end of the command explanations. To display the 
additional information the user types (at least) the first two letters of the command 
followed by the first two letters of the keyword.

     AN> help [command] [keyword]

For example to display documentation on the CREATE command, enter the 
following:

     AN> help create

12.15.1  Location of the HELP File

The ANALYZER HELP file, ANALYZ.HLP, should be located on the disk and 
directory assigned to the logical name ADM$DIST.

12.16  The CREATE Command

The CREATE command is used to define a new virtual field. The CREATE command 
in the ANALYZER uses the same syntax as the CREATE statement in REPORT (see 
Section 7.13.1 “CREATE Statement” for a description of the CREATE statement, and 
see Chapter 8: “Expressions”for a description of ADMINS expressions and syntax). 
Once created, the new virtual field is part of the logical master file and can be used 
as if it were an actual field in the master file.

CREATE does not perform any i/o. It simply sets up a definition which is performed 
each time the new virtual field is needed (e.g. when building a set based on the values 
in the CREATEd field, or when displaying the CREATEd field in a table).

All links are performed before the CREATEd fields are evaluated. Therefore, links 
cannot be performed using CREATEd fields as the key. See Section 12.3 “The LINK 
Command”on the LINK command.

ANALYZER CREATE automatically manages the decimal point in arithmetic 
operations between decimal fields of the same or different decimal point settings, 
between decimal fields and constants, and between more than one constant. (This is 
unlike other ADMINS commands in which automatic decimal point management is 
available as an option but is not the default.)

The following example illustrates both the use of CREATE and also automatic 
decimal point management by the ANALYZER.
ADMINS User Guide  12 - 47



The CREATE Command
In this example file EXAMPLE.MAS has the following fields:

and the following values:

     D2          D
     100.00      1,000
     200.00      2,000
     300.00      3,000
     400.00      4,000
     500.00      5,000
     600.00       6,000

The CREATE command is used to create several virtual fields as described below.

In the following example, a field is multiplied by a constant, with the result field the 
same decimal point setting as the original field (D2).

     AN> create 1fld/d2 d2 * 10

In the next example, a field is multiplied by a constant with the result field having a 
different decimal point setting from the original field.

     AN> create 2fld/d   d2 * 10

In the next example, two fields are multiplied, and the resulting decimal point setting 
is different from either of the original fields.

     AN> create 3fld/d1  d * d2

In the next two examples, two fields are divided.

     AN> create 4fld/d  d / d2

     AN> create 5fld/d1 d2 / d

The TABLE below displays the values of the fields D2 and D, and the created fields 
which result from the definitions above.

     AN> table d d2 1fld 2fld 3fld 4fld 5fld
         D       D2      1FLD   2FLD          3FLD   4FLD   5FLD
     
     1,000   100.00  1,000.00  1,000     100,000.0     10     .1
     2,000   200.00  2,000.00  2,000     400,000.0     10     .1
     3,000   300.00  3,000.00  3,000     900,000.0     10     .1
     4,000   400.00  4,000.00  4,000   1,600,000.0     10     .1
     5,000   500.00  5,000.00  5,000   2,500,000.0     10     .1
     6,000   600.00  6,000.00  6,000   3,600,000.0     10     .1
    ------  ------- --------- ------  ------------  -----  -----
    21,000 2,100.00 21,000.00 21,000   9,100,000.0     60     .6

Field Type

D2 D2

D D
12 - 48   ADMINS User Guide



Output Files
12.17  Output Files

The ANALYZER OUTPUT command outputs records containing information 
derived in an ANALYZER session to an external ADMINS data file. This output file 
might be used to reorganize and consolidate the analysis steps performed on a file; 
or to build a subset of the existing logical master file; or to consolidate the 
relationships (LINKs, for example) developed in the analysis session directly into a 
single physical file. Sets built during the session can be recoded into new fields in the 
output file.

12.17.1  OUTPUT Syntax

OUTPUT command syntax is as follows:

     AN> output file-name [all/keys] [s:set-name]
     FIELD: field-name [type]
     CODE:  value s:set-name

If the specified data file does not exist, OUTPUT creates a file definition instruction 
file ( a "DEF") for the file. (If the file-name which follows the OUTPUT command does 
not include a file type, e.g. MAS, then the file type is taken from the file being 
analyzed.) Use this DEF file to DEFINE a file to receive the records to be output, then 
call OUTPUT again to output the records.

OUTPUT processes all the records of the ANALYZER master file unless a set name 
is specified on the OUTPUT command line. If a set name is given, only the records in 
that set are processed.

OUTPUT will place all the fields in the ANALYZER's virtual record in the output file 
if the keyword "ALL" is specified on the OUTPUT command line. The key fields of 
the main file are always included and will be the key fields of the output file unless 
KEYS is specified in the OUTPUT command line (see Section 12.17.3 “Output Files 
with New Key Structure”). Otherwise only those fields named in response to the 
FIELD: prompts are processed. If the names to be placed in the output file are present 
in the logical master file, the user does not provide a field type in response to the 
"FIELD:" prompt. The field type is used only when a new field is being created into 
which OUTPUT will recode sets.

When a field name is followed by a field type, the ANALYZER requests information 
on how it is to recode sets into values for the new field. First, it prompts "CODE:" on 
the next line. Enter a value followed by the set-name which is to be recoded as this 
value. Responding to the "CODE:" prompt with just carriage return by itself tells the 
ANALYZER that you are finished entering recode values for the field. (The 
ANALYZER prompts for another "FIELD:".)

Responding to the "FIELD:" prompt with just carriage return by itself tells the 
ANALYZER that you are finished entering fields.
ADMINS User Guide  12 - 49



Output Files
12.17.2  Building Output Files

OUTPUT creates a DEF instruction file if the specified data file does not exist. After 
the file is created using the DEF file, call OUTPUT again to actually output the 
records.

Use the SPAWN* command to DEFINE the ADMINS data file without leaving the 
ANALYZER session:

 AN> OUTPUT SAMPLE.MAS
 FIELD:AFLD
 FIELD:BFLD
 FIELD:
 SAMPLE.DEF CREATED
 AN> SPAWN DEFINE SAMPLE

 DEFSZ: 28 NF: 3  KEYLEN:1  RECSZ: 5  NRECS: 1000
   # OF BLOCKS   DATA: 16  INDEX: 8  TOTAL: 24
 SAMPLE.DEF.1 CREATED
 INDEXED file. KEYS are: N 
 AN> OUTPUT SAMPLE.MAS
 SAMPLE.MAS OPENED
 FIELD:AFLD
 FIELD:BFLD
 FIELD:
 SAMPLE.MAS CLOSED 143 RECORD WRITTEN

The number of records written to the output file is determined by the size of the 
logical master file, or the size of the subset of the logical master file being written as 
output.

If the output file already has records in it, OUTPUT can be used to append records to 
the end of the file. In this circumstance the ANALYZER advises that there are already 
records in the file and awaits confirmation that processing should continue.

12.17.3  Output Files with New Key Structure

The OUTPUT command line qualifier, KEYS, provides the capability to create an 
output file with an entirely different key structure than the ANALYZER main file:

         AN> OUTPUT file_name KEYS [s:set_name] 
         KEY:   any_field_name
         FIELD: field_name [type]
          CODE:  value s:set_name

When KEYS8 is specified the ANALYZER prompts with "KEY:". The user enters any 
fields (from the logical file, created or linked). Up to 9 key fields may be specified. 
Enter a carriage return by itself at the "KEY:" prompt to indicate that you are finished 
entering key fields. (The ANALYZER will prompt "FIELD:")

8.   KEYS and ALL can not be on the same output line.
12 - 50   ADMINS User Guide



Output Files
12.17.4  Example of the OUTPUT command

The following example illustrates the OUTPUT command syntax and the form of a 
file definition written by OUTPUT based on the data in the Motor Vehicle Preventive 
Maintenance file PREV.MAS.

Before using the OUTPUT command, an analysis environment is created by building 
sets, defining a link and a created field. The ANALYZER commands which were 
used prior to running the OUTPUT command are displayed below. Then the 
OUTPUT command instructions are run from a command file, EXAMPLE.COM.

$ an
ANALYZB1.SAV CREATED
AN> file prev.mas
AN> select
SELECT> class eq 5 s:large 6 passenger + vehicle
SELECT> class eq 3 4 s:midsize 5-6 passenger vehicle
SELECT> class eq 2 s:compact 4-5 passenger vehicle
SELECT> class eq 1 s:subcompact 4 passenger (or smaller)   vehicle
SELECT> cr
AN> link yracq from register.mas key is veh#
AN> create yrserv/i 82 - yracq

At this point, the sets and fields which we need for our output file have been defined. 
The command file which will be executed to build the output file has already been 
written. To call the command file EXAMPLE.COM we type @EXAMPLE to the 
"AN>" prompt. The DEF instruction file COST.DEF is created the first time the 
command file, EXAMPLE.COM is executed.

 AN> @example
 AN> output cost
 * The following is a list of the fields to be included in COST.DEF.
 FIELD: parts
 FIELD: labor
 FIELD: totmaint
 FIELD: yracq
 FIELD: yrserv
 FIELD: class
 * The field SIZE, is a new field derived from sets.
 * SIZE is an A6 field.
 FIELD: size a6
 * The field values and set-names to be coded into the field SIZE.
 * We assign "large" as the value for the items from the set 
s:large.
 CODE: large  s:large
 CODE: mid    s:midsize
 CODE: cmpt   s:compact
 CODE: sbcmpt s:subcompact
 * To exit from the CODE prompt, a return is simulated with "cr".
 CODE: cr
 * To exit from the FIELD prompt, use "cr".
 FIELD: cr
 COST.DEF CREATED
 AN>
ADMINS User Guide  12 - 51



Output Files
The following DEF instruction file, COST.DEF, was created by the OUTPUT 
command above.

     COST.DEF
     MAS 40
     VEH# X9999 KEY1
     PARTS D2
     LABOR D2
     TOTMAINT D2
     YRACQ I
     YRSERV I
     CLASS I
     SIZE A6
     *    LARGE LARGE     6 passenger + vehicles
     *    MID MIDSIZE     5-6 passenger vehicles
     *    CMPT COMPACT      4-5 passenger vehicles
     *    SBCMPT SUBCOMPACT     4 passenger (or smaller) vehicles

Notice that the field SIZE is created by recoding the sets LARGE, MIDSIZE, 
COMPACT, and SUBCOMPACT into field values. The comments below the field 
SIZE are written by the OUTPUT command and show the field value, the set-name 
recoded into that value and the set label (if any) for each field value.

After the OUTPUT command has written a file DEF, the SPAWN command is used 
to DEFINE the master file.

     AN> spawn define cost

Again the command file EXAMPLE.COM is called. This time the records will be 
appended to the file COST.MAS.

     AN> @example
     COST.MAS OPENED
     FIELD: parts
     FIELD: labor
     FIELD: totmaint
     FIELD: yracq
     FIELD: yrserv
     FIELD: class
     FIELD: size a6
     CODE: large  s:large
     CODE: mid    s:midsize
     CODE: cmpt   s:compact
     CODE: sbcmpt s:subcompact
     CODE: cr
     FIELD: cr
     COST.MAS CLOSED 40 RECORDS WRITTEN
     AN> stop

To examine the data in COST.MAS, the user can use the ANALYZER, or other 
ADMINS tools such as TRANS. The ANALYZER TABLE command is used to 
display the data in COST.MAS in the following example:

     $ an cost.mas
     AN> TABLE VEH PAR LAB CLASS SIZE
     VEH#       PARTS         LABOR    CLASS   SIZE
     0001      132.00        231.50        2   CMPT
     0002      543.00        654.00        3   MID
     0003      435.60        546.32        4   MID
     0004      546.43        674.04        1   SBCMPT
     0005      100.00        200.00        2   CMPT
     0006      345.76        897.34        5   LARGE
       .         .              .          .    .
       .         .              .          .    .
       .         .              .          .    .
12 - 52   ADMINS User Guide



Output Files
12.17.5  Recoding Multi-Value Fields

As explained above, OUTPUT can be used to recode sets into a new field (e.g. the 
field SIZE) so that the values in the new fields correspond to sets created in the 
analysis session.

The OUTPUT command can also be used to recode multiple values into a single field. 
(The use of multi-value data is described in Section 12.22 “Multi-Value Data”.) This 
happens when each of a group of sets is recoded into a value, and an item (record) 
can be present in more than one of these sets. The new field created by recoding 
multi-value data into one field must be an alphanumeric field. Multiple values are 
concatenated in the field separated by a space.

The ANALYZER may be used to reanalyze data recoded in this way by using the 
"character string search" operator, IN. Use of the IN operator is described in Section 
12.4.1 “Single Set Syntax”.

The following example shows the use of the OUTPUT command with multi-value 
fields. The same OUTPUT syntax is used for recoding fields as described above. The 
sets which follow were built from a personnel file. They contain employees who 
speak a specific language. These sets will be recoded and incorporated into the new 
field called LANG in the output file EMPSKILL.

     S:ENGLISH
     S:FRENCH
     S:GERMAN
     S:RUSSIAN
     S:CHINESE
     S:DANISH
     S:SWEDISH
     S:SPANISH
     S:ITALIAN

The following OUTPUT command file is used to create the file EMPSKILL (i.e. 
EMPSKILL.DEF and EMPSKILL.MAS). Since each employee may have skills in more 
than one language, the multiple values for language skills will be stored in the field 
LANG. The command file, LANG.COM is called from within the analysis session.

     AN> @lang
     AN> output lang
     FIELD: typspd
     FIELD: shthd
     FIELD: wdproc
     FIELD:  .
     FIELD:  .
     FIELD:  .
     FIELD: lang a30   
     CODE: en s:english
     CODE: fr s:french
     CODE: ge s:german
     CODE: ru s:russian
     CODE: ch s:chinese
     CODE: da s:danish
     CODE: sw s:swedish
     CODE: sp s:spanish
     CODE: it s:italian
     CODE: cr
     FIELD: cr

The field LANG is an A30 field. This will allow for up to ten values (two letters each) 
to be stored within the field with one space between values.
ADMINS User Guide  12 - 53



Output Files
12.17.6  Output Files: Summary

The flow of information from the command file containing the OUTPUT command, 
until records are appended into a master file, is diagrammed on the following page 
based on the output command file example in Section 12.17.4 “Example of the 
OUTPUT command”.

 |                      VEH# X9999 KEY1 |   |                     |
 |                      PARTS D2        |   |                     |
 |                      LABOR D2        |   |                     |
 |                      ...             |   -----------------------
 |                      SIZE A6         | 
 |                      * LARGE LARGE   |
 |                      * MID   MIDSIZE |
 |                      ...             |
 ----------------------------------------
                       |
                       v
 ---------------------------------------- 
 |               3 DEFINE               |
 |                                      |
 | Use the SPAWN command to             | 
 | DEFINE the data file.                |
 ----------------------------------------
                       |
                       v
              Go back to Step 1.                  The OUTPUT Command - Summary 
of Events
  --------------------------------------------------------------------
 |                           1 Command File                          |
 |                                                                   |
 | From within the ANALYZER environment     AN> @example             |
 | a command file is called containing      AN> output cost          |
 | the OUTPUT command instructions.         FIELD: parts             |
 |                                          FIELD: labor             |
 |                                          ...                      |
 |                                          FIELD: size a6           |
 |                                          CODE:  large s:large     |
 |                                          CODE:  mid   s:midsize   |
 |                                          ...                      |
 |                                          CODE:  cr                |
 |                                          FIELD: cr                |
 |                                          AN>                      |
 ---------------------------------------------------------------------
                                     V
                ----------- Does COST.MAS exist? ---------
                |    NO                                  |   YES
                v                                        v
 ----------------------------------------   -----------------------
 |              2 File DEF              |   |   4 Append Records  |
 |                                      |   |                     |
 | OUTPUT writes the    COST.DEF        |   | OUTPUT appends 40   |
 | file DEF, COST.DEF   MAS 100         |   | records to COST.MAS.|
12 - 54   ADMINS User Guide



The WRITE Command
12.18  The WRITE Command

The WRITE command is used to create a text editable ANALYZER command 
instruction file from the internal log of commands in the active SAV file. The 
commands written into the command file include all of the set building, option 
setting and definitional instructions. Therefore, the command file created via WRITE 
can be used to re-create all the analysis steps up to the current point. Display 
commands, such as TABLE, SHOW, EXAMINE and OUTPUT are not written in the 
command file.

12.18.1  WRITE Syntax

The syntax for the WRITE command is as follows.

     AN> write file-name

The WRITE command creates a text editable ANALYZER command instruction file 
containing all of the set building, option setting and definitional commands used in 
the analysis. The name of the command file created by the WRITE command is file-
name.COM. The user does not include the file type on the WRITE command line 
because the ANALYZER adds the file type.

After the command file is written, it can be edited and consolidated using a text 
editor.

Command files based on the internal log are further discussed in Section 12.21 
“Command Files”, and in Section 12.2.2 “The SAV File”.
ADMINS User Guide  12 - 55



The WRITE Command
12.18.2  Example using the WRITE Command

The following example is an excerpt from an analysis session in which the WRITE 
command is used. First level sets are built using the SELECT command. Additional 
sets are created using the UNION and COMPLEMENT commands. A TABLE is run 
on the data. Several options are set, the display width of fields is changed, a LINK is 
made to the file REGISTER.MAS. The log of the analysis is displayed using SHOW 
COM. Finally, the command file HICOST.COM is created using the WRITE 
command.

 $ an
     ANALYZB3.SAV CREATED
     AN> file prev.mas
     PREV.MAS 40 ITEMS, IS NOW ACTIVE
     AN> select
     SELECT> parts gt 400 s:hipart
     SELECT> labor gt 400 s:hilab
     SELECT> modyr eq 81 s:y.81
     SELECT> modyr eq 80 s:y.80
     SELECT> modyr eq 79 s:y.79
     SELECT> totmile gt 50000 s:himile
     SELECT> cr
     ...
     AN> union y.81 y.80 y.79 = new
     7     S:NEW        10    25%
     AN> complement new = old
     8     S:OLD        30    75%
     AN> table
     ACROSS THE TOP: new old
     DOWN THE SIDE: y.*
     VALUES: parts "/%r "/%c
     ...
     AN> name parts 8
     AN> name lab 8
     AN> create diff/d parts - labor
     AN> table y.*
     VALUES: parts labor diff
     ...
     AN> link all from register.mas key is veh#
     AN> show com
     1.    FILE PREV.MAS
     2.    SELECT
     3.    PARTS GT 400 S:HIPART
     4.    LABOR GT 400 S:HILAB
     5.    MODYR EQ 81 S:Y.81
     6.    MODYR EQ 80 S:Y.80
     7.    MODYR EQ 79 S:Y.79
     8.    TOTMILE GE 50000 S:HIMILE
     9.
     10.   UNION Y.81 Y.80 Y.79 = NEW
     11.   COMPLEMENT NEW = OLD
     12.   NAME PARTS 8
     13.   NAME LABOR 8
     14.   CREATE DIFF/D PARTS - LABOR
     15.   LINK ALL FROM REGISTER.MAS KEY IS VEH#
     AN> write hicost
     HICOST.COM WRITTEN 16 LINES
     AN> stop
12 - 56   ADMINS User Guide



The OPTION Command
After exiting from the ANALYZER, it is possible to examine and modify the 
command file using a text editor. The contents of HICOST.COM are as follows:

     FILE PREV.MAS
     SELECT
     PARTS GT 400 S:HIPART
     LABOR GT 400 S:HILAB
     MODYR EQ 81 S:Y.81
     MODYR EQ 80 S:Y.80
     MODYR EQ 79 S:Y.79
     TOTMILE GT 50000 S:HIMILE
     CR
     UNION Y.81 Y.80 Y.79 = NEW
     COMPLEMENT NEW = OLD
     NAME PARTS 8
     NAME LABOR 8
     CREATE DIFF/D PARTS - LABOR
     LINK ALL FROM REGISTER.MAS KEY IS VEH#

After editing (if necessary) this command file, HICOST.COM can then be used to re-
create the analysis environment as follows:

     $ an @hicost

12.19  The OPTION Command

The OPTION command allows the user to set various options for formatting and 
printing tables and graphs. To display the options list and current settings, type 
OPTION (or SHOW OP). The following is the OPTIONS list with default settings:

To change any of the default option settings, the two letter option code is followed by 
an equal sign (=) and the new value.

     AN> option code=value

Each of the options is described in detail below.

CODE OPTION MIN MAX DEFAULT

WI page WIdth 20 254 80

LE page LEngth 10 100 60

FO FOrmat 0 2 0

RL Row Label 6 40 10

CL Column Label 6 40 20

PA PAuse 0 1 1

LP Line Printer 0 2 0

SC SCale -1 1000000 0

GR GRoup size 0 6 0

SP SPooler number 0 255 0

NC Number of Copies 1 100 1
ADMINS User Guide  12 - 57



The OPTION Command
12.19.1  Page Width

The page width (WI) option sets the maximum number of characters per line. The 
following example sets the page width to 132 characters.

     AN> option wi=132

12.19.2  Page Length

The page length (LE) option sets the maximum number of lines per page for tables. 
Column headings are printed at the top of each new page. The following example 
sets the page length to 30 lines.

     AN> option le=30

12.19.3  Format Control - Form Feeds

The format (FO) option controls the insertion of form feeds between pages produced 
by the TABLE command. There are three format control settings:

1. FO=0 indicates that the automatic form feed function is off. That is, form feeds 
are not issued at the end of pages.

2. FO=1 inserts form feeds in reports after each page, as determined by the page 
length value.

3. FO=2 issues one form feed immediately and then sets the format to 1, so that the 
report inserts form feeds between pages.

In the following example, format is set to 1.

     AN> option fo=1

12.19.4  Row Label Width

Row label (RL) option sets the width for row set names and labels printed by the 
TABLE command. The default row label is ten characters, the minimum is six and the 
maximum is forty characters. To reset the row label width to 20 characters type:

     AN> option rl=20

If there is insufficient space to display the row set name followed by the item count 
(which is enclosed in parentheses), the item count will be eliminated from the display 
and possibly the row set name or label will be truncated.

12.19.5  Column Label Width

The column label (CL) option sets the column width for each column set name and 
label "across the top". The column label option is used to accommodate large column 
set labels and to allow some flexibility in the spacing of the fields for the "across the 
top" sets. The column label spacing is determined as follows.
12 - 58   ADMINS User Guide



The OPTION Command
The TABLE command first determines if there is sufficient space within the current 
page width (see Section 12.19.1 “Page Width”) for the requested fields, an 
intervening space, and the "down the side" set names and labels (see Section 12.19.4 
“Row Label Width”).

The print width of a particular field is a fixed amount. The default print width for a 
field is derived from the ADMINS field type unless the print width is reset with the 
ANALYZER NAME command, see Section 12.13.1 “Using the NAME Command 
with Fields”.

If there is sufficient space to display the requested fields, TABLE attempts to center 
the label (if any) for the column set(s) on the line directly below the column set 
name(s) and above the field names. The field names for the column sets are spread 
out as much as possible within the active column label setting. There is always at least 
one space between field names.

If the length of the column set label is greater than the column label setting, then the 
set label may be truncated.

In the following example, the column label is set to 25 characters.

     AN> option cl=25

12.19.6  Pause

The pause (PA) option instructs the TABLE command whether or not to pause after 
printing one page of a table. If pause is set to 1 the TABLE command waits after each 
page (as defined by the page length option) prints, before printing the next page. The 
user presses ENTER to continue displaying the table, or types any character followed 
by ENTER to stop the report. If pause is set to 0 (zero), the complete table prints 
without any pauses. By default, pause is set to 1 when using the ANALYZER 
interactively, and pause is set to 0 when a table is run from an ANALYZER command 
file. In the following example, the pause option is set to 0.

     AN> option pa=0
ADMINS User Guide  12 - 59



The OPTION Command
12.19.7  Line Printer

By default, the output from the TABLE command is displayed on the user's terminal. 
The line printer (LP) option can be used to redirect the table to a "LIS" file which can 
be either queued for printing, or sent immediately to another device. There are three 
possible settings for the line printer option.

1. LP=0 is the default. TABLE output is directed to the user's terminal (computer 
screen).

2. LP=1 directs the output to the terminal assigned to the logical name 
ADM$PRT0, if ADM$PRT0 is not assigned the output goes to a "LIS" file which 
is queued for printing to the queue assigned to the logical name 
ADM$SPOOLn9 when the user exits from the ANALYZER.

3. LP=2 directs the output to the terminal assigned to the logical name 
ADM$PRT0, if ADM$PRT0 is not assigned the output goes to a "LIS" file which 
is queued immediately to ADM$SPOOLn without waiting for the user to exit 
from the ANALYZER.

Any table in a "LIS" file created by the ANALYZER is formatted as if FO=1, that is 
form feeds are automatically inserted between pages.

In the following example, the line printer option is set to 1.

     AN> option lp=1

12.19.8  Scale

The scale (SC) option allows the user to set a scale size when using the GRAPH 
command as described in Section 12.11.6 “Scale Option”. The following example sets 
the scale size to 20,000.

     an> option sc=20000

9.   n is determined by OPTION SP, see Section 12.19.10 “Spooler Number” 
12 - 60   ADMINS User Guide



The STOP and QUIT commands
12.19.9  Group

The group (GR) option instructs the TABLE and GRAPH commands to separate the 
"down the side" sets into groups. The number of sets in each group may range from 
1 to 6. Each group is separated by an extra blank line in the table or graph. In graphs, 
groups of sets are assigned different shadings. The default setting for the group 
option is 0, which essentially has no effect.

In the following example, the group size is set to 4. That is, after each group of 4 
"down the side" sets displays, a blank line separates that group from the next group 
of 4 sets.

     AN> option gr=4

12.19.10  Spooler Number

The Spooler Number option (SP) is used to identify the logical name to be checked 
for queuing TABLE output. For example, if SP=6 the ANALYZER will send TABLE 
output to the queue assigned to the logical name ADM$SPOOL6, if SP=0 (the default) 
the ANALYZER queues output to ADM$SPOOL0. (See Section 21.1 
“ADM$SPOOLn: Logical Print Queue Specification” for a generalized discussion of 
the ADM$SPOOLn logical name.)

12.19.11  Number of Copies

The Number of Copies option (NC) controls the number of copies that are printed 
when the ANALYZER is sending output to a print queue.

12.20  The STOP and QUIT commands

The STOP and QUIT commands are used to exit from the ANALYZER. Table output 
which has been redirected to a printer using the LP OPTION (see Section 12.19.7 
“Line Printer”) is queued for printing when either STOP or QUIT is used to terminate 
an analysis session.

12.20.1  STOP

The STOP command exits from the ANALYZER and insures that all of the new set 
building instructions, and option settings and definitional changes from the current 
analysis session are in the SAV file (see Section 12.2.2 “The SAV File”).
ADMINS User Guide  12 - 61



Command Files
12.20.2  QUIT

The QUIT command exits from the ANALYZER leaving the SAV file as it was before 
this use of the ANALYZER started. That is any new sets created, and option settings 
and definitional changes made in the current analysis session, are not written to the 
SAV file.

12.20.3  Exiting from the ANALYZER Via Ctrl/C

The user may abort the ANALYZER using Ctrl/C. Changes in the analysis session 
are written to the SAV file as they are performed. Hence even though Ctrl/C is used, 
the SAV file is "up to date". This is usually also the case if the user "bombs out", i.e. 
when an error exit from the ANALYZER occurs. However, when Ctrl/C is used to 
terminate the analysis, table output which has been redirected to a LIS file for 
printing is not queued.

12.21  Command Files

In addition to its interactive capabilities, the ANALYZER can receive its input from 
a command file. A command file can be named on the ANALYZER command line, 
or can be performed anytime within the analysis session. An ANALYZER command 
file may itself reference other ANALYZER command files.

If the command file is included on the ANALYZER command line, the default SAV 
file is initialized. Hence, command files invoked on the ANALYZER command line 
should start with the FILE command (see Section 12.2 “The FILE Command and SAV 
Files”).

The "@" symbol indicates that a command file is being called. The following is the 
general syntax for calling a command file on the ANALYZER command line. If the 
file type is not included, the ANALYZER will look for ".COM".

     $ an @command-file-name

12.21.1  Command File Conventions

Within a command file, the DISPLAY instruction at the beginning of a line will cause 
the text on that line to be displayed when the command file is being executed.

"DISPLAY n" displays "n" blank lines.

An asterisk (*) in the first column of a line in a command file will cause the text 
following it to be treated as a non-displayed comment.

The characters "CR" simulate a carriage return.

The PAUSE command may be placed anywhere within a command file, and causes 
the terminal to stop printing until the user presses return.
12 - 62   ADMINS User Guide



Command Files
The BRIEF and VERIFY commands control which text from the command file is 
displayed on the terminal while a command file is being executed. In BRIEF mode no 
text, other than that generated by DISPLAY, is displayed while the command file is 
executed. VERIFY mode displays all the command text while the command file 
executes. The default mode for a command file is the VERIFY mode.

A command file can call another command file via the "@yyy" syntax, where "yyy" is 
the name of another ANALYZER command file.

12.21.2  Example of an ANALYZER Command File

The following ANALYZER command file, builds several sets, creates a field and 
prints a table.

     * EXAMPLE.COM
     *
     DISPLAY   This command file build the sets to analyze 
     DISPLAY   maintenance history of our vehicles.
     DISPLAY
     FILE PREV.MAS
     SELECT
     PARTS GT 300 S:HIPARTS
     LABOR GT 300 S:HILABOR
     TOTMAINT GT 2000 S:HIMAINT
     TOTMILES GT 50000 S:HIMILE
     MODYR EQ 81 80 79 S:NEW
     CR
     *
     COMPLEMENT NEW = OLD
     CREATE AGE/I 82 - MODYR
     TABLE
     NEW OLD
     HIPARTS HILABOR
     #INT TOTMAINT AGE/AV

This ANALYZER command file is called as follows.

     $ an @example
ADMINS User Guide  12 - 63



Multi-Value Data
12.22  Multi-Value Data

The ANALYZER may be used on files that contain multiple values for a given 
category. An example of multi-value data is "language skills" in a personnel file or 
"courses taken" in a student record file. If "language skills" are coded in five fields 
named LS1, LS2, LS3, LS4, LS5, allowing up to five languages per person, and specific 
languages are given numeric codes, such that any of the language skills fields can 
contain any of the language codes, we could have the following personnel file 
definition data:

     * PERS.DEF
     MAS 1000
     PERS# X9999 KEY1
     ...
     LS1 I  "first language skill"
     LS2 I  "second language skill"
     LS3 I  "third language skill"
     LS4 I  "fourth language skill"
     LS5 I  "fifth language skill"
     ...

The language codes are as follows:

     LANGUAGE CODES
  
     1 English
     2 French
     3 German
     4 Russian
     5 Chinese
     6 Danish
     7 Swedish
     8 Spanish
     9 etc.

In order to build a set of employees who have language skills in French, we could do 
the following: First we create the virtual field "FR" (which does not exist in the 
personnel file) and set it equal to the code for French, which is 2.

     AN> create fr/i 2

Then the SELECT command is used to find all the records in which the value of the 
field FR (2) is found in any of fields LS1, LS2, LS3, LS4 or LS5. This set is called 
FRENCH.

     AN> select fr eq f:ls1 f:ls2 f:ls3 f:ls4 f:ls5 s:french
     25  FRENCH (115)  11%
12 - 64   ADMINS User Guide



Multi-Value Data
12.22.1  Building Sets from Multi-Value Fields

A second way of handling multi-value data is to place multiple codes into one 
alphanumeric field. This is the way the OUTPUT command (see Section 12.17.5 
“Recoding Multi-Value Fields”) recodes sets where the same item (record) can be in 
multiple sets.

In order to build sets from alphanumeric data coded with multiple values in each 
field, the character string operator IN (includes) can be used with the SELECT 
command (see Section 12.4.1 “Single Set Syntax”). For example, values for the 
language skills are the following:

Multiple values are stored within one field, e.g. LANG. The following data is from 
records coded with multi-value fields. The field LANG is an A30 field containing the 
codes for various language skills. PERS# is the employee number.

Value Language

EN English

FR French

GE German

RU Russian

CH Chinese

DA Danish

SW Swedish

SP Spanish

IT Italian

PERS# LANG

0001 EN FR

0002 SP CH

0003 EN

0004 DA  SW  EN

0005 EN

0006 EN  RU  GE

0007 EN  FR  SP  IT

0008 EN

0009 GE  RU
ADMINS User Guide  12 - 65



SPAWN and ATTACH
For example, PERS# 0004 speaks Danish, Swedish and English.

We can build a set of employees who speak French (LANG code is FR), and a set of 
employees who speak English (LANG code is EN) as follows.

     AN> select lang in FR s:french   
     AN> select lang in EN s:english

Note that the IN operator is case sensitive. Therefore, there has to be an exact match 
between the constant string (e.g. FR) and the data.

12.23  SPAWN and ATTACH

The ANALYZER allows the user to spawn a sub-process in the middle of an 
ANALYZER session, as follows:

      AN> SPAWN
      
      $

Control is switched to the sub-process at the system prompt. The user performs any 
processing desired, then returns to the ANALYZER session at the point it was left.10

If the SPAWN command is called with a valid command line as an argument, spawn 
runs the command and then returns directly to the ANALYZER session:

     AN> SPAWN DIR *.MAS

On OpenVMS systems the ANALYZER ATTACH command enables you to switch 
control from your ANALYZER session directly to any other (sub)process in your job. 
That is, ATTACH does not spawn a new process but switches control to another 
existing process in your job. For example,

     AN> ATTACH SURVEYS_1

switches control from the ANALYZER sessions to the process named "SURVEYS_1". 
To return to the ANALYZER session use the DCL ATTACH command. 

10.   On OpenVMS systems you may enter RET (RETURN) at the $ prompt in the sub-
process to return to the ANALYZER session (the symbol RET is set by the 
ANALYZER for the sub-process when it is spawned). RET is functionally the 
same as logging out of the subprocess but no logoff messages are displayed.
12 - 66   ADMINS User Guide



Chapter 13:Utilities

ADMINS includes several special purpose utility programs. They are:

Each of these utilities is described in detail in the sections that follow.

13.1  PREPROCESS ADMINS Instruction File

PREPROCESS is used to produce an instruction file listing with all indirect references 
("@@" files) included and all conditional compilation logic ("#ifdef" etc.) resolved.

• Usage: preprocess [options] [filename] [output filename]
• Options:

PREPROCESS Read an ADMINS instruction file as input, output 
the file with indirect references, conditional 
compilation logic, etc. resolved.

File Utility (AdmFU) Provides brief or detailed information about 
ADMINS data files. Initialize an ADMINS data file.

AdmDIFF Identify differences in the data contained in two 
ADMINS datafiles that have identical record 
structures.

FILECONVERT 
(AdmFcv)

Convert a keyed file to a sequential file.

SYNC Provide synchronization between ADMINS 
commands.

AV (AdmAv) Communicate with ADMINS data files via logical 
names.

PASSW (AdmPassw) Provide password protection for an ADMINS file.

SEND Send messages to terminals on OpenVMS systems 
only.

UDK Loads user defined function keys.

JOIN (AdmJoin) Concatenates lines from a text editable input file 
and writes the resulting longer lines to an output 
file, which is also text editable.

-@ Process using ANALYZER style include file syntax, 
i.e. lines that begin with one "@" are files to be 
included, rather than two ("@@").

-c Used to specify a line continuation character.
ADMINS User Guide   13 - 1



PREPROCESS ADMINS Instruction File
• filename  - is an ADMINS Instruction file, or any standard ASCII text file. 
Files that do not make use of ADMINS' compiler syntax (e.g. indirect 
references, conditional compilation etc.) are simply displayed as-is, the same 
as if displayed by the TYPE command. PREPROCESS prompts for an 
ADMINS Instruction file if none is supplied

• output filename - File in which to write the results. If not supplied results are 
written to standard output.

-l Print with line numbers. Line numbers for included 
files begin with l.

-p Turn on parameterization. All substitutable 
parameters are processed (see Section 1.4.4 
“Parameterization”) (If standard output is 
redirected, this option is ignored.)
13 - 2   ADMINS User Guide



AdmFu: ADMINS File Utility
13.2  AdmFu: ADMINS File Utility

The ADMINS File Utility (AdmFu) provides information about ADMINS data files 
in either brief or detailed format, and it can initialize an ADMINS data file, i.e. make 
it "empty".

13.2.1  AdmFu Dialogue

When called by itself on the command line, AFU prompts the user for the function to 
be performed:

     $ AdmFu
     16-Mar-93 14:31:07
     Enter a Function; INIT, D, DD, Dxn, Dropn LP, TI, H:

The functions are:

Enter the code for the function you want.

If one or more valid file specifications are supplied on the AdmFu command line, 
AdmFu automatically performs a "describe" (function code "D") the files specified. 
When finished with the specified files, AdmFu prompts "Enter Datafile Name(s):" for 
more files to describe.

If the function code INIT, followed by one or more valid file specifications is supplied 
on the AdmFu command line, AdmFu assumes the specified files are to be initialized 
and prompts for confirmation (see Section 13.2.2 “Initialize”).

Each of these functions will now be described in detail.

INIT Initialize an ADMINS file.

DUMMY Initialize and add a dummy record to an ADMINS 
data file.

D Summary description of an ADMINS Datafile.

DD Detailed description of an ADMINS Datafile.

DXn Disable Index n for an ADMINS Datafile (no n or 
n=A if all)

DROPn Drop Index n for an ADMINS Datafile (no n or n=A 
if all)

LP Direct Display Output to the ADM$SPOOL0 Printer

TI Direct Display Output to the terminal.

H “Help” information is displayed explaining the 
AFU functions.
ADMINS User Guide  13 - 3



AdmFu: ADMINS File Utility
13.2.2  Initialize

Use the "INIT" function to initialize an ADMINS data file, i.e. initialize the key index 
and the file control values in the header so that the file is emptied.

Example:

     $ AdmFu
     12-Feb-93 14:52:03
     Enter a Function; INIT, D, DD, DXn, DROPn, LP, TI, H: init
     Enter Datafile Name(s): re.mas
     RE.MAS will be Initialized. Continue Initialize? y
     Enter a Function; INIT, D, DD, LP, TI, H: cr
     $

INIT can be invoked directly on the command line. For example, to initialize RE.MAS 
and RE.FLG:

     $ AdmFu init re.mas re.flg
     RE.MAS will be Initialized. Continue Initialize? y
     RE.FLG will be Initialized. Continue Initialize? y

AFU prompts for confirmation before initializing each file.

13.2.3  Describe

The "D" function is used to describe an ADMINS data file. The description displays 
the following information:

1. date
2. time
3. structure level ("L:")
4. file name
5. number of stored records

6. number of available record positions left in the file1

7. record length in 16 bit words
8. number of fields per record
9. number of 1024 byte disk blocks reserved for the file
10. index pointer size (16-bit or 32-bit)
11. address of the root index block (relative to end of the file)
12. last index block used (relative to end of the file)
13. the SELECT expression from the DEF, if any

For a detailed explanation of these ADMINS data file characteristics, see Appendix 
E: “File Concepts”.

1.    See Appendix E.4 “Available Space”
13 - 4   ADMINS User Guide



AdmFu: ADMINS File Utility
The "describe" function is called automatically by supplying a valid file specification 
on the command line. To get a description of DISPATCH.MAS2:

D:\TESTING\DATA>admfu dispatch.mas
Summary File Description 02-Mar-07 15:37:35    (File level 3)
File dispatch.mas
    ---------------------------------------------------------
    Number of records stored                  272,506
    Number of records available               269,419
    Record size                                   390 words
    Number of fields                               76
    File size in 1024 byte blocks             424,819 blocks
    Index pointer size                             32 bits
    Index root pointer                        -24,347
    Last index pointer used                  -284,833
    ---------------------------------------------------------
    Index 1: Calls_By_Status
             CLOSED AREA STATUS PRIOR RECDAT RECTIM

You can get descriptions of  multiple files by entering multiple names on the 
command line (delimited by blanks). 

At the end of the dialogue, use carriage returns to exit stepwise out of AdmFU.

13.2.4  Detailed Describe

"DD" is used to obtain a detailed description of the file. This description includes 
everything provided by function "D" (describe) plus the name, type, size, key/sort 
status, and picture for each field defined for the file. "DD" also shows the size of the 
DEF area of the file header.

C:\bills>admfu
02-Mar-07 16:32:57
Enter a Function; INIT, DUMMY, D, DD, DXn, DROPn LP, TI, H:  dd
Enter Data File Name(s):  po.mas
Detail File Description 02-Mar-07 16:33:00     (File level 2)
File po.mas
    ---------------------------------------------------------
    Number of records stored                       53
    Number of records available                   220
    Record size                                     8 words
    Number of fields                                4
    File size in 1024 byte blocks                  11 blocks
    Index pointer size                             32 bits
    Index root pointer                             -1
    Last index pointer used                        -1
    ---------------------------------------------------------

Press return to continue ...

   ------------------ ---- --------- ---- ----
   Field              Key/ Data      Byte Word
   Name               Sort Type      Size Size
   ------------------ ---- --------- ---- ----
   PO#                KEY1 Pictured  4    2    X99999
   DATO                    Long Date 4    2
   CNO                     Pictured  2    1    X9999
   AMT                     Decimal   6    3    2 Decimal Place(s)

Enter a Function; INIT, DUMMY, D, DD, DXn, DROPn LP, TI, H:

2.IThe file summary listing of AdmFU will list the file’s Dictionary ID if the file has 
been defined from the ADMINS Data Dictionary. 
ADMINS User Guide  13 - 5



AdmFu: ADMINS File Utility
13.2.5  DXn - Disable Index n

“DXn” is used to disable Index n for an ADMINS Datafile. Enter the following syntax to use 
this function:

no n 

OR 

n=A (if all)

13.2.6  DROPn - DropIndex n

“DROPn” is used to drop Index n for an ADMINS Datafile. Enter the following syntax to use 
this function:

no n 
OR 

n=A (if all)

13.2.7  Line Printer

"LP" is used to direct the information asked for to the "line printer",3 rather than the 
terminal ("TI"), which is the default option. For an example, see Section 13.2.4 
“Detailed Describe”.

13.2.8  Terminal

"TI" is used to redirect the information asked for back to the terminal after "LP" has 
been used. Example:

$ AdmFu
02-Mar-07 15:36:55
Enter a Function; INIT, D, DD, DROPn, DXn, LP, TI, H: lp
Enter a Function; INIT, D, DD, DROPn, DXn, LP, TI, H: dd
Enter Datafile Name(s): re.flg
Enter Datafile Name(s): cr
Enter a Function; INIT, D, DD,DROPn, DXn, LP, TI, H: ti
Enter a Function; INIT, D, DD,DROPn, DXn, LP, TI, H: d
Enter Datafile Name(s): dispatch.mas

Summary File Description 02-Mar-07 15:37:35    (File level 3)
File dispatch.mas
    ---------------------------------------------------------
    Number of records stored                  272,506
    Number of records available               269,419
    Record size                                   390 words
    Number of fields                               76
    File size in 1024 byte blocks             424,819 blocks
    Index pointer size                             32 bits
    Index root pointer                        -24,347
    Last index pointer used                  -284,833
    ---------------------------------------------------------
    Index 1: Calls_By_Status
             CLOSED AREA STATUS PRIOR RECDAT RECTIM

3.  "Line printer" is the queue pointed to by the logical name ADM$SPOOL0.
13 - 6   ADMINS User Guide



AdmFu: ADMINS File Utility
13.2.9  Help

"H" directs AFU to display the following "help" text describing AFU functions:

     Available Functions:

         

INIT Initialize an ADMINS Datafile

D Summary Description of an ADMINS Datafile

DD Detailed Description of an ADMINS Datafile

LP Direct Display Output to the ADM$SPOOL0 Printer

DXn Disable index n (for index number) or a (for all 
indexes) for an ADMINS Data file

DROPn Drop an index n (for index number) or a (for all 
indexes) for an ADMINS Data file

TI Direct Display Output to the Terminal
ADMINS User Guide  13 - 7



AdmDIFF: File Differences Utility
13.3  AdmDIFF: File Differences Utility

AdmDIFF identifies differences in the data between two ADMINS files of identical 
structure.

The two files being compared must have the same file structure, i.e. the same key 
structure and the same number of fields of the identical type in identical order. Field 
names are not checked and may differ. If the files contain TI or TX fields, AdmDIFF 
outputs a warning message that it does not check for differences in text fields, and 
continues processing.

AdmDIFF finds differences according to the key value in each file. If a record with a 
given key value exists in one file and not the other, AdmDIFF prints out the key value 
and the file name where it was found.

If a record with a given key value exists in both files, AdmDIFF compares each field 
in turn. If fields differ in value between the two files, AdmDIFF identifies the pair of 
fields and displays the two values.

When AdmDIFF reaches the end of both files, it outputs summary information 
including:

1. Total number of records found in file A and not in file B.
2. Total number of records found in file B and not in file A.
3. Total number of field differences found in 'n' records.
4. Total number of identical records.

The AdmDIFF command syntax is:

   AdmDIFF[/TOTAL] FILE1 FILE2

The optional /TOTAL qualifier prints out only the summary information. 

For best results, key values in both files should be unique.

You may compare files using an alternate index by using the index number for both 
files,  e.g.:

ADMDIFF N.MAS-3 B.MAS-3

A sample AdmDIFF run follows:

      $ AdmDIFF N.MAS XNA.MAS
      
      KEY:      16 has field differences
      Field FLD in A: ED
      Field FLD in B:   
      Field D2 in A:                 20.20
      Field D2 in B:                 20.00
      KEY:      17 has field differences
      Field FLD in A: DX
      Field FLD in B: DF
      KEY:      18 has field differences
      Field FLD in A: SZ
      Field FLD in B: XX
      Field D2 in A:                  1.00
      Field D2 in B:                   .00   
      KEY:      19 exists only in xna.mas
      
      
      There are 0 records is n.mas that were not found in xna.mas.
      There are 1 records is xna.mas that were not found in n.mas.
      There are 3 records in both files that have 5 differences.
      There are 109 identical records in both files.
13 - 8   ADMINS User Guide



FILECONVERT - Convert ADMINS datafile attributes
13.4  FILECONVERT - Convert ADMINS datafile 
attributes

FILECONVERT (AdmFcv) is a multi-purpose file conversion utility that is used in 
several distinct ways to alter specific characteristics of an ADMINS data file.

13.4.1  Sequentialize an ADMINS data file

The FILECONVERT4 command can be used to bypass the built-in index area of an 
ADMINS file if that area has become corrupted. Index corruption is experienced as 
ADMINS commands bombing out at a particular record in a file. In this situation, the 
FILECONVERT command can be used to alter the file header so that ADMINS thinks 
the file is a sequential file, i.e. a file that doesn't have a built-in index area. (See 
Appendix E for an explanation of the ADMINS file concepts underlying the use of 
FILECONVERT.) The FILECONVERT dialogue is as follows:

     $ AdmFcv
     File name:badfile.mas
     BADFILE.MAS converted
     File name:cr
     $

After FILECONVERT has converted the corrupted file from a keyed file to a 
sequential file, the file should be readable. Then MOVE or SORT should be used to 
move the records out of the bad file into a new copy of the file.

Because of the nature of how ADMINS deletes and inserts records, described in 
Appendix E: “File Concepts”, deleted and inserted records will appear differently 
after a file has been converted by FILECONVERT.

Deleted records reappear in the file. They must be re-deleted (or otherwise removed) 
using application level criteria, unless the file is a level 3 file  (see Section 2.6 “Level 
3 File Structure”) where the deleted records do not come back.

Inserted records do not appear in sort order but in the chronological order of their 
insertion into the file. A SORT from the converted sequential file to a keyed file  
reestablishes the inserted records in their proper place.

4.    FILECONVERT superseded the obsolete ADMINS/V32 SEQ command. It has 
identical syntax for the sequentialize function that was formerly performed by 
SEQ, and consequently, for compatibility with existing applications, is 
referenced by the symbol "SEQ" (as well as the symbol "FILECONVERT" in the 
ADMINS OpenVMS symbol definition command file, ADMSYMDEF.COM and 
in ADMINS Windows symbol definition file Adm_commands.fil).
ADMINS User Guide  13 - 9



FILECONVERT - Convert ADMINS datafile attributes
13.4.2  Convert Structure Level

FILECONVERT is also used to "convert" ADMINS data files between structure 
levels. In most cases you need not be concerned about the structure level of an 
ADMINS file, however, for an explanation of those circumstances when structure 
level does become an issue, see Appendix E: “File Concepts”.

The syntax for converting between structure levels is illustrated in the following 
example:

     $ AdmFcv
     File name:badfile.mas 1
     Converting Level 2 file to Level 1
     File name:cr
     $

If the file name is followed by a space and a number, FILECONVERT converts the file 
to that structure level number (the possible values are 0, 1, or 2). FILECONVERT 
cannot convert between a level 3 and pre-level 3 files.  The only solution is to define 
a version of the file of the desired level and MOVE or SORT the data into the file.5

Conversions between Level 0 and Level 1 modify an indicator in the file header and, 
if the key contains any numeric fields, FILECONVERT re-writes the file index (see 
Appendix E: “File Concepts”). Conversions between Level 1 and Level 2 only modify 
the file header, the index is not altered. FILECONVERT never alters the data in the 
file. Conversions between Level 0 files and Level 2 files are not supported.

If a Level 2 file uses any of the field types that are not available in Level 1 files (i.e. L, 
TM, DT), that file cannot be converted to a Level 1 file. If a Level 2 file is defined via 
the Data Dictionary and/or is defined with the /READONLY qualifier and the file is 
converted to Level 1, the Data Dictionary information and/or the read-only flag are 
retained and remain effective.

13.4.3  Convert Collating Sequence

To convert existing data files to 8-bit collating sequences (see Section 2.12 
“Alternative Collating Sequences”), use the FILECONVERT utility's "C" option. On 
the command line or at the prompt,6 enter the name of a file to convert followed by 
space and "C", e.g.:

      $ AdmFcv dk.mas c

5.    This new file system cannot be supported on older versions of ADMINS 
(available from V8.2 or higher). If you need to create files that can be accessed by 
pre-8.2 versions of ADMINS, use the /ONEIX command line switch when 
defining the file. A Level 2 file is created.

6.     FILECONVERT can accept a list of files to process, which makes large scale data 
conversions easier (see Section 13.4.4 “Converting a List of Files”)
13 - 10   ADMINS User Guide



FILECONVERT - Convert ADMINS datafile attributes
The file is converted from its current collating order to the one indicated by the two 
character identifier stored in the logical name ADM$COLLATE.

      $ AdmFcv tcol.mas c
      Converting file from DEFAULT to DK collating.
      File converted.

If ADM$COLLATE is not assigned, the file is converted to the default collating 
sequence, 7-bit ASCII (unless it already is 7-bit ASCII, in which case FILECONVERT 
just gives a message).

      $ AdmFcv dk.mas c
      File already collated using DEFAULT table. Nothing done.

If a file has as keys either alpha (An) fields, or Xpic fields which contain alphas (e.g., 
X99A99999), FILECONVERT automatically performs an index-only SORT after the 
data has been converted, to put the file into correct sort-order for the new collating 
sequence.

      $ AdmFcv xcol.mas c
      Converting file from DEFAULT to DK collating.
      File converted.
      XCOL.MAS will be sorted after FILECONVERT is finished
      FILECONVERT finished.
      Now executing FCVA3.COM...
      SORT 
      Input file....: XCOL.MAS
      Output file...: IX
      Rebuilding index only. OK? Y
      11:44:32.00
      11:44:33.45 134 records read 8 blocks 1 section(s)
      11:44:33.86 Index rebuilt

FILECONVERT does not make a copy of the file, it writes over existing data in the 
file. This saves disk space and time in large data conversions. It is your 
responsibility to make a backup copies of files which are to be converted. You must 
do this, because if something goes wrong (e.g., the system crashes midway through 
converting a file), the partially converted file is not useable and cannot be made 
useable. (The corrupted file has to be deleted, and the conversion must be restarted 
using the original file). 

13.4.4  Converting a List of Files 

FILECONVERT will accept a list of files to process. Prepare a list (using a text editor) 
that has a file name and a FILECONVERT option code on each line. The following 
shows the contents of a text file called "FCLIS.LIS": 

     JANTR.DER C
     FEBTR.DER C
     MARTR.DER C
     APRTR.DER C
     MAYTR.DER C 
ADMINS User Guide  13 - 11



SYNC - Synchronization Between ADMINS Commands
If we then use the syntax "@listfile" on the FILECONVERT command line, or at the 
FILECONVERT prompt: 

     $ AdmFcv @fclis.lis 

FILECONVERT will perform each of the requested operations.7 

13.5  SYNC - Synchronization Between ADMINS 
Commands 

There is often a need, particularly in communication-based applications, to 
synchronize the activities of ADMINS commands. The SYNC command provides 
this capability to the ADMINS developer via the use of ten locks, numbered from 50 
to 59. 

SYNC is implemented using a "detached process" that is created the first time a SYNC 
request is issued (via either the SYNC command, described here, or the SYNC 
subroutine, described in Appendix H.15.14 “SYNC - Synchronize Access to a File”). 
This detached process, which is given the name ADM$SYNC$HOLDxx,8 then 
continues until it is stopped or the system is halted.9 

When first created, ADM$SYNC$HOLDxx takes two locks for itself, and 11 locks 
(one lock controls access to the other ten "event flag" locks) for the UIC-group that 
called SYNC. ADM$SYNC$HOLDxx continues to hold these locks, even after the 
process that called SYNC exits. If another process in the same group calls SYNC later 
on, the same 11 locks for that group are used. If SYNC is called from a new group, 
ADM$SYNC$HOLDxx takes 11 additional locks for the new group. The locks for this 
group are also retained until the ADM$SYNC$HOLDxx process is stopped or the 
system is brought down. This is repeated for each new group that calls SYNC, or for 
the system if "SYNC/SYSTEM" is used, until the enqueue quota for the 
ADM$SYNC$HOLDxx process is exhausted.10 

7.     If one of the requested operations is FILECONVERT option "C", FILECONVERT 
first does the collating sequence conversion (or any other FILECONVERT 
operation) on all files, and then sorts the files which require it (see Section 13.4.3 
“Convert Collating Sequence”).

8.    The xx portion of the name ADM$SYNC$HOLDxx varies as changes are made to 
the implementation of SYNC. For example, in Version 4.2 of ADMINS SYNC was 
changed, so its detached process name is called ADM$SYNC$HOLD42. This 
allows different implementations of SYNC to run concurrently on the same 
system.

9.    In a cluster environment, the ADM$SYNC$HOLDxx detached process is created 
at the first SYNC request on each node.

10.    See Section 13.5.1 “SYNC Implementation Issues” for an explanation of how the 
enqueue quota of the ADM$SYNC$HOLDxx detached process is determined, 
and how it can be extended.
13 - 12   ADMINS User Guide



SYNC - Synchronization Between ADMINS Commands
The SYNC command is typically used in command files (this use is also described in 
Section 14.12 “Synchronization of ADMINS Command Files”). The same (simulated) 
event flags may be used to synchronize events in TRANS via the SYNC subroutine 
(described in Appendix H.15.14 “SYNC - Synchronize Access to a File”). 

The syntax of SYNC is as follows: 

     $ sync [/system] ef action 

"/SYSTEM is an optional parameter that, when used, indicates that the lock (or 
"flag") is to be in effect system-wide, rather than group-wide (the default). 

"EF" is a "lock" or "flag" number between 50 and 59. 

"ACTION" is either "W", "S", or "X" , specifying one of the following functions:  

      

W: SYNC should test the status of flag EF. If EF is free 
then SYNC should take it, and allow the command 
file to continue running. If EF is already taken i.e. if 
SYNC running in another command file has flag EF, 
then SYNC should wait for flag EF to be released 
and then proceed as above to take EF and continue 
with the command file. (In this context "waiting" 
means suspending the SYNC command until the 
flag is released). For example: 

$ sync 52 w 

S: SYNC should free flag EF, i.e. signal availability. 
That is, this command would be placed following 
the commands in the command file that were being 
synchronized via a previous “SYNC EF W”. For 
example: 

$ sync 52 s

X: SYNC operates as with the "W" code except if the 
flag is not available when first tested, then SYNC 
should make the command file exit, i.e. "abnormal 
termination". While the "W" action is used to wait 
for the other command file to release control of EF, 
the "X" action is used to cause the command file to 
terminate if another command file has control of EF. 
For example:

$ sync 52 x
ADMINS User Guide  13 - 13



SYNC - Synchronization Between ADMINS Commands
13.5.1  SYNC Implementation Issues 

Any ADMINS application that uses the SYNC facility (either via the SYNC command 
or via the SYNC subroutine) potentially could create the detached process (after a re-
boot, for example). It is therefore important that the following be considered for any 
application that uses SYNC. 

13.5.1.1  Determination of Enqueue Quota 
If the process or image that creates the detached process ADM$SYNC$HOLDxx has 
DETACH privilege, the enqueue quota for ADM$SYNC$HOLDxx is the value of 
PQL_DENQLM (SYSGEN parameter). If the process or image that creates the 
detached process ADM$SYNC$HOLDxx does not have DETACH privilege, the 
PQL_DENQLM (SYSGEN parameter) and the creating process' enqueue quota are 
compared and the smaller value will become the enqueue quota of 
ADM$SYNC$HOLDxx. 

We believe the easiest way to handle this is to install the ADMINS images that 
could call the SYNC subroutine, and the SYNC image, with DETACH privilege. 
This will ensure the PQL_DENQLM SYSGEN parameter will always be used as the 
enqueue quota of the detached process. If any adjustment needs to be made, it can be 
done simply be adjusting PQL_DENQLM. 

If installing the images with DETACH privilege, as we recommend, is not acceptable, 
grant all users who could call SYNC DETACH privilege (by updating the User 
Authorization file with AUTHORIZE). This method will also ensure that the 
PQL_DENQLM value will always be set as the enqueue quota of 
ADM$SYNC$HOLDxx. 

If you do not ensure the PQL_DENQLM value will be used by one of the above 
methods, you must make sure that all users in every group that could potentially call 
SYNC have a sufficient enqueue quota to create ADM$SYNC$HOLDxx locks for all 
the groups that potentially could call SYNC. This means checking all users and 
applications and is likely a lot of work! 

Sometimes the remaining portion of the enqueue quota of ADM$SYNC$HOLDxx is 
not enough to create all eleven flags for a new group that has called SYNC. In this 
case, the group is marked as invalid, the process that called SYNC will get an error 
message and exit. Any subsequent attempts to use SYNC from that group will get a 
message "Invalid Group number 'nnn' for ADM$SYNC$HOLD". 

Should the ADM$SYNC$HOLDxx process exhaust its enqueue quota, the system 
manager has to: 

1. Increase the enqueue quota available to the ADM$SYNC$HOLDxx process, 
a. make sure the PQL_DENQLM SYSGEN parameter is being used (the process 

or image calling SYNC must have DETACH) 

b. increase the size of PQL_DENQLM if necessary. 

2. Make sure that no one is working. 
3. Stop the detached process. 
4. The first SYNC user after the ADM$SYNC$HOLDxx has been stopped will re-

create the detached process (with the new, higher enqueue quota).. 
13 - 14   ADMINS User Guide



SYNC - Synchronization Between ADMINS Commands
13.5.1.2  ADM$SYNC_HOLD logical name assignment 
The logical name ADM$SYNC_HOLD is used to point to the directory that contains 
SYNCHOLD.EXE, which is usually the same directory that contains the rest of the 
ADMINS images. However, do not use the logical name ADM$DIST in the 
assignment of ADM$SYNC_HOLD, instead assign the fully expanded translation of 
ADM$DIST to ADM$SYNC_HOLD, as in the following example 

   $SH LOG ADM$DIST
    "ADM$DIST" = "OFFICE$DUB0:[ADMDIST.V60]" (LNM$GROUP_000031)
   $ASSIGN/GROUP OFFICE$DUB0:[ADMDIST.V60] ADM$SYNC_HOLD
                          or
   $ASSIGN/SYSTEM OFFICE$DUB0:[ADMDIST.V60] ADM$SYNC_HOLD 

Make sure that the value assigned to the logical name ADM$SYNC_HOLD is a 
fully expanded directory specification, i.e. it should not include any logical names. 
ADMINS User Guide  13 - 15



SYNC - Synchronization Between ADMINS Commands
13.5.2  FLAGS Utility 

The FLAGS utility is used to inspect how the SYNC flags are being used. Called 
without any parameters, FLAGS provides a list of all the flags for your group: 

    $ FLAGS
 
       GROUP HOLD_PID FLAG USE  PID
          31 20c0004d  50       Free
                       51       Free
                       52       Free
                       53  SYNC 20c00097
                       54       Free
                       55       Free
                       56       Free
                       57       Free
                       58       Free
                       59       Free 

Use the /ALL parameter to see a list of the flags in all groups which have issued a 
SYNC command, or used the SYNC RMO subroutine: 

    $ FLAGS/ALL
 
       GROUP HOLD_PID FLAG USE  PID
          31 20c0004d  50       Free
                       51       Free
                       52       Free
                       53  SYNC 20c00097
                       54       Free
                       55       Free
                       56       Free
                       57       Free
                       58       Free
                       59       Free
                        
       GROUP HOLD_PID FLAG USE  PID
         200 20c0004d  50       Free
                       51       Free
                       52  SYNC 202001fa
                       53       Free
                       54       Free
                       55       Free
                       56       Free
                       57       Free
                       58  SYNC 202001fa
                       59       Free 

To see a list of all the system-wide flags:

    $ FLAGS/SYS
 
      SYSTEM HOLD_PID FLAG USE  PID
             20c0004d  50       Free
                       51       Free
                       52       Free
                       53  SYNC 20e00022
                       54       Free
                       55       Free
                       56       Free
                       57       Free
                       58       Free
                       59       Free
                                                                        
13 - 16   ADMINS User Guide



AdmAv - Communicate with ADMINS Files via Logical Names
13.6  AdmAv - Communicate with ADMINS Files via 
Logical Names 

The AdmAv command provides a way for command procedures and shell scripts to 
directly access, read, and update ADMINS data files using logical names. 

Before AdmAv is called you must assign logical names to specify what action is to be 
taken. Assign the file specification of the file to be accessed to the logical name A$FL 
(a_fl on Windows systems), and assign the code for the operation AdmAv is to 
perform to the logical name A$OP (a_op). 

     Code11     Operation requested. Valid operators are:
 
     F or FL  Find the record by key; set the record position
     R or RL  Read the record by record position
     W or WL  Write the record by record position
     C or CL  Clear logical name table of A$... or L$... entries
     S or SL  Status information requested 

AdmAv uses the logical name A$RP (a_rp) to hold the record position of the record 
accessed. A$RP is either set by AdmAv in a "Find record by key" operations or 
provided to AdmAv in a read/write operations that access the first (set A$RP to "FI") 
or last (set A$RP to "LA") record in the file. When A$RP is set to "FI" or "LA" for a read 
or write operation12, A$RP resets to the record position of the first or last record in 
the file. 

AdmAv uses logical names of the form A$fieldname (a_fieldname on Windows 
systems) to hold the values contained in the fields of the file being accessed. For 
example if fields in the file being accessed are named STREET, CITY, ZIP_CODE, and 
STATE, AdmAv uses the logical names A$STREET, A$CITY, A$ZIP_CODE, and 
A$STATE to hold the values of those fields. 

If file status information was requested (i.e. if A$OP is set to "S") the following logical 
names are set by AdmAv:13

              N
 

11.     Codes may be either upper or lower case.
12.   A$RP settings are case insensitive.

Logical Name

OpenVMS 
(Windows)

Used to hold

A$NR   (a_nr) Number of records in the file

A$KL (a_kl) Key length (in words)

A$RL  (a_rl) Record length (in words)

 A$NB  (a_nb) Number of (1,024 byte) blocks in the file

 A$LV  (a_lv) Index level

A$RA  (a_ra) Estimated number of records available in the file

13.   See Appendix E.4 “Available Space” for a discussion of "available space" in 
ADMINS data files.
ADMINS User Guide  13 - 17



AdmAv - Communicate with ADMINS Files via Logical Names
Alternatively AdmAv utilizes logical names that begin with "L$" ("l_" on Windows) 
rather than "A$" to hold field and file status values. These "L$" logical names can then 
be used directly with parameterized instruction files (see Section 1.4.4 
“Parameterization”). To instruct AdmAv to use L$ logical names rather than A$ 
logical names, append the character "L" to the operation code in the logical name 
A$OP. 

For example, A$OP with the value "FL" will find a record by key (note: you would 
provide AdmAv with a key value using "L$keyfieldname" logicals) and load the 
values for its fields into L$fieldname logicals; A$OP with the value "SL" will create 
logical names L$NR, L$KL etc. AdmAv always uses the control logical names A$OP, 
A$FL, and A$RP. 

Lets assume that we want to access the file CONTROL.MAS which has the following 
DEF: 

     MAS 100
     *
     ITEM   I   KEY1
     OK     A1
     COUNT  D 

Assume that we need to get, in an ADMINS command file, the value of the COUNT 
field for a particular ITEM. 

To accomplish this assign values to the appropriate logical names then call AdmAv 
("#ifdef" conditional compilation syntax (see Section 1.4.6 “Conditional 
Compilation”) is used to enable the ADMINS command file to run in either 
OpenVMS or Windows environments): 

     #ifdef $VMS$
     $ ASSIGN  CONTROL.MAS  A$FL
     $ ASSIGN  F            A$OP
     $ ASSIGN  6            A$ITEM
     #else
     $ AdmLcr a_fl control.mas
     $ AdmLcr a_op F
     $ AdmLcr a_n  6
     #endif
     AdmAv 

Assigning the value "CONTROL.MAS" to the logical name A$FL (a_fl on Windows) 
identifies the file we want to access. Assigning "F" to A$OP (a_op) specifies the "find 
a record by key value" operation; and assigning 6 to A$N (a_n) specifies the key value 
we want to find (the record with a value of 6 for field N - the key field). 

If an error occurs, for example, if the file specified in A$FL cannot be found, AdmAv 
exits with an error status set, and displays a diagnostic message. In addition, 
whenever a call to AdmAv results in an error condition it places a code indicative of 
the problem into the logical name A$AV_ERR or L$AV_ERR (a_av_err or l_av_err on 
Windows) The A$AV_ERR codes are: 

    2 = No translation for mandatory logical name
    4 = File not found
    6 = Find with key value not set
    8 = Invalid record position (A$RP)
   10 = Format error
   12 = Invalid operation code (A$OP)

A normal result deassigns A$AV_ERR. 

If the record specified in a "find by key" operation is not found the value "NF" is 
assigned to the logical name A$RP (a_rp on Windows). This is not an error (AdmAv 
exits with a normal status and A$AV_ERR is not set). 
13 - 18   ADMINS User Guide



AdmPassw - Password Protect An ADMINS File
AdmAv assigns the value of each field in the record to the corresponding 
A$fieldname (a_fieldname) logical name. When AdmAv finds a field that has a null 
value (i.e. an Alpha field with a blank in it) AdmAv assigns the value "&&" to the 
corresponding logical name,14 rather than a null string. Therefore to test a field for a 
null value, test for "&&" in the corresponding logical name, as follows: 

13.7  AdmPassw - Password Protect An ADMINS File 

A user may assign a password to a file. The password consists of eight or fewer 
characters. In order to assign a password to a file the AdmPassw command is used. 
The name of the file to be password protected may be included on the command line 
or AdmPassw will prompt for the name. AdmPassw then prompts for the new 
password for the file named. (Whenever AdmPassw prompts for a password the 
response typed by the user is not echoed on the terminal.) 

     $ AdmPassw emphist.mas
     TYPE NEW PASSWORD: (not echoed to terminal) 
     FILE: cr
 
     $ AdmPassw
     FILE: emphist.mas
     TYPE NEW PASSWORD: (not echoed)
     FILE: cr 

If the file already has a password, AdmPassw asks for the current password before 
accepting the new password. (A new password of nothing, i.e. carriage return, 
simply removes the current password from the file.) 

     $ AdmPassw emphist.mas
     TYPE CURRENT PASSWORD: 
     TYPE NEW PASSWORD: 
     FILE: cr 

Whenever a password is assigned to a file and ADMINS is asked to open the file, it 
requires that the user supply the password. The password can be provided in one of 
two ways. 

1. The password can be appended to the full file name separated by a slash, as in 
the following examples where RE.MAS is the file name and REAL is the 
password. 

14.   If AdmAv is writing to a file (A$OP is "W") and "&&" is assigned to a logical 
name corresponding to one of the fields in the file, that field will be blanked out.

$ IF "''F$TRNLNM("A$OK")'" .EQS. "&&" 
THEN...

(OpenVMS)

$ if [ "`AdmLtr a_fld`" =  '&&' ] ... (DCL Script

Windows Perl 
Script)
ADMINS User Guide  13 - 19



SEND - Send Messages to Terminals
The FILE statement in a REP:

FILE RE.MAS/REAL
 
TRANS (General Editor Mode):

TRA RE.MAS/REAL 
2. If ADMINS is not given the password appended to the file name then the 

ADMINS command will prompt for the password just before opening the file. 

13.8  SEND - Send Messages to Terminals 

SEND is used on OpenVMS systems to send messages to terminals. The message may 
be up to 79 characters, always appears at the bottom line of the terminal, and is 
always followed by the bell tone. SEND.EXE must be installed with OPER and 
WORLD privilege. If SEND is called with "SEND" by itself on the command line, it 
will prompt the user for who is to receive the message, and the message itself. 

     $ SEND 
     Receivers: ALL
     Message: Please log off.
 
       16 terminal(s) notified 

Alternatively, all the information can be supplied on the command line. 

$ SEND receiver message 

The receiver is either a specific terminal or a group of processes. The specific terminal 
specification must be in the form _xxxx: (e.g.: _TXA5: or _LTA4:), both underscore 
and colon must be present. 

Groups of people are designated via UIC, as follows. 

The first letter is sufficient to identify a receiver group. 

If the receiver designation is followed by /C, the message will be sent cluster-wide 
(to the designated UICs). 

The message is defined as everything after the first argument and therefore should 
not be enclosed in quotes. If quotes are present they are sent as part of the message. 

Owner: Send to all terminals whose process UIC exactly 
matches that of the calling process.

Group: Send to all terminals whose process UIC group 
matches that of the callling process

World: Send to all terminals that are logged in.

All: Send to all terminals.
13 - 20   ADMINS User Guide



UDK: Load User Defined Function Keys
Some examples: 

Message to all terminals in cluster:
 
  $ SEND A/C Shutting down in 10 minutes, please finish up.
 
Message to specific terminal.
 
  $ SEND _TXB3: Please exit TRANS you are holding up the batch run!
 
Message to specific UIC
 
  $ SEND O Journal entry screens going down for upgrade test. 

13.9  UDK: Load User Defined Function Keys 

Terminals compatible with DEC's VT200 series terminals (and later models) support 
user definition of the codes for 15 of the keyboard's top row function keys: Shift/F6 
through Shift/F14, Shift/Help, Shift/Do, and Shift/F17 through Shift/F20. 

These User-Defined Keys (UDKs) can be loaded with any ASCII string. When 
pressed, the UDK sends the string to the host as if the string was actually typed at the 
keyboard. 

The ADMINS UDK command is provided to make the UDK feature of DEC terminals 
easier to use. 

To use the UDK command, first create a text file that associates the ASCII strings you 
want with the KEYNAME mnemonics for the UDKs you want, one line for each 
UDK, in the form: 

KEYNAME=Characters to send 

The KEYNAME mnemonics are: SF6 through SF14 for Shift/F6 through Shift/F14; 
SHLP for Shift/Help; SDO for Shift/Do; and SF17 through SF20 for Shift/F17 
through Shift/F20. 

To include non-printable characters in the ASCII string to be loaded, type the octal 
representation of the character preceded by a backslash (\). The most commonly 
used non-printable characters are:15 

    Carriage Return:  \015
    Line Feed:        \012
    Tab              \011
    Space            \040 

15.  The Tab and Space characters can also be typed as a regular character when 
embedded in the ASCII string, but would be shaved off at the end of the string. 
Therefore you should always use the octal notation if TAB or SPACE might be 
the last character in the string.
ADMINS User Guide  13 - 21



AdmJoin
For example, if you wish to have Shift/F17 send 'DIR *.TRS<C.R.>' and Shift/F20 to 
send 'PRINT ' (Print followed by a space, allowing you to continue filling in the file 
name to print), you would create a file with the following two lines: 

     SF17=DIR *.TRS\015
     SF20=PRINT\040 

Assuming you called the file UDKS.TXT, you would then load the two UDKs by 
typing: 

     $ UDK UDKS.TXT 

The total number of characters for all the ASCII strings loaded for all UDKs in use is 
256. If this limit is exceeded, UDK exits without doing anything. 

Only the UDKs mentioned in the file given to UDK are changed, i.e. as a given UDK 
is loaded, any previous value for that key is cleared, and the new value is substituted. 
This may cause the buffer to overflow the 256 character limit if you are replacing a 
short (or null) string with a long string, and if the UDKs already loaded total almost 
256 characters. For that reason, the command 

     $ UDK CLEAR 

is provided to clear all UDKs. E.g. 

    $ UDK CLEAR
    $ UDK UDKS.TXT 

will clear all UDKs before loading the new ones. 

13.10  AdmJoin

The AdmJoin utility concatenates lines from a text editable input file and writes the 
resulting longer lines to an output file, which is also text editable.16

AdmJoin uses two delimiter characters specified by the user. Each line in the input 
file may end with one of these delimiter characters. The line segment delimiter 
immediately follows the last data character in an input line which is not the last line 
segment in an output line. The record delimiter immediately follows the last data 
character in an input line which is the last segment in an output line.  

If there is one blank after a delimiter, the blank is ignored. If an input line does not 
end with either of the delimiters, AdmJoin acts as if it ends with a line segment 
delimiter.

Input lines should not be more than 255 characters long, including delimiters. 
However, there is no limit on the length of an output line.

Just typing "AdmJoin" at the command prompt gives a syntax help summary.

16.  AdmJoin was formerly known as LJoin on pre-8.2 versions of ADMINS.
13 - 22   ADMINS User Guide



AdmJoin
The syntax is:

             AdmJoin -sD1 -rD2 input_file output_file

             D1 is the segment delimiter character

             D2 is the record delimiter character

Example:

     AdmJoin -s@ -r$ j.lis x.lis

Input file j.lis contains the following:

     this is                 @

     some stuff              @

     and this is end of line $

     start second line       @

     middle of second line   @

     here, now the end, bye! $

After running the JOIN command above, output file x.lis contains:

this is some stuff and this is end of line

start second line middle of second line here, now the end, bye!
ADMINS User Guide  13 - 23



AdmJoin
13 - 24   ADMINS User Guide



Chapter 14:Command Files

The ADMINS command file facility, COM, pre-processes and executes sequences of 
ADMINS, OpenVMS, and DCL commands contained in a text file.

All ADMINS commands can be executed in command files, including TRANS.1

14.1  Preparing A Command File

Command lines and responses to any prompts that occur are placed into a file (usually 
via a text editor). The resulting file is usually named with the file type ".COM", e.g. 
VENDOR.COM. 

The following ADMINS command file uses MOVE/SELECT to create a file of vendors 
whose address is in Massachusetts, and then runs the report STATEVENDOR.

comment on
     *          massv.com
     *
     * Use MOVE/SELECT to move records for
     * Massachusetts from VENDOR.MAS 
     * to STATEVENDOR.MAS
     *
     *
     move/select
       VENDOR.MAS          ! "Input File" response
       MSTATE EQ 'MA'      ! "Select" response
       STATEVENDOR.MAS I   ! "Output File" response
       CR                  !"# to move" reponse
     *
     report statevendor
     *

The conventions for preparing a command file are as follows:

1. Command names start in column 1.
2. Responses to command prompts are indented on the lines following the 

command.
3. An asterisk in column 1 indicates the line is a comment.
4. The exclamation point “!” can optionally be used as a comment delimiter in 

ADMINS command files. The COMMENT ON keyword causes the exclamation 
point to be treated as a comment delimiter from that point on in the ADMINS 

1.    TRANS is still operated “manually”, e.g. via the keyboard/mouse, when called in 
a command file. When TRANS exits, the command file continues.
ADMINS User Guide   14 - 1



Preparing A Command File
command file. The COMMENT OFF keyword causes the exclamation point to 
be treated as a normal character again. Be default the exclamation point is 
treated as a normal character.
By default the semicolon (;) is a comment delimiter. To process semicolons as a 
regular characters on a given line, use two semicolons instead of one for the first 
occurrence on the line, for example:

$DELETE A.TXT;;*,B.TXT;*,C.TXT;*

5. CHECKSTATUS ON/OFF
Normally, a script or procedure generated by COM checks the exit status of 
each command and exits with a message if the status indicates an error. 
However, not all errors should stop a command file.
To provide control over the handling of command exit status, place the 
keywords CHECKSTATUS OFF and CHECKSTATUS ON around the steps 
where exit status checking should be disabled (CHECKSTATUS OFF never 
followed by CHECKSTATUS ON disables checking for the remainder of the 
command file).
On OpenVMS systems CHECKSTATUS ON and CHECKSTATUS OFF cause 
the DCL commands $SET ON and $SET NOON to be inserted at the specified 
point in the command file produced by COM.

6. The response text "CR" means carriage return and is interpreted the same as a 
carriage return in interactive mode. "CR" is used in the above example for the "# 
to move" prompt of the MOVE command.

7. If column 1 contains a "$" , then the command on the line is assumed to be a 
DCL command. 
Lines beginning with “$” are preprocessed by COM like all other lines (e.g. 
“#defined” names are substituted, and “<>” parameters are processed.) But no 
RESTART label is generated  (see Section 14.10).
The “source” line (after substitutions from preprocessing as described above) is 
not translated. It is “passed through” to the output script or command file “as 
is”, so it must be a syntactically valid DCL command.

8. If column 1 contains a “.”, then that line is displayed immediately (without the 
period), and is not written in the comxx[.COM] file. This “dot” syntax provides 
an easy way to display explanations of command file prompts before the 
prompts occur (see Section 14.3.1), for example, 

     * 
     .Enter the code for your area of interest
     .    Code  Subject
     .    ----  -------
     .     1    Geography
     .     2    History
     .     3    Entertainment
     .     4    Sport
     .     5    Language
     .     6    Mathematics
     TRA <Code>MENU
14 - 2   ADMINS User Guide



Executing A Command File
14.2  Executing A Command File

A command file is executed by using the COM command with command file name 
as the operand2. For example:

     $ com statevIf the command file name is not included on the command line, 
COM prompts for the name as follows:

     $ com
       file name: statev

 COM translates the ADMINS command file into DCL command procedure3 with a 
name in the form comxx.com. The translation includes reorganizing the commands 
for proper execution, removing all the comments, and interpreting the command file 
options described in Section 14.3 “Parameterization” through Section 14.11 
“Terminating a Command File In MAINT and PROD”. Finally, the translated 
procedure is executed.

Appendix C.2 “Commands and Procedures” contains an example of a DCL 
command produced on OpenVMS from an ADMINS command file.

14.3  Parameterization

COM allows parameterization of the text in the command file. Note that 
parameterization is evaluated everywhere in the command file. Therefore it may be 
used in both ADMINS and host operating system commands:.

The conventions for parameterization are the same as in REPORT (see Section 7.14 
“Parameterization”). Parameters in single angle brackets ("< >") must receive a 
response or COM will exit without having created an output command file or script. 
Lines which include parameters with double angle brackets ("<< >>") that don't 
receive a response are ignored by COM in building its command file or script.

Once text has been supplied for a particular parameter, i.e. a particular angle 
bracketed string, then that text will be substituted for the parameter each time it is 
encountered, as is demonstrated in the following example.

14.3.1  Parameterization Example

The following command file is used to select records from any state from the vendor 
file for any year, and move them into the file STATEVENDOR.MAS.

     *          statev.com
     *
     * Use MOVE/SELECT to move records for
     * state specified from the specified year's 

2.    If the command file name supplied does not have a suffix, it is assumed to be 
“.COM”.

3.    COM produces a "DCL command procedure". The "xx" part of the name of the 
file output is the string assigned to the logical name ADM$TERM (see Appendix 
C.1.1 “Differences in Print File and Temporary File Naming”).
ADMINS User Guide  14 - 3



Parameterization
     * vendor file to STATEVENDOR.MAS
     *
     *
     move/select
       <Enter year for vendor file>VENDOR.MAS
       MSTATE EQ '<Enter code for state>'
       STATEVENDOR.MAS I
       CR
       Y
     report statevendor
     *
     <Enter code for state>

The complete dialogue of running STATEV.COM from terminal TTA3 would be as 
follows:

     $ com statev
     Reading statev.com
     Enter year for vendor file: 93
     Enter code for state: MA
     com13rv written
     com13rv started
     Tue Jun 27 17:07:45 EDT 2006
     -----------------------------
     move -select
     Input file....: 93VENDOR.MAS
     Select........: MSTATE EQ 'MA'
     Output file...: STATEVENDOR.MAS I
     # to move / S[kip] # / K[ey_range] / N[o_list]: cr
     17:07:58
                                                                *
     100 records moved, total 100 records in STATEVENDOR.MAS
     17:07:58
     -----------------------------
com13rx TERMINATED
     Tue Jun 27 17:07:58 EDT 2006

14.3.2  Repetitive Parameterization

COM supports the repetitive parameters in REPORT4 as described in Section 7.14.1 
“Repetitive Parameterization”. When COM finds a ~ (tilde) to the right of the double 
angle bracket (e.g. >>~), then COM reprompts and regenerates that line until the user 
replies with a carriage return to indicate that COM should proceed to the next line. 
COM will enter a line containing "CR" into the command file at the point where the 
user replies with a carriage return. Since REPORT treats a "CR" in the command file 
as if the "CR" was a carriage return, the repetitive parameter sequence in the report 
instruction file is terminated and the next report instruction line is read.

In the following example a report includes a SELECT statement with repetitive 
parameters:

     SELECT <<1 OR MORE SELECT EXPRESSIONS>>~

To run this report in a command file, the COM should include a repetitive parameter, 
i.e. a "tilde", e.g.:

     REPORT PROMPTS
      <<TYPE DESIRED SELECT EXPRESSIONS, C.R. WHEN DONE>>~

The user enters the expressions to the prompts displayed by COM:

     $ com prompts

4.      Repetitive parameters in command files should only be used in conjunction with 
the repetitive parameter facility of REPORT. It is not implemented as a facility for 
general use in command files.
14 - 4   ADMINS User Guide



Parameterization
     <<TYPE DESIRED SELECT EXPRESSIONS, C.R. WHEN DONE>> acct eq 001
     <<TYPE DESIRED SELECT EXPRESSIONS, C.R. WHEN DONE>> month eq 2
     <<TYPE DESIRED SELECT EXPRESSIONS, C.R. WHEN DONE>> year eq 84
     <<TYPE DESIRED SELECT EXPRESSIONS, C.R. WHEN DONE>> cr

COM then builds the following lines into the command file to be run:

     REPORT PROMPTS
      ACCT EQ 001
      MONTH EQ 2
      YEAR EQ 84
      CR

14.3.3  Logical Parameters

If a parameter string contained in the angle brackets begins with the characters “L$”,  
(e.g. <L$fieldname>), then COM first tries to translate the prompt as a logical name. 
If the logical name has been assigned in either the process, group, or system logical 
name tables, the user is not prompted for the contents of the parameter. Instead the 
value of the logical name is substituted for the prompt. Parameters which begin with 
the characters “L$” and are assigned as logical names are called "logical parameters".

When the logical names exist, the display of logical parameter prompts and their 
values can be suppressed by assigning the lowercase letter "c" to the logical name 
OPTION (see Appendix A: “Options”).

If a parameter beginning with “L$” is not assigned as a logical name, then the user is 
prompted for a value as in standard parameterization (see Section 14.3 
“Parameterization”).

Prompting for values when the logical name is not assigned can be avoided entirely 
by supplying a default value in the parameter string, as follows:

<L$MINIMUM=0>

Specify the default value for the logical name by appending “=value” to the logical 
name inside the angle brackets. In the example above if the logical name 
L$MINIMUM is not assigned, the value “0” will be substituted for the parameter. 

For example, if the logical names "L$INFILE" and "L$OUTFILE" are assigned as 
follows:

     $ assign "po.mas" l$infile         

     $ assign "vendor.mas" l$outfile

then a command file with the following statements:

     SORT

       <L$INFILE>

       <L$OUTFILE>

will cause the PO.MAS file to be sorted into VENDOR.MAS.

If a logical name beginning with “L$” is used inside repetitive parameters (in 
conjunction with REPORT, see Section 14.3.2), then COM tries to translate a series of 
logical names. For example, if <<L$SELECT>>~ appears in a COM instruction file, 
COM tries to translate the logical name L$SELECT1, L$SELECT2, etc., until 
L$SELECTn is not found. These values are substituted in the command file. When 
L$SELECTn is not found COM will pass a "CR" to REPORT to signal the end of 
responses for that parameter.

To illustrate the use of this facility, we use the example from Section 14.3.2, which 
discussed repetitive parameters.
ADMINS User Guide  14 - 5



Parameterization
The repeating SELECT statement in the report remains the same:

     SELECT <<1 OR MORE SELECT EXPRESSIONS>>~

But this time the command file used to run the report will utilize logical parameters:

REPORT PROMPTS

      <<L$SELECT>>~

If the following logical name assignments are made:

     $ assign "acct eq 1" L$SELECT1

     $ assign "month eq 2" L$SELECT2

     $ assign "year eq 98" L$SELECT3

COM then builds a command file identical to the one built in the example from 
Section 14.3.2: 

     REPORT PROMPTS
      acct eq 001
      month eq 2
      year eq 98
      cr

Note that COM inserts a "CR" to be passed to REPORT when L$SELECT4 is not 
found. If the logical name L$SELECT1 does not exist, then COM prompts the user for 
L$SELECT1, L$SELECT2, etc. until the user presses RETURN to the prompt (i.e. 
COM reverts to standard repetitive parameterization).

14.3.4  VALIDATE statements in ADMINS Command Files

Validate statements provide the capability to check the validity of responses given to 
parameters before they are actually used in processing.

If the VALIDATE statement expression is true, COM continues processing. If COM 
is running in a batch mode on OpenVMS, and the VALIDATE expression is false 
COM processing is stopped; a user specified error message is displayed; and COM 
exits with a fatal error status. If COM is running in interactive mode, and the 
VALIDATE expression is false, COM displays a user specified error message and 
reprompts.5 VALIDATE will then test the next response.

5.  Because COM reads through the ADMINS command file in a sequential manner 
and substitutes responses for prompts as they are received, VALIDATE 
statements should always precede the prompt they are checking. Otherwise the 
VALIDATE statement would re-prompt if its expression evaluates to false, but 
the prompt it is checking would already be substituted and incorporated into the 
output script.
14 - 6   ADMINS User Guide



Parameterization
VALIDATE statements automatically validate the data type (numeric, date, etc.) and 
length (alphanumeric) of the response and support the following comparison 
operations:

VALIDATE statements also support an "includes" operator, INCL, and a FILE 
operator.

The use of INCL is illustrated by the following example:

     VALIDATE <Enter input file name>/A20 INCL "FY88"
     && Input file is not for Fiscal Year 1988!

which checks that the response to "Enter input file name:" includes the string "FY88".

The FILE operator indicates that the parameterized responses are to be combined to 
form the key to be searched for in the file specified, i.e.

     VALIDATE <L$USER>/A10 FILE AUTHORIZE.TAB
     && Authorization Denied

checks that the value substituted for the parameter L$USER identifies a record in 
AUTHORIZE.TAB (and if that value is not in the file the command file will not be 
run).

The Boolean NOT operator can be used with any of the other supported operators:

     VALIDATE <Account Number>/XA99999 NOT FILE CUSTOMER.MAS
     && Account already exists.

That is, if the Account Number entered is found in the file CUSTOMER.MAS, do not 
continue to process the command file.

GT Greater than.

GE Greater than or equal to.

EQ Equal to.

LE Less than or equal to.

LT Less than.

NE Not equal.

BET...AND Between (value) AND (value).
ADMINS User Guide  14 - 7



Parameterization
14.3.4.1  VALIDATE Statement Syntax
VALIDATE statements have the following generalized form:

VAlidate parameter/type [ parameter/type][expression] &&message text

Each of the components are now described:

Parameters are always to the left of the operator. Multiple parameter values within a 
single VALIDATE statement are used only with the FILE operator (to build the entire 
key identifying a record) or when doing simple data type checking (i.e. no 
comparison operator is used).

14.3.4.2  VALIDATE Statement Examples
VALIDATE statements are designed to take advantage of the fact that each unique 
parameterized string in the COM file is prompted for only once, and the response to 
that prompt is substituted for that parameter everywhere it appears in the COM file. 
This is illustrated in the following example:

parameter The ADMINS parameter being checked for validity.

/type Any valid ADMINS data type specification. Data 
type must be supplied with a parameter. Data type 
must be separated from the parameter by a slash 
character, ‘/’.
Use quotes (single or double) to surround 
parameter/type when the response may have 
imbedded blanks, i.e.:

VALIDATE "<Enter Name>/A40" EQ 
"<L$NAME>"

expression One of these comparison or misc. operations:

BET...AND Between...and (<Enter Item No:>/X999 BET 100 
AND 499)

GT Greater Than (<Enter Date>/DA GT 1-JAN-88)

GE Greater Than or Equal To

EQ Equal To. operand

LE Less Than or Equal To

LT Less Than

NE Not Equal To

INCL Includes ‘text’. Searches for ‘text’ within the 
parameter. (<Enter input file name>/A20 INCL 
“FY88”)

FILE Use Parameter(s) as key(s) to a record in the 
specified file. The datafile is opened read only. 
(<Account No. >/X999 NOT FILE 
CUSTOMER.MAS)

&&message text Message text is displayed when statement evaluates 
false. ‘&&’ is required, indicating error message 
existence to COM. ‘&&’ is not shown in actual 
message display.
14 - 8   ADMINS User Guide



Parameterization
      * post.com

      *

      * Command File to Post Weekly Transactions

      * 

      VALIDATE <Enter Week Number>/I BET 1 AND 53

      && Week number must be in range 1 to 53

      *

      PROD

       <Enter Week Number>wk.mas

       #ACCOUNT

       PAYAMT PAYDATE

       post.rmo WI

       #ACCOUNT

       PAID PAYDT

       CR

      *

      DISPLAY POSTING OF TRANSACTIONS 

      DISPLAY FOR WEEK <Enter Week Number> COMPLETED

      *

      * end of post.com

The following are examples of some other VALIDATE statements uses:

VA <Enter 1st Parameter Value>/D2 <Enter 2nd Parameter Value>/A10
     &&INVALID PARAMETER DATA TYPES

The VALIDATE statement above simply validates that the responses are the correct 
data type.

     va <Enter Printer Number>/I bet 0 and 9
     &&Invalid Printer Device

Note that "va" (not case sensitive) is sufficient to identify a VALIDATE statement.

     VALIDATE "<Enter Full Name>/A40" NE " " 
     &&Must Supply Customer Name

Note that quotes (single or double) must surround parameter/type if the response 
can contain imbedded blanks. The above parameter could produce the following 
COM dialogue:

      Enter Full Name: CHARLES C. COSMOS

the substituted form of the VALIDATE statement would become:

     VALIDATE "CHARLES C. COSMOS/A40" NE " "

without the quotes COM would exit with an error message because CHARLES is not 
followed by a "/type".
ADMINS User Guide  14 - 9



DISPLAY and PAUSE Statements
14.3.5  CAPS ON/OFF: Convert Param Response to Uppercase

"CAPS ON" instructs COM to convert all6 substitutions for parameterized prompts 
to upper case. "CAPS OFF" disables the effect of "CAPS ON", i.e. any parameterized 
prompts encountered after "CAPS OFF" will not be converted to upper case.

In the following example CAPS ON is used to ensure that the response to the prompt 
"<Select Town>" will always be upper case, then CAPS OFF is used to allow 
uppercase/lowercase responses for any subsequent prompts.

      .
      .
      CAPS ON
      MOVE/SELECT
        CONTACTS.MAS
        HOMETOWN EQ '<Select City or Town>'
        SELTOWN.DER
        CR
      CAPS OFF
      .
      .

14.4  DISPLAY and PAUSE Statements

The DISPLAY and PAUSE statements are used to display messages on the user's 
screen while executing the command file, and to allow the user to terminate the run 
of a command file. DISPLAY displays a message and continues, whereas PAUSE 
displays a message, prompts for a response ("ANS:"), and terminates the command 
file unless the user responds with a "Y" to the prompt.

DISPLAY message
PAUSE message

The following command file selects records with errors from a time card file. If any 
records are selected, the user may respond with a "Y" to the "ANS:" prompt to run the 
report.

     comments on
     *      ERRORS.COM
     *
     move
      time.mas                   ! time card file
      err.mas                    ! select bad records
      CR                         ! answers "# to move" prompt
     display if there are any bad records
     pause type 'y' to print them
     report errors

The actual execution of the command file is as follows:

     $ com errors
     READING errors.com
     COMA3.COM  WRITTEN      COMA3.COM  STARTED     25-APR-2006 
12:19:25
     ----------------------------
     move
     Input file....: time.mas

6.  All substitutable parameters, including those satisfied via "L$" logical names, are 
converted to upper case.
14 - 10   ADMINS User Guide



DISPLAY and PAUSE Statements
     Output file...: err.mas
     # to move / S[kip] # / K[ey_range] / N[o_list]: CR
     12:19:31
     ************************************************************
     0 records moved, total 0 records in err.mas 12:19:34
     if there are any bad records
     type 'y' to print them [Y/N]:

At this point the command file waits until the user has responded to the "ANS:" 
prompt.

     type 'y' to print them [Y/N]: n
     ----------------------------
     COMA3.COM  TERMINATED
     25-APR-2006 12:19:42
ADMINS User Guide  14 - 11



Translate Logical Name ADM$TERM: $TT$
14.5  Translate Logical Name ADM$TERM: $TT$

When COM encounters the string "$TT$" (or "$tt$") anywhere in an ADMINS 
command file, COM substitutes the string assigned to the logical name ADM$TERM7 
in its place. "$TT$" provides an easy way for command files to use names for files that 
are unique and can be determined at run time.

The following ADMINS command file uses MARK.RMO to mark records in a copy 
of ACCT.MAS, and then sorts the file into a copy of MARK.IDX, on which a report 
called MARKED ACCOUNTS is run.

COMMENTS ON
     *
     * Make a copy of ACCT.MAS
     *
     COPY ACCT.MAS ACCT$TT$.DER  
     *
     * Compile MARK to run on the copy
     *
     CMP MARK
      ACCT$TT$.DER                ! file-name parameter in the RMS
     *
     * Run MARK on the copy
     *
     MAINT MARK
      N                           ! no, not test mode
      Y                           ! yes, continue
     *
     * Set up a file to sort ACCT$TT$ into
     *
     COPY MARK.IDX MARK$TT$.IDX
     *
     SORT
        ACCT$TT$.DER              ! input
        MARK$TT$.IDX I            ! output (initialize)
     *
     REPORT MARKED ACCOUNTS
      MARK$TT$.IDX                ! file-name parameter in the REP

14.6  SKIP Part Of A Command File

The SKIP statement in a command file causes COM to skip all the lines in the 
ADMINS command file between the SKIP statement and the END statement. 
Typically, this is used with parameterization to skip over parts of a command file 
which may not be needed in a particular run.

For example, the following record maintenance procedure is generalized to set a field 
in a file with a value.

     *         SET.RMS
     FILE <FILE-NAME>
     PROGRAM
     <FIELD-NAME> = <VALUE>

7.  ADMINS uses the logical name ADM$TERM internally, for naming temporary 
files, output listings, etc., as described in Appendix C.1.1 “Differences in Print 
File and Temporary File Naming”. 
14 - 12   ADMINS User Guide



Indirect Command Files
If this RMO is used to set a key field value the file will need to be sorted. If a non-key 
field value is set no sort is necessary. A SKIP statement (entered via 
parameterization)8 is used to handle the two alternatives:

     *         SET.COM
     CMP SET
     * The following three parameters are passed to SET.RMS
      <FILE-NAME>
      <FIELD-NAME>
      <VALUE>
     *
     MAINT SET
      N                        ! no, not test mode
      Y                        ! yes, continue
     *
     <<TYPE 'SKIP' IF KEYS WERE NOT CHANGED>>
     *
     SORT
      <FILE-NAME>
      CR                       ! no output file, i.e. a self sort
      Y                        ! yes, continue
     *
     END                       ! scope of the SKIP statement

14.7  Indirect Command Files

 Command files can indirectly reference other command files. "@@" in columns 1 and 
2 signifies a reference to another command file. There may be up to five levels of 
indirect references.

All indirect reference substitutions are made by COM before preprocessing.

For example, T1.COM contains an indirect reference to T2.COM, which in turn 
contains an indirect reference to T3.COM:

     *  t1.com      *  t2.com      *  t3.com
     *              *              *
     afu m.mas      afu n.mas      afu o.mas
     @@t2.com       @@t3.com
     afu q.mas      afu p.mas

When T1.COM executes, the result is equivalent to executing a single command file 
that contained the following commands:

     afu m.mas
     afu n.mas
     afu o.mas
     afu p.mas
     afu q.mas

8.  Two levels of parameterization are used in the example: in the command file and 
also in the record maintenance procedure.
ADMINS User Guide  14 - 13



BRIEF and VERIFY
14.8  BRIEF and VERIFY

The BRIEF and VERIFY statements control the amount of messages displayed during 
command file execution. VERIFY mode is the default mode and displays the 
complete output of the ADMINS commands. In BRIEF mode, only the command 
name is displayed. The BRIEF and VERIFY statements are placed in the text of the 
command file to turn "brief mode" on and off at that point in the processing of the 
command file. The ADMINS command file pre-processors, NATCOM (OpenVMS) 
and Adm2Perl (Windows), translate the BRIEF and VERIFY statements into the 
appropriate assignment of the logical name BRIEF: "Y" to turn BRIEF mode on, "N" 
to turn it off.

ADMINS commands check9 the logical name BRIEF to determine whether to echo 
command lines and display prompts and messages. If "Y" is assigned to the logical 
name BRIEF then ADMINS operates in brief mode, i.e. ADMINS commands 
suppress output of their normal prompts and messages. In command files the 
ADMINS command line is echoed whenever one is called, even with "Y' assigned to 
BRIEF. To suppress both command line echoing in command files as well as 
ADMINS command prompts and messages, "0" should be explicitly assigned to the 
logical name BRIEF:

     $ assign 0 brief

If BRIEF does not translate to "Y" or "0" then ADMINS operates in verify mode.

14.9  Command File Calling A Command File

A command file can call another command file.

When a command file is used to call a command file, the last executed command in 
a command file may be another COM command to translate and execute another 
command file. The command file name of the second command file is required on the 
command line (e.g. "COM DOIT"). However, the use of the COM command in a 
command file does not stop the translation of the command file. Therefore, any 
number of COM commands may be included in a command file with the necessary 
logic to execute a specific COM command as the last executed command in the 
command file.

An important use for command files calling command files is to allow the operator 
to supply parameters to a second command file after viewing the results of the first 
command file.

9.  Brief mode is intended primarily for use in command procedures, but the setting 
or the logical name BRIEF is checked and will have effect outside command 
procedures as well.
14 - 14   ADMINS User Guide



Restarting Command Files
14.9.1  Command File Calling A Command File Example

An interesting application of this feature is to use REPORT in a command file to 
create and then execute another command file. (When using REPORT to build a 
command file use "LENGTH 0" to suppress all carriage control characters.) For 
example:

     *             RUNCOM.COM
     *
     REPORT MAKCOM    ! run the report, which outputs a
     *                  file called DOIT.COM
     *
     COM DOIT         ! execute the DOIT command file just created

14.9.2  Command File Menu Example

Another use of including a COM command in a command file is to set up a simple 
menu command file for all the processes of an application. Then, by calling the menu, 
the user could execute any applicable process. For example:

     *    MENU.COM
     *
     *  Display the list of processing choices available
     *
     CLR
     DISPLAY          Accounts Receivable Processing Menu
     DISPLAY          -----------------------------------
     DISPLAY
     DISPLAY           Enter "D" for Daily Processing
     DISPLAY
     DISPLAY           Enter "W" for Weekly Processing
     DISPLAY
     DISPLAY           Enter "M" for Monthly Processing
     *
     COM CHOOSE ; call another command file to make the choice

Because the choice is parameterized in the next command file, the operator requests 
the running of PROCD.COM or PROCW.COM or PROCM.COM. The actual name of 
the Daily Processing command file is PROCD.COM, etc.

     *    CHOOSE.COM
     *
     *  Select via parameterization the process to run
     *
     COM PROC<Enter Your Choice> ! execute chosen process

14.10  Restarting Command Files

ADMINS command files that abnormally terminate can be restarted after the cause 
of the failure exit is repaired. This capability is enabled by placing the keyword 
"RESTART" as the first line in the command file. Then if an abnormal termination 
occurs, the generated command file (e.g. comxx.com is not deleted. After repairing 
the problem the operator can continue execution of the command file at the point it 
was terminated by re-rerunning comxx[.COM] as follows:

$ @coma7
ADMINS User Guide  14 - 15



Terminating a Command File In MAINT and PROD
When the RESTART statement is the first line of the command file, a RESTART point 
is set up before each ADMINS command in the generated command file. An 
ADMINS command is defined as any unindented line that does not begin with a 
dollar sign ($).

14.11  Terminating a Command File In MAINT and 
PROD

A running command file may be terminated by a running MAINT or PROD. This is 
done by having the RMO set the E$XIT/I local field to "1". The command file will 
then terminate at the end of the step containing the MAINT or PROD. Section 10.7 
“Terminating a Command File: E$XIT” describes the use of E$XIT in MAINT and 
Section 11.14 “Terminating a Command File: E$XIT” describes the use of E$XIT in 
PROD.
14 - 16   ADMINS User Guide



Synchronization of ADMINS Command Files
14.12  Synchronization of ADMINS Command Files

Often there is a need to synchronize the actions set out in ADMINS command files 
with other activities that are going on simultaneously in your organization. For 
example, you may want to ensure that a command file that produces a report does 
not run until posting of results to all appropriate files is complete. ADMINS uses a 
set of ten special "locks" (or "flags") numbered 50 through 59 for this purpose.

The SYNC command10 is typically used in ADMINS command files to manipulate 
these locks to synchronize events, as follows:

     ...
     *
     * Wait for the availability of flag 52 before proceeding
     *
     SYNC 52 W
     *
     * Access the synchronized files
     *
     ...
     *
     * Reset flag 52 so it is available to other processes
     *
     SYNC 52 S
     ...

14.13  Command File Communication: AdmAV 
Command

The AdmAV command allows for communication, using logical names, between a 
running command file and ADMINS data files. AdmAV can find records by key 
value and read or write the record found. AdmAV can also retrieve file status 
information about an ADMINS data file such as file size in blocks, number of records 
stored, etc.

See Section 13.6 “AdmAv - Communicate with ADMINS Files via Logical Names” 
for details on AV syntax and use. 

10.  The SYNC command is described in Section 13.5 “SYNC - Synchronization 
Between ADMINS Commands”.
ADMINS User Guide  14 - 17



Command File Communication: AdmAV Command
14 - 18   ADMINS User Guide



Chapter 15:Basic RMO Functions with 
TRANS

A record maintenance procedure (RMO)1 may function "behind", (i.e. along with,) an 
operating screen (a TRO). Some of the functions which can be performed by the RMO 
behind the screen include: calculations, changing values, data entry validation, and 
simulating the user entering keystrokes. Chapter 15: “Basic RMO Functions with 
TRANS” describes how TRANS communicates with the RMO and includes several 
simpler examples of RMOs used together with screens. Chapter 16: “Advanced RMO 
Functions with TRANS” describes the more complex uses for the RMO behind the 
screen.

The RMO is compiled separately from the screen description (TRS) with which it 
operates. The RMO-NAME is included on the header line of the TRS (see Section 5.3 
“Screen Header Line”) to identify the record maintenance procedure which operates 
with the screen. The RMO is written to operate on the same master file as the screen, 
and typically performs some operation on the active record and its link fields 
depending on what the user has just done at the terminal keyboard. For example, the 
following screen header line shows that PERSNL.RMO is to operate behind the screen 
PERSNL.

     PERSNL PRF.MAS 1 PERSNL.RMO INSERT DELETE NOMSG

PERSNL.RMO must reference the same master file, using exactly the same file 
specification used in the screen header line.

     FILE PRF.MAS
     LOCAL
     ...

When the file specification in the TRS includes a device name, directory name and/or 
logical name, the file specification in the RMS must also include the device name, 
directory name and/or logical name.2 For example a TRS with the following header 
line:

     MODBUD DUA1:[FINANCE]BUDGET.MAS 1 MODBUD.RMO INSERT NOMSG

has an RMO with the following file specification:

     FILE DUA1:[FINANCE]BUDGET.MAS
     LOCAL
     ...

1.     A record maintenance instruction file has the file type RMS. The compiled version 
of an RMS, prepared by the CMP command (described in Chapter 9: “CMP: The 
Record Maintenance Compiler”), has the file type RMO. The general ADMINS 
term for a record maintenance procedure is "RMO" although "RMS" is sometimes 
used as well.

2.    File access options appended to the file name in the RMS are ignored in TRANS. 
File access options for the screen's main file are specified in the screen header line 
(see Section 5.3 “Screen Header Line”).
ADMINS User Guide   15 - 1



Communication with TRANS
15.1  Communication with TRANS

The record maintenance procedure used behind the screen should contain two local 
fields, S$S and M$M, which stand for "status" and "mode" respectively. These two 
fields are used by TRANS to "communicate" with the RMO. Each time TRANS 
executes the RMO (referred to as an "RMO call"), TRANS sets "status" and "mode" so 
that the RMO knows exactly what TRANS is doing. The values of M$M and S$S may 
not be changed in the RMO. That is, the RMO may not set M$M or S$S to another 
value. Only TRANS can set the values of these fields. The logic in the RMO can check 
for specific values in M$M and/or S$S (see Section 15.4 “Examples Using an RMO 
Behind the Screen”) to determine which statements to execute in a particular RMO 
call. S$S usually has an "A6" field type3 and M$M has an "A2" field type. They are 
included in the RMO as follows:

     ...
     LOCAL
     S$S/A6
     M$M/A2
     ...

15.1.1  Status: S$S

The "status" of the call to the RMO by TRANS indicates that TRANS is in one of three 
conditions:

1. The RMO is being called before a record is to be displayed on the screen. The 
field S$S contains the string "BEGREC" ("beginning of record").

2. The RMO is being called after a value has been entered into a field (but before it 
is accepted and displayed). The field S$S contains the first six characters of the 
field name into which data has just been entered on the terminal.

3. The RMO is being called before a record is to be cleared from the screen. The 
field S$S contains the string "EOFREC" ("end of record").

When the RMO is called, the user may test S$S for "BEGREC", "fieldname", or 
"EOFREC" as follows:

     ...
     IF S$S EQ 'BEGREC' THEN ...
     IF S$S EQ 'SS#' THEN ...
     IF S$S EQ 'EOFREC' THEN ...
     ...

3.     S$S may be specified with a field type larger than A6 to accommodate field names 
that are not unique in their first six characters. As the largest field name 
permitted is 18 characters there is no need to make S$S larger than A18.
15 - 2   ADMINS User Guide



Communication with TRANS
15.1.2  Mode: M$M

The "mode" of the call to the RMO refers to the current operating mode of TRANS as 
described in Section 6.2 “TRANS Modes”. M$M is set to a code for each mode as 
follows:

     "UP" if TRANS is in Update Mode
     "AP" if TRANS is in Append Mode
     "IN" if TRANS is in Insert Mode
     "ER" if TRANS is in Error Mode
     "DE" if the active record is being deleted

When the RMO is called, the user may test M$M for any of the codes as follows:

     ...
     IF M$M EQ 'UP' THEN ...
     IF M$M EQ 'AP' THEN ...
     ...

 Of course, the mode and status may be tested together.

     IF S$S EQ 'BEGREC' AND M$M EQ 'UP' THEN ...

Reviewing then, when the RMO is called S$S contains "BEGREC", "fieldname", or 
"EOFREC". M$M contains either "UP", "IN", "AP", "DE" or "ER" for Update, Insert, 
Append, Delete or Error Mode.

The modes just described are set when the RMO is called after all LINK paragraphs 
in the screen description have been executed. This call is referred to as the "post-link" 
call and follows execution of the links so that the RMO may use the field values 
fetched by the links. The post-link calls are the RMO calls most commonly used by 
the screen designer. (The post-link RMO calls occur whether or not there are LINK 
paragraphs in the screen description (TRS).)

What if the screen designer wants the RMO to manipulate the key fields to be used 
by a LINK paragraph before the link is executed?

In order to meet the dual requirement that the RMO both be able to set the link keys 
and also that the RMO be able to use the link values, a "pre-link" RMO call is 
provided in addition to the "post-link" calls described above. (The pre-link RMO 
calls occur whether or not there are link paragraphs in the screen description (TRS).)

That is, the RMO is called twice at "BEGREC", and twice at each field entry. There is 
only one "EOFREC" call.

In order to distinguish the pre-link and post-link RMO calls, TRANS sets the second 
letter of M$M to 'X' in the pre-link call, as follows:4

     "UX" if TRANS is in Update Mode
     "AX" if TRANS is in Append Mode
     "IX" if TRANS is in Insert Mode
     "DX" if the active record is being deleted

4.    The "DX" pre-link RMO call only occurs if the special field RJ$RJ is included in 
the local fields section of the RMS. See Section 16.1.2 “Reject APPEND, INSERT, 
UPDATE, DELETE, or Transfer”.
ADMINS User Guide  15 - 3



Communication with TRANS
15.1.2.1  M$M_nn: Action Code For Button
An Action Code for a button can be specified as M$M_nn, where ‘nn’ is a number 
between ‘01’ and ‘99’, the same way M$M-nn can be specified in keyboard macros. 
For example:

Action=M$M_03

means that the RMO receives a call with M$M set to ‘03’ when the BUTTON is 
pressed [if F$UNCKEY is present, the RMO also receives an ‘FX’ call with 
F$UNCKEY set to ‘rmo’ (‘CT_L’ if Physical)].

15.1.3  Local Fields in the RMO

The RMO operates on actual fields in the active record, and on any local fields 
declared in the RMO itself. (The RMO should not operate on virtual fields because 
virtual fields are calculated after the RMO is called.) A local field in the RMO can be 
displayed on the terminal, and can be changed by the user at the keyboard or the 
RMO. (See Section 9.5 “LOCAL Section” for a definition of the RMO local field 
concept.)

An RMO references a link field by creating a local field of the same name and type as 
the link field. For example, if a zip code table included the CITY and STATE fields, a 
LINK paragraph in a screen description might be as follows:

     LINK ZIP.TAB
     KC ZIP
     L CITY
     L STATE
     END

The CITY and STATE fields could be referenced in the RMO as follows:

     ...
     LOCAL
     S$S/A6
     M$M/A2
     CITY/A20
     STATE/A2
     ...

Local fields that are not link fields in the screen description, are not reinitialized as 
TRANS moves from record to record. Hence they can be used by the RMO to keep 
values from record to record, e.g., using the RMO to maintain a batch total.

Local fields from the RMO are set up in the field names section of the screen 
description (TRS) as either ER (editable and refreshable) or DR (display and 
refreshable). (See Section 5.5.1 “Display” and Section 5.5.2 “Editable”). In the case of 
fields which are neither in the master file nor declared in a link paragraph in the 
screen description, the local field type is appended to the field name with a slash. The 
field type is optional in the field names section for local fields from link files. This is 
because SCREEN knows the file definition of the link files from the LINK paragraph. 
If present, the field type is checked against the field type that SCREEN read from the 
link file.
15 - 4   ADMINS User Guide



Order of Events
The local fields from the RMO are usable in the screen description. For example, the 
following local fields in the RMO:

     ...
     AMOUNT/D
     DATE/DA
     ...

may be included in the field names section of the screen description as follows:

     ER AMOUNT/D
     DR DATE/DA

When the RMO alters a "DR" or "ER" field that is on the screen TRANS automatically 
refreshes (redisplays) the field value. Consequently, any field alterable by the RMO 
should be designated "ER" or "DR" in the field names section of the screen description 
regardless of whether it is a local field or an actual field.5 That is, an actual field from 
the master file may be included in the field names section of the screen description as 
"DR" instead of "D", or "ER" instead of "E", if the RMO is going to alter the field, and 
it must be refreshed after RMO calls.

An RMO can check for entry errors, perhaps applying logic beyond the scope of the 
Check statement's Boolean expression, and then set a local error code field. Then the 
Check statement can display an error message contingent on the contents of this error 
code field. The text of the error message can be in the TRS, or the error message text 
can be linked in from an error message table based on the value of the error code field 
(see Section 16.18 “Using the RMO with Table Driven Error Messages”).

Also the RMO is uniquely capable of setting values in actual fields in the active 
record (and in linked fields in linked records) as a result of computations performed 
on data in the active record (and its linked fields).

15.2  Order of Events

Before one can write an RMO to operate behind the screen, it is important to 
understand the order of events that occur during processing. Logic in the RMO 
should always be associated with a certain "status" and "mode". For example, 
processing that might be done at "BEGREC" status in "UP" mode would not be done 
at "SS#" status in "AP" mode. The order of events is different for each "status" and is 
now presented. Note carefully the points in the processing where the RMO is called, 
and the "status" and "mode" associated with each RMO call.

5.     Actual fields from the master file may be designated "LR" to indicate that the field 
should be refreshed on the screen when the RMO changes it, and also that field 
value changes should be logged in the field log file. Changes to "LR" fields made 
by the RMO are logged only when LFEXIT control is active (see Section 6.2.1.1 
“Update Mode Under LFEXIT Control”).
ADMINS User Guide  15 - 5



Order of Events
15.2.1  Beginning of Record Processing: S$S = 'BEGREC'

The order of events that occur at the "beginning of record" (BEGREC) is as follows:

1. A record from the master file is read or in the case of Append Mode, the blank 
(null) record is created.

2. The pre-link RMO call is made. S$S contains 'BEGREC' and M$M contains the 
current TRANS mode using the pre-link code ('UX', 'AX', 'IX'). The RMO 
executes, perhaps altering fields to be used by a LINK paragraph.

3. All LINK paragraphs (see Section 5.4.1 “LINK Paragraph”) in the screen 
description are executed.

4. Then the post-link RMO call is made. S$S still contains 'BEGREC' and M$M now 
contains the code for the current mode of TRANS without the pre-link "X" ('UP', 
'AP', 'IN'). The RMO executes, perhaps altering actual fields in the record, or 
local fields, and returns to TRANS.

5. The Virtual fields (see Section 5.5.4 “Virtual Fields”) and Message statements 
(see Section 5.5.7 “Message Fields”) from the field names section are executed.

6. If the RMO set a condition-letter for an APPEND paragraph (see Section 5.4.2 
“APPEND Paragraph”), the record is now appended (or inserted or deleted) to 
an external file.

7. The record is displayed and the cursor is positioned at the first editable field in 
the field names section of the screen description.

15.2.2  Field by Field Processing: S$S = 'fieldname'

RMO calls occur when a value is entered in a field. (A more advanced technique also 
causes an RMO call when a field is being skipped by the user. This is described in 
Section 16.4 “Controlling the Skipping of Fields: SK$SK”. The discussion here deals 
with the routine RMO call.)

The order of events that occur when a value is entered into a field is as follows:

1. The user types the value, and presses the ENTER keystroke or an automatic 
carriage return occurs when the field is completely entered (see Section 5.3.1.3 
“AUTOCR: Automatic Carriage Return”).

2. The value entered is inspected for format, e.g., is an alphabetic character being 
entered into a numeric field. If there is a format violation, the value is rejected 
and TRANS is put into Error Mode. When the user presses the ERR keystroke to 
clear the Error Mode, the original value is redisplayed and the user can 
continue. If the value entered satisfies the format of the field type, the 
processing continues.

3. The pre-link RMO call is made. S$S contains the field name into which the value 
has just been entered, and M$M contains the current TRANS mode using the 
pre-link code ('UX', 'AX', or 'IX'). The RMO executes, perhaps setting up keys to 
be used by a LINK paragraph.

4. Any link(s) triggered by a manually entered "KC" or "C" field in a LINK 
paragraph is performed.

5. Then the post-link RMO call occurs. S$S still contains the field name into which 
the value has just been entered, and M$M now contains the code for the current 
mode of TRANS without the pre-link "X" designation ('UP', 'AP', or 'IN'). The 
RMO executes, perhaps altering fields in the record or local fields, and returns 
to TRANS.
15 - 6   ADMINS User Guide



Order of Events
6. The Virtual fields, Message statements, and the "C" Check statements (see 
Section 5.5 “Field Names”) from the field names section of the screen 
description are executed (but not displayed).

7. If the RMO set a condition-letter for an APPEND paragraph, the record is now 
appended (or inserted or deleted) to the append file.

8. If any "C" Check statement evaluates to true, i.e. an error is detected, then 
TRANS is put into Error Mode. When the user presses the ERR keystroke to 
clear the error, link fields set by the erroneous value are reset to their old 
value(s), and then the RMO is called with M$M set to "ER" and the field name 
still in S$S. When the RMO returns, the Virtual fields are re-evaluated, and the 
original (unaltered) value is redisplayed.

9. If all "C" Check statements evaluate to false, i.e., no error is detected, then the 
entered field, Virtual fields, Message fields, and all "ER", "DR" and "LR" fields 
altered by the RMO, are all redisplayed.

10. In Update Mode (without NOWRITE or LFEXIT control) the active record is 
written back to the disk.

15.2.3  End of Record Processing: S$S = 'EOFREC'

TRANS performs several functions just as the record on the screen is about to leave 
the screen and either be replaced by a new record or the current screen is to exit. 
These functions are called "end of record" processing.

There are a variety of ways for the user, or for the RMO logic to trigger the "end of 
record" condition. These are:

1. The NEXT keystroke. (User)
2. The NBRK keystroke. (User)
3. The PREV keystroke. (User)
4. The PBRK keystroke. (User)
5. The NREC keystroke. (User)
6. The EXIT keystroke. (User)
7. The BRNC keystroke followed by a branch code. (User)
8. The XRET keystroke. (User)
9. Entering key value(s) causing a record search in Update Mode. (User)
10. An automatic branch (B$B, see Section 16.2 “Automatic Branching: B$B and 

R$R”).
11. An automatic return from a branch (R$R, see Section 16.2 “Automatic 

Branching: B$B and R$R”).
12. Displaying the top of file record (F$F, see Section 16.7 “Top of File Control: 

F$F”).

(Note that pressing the APND keystroke while in Append Mode neither initiates end 
of record processing nor files the record currently being displayed.)
ADMINS User Guide  15 - 7



Order of Events
The order of events that occur at the "end of record" (EOFREC) is as follows:

1. Once end of record processing is initiated, if either of the following conditions 
occurs, TRANS goes into Error Mode, and the end of record (EOFREC) RMO 
call is not made.
a. If TRANS is in 'UP' mode and LFEXIT control is active (see Section 6.2.1.1 

“Update Mode Under LFEXIT Control”), or if TRANS is in 'AP' or 'IN' mode, 
and any CLF Check statements (see Section 5.5.6 “Check Statement”) is 
evaluated as true, TRANS goes into Error Mode.

b. If TRANS is in 'UP' mode and LFEXIT control is active, or if TRANS is in 'AP' 
or 'IN' mode, and any required fields (see Section 5.5.5 “REQUIRE 
Statement”) from REQUIRE statements contain null values, TRANS goes 
into Error Mode.

The user must press the ERR keystroke to clear the error condition and 
continue.

2. If all CLF Check statements are evaluated as false, the end of record RMO call 
occurs. S$S contains 'EOFREC' and M$M contains the terminal mode ('UP', 'AP', 
or 'IN').

3. If TRANS is in 'AP' or 'IN' mode, the RJ$RJ field (see Section 16.1.2 “Reject 
APPEND, INSERT, UPDATE, DELETE, or Transfer”), if present, is tested. If it is 
set to "1" TRANS enters Error Mode with the message "RECORD NOT 
ACCEPTED" and end of record processing stops.

4. If the RMO set a condition-letter for an APPEND paragraph (see Section 5.4.2 
“APPEND Paragraph”) the record is now appended, or inserted, or deleted to 
the append file.

5. All link writebacks are performed. The fields that can be written back are the 
link fields that appeared with an 'L' in a LINK paragraph, where the LINK 
paragraph had the 'W' for writeback present after the link file name on the LINK 
statement (see Section 5.4.1 “LINK Paragraph”). TRANS checks if any of the link 
field values have been changed. If TRANS finds that any link field value has 
been changed then that link record is written back to the disk.

6. All the INDEX paragraphs (see Section 5.4.3 “INDEX Paragraph”) in the screen 
description are executed. That is, if any indexed fields have been altered in the 
screen, then the record in the index file which pointed to the active record based 
on these altered fields is replaced with an index record reflecting the new 
values.

7. In Append Mode or Insert Mode, or in Update Mode under LFEXIT control, the 
active record is written to disk.

8. If the end of record RMO call in event 2 above requested a second end of record 
RMO call after all records had been written to the disk, the second call is made 
(see Section 16.8 “Post-Writeback EOFREC RMO Call: B$OB”).

The Check statement (designated by the letter "C") is not evaluated at end of record 
processing.

NOTE
15 - 8   ADMINS User Guide



Test Mode in TRANS
15.2.4  Processing Record Deletions

The order of events that occur at record deletion is as follows:

1. TRANS receives the DEL keystroke (see Section 6.6 “Record Operations”). 
Immediately it checks if the current record is the last record in the file or the last 
record in a locked range (see Section 5.5.1.1 “Restrict TRANS to Key Range”). If 
this is the case the DEL keystroke is ignored.

2. If the special local RMO field RJ$RJ (see Section 16.1.2 “Reject APPEND, 
INSERT, UPDATE, DELETE, or Transfer”) is present, the RMO is called with 
M$M (mode) set to "DX".

3. If the RMO sets RJ$RJ to 1 at the "DX" RMO call TRANS echoes a "bell" character 
for the DEL keystroke, and exits the delete sequence of operations (i.e. delete is 
blocked.)

4. TRANS starts the delete verification dialogue (see Section 6.6 “Record 
Operations”). If the verification dialogue is not completed successfully TRANS 
will exit the delete sequence without deleting a record.

5. The RMO is called with M$M (mode) set to "DE".
6. The record is deleted. 

15.2.5  Processing Record Transfers

The order of events that occur for record transfer (TRF keystroke) operations is as 
follows:

1. If the special local RMO field RJ$RJ (see Section 16.1.2 “Reject APPEND, 
INSERT, UPDATE, DELETE, or Transfer”) is present, the RMO is called with 
M$M (mode) set to "DX".

2. If the RMO sets RJ$RJ to 1 at the "DX" RMO call TRANS echoes a "bell" character 
for the TRF keystroke, and exits the transfer sequence of operations (i.e. the 
record transfer is blocked.)

3. TRANS starts the record transfer dialogue and processes the transfer as 
described in Section 6.6 “Record Operations”. 

15.3   Test Mode in TRANS

A test mode similar to the one in MAINT (see Section 10.2 “Test Mode”) is available 
in TRANS. Test mode is a useful screen development tool, and can be used to develop 
tutorials on screen RMO calls. In test mode, TRANS alternates between a display of 
each executing RMO paragraph, and the TRANS screen display where the user 
interacts with TRANS as usual.

The screen developer controls the placement of the test mode display on the terminal. 
The TRANS screen and the test mode display can be shown on the terminal at the 
same time, or else the test mode display can be cleared and the screen contents can 
be redisplayed after each RMO call. Optionally, test mode can be switched on and off 
by the RMO at any point during its execution.
ADMINS User Guide  15 - 9



Test Mode in TRANS
 Test mode in TRANS is activated when a value is assigned to the logical name 
ADM$TEST. The value assigned to ADM$TEST instructs TRANS on which line to 
begin the test mode display. The value of ADM$TEST can either be a number or the 
letter "O" followed by a number.

TRANS begins the test mode display on line number assigned the logical name 
ADM$TEST.6 The test mode display remains on the screen after each RMO call when 
the value assigned to ADM$TEST is a number. For example, if "12" is assigned to 
ADM$TEST, TRANS will start the test mode display on the twelfth line of the 
terminal. The TRANS messages on the last three lines of the screen (Check 
statements, format checks, etc.) appear just above the test mode display. (If a number 
less than 4 is assigned to ADM$TEST, the test mode display begins on line 4 of the 
terminal to allow lines 1 to 3 for TRANS messages.)

In many cases there are not enough lines on the terminal to display both the screen 
contents and the RMO test mode display. Test mode has a display overlay option, 
activated by the letter "O" preceding the numeric value in ADM$TEST. For example, 
if "O12" is assigned to ADM$TEST, the test mode display will appear beginning on 
the twelfth line of the terminal. After each RMO call, the test mode display is cleared, 
and the screen contents are redisplayed.7 Using the overlay option, TRANS messages 
appear as usual, on the last three lines of the terminal. Both the screen contents and 
the test mode display can utilize the full length of the terminal if "O1" (letter O) is 
assigned to ADM$TEST.

Test mode can be switched on and off using the TEST keystroke. When in the test 
mode display, pressing TEST will exit test mode. When TRANS is waiting for the first 
character of a field to be entered, pressing TEST will enter test mode (if ADM$TEST 
is assigned).

Test mode can be also be switched on and off using the special local integer field 
ADM$TESTSW in the RMO. If ADM$TESTSW is set to 1, then test mode is activated 
beginning with the next RMO call. If ADM$TESTSW is set to 0, test mode will be 
turned off, beginning with the next RMO call. To display the first RMO call in a 
screen using ADM$TESTSW, initialize ADM$TESTSW to 1 in the local fields section 
of the RMO. ADM$TESTSW has no effect unless the logical name ADM$TEST is 
defined as above.

When TRANS is entered in test mode, the first paragraph of the RMO is displayed on 
the terminal along with the names of all of the fields encountered in the first 
paragraphs and their "before" and "after" values. If the test mode display is longer 
than the display area set by ADM$TEST, then TRANS truncates the display of the 
statements in order to display as many of the data values as possible. TRANS waits 
for the user to enter a keystroke. In test mode the numeric function keys work as in 
MAINT test mode (see Section 10.2.2 “Test Mode Operation”). Entering the 
keystrokes 1 to 9 causes the next 1 to 9 paragraphs of the RMO to be executed but not 

6.    While using test mode, it is recommended that screen layout begins on the first 
line of the terminal display area, so that the test mode display can occupy the 
lower portion of the display area. The screen layout coordinates (see Section 5.6 
“Screen Layout”) can be included in the screen description after the RMO is fully 
tested.

7.    The entire contents of the screen are repainted after every RMO call, even if there 
will be another RMO call immediately afterward. For example, the screen 
contents are redisplayed between a pre-link RMO call and the subsequent post-
link call.
15 - 10   ADMINS User Guide



Test Mode in TRANS
displayed (the number of steps not displayed is not carried over from one RMO call 
to another). All other keystrokes cause TRANS to execute and display the next 
paragraph of the RMO.

After the user steps through the entire RMO call either one of two events occurs.

1. The next RMO call automatically occurs. Again the user steps though the 
paragraphs of the RMO by entering any keystroke or the keystrokes 1 to 9.

2. Or the record is displayed and the user enters a value or a TRANS keystroke 
into the TRANS screen as always. This causes another sequence of RMO calls to 
occur and the process repeats.

The EXIT keystroke turns test mode off for the remainder of the session in the current 
screen.

It is important to be aware that even when TRANS test mode is in use, TRANS 
performs all of the file updating and other operations which it normally performs. 
This differs from test mode in MAINT, during which file updating does not occur 
(see Section 10.2.2 “Test Mode Operation”).

15.3.1  Using Test Mode to Understand S$S and M$M

A useful technique to help understand the communication between TRANS and the 
RMO operating behind the screen is to display each paragraph of the RMO, and the 
fields being affected (including M$M and S$S) as the RMO executes. Test mode in 
TRANS can be used for developing tutorials which display the interaction between 
TRANS and the RMO operating behind the screen.

To understand the communication between TRANS and the RMO, the contents of 
"S$S" and "M$M" can be displayed on the screen. This should not be done by 
introducing two "DR" fields on the screen description called S$S and M$M. Rather to 
view S$S and M$M fields on the screen create two additional "DR" fields, for 
example, STATUS and MODE, in the screen description and display these two fields. 
A TRS instruction file could include the following lines:

     ...
     DR STATUS/A6
     DR MODE/A2
     SCREEN
     STATUS: STAT--    MODE: MO-
     ...

In the RMS instruction file, insert a line at the beginning of the record maintenance 
procedure setting STATUS and MODE with the proper values each time the record 
maintenance procedure is called. The program section of the RMS could include the 
following two statements.

     ...
     LOCAL
     S$S/A6
     M$M/A2
     STATUS/A6
     MODE/A2
     PROGRAM
     STATUS = S$S ; MODE = M$M
     ...

Using these two statements, the values of S$S and M$M will display on the screen (in 
the fields STATUS and MODE). By assigning a value to ADM$TEST before calling 
TRANS, the values of STATUS, MODE, as well as S$S and M$M will appear in the 
test mode display for each RMO call.
ADMINS User Guide  15 - 11



Test Mode in TRANS
The test mode display begins on the line assigned to the logical name ADM$TEST. 
The user can step through the various RMO calls by pressing any key on the 
keyboard.

Using test mode, the pre-link RMO call executes and the entire area of the screen is 
repainted after every RMO call, even if there will be another RMO call immediately 
afterward. The post-link RMO call does not execute until the user presses another key 
on the keyboard. After the user steps through the paragraphs in the post-link RMO 
call, TRANS waits for the user to enter a value in the TRANS screen.

In contrast, when test mode is not used, the post-link RMO call overwrites the values 
before TRANS redisplays the fields (e.g. MODE and STATUS).

15.3.2  Test Mode Example

Test mode in TRANS can be used to demonstrate the communication between 
TRANS and the RMO using the following simple TRS and RMS which operate on 
PAY.MAS.

     *    PAY.DEF
     *
     MAS 2000
     SEQ I KEY1             "payment sequence number"
     BILL# X999999999999    "bill number"
     AMT D2                 "payment amount"

     *    TUTORIAL.TRS 
     *
     TUTOR PAY.MAS 1 TUTORIAL.RMO INSERT APPEND DELETE NOMSG
     *
     E SEQ
     E BILL#
     E AMT
     *
     * STATUS and MODE are local fields for displaying the
     * values in S$S and M$M in this test mode tutorial
     *
     DR STATUS/A6
     DR MODE/A2
     *
     SCREEN
     CE ENTER PAYMENTS
     BL
     SEQ: SE-         BILL#: BILL#-------    AMT: ------AMT
     BL
     STATUS: STATU-   MODE: MO-
     END

     * TUTORIAL.RMS
     *
     FILE PAY.MAS
     LOCAL
     M$M/A2
     S$S/A6
     MODE/A2
     STATUS/A6
     PROGRAM
     STATUS = S$S ; MODE = M$M

The TRS and the RMS are compiled, test mode is activated by assigning a value to 
ADM$TEST and then TRANS is called on the TUTORIAL screen. 

     $ screen tutorial
     $ cmp tutorial
     $ assign 9 adm$test
     $ trans tutorial
15 - 12   ADMINS User Guide



Test Mode in TRANS
There are two "BEGREC" RMO calls, the first is the pre-link call (M$M = 'UX') and the 
second is the post-link RMO call (M$M = 'UP')8. In the first RMO call displayed 
below, the literal portion of the screen layout is displayed, followed by the first (only) 
paragraph of the RMO. Below the RMO paragraph text, the fields encountered in this 
paragraph display in the left column, then the "before" values in the next column, and 
the "after" values in the right column. The field S$S contains the value "BEGREC" and 
the field M$M contains the value "UX" during this pre-link RMO call.

                     ENTER PAYMENTS

     SEQ:             BILL#:                AMT: 

     STATUS:          MODE: 

     STATUS = S$S ; MODE = M$M
     STATUS                                 BEGREC
     S$S            BEGREC                  BEGREC
     MODE                                   UX
     M$M            UX                      UX

The user presses any keystroke to cause the next (post-link) RMO call to occur. In the 
display below, notice that S$S still contains "BEGREC" and M$M now contains "UP".

                     ENTER PAYMENTS

     SEQ:             BILL#:                AMT: 

     STATUS:          MODE: 

     STATUS = S$S ; MODE = M$M
     STATUS         BEGREC                  BEGREC
     S$S            BEGREC                  BEGREC
     MODE           UX                      UP
     M$M            UP                      UP

After pressing any key, the fields are filled in for the first record in the file. The cursor 
is on the SEQ field (the first editable field). Press RETURN to move the cursor to the 
AMT field and enter a value. The following two RMO calls occur. In the pre-link 
RMO call displayed below, M$M contains "UX" and S$S contains "AMT" which is the 
name of the field just entered.

                 ENTER PAYMENTS

     SEQ: 1           BILL#: 222333444555   AMT: 2050

     STATUS: BEGREC   MODE: UP

     STATUS = S$S ; MODE = M$M
     STATUS         BEGREC                  AMT
     S$S            AMT                     AMT
     MODE           UP                      UX
     M$M            UX                      UX

8.     If a file contains no records, TRANS defaults to Append Mode. In Append Mode 
the pre-link and post-link RMO calls set M$M to “AX” and “AP” respectively.
ADMINS User Guide  15 - 13



Test Mode in TRANS
In the post-link RMO call below, M$M now contains "UP".

                  ENTER PAYMENTS

     SEQ: 1           BILL#: 222333444555   AMT: 2050

     STATUS: BEGREC   MODE: UP

     STATUS = S$S ; MODE = M$M
     STATUS         AMT                     AMT
     S$S            AMT                     AMT
     MODE           UX                      UP
     M$M            UP                      UP

Next, press the NEXT keystroke to display the next record and the EOFREC RMO call 
occurs.

                   ENTER PAYMENTS

     SEQ: 1           BILL#: 222333444555   AMT: 2050

     STATUS: AMT      MODE: UP

     STATUS = S$S ; MODE = M$M
     STATUS         AMT                     EOFREC
     S$S            EOFREC                  EOFREC
     MODE           UP                      UP
     M$M            UP                      UP

The EOFREC RMO call is automatically followed by two BEGREC RMO calls for the 
next record in the file.

We can see how the values of "status" and "mode" change as you perform the various 
functions on the terminal of updating, inserting, appending, and deleting records in 
a file and making errors. It is suggested that the inexperienced ADMINS user practice 
using this technique until the communication between TRANS and the RMO is 
thoroughly understood. Once familiar with M$M and S$S on this very simple 
demonstration screen, the user may want to use test mode on some of the examples 
which follow.

To exit from test mode on the current screen, press EXIT. To use TRANS without test 
mode, deassign the logical name ADM$TEST. E.g.

     $ deassign adm$test
15 - 14   ADMINS User Guide



Examples Using an RMO Behind the Screen
15.4  Examples Using an RMO Behind the Screen

In order to illustrate the use of an RMO behind the screen, we now present several 
examples. Note that in all the examples the processing in the RMO is determined by 
the current "status" (S$S) and the current "mode" (M$M).

To review, the RMO is automatically called twice at the beginning of each record 
(BEGREC), twice after each field is entered, and once when the record is leaving the 
screen (EOFREC). The logic in the RMO should be written so that the RMO performs 
only the instructions necessary, based on the current mode (M$M) and status (S$S) 
set by TRANS. TRANS operates more efficiently when only the necessary 
instructions are executed in each RMO call. Typically, RMO logic is based on the 
post-link RMO call when the user types into a particular field. Furthermore, if the 
logic in the RMO is not structured to avoid redundant execution of RMO 
instructions, certain operations (e.g. arithmetic) could yield unexpected results 
because instructions were executed more times than the user intended.

15.4.1  Accounts Payable Example

The user is entering payments for invoices. The user enters a purchase order number, 
a check number, a vendor number, an invoice number and an amount. The screen 
procedure is expected to do the following.

1. Automatically insert the date into the payment record.
2. Display the vendor number, encumbered amount, and paid-to-date values from 

the PO file when the purchase order number is entered.
3. Display an error message if either the purchase order does not exist in the 

purchase order file, or if the vendor number doesn't match the vendor number 
in the purchase order file, or if the payment amount added to the paid-to-date 
for that purchase order exceeds the total encumbrance in the purchase order. 
(An encumbrance is a commitment related to unperformed contracts for goods 
and services.)

4. Display the vendor name and address from the vendor file, and if instructed to 
"pay" then the screen should add the payment to a the (temporary) paid-to-date 
field, and append the check number, vendor number, invoice number, date, and 
amount to the check file.

5. When the record is filed, the actual paid-to-date field is set to the temporary 
paid field, and is written back to the PO file.
ADMINS User Guide  15 - 15



Examples Using an RMO Behind the Screen
The pertinent file definitions follow.

 *     PAY.DEF     "payment file definition"
     MAS 1000
     DATE DA KEY1      "payment date"
     PO# X9999 KEY2    "purchase order number"
     VEND# X9999       "vendor number"
     INV# A10          "invoice number"
     AMT D2            "amount of payment"
     ...

     *     PO.DEF      "purchase order file definition"
     MAS 3000
     PO# X9999 KEY1    "purchase order number"
     VEND# X9999       "vendor number"
     ENCUMB D2         "encumbered amount"
     PAYTD D2          "paid to date"
     ...

     *     VEND.DEF    "vendor file definition"
     TAB 4000
     VEND# X9999 KEY1  "vendor number"
     VENDOR A30        "vendor name"
     ADDR A30          "vendor address"
     CITYST A30        "vendor city state"

     *     CHECKS.DEF  "check file definition"
     MAS 500
     CK# I  KEY1       "check number"
     VEND# X9999       "vendor number"
     INV# A10          "invoice number"
     DATE DA           "payment date"
     AMT D2            "amount of payment"

The screen description could look as follows:

     PAY PAY.MAS 1 PAY.RMO NOMSG APPEND 
     *
     *  link paragraph for purchase order file
     *
     LINK PO.MAS W
     KC PO#
     *  linked VEND# is renamed PVEND in the screen
     L  VEND# PVEND  
     L  ENCUMB
     L  PAYTD
     END
     *
     *  link paragraph for vendor file
     *
     LINK VEND.TAB
     KC VEND#
     L  VENDOR
     L  ADDR
     L  CITYST
     END
     *
     *  append paragraph for checks
     *
     APPEND CHECKS.MAS ACT P
     CK#
     VEND#
     INV#
     DATE
     AMT
     END
     *
     *  field names section
     *
     E DATE
     E PO#
     ER CK#/I
     E VEND#
     E INV#
     E AMT
15 - 16   ADMINS User Guide



Examples Using an RMO Behind the Screen
     ER ACT/A1 [9,16,1]
     *
     *       fields linked from PO.MAS
     D PVEND
     D ENCUMB
     *       changed by PAY.RMS and written back
     DR PAYTD/D2   
     *        a local field temporarily holds the paid amount
     DR PAID/D2    
     *
     *       fields linked from VEND.TAB
     D VENDOR
     D ADDR
     D CITYST
     *
     * TODAY must be in the TRS to be used in the RMS
     DR TODAY/DA
     *
     *  Error Messages
     *  Note, each Check statement only applies when the pertinent
     *  PAY.MAS field is non-zero.
     *
     C PO# NE 0 AND PVEND EQ 0000 AND ENCUMB EQ 0
     PURCHASE ORDER NOT IN PO FILE
     *
     C VEND# NE 0000 AND #VEND NE PVEND
     VENDOR # ENTERED DOESN'T MATCH PO FILE
     *
     C AMT NE 0 AND AMT + PAYTD GT ENCUMB
     PAY AMOUNT EXCEEDS PURCHASE ORDER AMOUNT
     *
     *     screen layout section
     *
     SCREEN
     CE PAYMENT ENTRY SCREEN
     BL
        DATE: DATE-----         PO: PO#-
     BL
          CK: CK#--         VENDOR: VEND-
     BL
     INVOICE: INV#------    AMOUNT: ---------AMT
     BL
     TYPE P FOR PAY:
     BL
     CE INFORMATION FROM PURCHASE ORDER
     BL
     VENDOR: PVE-  ENCUMBERED: ------ENC  PAID TO DATE: -----PAID
     BL
     CE VENDOR INFORMATION
     BL
     VENDOR------------------------
     ADDR--------------------------
     CITY--------------------------
     END
ADMINS User Guide  15 - 17



Examples Using an RMO Behind the Screen
The record maintenance procedure (PAY.RMS) might look as follows.

     FILE PAY.MAS
     LOCAL
     S$S/A6
     M$M/A2
     TODAY/DA
     ACT/A1
     PAYTD/D2
     *       PAID is a local field which temporarily holds the 
     *       PAYTD amount until the record is filed, and allows 
     *       the payment amount to refresh on the screen.
     PAID/D2
     PROGRAM
     *
     * Only execute the RMO in 'AP' mode.
     *
     IF M$M NE 'AP' THEN GOTO OUT END
     *
     * At 'BEGREC' fill in the date.
     *
     IF S$S EQ 'BEGREC' THEN DATE = TODAY ; GOTO OUT END
     *
     * When PO# is entered, set the PAID field equal to 
     * the linked value of PAYTD from the PO file.
     *
     IF S$S EQ 'PO#' THEN PAID = PAYTD END
     *
     * The next statement adds the payment to PAID.
     * Adding is triggered by the same condition, i.e.
     * putting a "P" in ACT, that triggers appending to the 
     * check file.
     *
     IF S$S EQ 'ACT' AND ACT EQ 'P' THEN PAID = PAYTD + AMT END
     *
     * At 'EOFREC' the PAYTD field is set to the value of the
     * PAID field. PAID is initialized for the next transaction.
     *
     IF S$S EQ 'EOFREC' THEN PAYTD = PAID ; PAID = 0 END
     *
     OUT: STOP

15.4.2  Example of Appending Via the RMO

Section 5.4.2 “APPEND Paragraph” describes how to build and add records to an 
external file by setting a letter into the condition-name field specified in the Append 
Paragraph. It is also possible to let the RMO behind the screen set the letter and cause 
the "append" record to be built and added. This is done simply by including the 
condition-name field as a local field in the RMO. (The condition name field should 
then be a 'DR' field on the screen as described in Section 15.1.3 “Local Fields in the 
RMO”.)

Appending via the RMO may be used to build logs specific to the application to 
supplement or replace the ADMINS field log. Any user action may be logged, not just 
changes to records. Appending via the RMO allows the application designer to have 
more control over when a record is appended.
15 - 18   ADMINS User Guide



Examples Using an RMO Behind the Screen
For example, we may have a telephone lookup application where a name is entered 
and the telephone number is displayed. We wish to create a usage log showing name, 
time and date for each query.

     *     DIREC.DEF
     *
     MAS 20000
     NAME A40 KEY1      "name"
     TELEPHONE A12      "telephone number"
     TITLE A20          "title"

     DATE DA KEY1       "date of query"
     TIME A8 KEY2       "time of query"
     NAME A40           "name queried"     *      LOG.DEF
     *
     MAS 10000

     *      DIREC.TRS
     DIREC DIREC.MAS 1 DIREC.RMO NOMSG
     *
     * Append Paragraph to append to LOG.MAS
     *
     APPEND LOG.MAS LOGIT A
     DATE
     TIME
     NAME
     END
     *
     *
     * Note that TODAY and NOW must be in the TRS
     * in they are to be used in the RMS
     *
     DR TODAY/DA
     DR NOW/A8
     E NAME
     D TITLE
     D TELEPHONE
     DR DATE/DA
     DR TIME/A8
     DR LOGIT/A1
     SCREEN
     CE ENTER NAME       TODAY----     NOW-----
     BL
     NAME: NAME------------------------ TITLE: TITLE--------------
     BL
     TELEPHONE: TEL---------
     END

     *      DIREC.RMS
     *
     FILE DIREC.MAS
     LOCAL
     S$S/A6
     M$M/A2
     TODAY/DA
     NOW/A8
     DATE/DA
     TIME/A8
     LOGIT/A1
     PROGRAM
     DATE = TODAY ; TIME = NOW
     IF S$S EQ 'NAME' AND M$M EQ 'UP' THEN LOGIT = 'A' END
ADMINS User Guide  15 - 19



Examples Using an RMO Behind the Screen
15.4.3  Example Using Global Fields

In Section 5.5.9 “Global Fields” we described the "global field" facility. Global fields 
represent a portion of memory in TRANS that is not erased as the user branches from 
screen to screen. By storing information in the global field area, the information is 
then available to each screen called until the user exits TRANS.

Remember, the definition of the global fields, and the order in which they are 
presented, must be the same in each screen description (TRS) where they are used in 
common9. (Only the global fields which are actually referenced need to be included 
in the RMO behind the screen. The order of the global fields in the RMS does not 
matter.) The use of global fields is best shown in an example.

We wish to create a "logon" screen where each user identifies herself/himself, enters 
a password, and is then passed on to the first application screen. The user can to be 
restricted to a particular terminal number. (See Section 5.5.8.3 “Terminal Number” 
for a description of the internal field T$T.) We will keep the user-id, and the time 
logged on, as global fields. The CONTROL.MAS file will hold the terminal number, 
password and branch code for the first application screen for each user-id. (The 
reader may wish to examine Section 16.2 “Automatic Branching: B$B and R$R” in 
order to understand the automatic branching used in the following example.) 
LOGON.MAS is a dummy file containing one record with a blank value in the key 
field 1DUMMY.

     *      LOGON.DEF
     MAS 100
     1DUMMY A2 KEY1      "dummy key field"
     2DUMMY A2           "another dummy field"

     *      CONTROL.DEF
     MAS 100
     USERID A8 KEY1    "user's identification"
     PASSWORD A8       "user's password"
     1STBRANCH A2      "user's first branch code"
     TERMINAL# A4      "user's terminal number"

The definitions for the global fields are as follows:

     G$WHO/A8      "USERID of the current user"
     G$TIME/A8     "time the current user started"

Remember, global fields act as if there is a one record file that remains in memory 
until the user exits TRANS. These fields are included in all the screen description and 
record maintenance procedures that will use the global area.

9.The easiest way to keep global fields in order is to use the same STRUCTURE 
paragraph in every screen, as described in Section 5.5.9.1 “STRUCTURE: Lay out 
global fields section”.
15 - 20   ADMINS User Guide



Examples Using an RMO Behind the Screen
The screen description follows:

     *      LOGON.TRS
     LOGON LOGON.MAS 1 LOGON.RMO NOMSG NOBR
     *
     * Link a user-id to control file
     *
     LINK CONTROL.MAS
     KC USERID
     L PASSWORD
     L 1STBRANCH
     L TERMINAL#
     END
     *
     *              global field definitions
     DR G$WHO/A8      "USERID of the current user"
     DR G$TIME/A8     "time the current user started"
     *
     ER USERID/A8
     ER PASSW/A8
     DR TODAY/DA
     DR NOW/A8
     DR T$T/A4
     E 1DUMMY
     *
     C PASSW NE ' ' AND PASSWORD 
     UNAUTHORIZED USERID/PASSWORD 
     C PASSWORD NE PASSW AND T$T NE TERMINAL#
     INCORRECT TERMINAL
     *
     SCREEN
     CE LOGON SCREEN   TODAY---- NOW------
     BL
     1D-
            TYPE USER ID: USERID--
     BL
             TYPE PASSWORD: PASSW-----
             PRESS NEXT
     BRANCHES
     A ...
     ...
     B ...
     ...
     C ...
     ...
     END

     *     LOGON.RMS
     FILE LOGON.MAS
     LOCAL
     *        global field definitions
     G$WHO/A8
     G$TIME/A8
     *
     S$S/A6
     M$M/A2
     B$B/A2
     PASSW/A8
     1STBRANCH/A2
     NOW/A8
     PROGRAM
     IF S$S EQ 'EOFREC' AND PASSW NE ' ' THEN
       B$B = 1STBRANCH ; G$WHO = USERID ;
       G$TIME = NOW END
ADMINS User Guide  15 - 21



Examples Using an RMO Behind the Screen
15.4.4  Example Using a Pre-Link RMO Call

A screen is used to enter payments into a payment file. The bill number is a 12 digit 
number that contains the account number as well as a batch control number. The 
account number is contained in digits 3 to 8 of the bill number. The account number 
is used to link to an accounts receivable file where the screen checks that the customer 
account exists and also applies the payment.

     *     PAYM.DEF
     *
     MAS 10000
     SEQ I KEY1            "payment sequence number"
     BILL# X999999999999   "bill number"
     AMT D2                "payment amount"

     *     ACCT.DEF
     *
     MAS 20000
     ACCT# X999999 KEY1    "account number"
     NAME A30              "customer name"
     BALANCE D2            "balance due"

     *     PAYM.TRS
     *
     PAYM PAYM.MAS 1 PAYM.RMO APPEND NOMSG
     *
     *   Link to the Accounts Receivable file.
     *   The writeback is for applying the payment (AMT)
     *   to BALANCE.
     *
     LINK ACCT.MAS W
     KC ACCT#         "the key field in the link is a local field"
     C BILL#
     L NAME
     L BALANCE
     END
     *
     E SEQ
     E BILL#
     DR ACCT#/X999999
     D BALANCE
     D NAME
     E AMT
     *
     C ACCT# NE '000000' AND NAME EQ ' '
     INVALID ACCOUNT IN BILL NUMBER
     *
     SCREEN
     CE ENTER PAYMENTS
     BL
     SEQ: SE-   BILL#: BILL#-------      ACCOUNT: ACCT#-
     BL
                NAME: NAME--------------------------
                AMOUNT: -------AMT
     END

The first statement in PAYM.RMS below says that during the 'BEGREC' pre-link call 
in Append Mode, set the value in the ACCT# local field to 0.

The second statement in PAYM.RMS below says that when we get a pre-link call in 
Append Mode just when the BILL# has been entered, then construct the account 
number (ACCT#) using the 3rd through the 8th digit of BILL#, using the STR 
subroutine (see Appendix H.5.1 “STR - Select Part of a Field”.).

The third statement of PAYM.RMS says that when the AMT field is entered in 
Append Mode at the ("normal") post-link call then apply the payment in AMT to the 
linked in BALANCE from ACCT.MAS. The new BALANCE will be written back via 
the writeback (W) in the LINK statement of the TRS.
15 - 22   ADMINS User Guide



Examples Using an RMO Behind the Screen
The fourth statement in PAYM.RMS says that if there is an Error Mode call after 
BILL# has been entered, i.e. if the ACCT# was not found in ACCT.MAS, then reset 
ACCT# to zero. This is done because the Check statement in PAYM.TRS uses the 
presence of a non-zero value in ACCT# to indicate that the link to ACCT.MAS failed 
to find the account number there.

     *     PAYM.RMS
     *
     FILE PAYM.MAS
     LOCAL
     S$S/A6
     M$M/A2
     BALANCE/D2
     ACCT#/X999999
     PROGRAM
     *
     * At 'BEGREC' in Append Mode set the ACCT# local field to 0.
     *
     IF S$S EQ 'BEGREC' AND M$M EQ 'AX' THEN ACCT# = 0 END
     *
     * When the BILL# is entered, string out the 3rd - 8th 
     * characters and put them into the ACCT# field.
     *
     IF M$M EQ 'AX' AND S$S EQ 'BILL#' THEN ;
       ACCT# = STR(ACCT#,BILL#,'3/I','8/I') ; GOTO DONE END
     *
     * When the AMT is entered, subtract the AMT from the BALANCE
     *
     IF M$M EQ 'AP' AND S$S EQ 'AMT' THEN ;
       BALANCE = BALANCE - AMT ; GOTO DONE END
     *
     * If an error occurs when entering the BILL#, reset the
     * ACCT# back to 0.
     *
     IF M$M EQ 'ER' AND S$S EQ 'BILL#' THEN ACCT# = 0 END
     DONE: STOP

 

ADMINS User Guide  15 - 23



Examples Using an RMO Behind the Screen
15 - 24   ADMINS User Guide



Chapter 16:Advanced RMO Functions 
with TRANS

Manual Chapter 15: “Basic RMO Functions with TRANS” describes the general 
purpose of an RMO behind the screen, the communication between the screen and the 
RMO, and includes several general examples.

This section describes the specific functions which may be included in an RMO behind 
the screen. The purpose of many of these functions is to allow more tightly controlled 
screens to be developed, to provide more user-friendly screens and more thorough 
data entry validation. Some of the advanced RMO functions include: controlling the 
writeback to disk, rejecting new or changed records due to an error condition, 
automatic branching, automatic record insertion, cursor control, highlighting fields, 
printing messages, timing out TRANS, record selection, and special subroutines 
which operate only in an RMO behind the screen.

16.1  Controlling Changes Written To Disk

In Update Mode, the only time TRANS writes the active record back to the disk is 
when the user enters a manual change.1 Therefore an RMO behind the screen could 
alter the record at "BEGREC", "EOFREC", or after the last manual change was made, 
and the changes would not be written back to the disk. Also, the writeback to link files 
is done only as part of the end of record processing ("EOFREC").

The user, if necessary, may control both the writing of the active record during Update 
Mode, and the performance of the link writebacks. This is done by setting a local 
integer field in the RMO called "W$W" to one of the following values: (W$W used in 
conjunction with the keyword NOWRITE in the screen header line handles writing 
records differently in Update Mode, and is described in Section 16.1.1 “High Volume 
Update: NOWRITE”.)

1.     Writing back to disk in Update Mode under LFEXIT control is described in Section 
6.2.1.1 “Update Mode Under LFEXIT Control”. This section describes when 
TRANS writes back the active record to disk in Update Mode without LFEXIT 
control.

0 When the local field W$W remains “0”, which is its 
initial setting, the normal writing of records is done. 
That is, the active record is written after each 
manually entered field change and the link 
writebacks are done at “EOFREC”.
ADMINS User Guide   16 - 1



Controlling Changes Written To Disk
W$W controls write-back during Update Mode only. If W$W is set in Insert Mode 
or Append Mode (IX, IN, AX, AP) the W$W setting is ignored and W$W is reset to 
zero.

W$W can be used to "delete mark" records. If W$W is set to 1 or 4 at the "delete" RMO 
call (see Section 15.2.4 “Processing Record Deletions”) the record can be written 
immediately before it is deleted. This technique can be used to mark records that 
have been deleted, should a subsequent FILECONVERT "sequentialize" operation 
(see Section 13.4.1 “Sequentialize an ADMINS data file”) cause the deleted records to 
re-appear.

1 In single record screens program the RMO to set 
W$W to “1” whenever TRANS is to write the active 
record back to the disk. This may be done at 
“BEGREC”, “EOFREC”, or at any time the RMO is 
called. In this way, the RMO can cause the active 
record to be written to the disk even though the user 
did not manually change a field. TRANS writes the 
active record (at the next post-link call) and 
automatically resets W$W to “0”.
In multi-record screens setting W$W to 1 has no 
effect. Multi-record screens always write the active 
record as each field is entered.

2 The RMO setting W$W to “2” at “EOFREC” 
instructs TRANS to skip writing the active record 
and also skip the writeback of the LINK records. 
Again, W$W is automatically reset to “0”.
In multi-record screens setting W$W to 2 only 
effects LINKs. Multi-record screens always write 
the active record as each field is entered.

3 Normally link writebacks are performed only at 
"EOFREC". By setting W$W to "3" at any RMO call, 
TRANS will writeback all LINK records at that 
point in the processing (i.e. the next post-link call). 
W$W is automatically reset to "0". Note that in 
multi-record screens, neither LINK W fields nor 
fields in the main file of the screen can be changed 
at BEGREC calls, because the records are not locked 
at that time. (Changes may be made at the MULREC 
call as described in Section 16.21 “Multi-Record 
RMO Support”).

4 Combines functions of W$W = 1 and W$W = 3, i.e. 
when W$W is set to "4" at any RMO call both the 
active record is written and all link writebacks occur 
(at the next post-link call). The value of W$W is reset 
to "0".
For multi-record screens this setting will act the 
same as W$W = 3.

5 When W$W is set to "5" at any pre-link RMO call 
TRANS will writeback all LINK records at that 
point in the processing. This setting forces write-
back to the "old" LINK records before TRANS links 
to the new records (perhaps with values set at the 
"pre-link" call). After writing back the link records, 
W$W is automatically reset to "0".
In multi-record screens setting W$W to 5 has no 
effect.

NOTE
16 - 2   ADMINS User Guide



Controlling Changes Written To Disk
16.1.1  High Volume Update: NOWRITE

Ordinarily Update Mode writes the record back to the disk each time a value is 
entered into a field. For high volume on-line data entry, Append Mode is more 
efficient than Update Mode because in Append Mode the record is written back to 
disk only when the NEXT keystroke is pressed to signal completion of the record. 
However, Append Mode has two disadvantages, particularly in high volume, 
multiple terminal applications. One, branching is not permitted in Append Mode, 
and, two, multiple users appending records to the same file have the added overhead 
of keeping track of each other's additions (see Chapter 19: “Concurrency Control: 
Multi-User Files”).

Update Mode overcomes both these limitations, i.e., one can branch in Update Mode, 
and the number of records is constant. However, Update Mode rewrites the record 
as each field is entered or changed, which can cause excessive disk activity in high 
volume data entry applications.

If the keyword "NOWRITE" is placed on the screen header line then Update Mode 
will not write the active record back to the disk after each field change when W$W is 
"0". The active record is written back to the disk only when the RMO sets the W$W 
field to "1", which it should do at the "EOFREC" call only. Setting W$W to "2" or "3" 
performs the same functions as described in Section 16.1 “Controlling Changes 
Written To Disk” above. Setting W$W to "4" with NOWRITE combines the functions 
of W$W=1 and W$W=3, i.e. the LINKs are written back immediately, as with 
W$W=3, and the active record is written at "EOFREC" (W$W=1 with NOWRITE).

Hence, Update Mode with the "NOWRITE" option can be used for efficient high 
volume data entry into pre-allocated empty records. The "pre-allocated" file can be 
set up in such a way that each user could be updating (i.e. inputting) a different set 
of records in the file (e.g. a "batch"), and thus several user could be updating the same 
file simultaneously without locking each other out of a record (see Chapter 19: 
“Concurrency Control: Multi-User Files”).

A alternative to using NOWRITE for more efficient data entry in Update Mode, is to 
use LFEXIT control (see Section 5.3.1.18 “LFEXIT or LFBACK: Update Mode 
Control” and Section 6.2.1.1 “Update Mode Under LFEXIT Control”). Under LFEXIT 
control, the active record is written to the disk only when the user presses the NEXT 
keystroke to file the record. Using LFEXIT control, an RMO is not needed to instruct 
TRANS to write the active record back. Once LFEXIT control is activated by typing 
into a non-key field, branching is permitted only after the record is filed via NEXT.
ADMINS User Guide  16 - 3



Controlling Changes Written To Disk
16.1.2  Reject APPEND, INSERT, UPDATE, DELETE, or Transfer

In Append Mode or Insert Mode2 the active record is written to disk when the user 
presses the NEXT keystroke. The RMO behind the screen can refuse to accept a 
record being appended or inserted or updated, in Append ("AP") Mode or Insert 
("IN") Mode. This is done by setting the local integer field RJ$RJ ("reject") to a non-
zero value at "EOFREC". The NEXT keystroke will not file the record and the error 
condition "RECORD NOT ACCEPTED" is displayed. The user must press the ERR 
(\) keystroke to clear the error and continue. RJ$RJ can be used to prevent filing of 
the new record at the NEXT keystroke until the offending error(s) is (are) corrected.

RJ$RJ may be used in Update Mode to reject data entry only when LFEXIT control 
(see Section 6.2.1.1 “Update Mode Under LFEXIT Control”) is active. In Update 
Mode under LFEXIT control, data entry is not written back to the disk until the user 
presses the NEXT keystroke. If RJ$RJ is set to a non-zero value at the "EOFREC" RMO 
call, the error message "RECORD NOT ACCEPTED" is displayed and none of the 
changes to the active record are written to disk. Although RJ$RJ can be used in reject 
data entry in Update Mode, the CLF Check statement (see Section 5.5.6 “Check 
Statement”) is preferable for two reasons. First, CLF provides a facility for 
sophisticated error checking with little or no RMO logic. Second, each CLF error 
condition produces a specific Check statement message; whereas setting RJ$RJ 
produces a generic "RECORD NOT ACCEPTED" message which does not inform the 
user what is wrong with the record.

In the case of Update Mode without LFEXIT control, the record is re-written to the 
disk as each field is entered if there is no error generated via the format check on the 
entry or the Check Statement from the screen description. RJ$RJ does not have any 
effect in Update Mode when LFEXIT control is not active. In Update Mode without 
LFEXIT control, usually the Check Statement logic, perhaps assisted by additional 
error detection logic in an RMO operating behind the screen, is sufficient to validate 
update entries. There are occasions, however, where the data fields to be updated are 
so dependent on each other that some values must be accepted in Update Mode (and 
therefore written back to the disk) before a complete checkout can be performed. The 
NOWRITE option described in Section 16.1.1 “High Volume Update: NOWRITE” 
can be used to prevent writing the active record until all interrelated fields are 
entered and checked.

In Delete Mode the record is deleted when the user retypes the key fields after 
pressing the DEL keystroke (see Section 6.6 “Record Operations”). The RMO behind 
the screen can refuse to allow the record to be deleted. When the user presses the DEL 
keystroke and the field RJ$RJ is included in the RMO, the RMO is called with M$M 
(mode) set to "DX". The "DX" RMO call only occurs when RJ$RJ is included in the 
local fields section of the RMO. If the RMO sets RJ$RJ to "1", TRANS echoes a "bell" 
to the DEL keystroke and does not continue the delete sequence of operations, i.e. the 
deletion is blocked.

2.    In the case of insert, a blank record with only the key value(s) set, is created 
immediately on the disk after the "ENTER I TO INSERT" prompt receives a 
positive response.
16 - 4   ADMINS User Guide



Controlling Changes Written To Disk
In record transfer (TRF keystroke) operations (see Section 6.6 “Record Operations”) 
the record is transferred after the record transfer dialogue is successfully completed. 
The RMO behind the screen can refuse to allow the record to be transferred. When 
the user presses the TRF keystroke and the field RJ$RJ is included in the RMO, the 
RMO is called with M$M (mode) set to "DX". The "DX" RMO call only occurs when 
RJ$RJ is included in the local fields section of the RMO. If the RMO sets RJ$RJ to "1", 
TRANS echoes a "bell" to the TRF keystroke and does not continue the record transfer 
sequence of operations, i.e. the transfer is blocked.

16.1.2.1  Example of Using RJ$RJ
The following example shows the use of RJ$RJ to indicate an error at the end-of-
record processing. When used in Append or Insert Modes the erroneous record will 
not be filed.

The example concerns the entry of tax payment records. The clerk enters a bill 
number, an account number, and then amounts for principal, interest and penalty. 
The screen links to an account file where the total amount owed is recorded. The 
RJ$RJ is concerned with checking that the sum of the three entered amounts, 
principal, interest and penalty, sum to the total owed in the account file.

BILL.DEF
     *
     MAS 10000
     BILL# X99999  KEY1 "tax bill number"
     ACCT# XA99999      "account number"
     PRINC D2           "principal amount"
     INT D2             "interest amount"
     PENALTY D2         "penalty amount"

ACCT.DEF
     *
     MAS 30000
     ACCT# XA99999 KEY1 "account number"
     TOTAL D2           "total amount owed"

BILL.RMS
     *
     FILE BILL.MAS
     LOCAL
     S$S/A6
     M$M/A2
     RJ$RJ/I
     TOTAL/D2
     PROGRAM
     RJ$RJ = 0
     *
     * At end of record compare the payment values to the
     * linked in total. Only accept an exact match.
     *
     IF S$S EQ 'EOFREC' AND PRINC + INT + PENALTY NE TOTAL
       THEN RJ$RJ = 1 END
ADMINS User Guide  16 - 5



Automatic Branching: B$B and R$R
BILL.TRS
     *
     BILL BILL.MAS 1 BILL.RMO APPEND INSERT NOMSG
     *
     * LINK TO ACCT.MAS FOR TOTAL OWED
     *
     LINK ACCT.MAS
     KC ACCT#
     L TOTAL
     END
     *
     *
     E BILL#
     E ACCT#
     *
     * Make sure we have the account on file
     *
     C ACCT# NE 0 AND TOTAL EQ 0
     ACCT# NOT ON FILE
     E PRINC
     E INT
     E PENALTY
     D TOTAL
     SCREEN
     CE ENTER TAX PAYMENTS
     BL
     BILL#: BILL-     ACCOUNT NUMBER: ACCT--
     ------------------------ PAYMENTS ---------------------------
     PRINCIPAL: ------PRIN INTEREST: -------INT PENALTY: -----PENA
     BL
     PAYMENT MUST EQUAL TOTAL DUE: --------TOT
     END

16.2  Automatic Branching: B$B and R$R

Automatic branching allows the RMO behind the screen to invoke a branch.

To activate a branch the RMO sets the local field B$B to the branch code. (The branch 
code is the character the user would press after pressing the BRNC keystroke in order 
to manually perform the branch.) The branch is performed at the next point at which 
an operator-initiated branch would have been accepted and performed.

Similarly, setting the local field R$R to a non-blank character simulates an XRET 
keystroke, i.e., a return from last branch. If R$R is set to "I", then TRANS will assume 
the returned-to screen is still intact and TRANS will not redisplay it.

Setting B$B to "H" invokes TRANS HELP if it is available (if it is not available TRANS 
will attempt to branch to branch name "H").

The types of these local fields are B$B/A2 and R$R/A2.

Automatic branching is a very powerful technique that has many uses. Some of these 
uses are outlined here.

1. To control the switching from screen to screen.
Manual branching, described in Section 5.7 “Branches”, creates a screen 
environment where the end-user at the terminal decides when and where to 
switch screens.
An alternative is to have the logic in the RMO instruct TRANS when and where 
to branch. Sometimes this use of automatic branching can be used along with 
manual branching - where both the end-user at the terminal and the screen logic 
16 - 6   ADMINS User Guide



Automatic Branching: B$B and R$R
initiate branches. Or, using the screen header line keyword that inhibits manual 
branching (NOBR), described in Section 5.3.1.14 “NOBR: Inhibit Manual 
Branching”, the end-user can be restricted exclusively to automatically 
generated branches. This latter, more controlled, screen environment is common 
in inquiry applications in order to implement security controls and also in 
complicated clerical data entry applications in order to guide the user through 
the data entry steps.

2. To fit more complex screen logic into TRANS.
TRANS is designed to operate on one "physical master file" at a time, with a 
number of external files in relation to the physical master file -- links, indexes, 
logs, append files. The RMO operates on the logical master file consisting of the 
physical master file and the link and append files in relation. Some application 
functions may require the ability to have access to more than one logical master 
file, i.e. to use multiple screens with different physical master files.
Via automatic branching (and other techniques such as Global Fields, see 
Section 5.5.9 “Global Fields”) the application designer can interrelate any 
number of screens to create an applications environment in which the end-user 
is only slightly aware that automatic branches are being invoked. Yet automatic 
branching provides the open ended ability to operate on multiple logical master 
files.

3. The application designer can present a set of choices as a menu on the terminal.
The end-user can enter data (e.g. an account number) and, if necessary, a choice 
code (or the choice may be implied by the format of the account number), and 
then the RMO can automatically branch to the appropriate set of screens. In 
some applications different users could be presented with different menus 
after they enter their user identification which is linked to a file containing the 
operations they are permitted to perform (see example in Section 15.4.3 
“Example Using Global Fields”).

4. To let the RMO choose from a very large number of branch choices.
Section 5.7.3 “Calculated Branches” describes the method of using a single 
branch code and including the screen name of the branch to be taken in the field 
"B$fieldname". The RMO behind the screen may "calculate" a branch, i.e. set 
"B$fieldname", set B$B to the branch code, and automatically execute the 
branch. (This technique could also be used with manual branching.)
ADMINS User Guide  16 - 7



Automatic Branching: B$B and R$R
16.2.1  Example of Automatic Branching

A screen is being used to enter tax payments. The user enters a BILL# which calls up 
a record in the bill file. Then the screen allows the user to enter the payment amount. 
However, if the account number present on the bill record is also active in the arrears 
file with unpaid back taxes then the screen automatically branches to another screen 
that shows the arrears record in full detail, and allows the user to apply the payment 
there.

     *    BILL.DEF
     *
     MAS 20000
     BILL# X99999 KEY1     "bill number"
     ACCT# XA9999          "account number"
     AMTDUE D2             "amount due"
     AMTPAID D2            "amount paid"
     PAIDATE DA            "date of payment entry"

     *   ARREARS.DEF
     *
     MAS 5000
     ACCT# XA9999 KEY1     "account number"
     TAX84 D2              "1984 tax owed"
     TAX83 D2              "1983 tax owed"
     TAX82 D2              "1982 tax owed"
     ARPAID D2             "arrears already paid"

     *   BILL.TRS
     *
     BILL BILL.MAS 1 BILL.RMO NOMSG MATCH
     *
     * link to ARREARS.MAS to see if there are back taxes
     *
     LINK ARREARS.MAS
     KC ACCT#
     L TAX84
     L TAX83
     L TAX82
     L ARPAID
     END
     *
     E BILL#
     E ACCT#
     D AMTDUE
     D AMTPAID
     DR TODAY/DA
     DR NOW/A8
     *
16 - 8   ADMINS User Guide



Automatic Branching: B$B and R$R
     *screen is only 8 lines long
     *
     SCREEN 1 1 8 80
     CE ENTER TAX PAYMENTS      TODAY----   NOW-----
     BL
     BILL#: BILL-     ACCOUNT NUMBER: ACCT-
     BL
     AMOUNT DUE: --AMTDUE        AMOUNT PAID: --AMTPAID
     BRANCHES
     A ARREARS ACCT#
     EXAMINE ACCOUNT IN ARREARS
     END
     *
     
     

     * ARREARS SCREEN
     *
     ARREARS ARREARS.MAS 1 NOMSG
     E ACCT#
     D TAX84
     D TAX83
     D TAX82
     E ARPAID
     SCREEN 9 1 8 80      "place arrears screen under bill screen"
     CE ACCOUNT IN ARREARS  ACCT-
     BL
                  TAX DUE       ARREARS PAID: ---ARPAID
       1982    -----TAX82
       1983    -----TAX83
       1984    -----TAX84
     END

The first statement in BILL.RMS below instructs TRANS that the rest of the RMO 
should be executed only during the post-link Update Mode RMO calls.

The second statement in BILL.RMS says that if there are back taxes owed then 
automatically branch to the arrears screen. Note, that if the account number in the bill 
file is not in the arrears file then all the link fields (i.e. TAX82, TAX83, TAX84, 
ARPAID) are set to zero by the LINK paragraph itself.

The third statement in BILL.RMS sets the PAIDATE (date payment entered) field to 
the current date when the AMTPAID field is entered.

     *   BILL.RMS
     *
     FILE BILL.MAS
     LOCAL
     S$S/A6
     M$M/A2
     B$B/A2
     TAX82/D2
     TAX83/D2
     TAX84/D2
     ARPAID/D2
     TODAY/DA
     PROGRAM
     IF M$M NE 'UP' THEN STOP ; END
     IF S$S EQ 'BEGREC' AND TAX82 + TAX83 + TAX84 GT ARPAID
       THEN B$B = 'A' END
     IF S$S EQ 'AMTPAID' THEN PAIDATE = TODAY END

The return to the BILL screen is via the XRET keystroke. Another RMO could be 
written to operate behind the ARREARS screen to automatically perform the return 
to the BILL screen.
ADMINS User Guide  16 - 9



Automatic Branching: B$B and R$R
16.2.2  Automatic NEXT key: B$B = 'LF'

TRANS acts as if the NEXT keystroke has been pressed if the RMO sets B$B to "LF". 
This feature has many applications in more advanced transaction screen 
applications. For example:

1. Use the automatic NEXT key to cause the record to be written to the disk in 
Append Mode, Insert Mode, or Update Mode when LFEXIT control is active 
(see Section 6.2.1.1 “Update Mode Under LFEXIT Control”), rather than 
requiring the user to press the NEXT key.

2. Complex screen processes that access multiple records can be implemented 
automatically via index files, branching and automatic NEXTs.

16.2.3  Automatic PREV Keystroke: B$B = 'BS'

It is possible for the RMO "behind the screen" in TRANS to invoke the PREV 
keystroke. This is done by setting the local field B$B to "BS" (for "backspace"). This 
feature allows the application developer to automatically, under control of the RMO 
running behind the screen, move TRANS from the currently active record to the 
previous record in the file, i.e. to "backspace" one record in the file. In the case of 
multi-record screens setting B$B to "BS" will caused TRANS to go back to the 
previous control break, just as it would if the PREV keystroke had been used. 
Whenever the local field B$B is set to "BS" by the RMO TRANS performs the PREV 
function and then resets the value of B$B to blank.

16.2.4  Automatic Exit From TRANS: B$B = 'CB'

It is possible for the RMO behind the screen to cause TRANS to exit. This is done by 
setting the local field B$B to "CB". This feature causes TRANS to act as if the user 
pressed the EXIT keystroke followed by a RETURN to return to the operating system 
prompt.

The automatic exit always functions, even if a manual exit from the screen is blocked 
by the keyword "NOEX" (see Section 5.3.1.16 “NOEX: Inhibit Screen Exit”) on the 
screen header line.

The example showing the use of the time-out facility (see Section 5.5.16 “TIMEOUT 
statement”) includes the use of the automatic exit.
16 - 10   ADMINS User Guide



Automatic Branching: B$B and R$R
16.2.5  Automatic Insert: B$B = 'IN'

rIt is possible for the RMO behind the screen to cause a record to be inserted into the 
master file without operator intervention. If the key fields of a record are set at 
"BEGREC" in the RMO behind the screen and B$B is set to "IN", then TRANS will do 
a record search and if a record with the set key values does not exist, then TRANS 
will insert the record. The cursor is placed at the first editable field and the terminal 
is placed in Insert Mode. If the record already exists, the record is displayed and 
TRANS is placed in Update Mode.

16.2.5.1  Automatic Insert Example
Since automatic insertion is requested at the "BEGREC" RMO call, an additional field 
is needed to indicate that the record insertion was requested. In the following 
example, the screen is called as a result of a branch with the desired key value in a 
global field. The only time the automatic insert is tried is at the first "BEGREC" call 
following the branch and in the example below, this is controlled by the local field 
SW.

     ...
     G$REC/I
     M$M/A2
     S$S/A6
     B$B/A2
     SW/I
     PROGRAM
     IF S$S EQ 'BEGREC' AND SW EQ 0 THEN REC = G$REC ;
      B$B = 'IN' ; SW = 1 END

16.2.6  Non-Refreshing Automatic Branching: B$B = 'An'

The RMO behind the screen can instruct TRANS not to refresh the target screen if the 
lowercase letter "n" is appended to the branch code of an automatic branch.3 For 
example, if the branch code for a target screen is the letter "R", and the RMO sets B$B 
= 'Rn' then when TRANS branches the target screen is not redisplayed.

Use of this feature may improve the response for self-branches and branches to split 
screens which are already displayed on the terminal.

3.    It is the screen developer's responsibility to insure that the target screen does not 
need to be redisplayed.
ADMINS User Guide  16 - 11



Automatic Branching: B$B and R$R
16.2.7  B$B = 'Ad': Don't Refresh Literals/Graphics

The RMO behind the screen can instruct TRANS not to refresh the literals and 
graphics in the target screen of an automatic branch if the letter "d" (must be 
lowercase) is appended to its branch code.

This feature prevents unnecessary4 screen clearing and redisplay when branching 
between screens which have the same literal layout, or in self branches where another 
record is displayed.

16.2.8  Bookmarking Screen, Returning to a Bookmarked Screen

Bookmarking is implemented by having AdmTrans store an extra copy of its internal 
‘branch history’ (see Section 6.8 “Branching and Subscreens”) when R$R is set to ‘++’ 
or ‘%%’. When R$R is set to ‘--’, TRANS replaces its current branch history with the 
stored copy before performing its return branch. This results in a return branch to the 
bookmarked screen

Setting R$R = '++' will save the current branch history list. Setting R$R = '%%' will 
save the current history list and add the current screen to it. Setting R$R = '--' will 
restore the saved history (replacing and erasing the history of the most recent 
branches) and branch back to the last entry on that restored list, which is the screen 
you were on before the screen where R$R was set to '++', or the screen you were on 
when R$R was set to ‘%%’.

This feature provides an easy way to return to a specific screen, irrespective of the 
number of branches made after leaving that screen. In situations where many screens 
can branch to a common screen (for example, a help screen or some other utility that 
is common throughout an application).

4.    It is the screen developer's responsibility to insure that the target screen's literals 
and graphics do not need to be redisplayed.
16 - 12   ADMINS User Guide



Cursor Control: C$C and C$MULREC
16.3  Cursor Control: C$C and C$MULREC

As described in Section 5.5.2 “Editable”, the order of the editable fields in the field 
names section of the screen description (TRS) provides TRANS with the order of the 
cursor stops on the screen. The need may arise for altering this order of cursor stops 
contingent on the actual data being entered. A facility for controlling the cursor 
movement is provided via the special local RMO field "C$C".  This field, an 
alphanumeric field that can be up to A18 in length,can be set to the name of an 
editable field on the screen and TRANS will move the cursor to the named field 
rather than move the cursor to the next field from the field names part of the TRS.   

In multi-record screens, you can specify which record in the repeating portion of the 
screen the cursor should go to by setting its number in the special local integer RMO 
field “C$MULREC”.

If C$MULREC is set to “4”, for example, the cursor will be placed at the fourth record 
in the multirecord screen, in the field identified by the C$C field.

If a Check statement evaluates to true, i.e. finds an error, after the RMO has set C$C 
to a field name, the cursor remains at the field last entered and does not go to the field 
referenced by C$C after the error is cleared. However, by pressing ENTER after 
clearing the error, the user can move the cursor to the C$C field referenced.

16.3.1  Example of Cursor Control

We have the following tax payment record.

     *        TAXPAY.DEF
     MAS 10000
     ACCT# X99999 KEY1    "account number"
     OWED84 D2            "1984 taxes owed"
     PAID84 D2            "1984 taxes paid"
     OWED85 D2            "1985 taxes owed"
     PAID85 D2            "1985 taxes paid"

The operator posting payments will enter an account number. If that account has zero 
in PAID84 but a non-zero value in OWED84 the cursor will go to the PAID84 field for 
payment entry. Otherwise, if PAID84 is non-zero, the cursor will go to PAID85 for 
payment entry. If the payment entered into PAID84 exceeds the amount owed for 
that year, the difference will be applied to PAID85.
ADMINS User Guide  16 - 13



Controlling the Skipping of Fields: SK$SK
     *       TAXPAY.TRS
     *
     TAX TAXPAY.MAS 1 TAXPAY.RMO MATCH
     E ACCT#
     D OWED84
     ER PAID84/D2
     D OWED85
     ER PAID85/D2
     SCREEN
     CE ENTER TAX PAYMENTS
     BL
     ACCOUNT NUMBER: ACCT-
     BL
     -------- 84 --------    -------- 85 --------
     OWED:  -------OWED84    OWED:  -------OWED85
     PAID:  -------PAID84    PAID:  -------PAID85
     END

     *      TAXPAY.RMS
     *
     FILE TAXPAY.MAS
     LOCAL
     S$S/A6
     M$M/A2
     C$C/A6
     PROGRAM
     IF M$M NE 'UP' THEN GOTO DONE END
     IF S$S NE 'BEGREC' THEN GOTO NOTBEG END
     *
     * At BEGREC, set the cursor to PAID84 or
     * PAID85 depending on OWED84.
     *
     IF OWED84 NE 0 AND PAID84 EQ 0 THEN
       C$C = 'PAID84' ELSE C$C = 'PAID85' END
     *
     NOTBEG: IF S$S NE 'PAID84' THEN GOTO DONE END
     *
     * If the payment entered in PAID84 is greater
     * then the amount owed for 84, apply the
     * difference to 85.
     *
     IF PAID84 GT OWED84 THEN PAID85 = PAID84 - OWED84 ;
       PAID84 = OWED84 END
     DONE: STOP

16.4  Controlling the Skipping of Fields: SK$SK

TRANS normally issues calls to the RMO at "BEGREC", "EOFREC", or when the user 
has entered data into a field. TRANS can also be instructed to issue an RMO call any 
time the user tries to skip past a field, i.e. by pressing ENTER, carriage return, or one 
of the directional arrows. This feature provides TRANS with a mechanism which 
blocks the user from skipping past required data entry fields, and gives additional 
information to the RMO about the location of the cursor. SK$SK may be useful when 
the REQUIRE statement (see Section 5.5.5 “REQUIRE Statement”) is not appropriate.

To use this feature, the RMO must have a local integer field SK$SK. If SK$SK is in the 
RMO, then trying to "skip" past a field causes TRANS to call the RMO with the 
following values automatically set:

1. S$S is set to the name of the field being skipped
2. SK$SK is set to "1"
3. M$M is set to the pre-link call, e.g. "UX", "IX", or "AX".
16 - 14   ADMINS User Guide



Controlling the Skipping of Fields: SK$SK
During all other (non-field skipping) RMO calls, SK$SK is set to "0" (zero). The RMO 
should never set SK$SK to zero or 1.

When SK$SK is in the RMO and the user skips past a field, links are only processed 
if the RMO changes the value of the field. If the RMO leaves the field intact, links are 
not processed, nor is the post-link RMO call given. (Because the post-link RMO call 
may not be issued after a field-skip call, care should be taken to ensure that pre-link 
field-skipping RMO logic does not set any Check statements, which are only tried 
after a post-link RMO call.)

At the SK$SK call the RMO can change the field being skipped, use C$C to move the 
cursor to another field, issue an automatic branch, or perform most of its usual 
functions. The field log is updated if the RMO changes a loggable field that is being 
skipped.

When the RMO sets SK$SK to "2", this indicates to TRANS that the field may be 
skipped, i.e. that TRANS should process the field skipping keystroke in the normal 
manner. The RMO should only set SK$SK equal to "2" if the field may be skipped and 
if the current value of SK$SK is "1".

The skipping logic has some consequences which may not be evident.

First, if the RMO behind the screen includes SK$SK as a local field, then the RMO 
must manage SK$SK.

Second, if the RMO sets the field being skipped to the same value it contained when 
the RMO was called, i.e. does not change the field's value, then SK$SK must be set to 
2 in order to be able to skip the field. This is because TRANS does not know the RMO 
set the field; it only knows whether the field has been changed (either by the user or 
the RMO). When the RMO sets the field equal to its previous value, then, it is the 
same as if the user had skipped the field and the RMO had done nothing. Therefore, 
SK$SK must be set to 2, to allow skipping the field.

Third, if the RMO changes the value of the field when the user skips it, then the RMO 
should not set SK$SK to 2. If SK$SK is erroneously set to 2, the value set by the RMO 
will be updated in the file, but the new value of the field will not be refreshed on the 
screen. This is because when SK$SK equals 2, TRANS assumes that the field was 
skipped, and does not refresh the field on the screen.

Fourth, SK$SK may not be used with multi-record screens.
ADMINS User Guide  16 - 15



Controlling the Skipping of Fields: SK$SK
16.4.1  SK$SK Example

The following example uses SK$SK to require entry into the field EMP#.

     FILE PAYROLL.MAS
     LOCAL
     S$S/A6
     M$M/A2
     SK$SK/I
     ...
     PROGRAM
     *
     IF M$M NE 'UX' THEN GOTO POSTLINK END
     *
     * All other fields except EMP# may be skipped.
     *
     IF S$S NE 'EMP#' AND SK$SK EQ 1 THEN SK$SK = 2 ;
      GOTO DONE END
     ...
     POSTLINK: ...
     ...
     DONE: STOP

To summarize, in an RMO containing the local integer field SK$SK:

1. When data is entered in a field the RMO receives the usual calls with SK$SK set 
to zero.

2. If the user presses ENTER, carriage return, or a directional arrow to skip past a 
field, then: TRANS automatically sets SK$SK to "1", S$S to the name of the field 
being skipped, M$M to the pre-link mode, and then the RMO is called. The 
cursor will not move until:
a. The RMO sets SK$SK to "2", or 

b. The RMO changes the value of the field, or 

c. The RMO sets C$C.

These precautions should be understood before implementing the SK$SK 
functionality.

1. If SK$SK/I is in the RMO, then the RMO must set SK$SK to "2" at all skippable 
fields if the RMO is called with SK$SK set to "1" and S$S set to a skippable field.

2. Do NOT set SK$SK to anything other than "2".
3. Do NOT set SK$SK to "2" unless SK$SK was "1".
4. To allow skipping a field, the RMO must either set SK$SK to "2", or change the 

value of the field.
16 - 16   ADMINS User Guide



Highlighting Fields
16.5  Highlighting Fields

Data fields can be highlighted by using the display attributes for bold, underline, 
blink and reverse video, or any combination of these.

Highlighting is effected from two local arrays in the RMO behind the screen, 
"H$NAME/An(n)"5 and "H$CODE/I(n)". Before displaying any field TRANS scans 
the H$NAME local array for a field name match. If found, the corresponding 
H$CODE integer value is used. This value, between 1 and 15, is taken as the sum of 
four settings.

1 bold     2 underline     4 blink     8 reverse video

For example, to highlight a field using bold and blink, the H$CODE value is "5".

The data field is then highlighted accordingly. The search of H$NAME local array 
stops when a corresponding H$CODE element of zero is found. Setting H$CODE to 
"-1" will return the field to the normal highlighting prescribed by the setting in the 
logical name OPTION (see Section 5.10 “Video Highlighting Facilities”).

16.5.1  Highlighting Example

The following example illustrates the highlighting of the NETDUE field in a 
customer receivable inquiry screen. The NETDUE field is always displayed in 
reverse video, however, if there is a balance due, the NETDUE is also blinking.

     FILE CUSTOMER.MAS
     LOCAL
     H$NAME/A8(2) 'NETDUE'
     H$CODE/I(2) 0 0
     PROGRAM
     IF NETDUE EQ 0 THEN H$CODE(1) = 8 ELSE H$CODE(1) = 12 END

16.6  Printing Messages: P$P

The RMO behind a screen can be used to print messages on a hard copy printing 
device. Whenever the RMO sets P$P, an alphanumeric local field, to an alphanumeric 
string, the contents of P$P are printed immediately on the device assigned to the 
logical name ADM$PRTn. TTn or SPn, placed on the screen header line of the screen 
description, as described in  Section 5.3.1.9 “SPn or TTn: Print Device Specification”, 
determines the value of "n".

If the RMO sets P$P, then after the contents of P$P are printed, the RMO is called 
again and additional print lines can be placed in P$P. The printing continues until the 
RMO does not set P$P. In this way messages containing several lines can be printed 
on a hard copy printing device.

TRANS can be instructed to de-allocate6 a device that has been allocated by TRANS 
for printing the contents of P$P, by setting P$P to "&&", as follows:

5.   H$NAME may be specified with a field type up to size A18.
6.   De-allocating a device makes it available to other users.
ADMINS User Guide  16 - 17



Top of File Control: F$F
     IF LINE(J) EQ ' ' THEN P$P = '&&' END

When P$P is set to "&&" TRANS will de-allocate the channel to the device to which 
P$P has been printing, and the RMO will not be called again. If TRANS is not 
instructed to deallocate the device in this manner the device will remain allocated 
until TRANS is exited.

The first character of P$P serves as a carriage control character for the vertical spacing 
on the hard copy printing device. The carriage control characters are:

    "blank" causes a vertical space before printing
    "0" causes a vertical double space before printing
    "1" causes a skip to top of form before printing
    "+" causes no vertical space before printing

The "^" character, which is converted to blank on output in ADMINS,7 can be used 
in constants to create lead blanks in the P$P string. Also the "^" character can be used 
with the NCAT subroutine (see Appendix H.3.1 “NCAT - Concatenating fields” for 
a description of concatenating fields using NCAT) when concatenating fields with 
multiple blanks in P$P. (Single character blank fields are not removed by NCAT.)

16.6.1  Example Printing a Tax Bill Validation

A screen is being used to enter tax payments. After each payment entry a message is 
to be printed on TTn containing the account number, the date and the amount paid. 
(TTn could be a passbook/document printer into which a tax bill is inserted.) The 
screen header line references PAYM.RMO as the active record maintenance 
procedure, and the screen header line also contains the "TTn" keyword, e.g. TT4.

     *   PAYM.RMS
     *
     FILE PAYM.MAS
     LOCAL
     S$S/A6
     M$M/A2
     P$P/A30
     TODAY/DA
     BLANK/A1
     PROGRAM
     IF S$S NE 'AMT' OR M$M NE 'UP' THEN GOTO DONE END
     P$P = NCAT(P$P,BLANK,ACCT,BLANK,TODAY,BLANK,AMT)
     DONE: STOP

The above RMS would print the account, date and payment amount immediately 
after a value was entered into the AMT field.

16.7  Top of File Control: F$F

An RMO behind a screen can use the F$F field to instruct TRANS at the "BEGREC" 
call to go to top of file rather than display the current record. The first record in the 
file is displayed instead. F$F is an local integer field which, when set to "1", causes 
TRANS to display the top of file record. F$F is immediately reset to zero by TRANS 
whenever the RMO sets it to one.

7.   see Section 2.4.2 “Field Data Types”
16 - 18   ADMINS User Guide



Top of File Control: F$F
16.7.1  Example Using F$F To Secure Student Records

The registrar wishes to place a terminal in a public place to allow students to examine 
their grades. The registrar wishes to allow a student to examine only his/her own 
grades, and not have access to the grades of other students. The grade file looks as 
follows:

     *      GRADES.DEF
     *
     MAS 4000
     SS# X999999999 KEY1       "Students Social Security Number
     BIRTHDAY DA KEY2          "Students birthday, the password"
     SNAME A30                 "students name"
     COURSE1 A10               "first course"
     GRADE1 A1                 "grade in first course"
     COURSE2 A10               "second course"
     GRADE2 A1                 "grade in second course"
     ...
     COURSE10 A10              "tenth course"
     GRADE10 A1                "grade in tenth course"

The registrar sets up a file keyed on social security number and students birthday. 
The birthday serves as a password, i.e. it is assumed that the student alone knows 
his/her own birthday.

The following screen, which uses the MATCH (see Section 5.3.1.8 “MATCH: Require 
Exact Match”) keyword and the accompanying RMO which uses the F$F field, will 
allow a student to examine only his/her own grades by entering their social security 
number and birthday (password).

Mis-matching on the key, (e.g. by entering an incorrect birthday), or using the NEXT, 
NREC, PREV or other keystrokes to browse through the file, will all send the screen 
to the top of file where a null record will be displayed.
ADMINS User Guide  16 - 19



Top of File Control: F$F
     *      GRADES.TRS
     GRADES GRADES.MAS 1 GRADES.RMO NOMSG MATCH
     E SS#
     E BIRTHDAY
     D COURSE1
     D GRADE1
     D COURSE2
     D GRADE2
     ...
     D COURSE10
     D GRADE10
     SCREEN
     ENTER YOUR SOCIAL SECURITY NUMBER AND YOUR BIRTHDAY
     EXAMINE YOUR GRADES, AND THEN PRESS 'NEXT' TO
     CLEAR THE SCREEN.
     BL
     SOCIAL SECURITY#: SS#------      BIRTHDAY-----
     BL
     COURSE1---  GRADE1-
     COURSE2---  GRADE2-
     ...
     COURSE10--  GRADE10-
     END

     *      GRADES.RMS
     *
     FILE GRADES.MAS
     LOCAL
     S$S/A6
     M$M/A2
     F$F/I
     LAST/A6
     PROGRAM
     IF S$S EQ 'BEGREC' THEN GOTO BEG END
     IF S$S EQ 'EOFREC' THEN GOTO EOF END
     LAST = S$S
     EOF: STOP
     *
     * ONLY DISPLAY THE RECORD IF LAST FIELD ENTERED WAS BIRTHDAY
     *
     BEG: IF LAST NE 'BIRTHD' THEN F$F = 1 END
     LAST = ' '
16 - 20   ADMINS User Guide



Post-Writeback EOFREC RMO Call: B$OB
16.8  Post-Writeback EOFREC RMO Call: B$OB

During normal end of record processing, the RMO behind the screen is only called 
once, and that call precedes writing to any disk files. However, the application 
procedure may need confirmation that the writing to the disk files was successful. 
This is done by requesting a second EOFREC call.8

If during the normal EOFREC RMO call, the RMO sets a local integer field B$OB to 
"1", then TRANS will call the RMO again after doing all the end of record writing to 
all the files. At this point, the application can record that all files were updated 
successfully.

The status (S$S) of the second call is "EOFREC" and the mode (M$M) is the same as 
the normal EOFREC call, e.g. "UP". Care must be taken to set B$OB to "1" during the 
first EOFREC call only, and the RMO logic must determine when it is processing the 
second EOFREC call.

16.8.1  Using B$OB

The RMO behind the screen should contain the following logic to use the second 
EOFREC call:

     FILE ...
     LOCAL
     M$M/A2
     S$S/A6
     B$OB/I
     SW/I
     ...
     PROGRAM
     IF S$S EQ 'EOFREC' AND SW EQ 0 THEN GOTO FIRST END
     IF S$S EQ 'EOFREC' AND SW EQ 1 THEN GOTO SECOND END
     ...
     GOTO OUT
     *
     FIRST: B$OB = 1 ; SW = 1 ;
     ...
     GOTO OUT
     *
     SECOND: SW = 0 ;
     ...
     OUT: STOP

8.   If B$OB is set to obtain a second EOFREC call, the two EOFREC calls can be used 
as "pre-link" and "post-link" calls even though, M$M is set to a post-link status at 
both EOFREC calls. The RMO can change the LINK key fields during the first 
EOFREC call (when B$OB is set). Before the second EOFREC call, TRANS will re-
try the LINKs. At the second EOFREC call, the RMO can set new values for LINK 
fields which will be written back to the disk after that call.
ADMINS User Guide  16 - 21



Look Ahead: NX$fieldname
16.9  Look Ahead: NX$fieldname

One can examine the values of the record following the last record currently 
displayed on the screen in TRANS. For each field that is to be examined create a local 
field called "NX$fieldname". For example, to examine ACCT create NX$ACCT.

The "NX$fieldname" field will always be set to the value of "fieldname" from the 
record following the last record currently displayed on the screen. If the last record 
on the screen is also the last record in the file then an integer field called "NX$EOF" 
will be set to "-1" and the "NX$fieldname" values will remain unchanged from their 
last setting.

16.9.1  Look Ahead Example

Look ahead is particularly useful in a multi-record screen (see Section 16.21 “Multi-
Record RMO Support” for an additional discussion of multi-record RMO support) 
with a BREAK where all of the records for a specific BREAK field may sometimes not 
fit on a single screen. If the operator was in the habit of only looking at a single screen, 
some of the detail for a key might be missed. The "NX$fieldname" could be used to 
give the operator a message that more records for the same key exist.

The following example checks the next record, and if it belongs to the same account, 
places a message on the screen indicating there are additional detail records for the 
same account.

     Name: NAME-------------------------  Net Due: NETDUE--------
     BL
          MORE----------------------------------------------
     BL
      Account     Date     ChgCode    Amount     Paid    Net Due
     ---------  ---------  --------  --------  --------  --------
     ACCT-----  -------RD  CCD-----  ------OA  ------PD  ------ND
     END     *   DETAIL.TRS
     *
     DETAIL DETAIL.MAS 16 DETAIL.RMO NOMSG BREAK ACCT
     *
     LINK CUSTOMER.MAS
     K ACCT
     L NAME
     L NETDUE
     END
     *
     D NAME
     D NETDUE
     DR MORE/A50
     E ACCT
     D RD
     D CCD
     D OA
     D PD
     D ND
     *
     SCREEN
                        BILLING DETAILS
     BL

     *  DETAIL.RMS
     *
     FILE DETAIL.MAS
     LOCAL
     M$M/A2
     S$S/A6
16 - 22   ADMINS User Guide



Select Records: S$SEL
     NX$ACCT/X999999999
     NX$EOF/I
     MORE/A50
     MSG/A50 '* There are more detail records for this account *'
     PROGRAM
     MORE = ' '
     IF S$S NE 'PGBRK' OR NX$EOF EQ -1 THEN GOTO DONE END
     IF NX$ACCT EQ ACCT THEN MORE = MSG END
     DONE: STOP

16.10  Select Records: S$SEL

A facility whereby TRANS can apply selection criteria to records in a file in order to 
choose which records to display adds greatly to TRANS' utility as an inquiry tool.

TRANS can already retrieve records via their key value. Record selection enhances 
TRANS further as a more general retrieval tool.

First, we will describe the implementation of a record selection facility.

Then we will offer some cautionary words about the use of this facility because of its 
potential negative effect on overall system throughput. The need for caution arises 
out of the potential for the user of a record selection screen requesting large amounts 
of sequential file searching at the mere press of a keystroke.

Finally, we will present an example of the application of record selection.

16.10.1  Implementation of Record Selection

The implementation technique chosen for record selection uses a local integer field 
S$SEL in an RMO operating with the screen to instruct TRANS to display or bypass 
the record just read. The "S$SEL" field, an integer, is set to "1" at "BEGREC" to select 
(display) the record, and is set to "0" (zero) to pass over the record. In the latter case, 
when a record is passed over, i.e. not displayed, the next sequential record is read and 
another "BEGREC" call is issued to the RMO. If the whole file is read without finding 
any record to display then the first record in the file is displayed. When the local field 
W$W is used in an RMO with record selection, setting W$W will write back to disk, 
even if S$SEL is set to "0".

The RMO can also set S$SEL to a "2" to instruct TRANS not to display the record and 
treat this record as the last record on a page of a multi-record screen. That is, to 
simulate a page break.

Alternatively, the RMO can set S$SEL to "3" to instruct TRANS to display the record 
and to treat the record as the last record on a page of a multi-record screen, i.e. to 
simulate a page break after displaying the record.
ADMINS User Guide  16 - 23



Select Records: S$SEL
16.10.2  Caution In The Use of Record Selection

Record selection can allow the user to execute long sequential searches through files 
in response to a single keystroke (e.g. the NEXT keystroke), perhaps without the user 
even quite realizing what is happening. There are various ways to protect against 
misuse of record selection by the proper design of the RMO controlling the selection 
process. Possible techniques would include:

1. Implementing an explicit request procedure for activation of the selection 
mechanism. For example, have the user enter a letter into a local request field.

2. Have the RMO stop the search after n records are examined rather than 
proceeding to the end of file until the criteria is satisfied. The search can always 
be stopped by selecting the nth record, but displaying a message saying the 
record did not actually meet the search criteria. Another way to terminate the 
search would be to use F$F, (see Section 16.7 “Top of File Control: F$F”), to 
display the first record in the file.

16.10.3  Example Of Record Selection

An accountant is examining an accounts receivable file. The accountant wishes to 
display those records where the open balance is above a certain selection criteria 
value. The selection criteria value will be altered as the file is examined.

     *     RECEIV.DEF
     *
     MAS 1000
     CUST# X99999 KEY1  "Customer Number"
     TOTALDUE D2        "Total owed"
     LASTPAY D2         "Amount of last payment"
     LASTDA DA          "Date of last payment"
     TOTPAY D2          "Total paid this year"

     *    REC.TRS
     *
     REC RECEIV.MAS 1 REC.RMO NOMSG
     ER SEARCH/D2
     E CUST#
     D TOTALDUE
     D LASTPAY
     D LASTDA
     D TOTPAY
     SCREEN
     CE ACCOUNTS RECEIVABLE DISPLAY SCREEN
     BL
          SELECT ACCOUNTS OWING ----SEARCH OR MORE
                ZERO MEANS SHOW ALL RECORDS
     BL
     CUSTOMER NUMBER: CUST-
     AMOUNT OWED: ------TOTALD    TOTAL PAID THIS YEAR: ----TOTPAY
     BL
     DATE OF LAST PAYMENT:      LASTDA---
     BL
     AMOUNT OF LAST PAYMENT:  ----LASTPAY
     END
16 - 24   ADMINS User Guide



Status Line Control: M$MSG and M$LOC
     *      REC.RMS
     *
     FILE RECEIV.MAS
     LOCAL
     S$S/A6
     M$M/A2
     S$SEL/I
     SEARCH/D2
     PROGRAM
     IF S$S NE 'BEGREC' THEN GOTO DONE END
     S$SEL = 0
     IF SEARCH EQ 0 OR SEARCH LE TOTALDUE THEN S$SEL = 1 END
     DONE: STOP

16.11  Status Line Control: M$MSG and M$LOC

The RMO behind the screen can control the content and location of  a “status line”, 
using the special local RMO fields M$MSG/An (message text), and M$LOC/I 
(optional line number for message). Whenever the RMO changes the value of 
M$MSG, it is re-displayed. The status line can be used for such purposes as basic help 
for the user, an application title, date and time, or subtotals on a multi- record screen 
(for subtotals, set M$MSG at the PGBRK RMO call). For example, to put the current 
date and time on the status line, first declare TODAY and NOW as DR fields in the 
TRS, then insert the following in the RMO:

        LOCAL
        .
        .
        * Content and Location for Status LINE
        * Value shown below places Status line at line 20
        *
        M$MSG/A20 
        M$LOC/I 20
        *
        TODAY/DA
        NOW/A8
        BL/A1 ''
        .
        .                     
        PROGRAM
        M$MSG = NCAT(M$MSG,TODAY,BL,NOW)
        .                     
        .
ADMINS User Guide  16 - 25



Check Screen Exit Keystroke: E$NDSCR
16.12  Check Screen Exit Keystroke: E$NDSCR

The special field E$NDSCR/A2 can be used to check which manual (keystroke) 
method was used to attempt to exit the current screen. At the last RMO call before 
branching (the EOFREC call on the current record), E$NDSCR is set by TRANS to the 
manual branch code that was typed by the user, i.e. "A" if TAB was followed by an 
"A". If the EXIT key is typed (to attempt to exit TRANS completely), E$NDSCR will 
have the value "CB"; and if XRET is typed (to return to the screen previous to the 
current screen), E$NDSCR will have the value "RR".

The E$NDSCR facility, in combination with B$B (see Section 16.2 “Automatic 
Branching: B$B and R$R”) can be used to enable flexible control of the user's access 
and movement within a family of screens. At EOFREC, the value of E$NDSCR can be 
checked for validity, and, if the RMO sets B$B at the EOFREC call, the manual branch, 
EXIT keystroke, or XRET keystroke can be overridden.

16.13  S$BL-Detect “blank” typed into numeric field

The special field S$BL/I will be set to 1 (one) if the user entered only spaces (followed 
by Return/Tab) into a numeric field,  otherwise it will be set to 0 (zero).  This makes 
it possible for the RMO to detect whether a space/Return or a 0/Return was entered 
in a numeric field (as both cases result in a value of zero being stored in the field.)  

16.14  F$UNCKEY - Function Key Detection in RMO

If the RMO behind a screen has the local field F$UNCKEY (type A4) defined, TRANS 
will place into F$UNCKEY a unique symbolic value for the function key that 
terminates any entry typed into an editable field in the screen. In addition, if a 
function key is pressed without entering or editing a field (for example, if nothing is 
typed into a field and the right arrow function key is pressed to move to the next 
editable field) the RMO gets a special call with M$M set to 'FX' and S$S set to the 
name of the field at the current cursor position, and F$UNCKEY set to show which 
keystroke was presssed ('rght' in the example).

The values returned by TRANS into F$UNCKEY are the names of TRANS keystrokes 
functions if the keystroke is part of the TRANS environment, i.e. if a TRANS 
keystroke function has been mapped to it. If the function key is not part of the TRANS 
environment TRANS will put the KEY_NAME from the tkb file, i.e. the "standard 
function keystroke" name, into F$UNCKEY.9

If a selection is made in a LOOKUP window that RETURNS a value the RMO is called 
as if the field had been typed into, and F$UNCKEY is set to "LKUP". If HOME is used 
to exit a LOOKUP window for which CR_EXIT has been specified, the RMO is called 
with mode set to "FX" and F$UNCKEY set to "LRET" (see Section 5.11 “LOOKUP 
Window”).
16 - 26   ADMINS User Guide



F$UNCKEY - Function Key Detection in RMO
If a text field window is exited in either of the following circumstances: 1) via "quit" 
(no changes to the document are saved); 2) the window was open on a display-only 
field; the RMO is called with mode set to "FX" and F$UNCKEY set to "TRET". If a text 
field is changed (if the field is editable and you leave the window via "exit") then the 
RMO is called as usual when a field has been typed into.

The TRANS functions "prt" (print screen) and "ref" (refresh screen) are NOT 
"trapped" as "function keys" when they are used by themselves. (The RMO is NEVER 
called with M$M set to "FX" and F$UNCKEY set to "prt" or "ref".) However, these two 
keystrokes are "trapped" as terminator keystrokes (i.e. when S$S is set to the name of 
the field just typed into. Provided only a function key was pressed (i.e. M$M EQ 
'FX') you may, in the RMO, instruct TRANS to ignore the function keystroke, or to 
reinterpret the function keystroke, by resetting F$UNCKEY to one of the following 
values:

If C$C is set when M$M = 'FX' then TRANS acts as if F$UNCKEY was set to 'SKIP'. 
TRANS ignores the keystroke, and the cursor is placed at the field indicated by C$C.

If at least one regular character was typed into the field on the screen before a 
function key is pressed, the RMO is called normally (i.e. S$S is set to the field's name 
and M$M is set to the current mode). F$UNCKEY is still set with the appropriate 
symbolic value, but TRANS acts as if the input string was terminated by a RETURN 
(Carriage Return). You cannot reset F$UNCKEY in this case, to cause the function 
key to be ignored or reinterpreted, but since you can, in the RMO, detect which 
function key was pressed (TRANS puts its symbol into F$UNCKEY), you may take 
any action required, e.g. if an input string is terminated by an UP arrow instead of a 
RETURN, you might use C$C to move the cursor to the previous, instead of the next 
editable field.

9.  This behavior is changed if the statement "f$unckey=physical" is present in the 
TRANS environment file. "f$unckey=physical" tells TRANS to always load the 
standard function keystroke name into F$UNCKEY, whether or not the 
keystroke is part of the TRANS environment (see Section 6.15.6 
“F$UNCKEY=PHYSICAL, Load F$UNCKEY with Physical Key Names”). The 
TRANS standard keystrokes are described in Section 6.1 “Standard Functional 
Keystrokes”. The TRANS environment is described in Section 6.15 “The TRANS 
Environment File”. The tkb file is described in Appendix G: “TKB File: Keystroke 
Table”. The names of TRANS standard keystrokes are always returned to 
F$UNCKEY as all lowercase, e.g. "exit", "home", "menu". Standard function 
KEY_NAMEs from the tkb file are always returned to F$UNCKEY as all 
uppercase, e.g. "CT_B", "HOME", "F16". If the KEY_NAME from the tkb file is 
longer than 4 characters it is truncated to the first four characters.

Value Action

SKIP Tell TRANS to ignore the keystroke.

RET Tell TRANS to act as if <C.R> was pressed.

HELP Invoke TRANS HELP (Act as if HELP was pressed).

REFR Refresh the DR and ER fields.

DONE Ignore lookup.rightclick behavior at ADM$MPOS-
induced RMO calls.(see Section 6.15.16.1 “TRANS 
main program”)
ADMINS User Guide  16 - 27



F$UNCKEY - Function Key Detection in RMO
16.14.1  F$UNCKEY - Example

The following RMS causes the current record to be deleted if the Remove keystroke 
is pressed when the cursor is at the key field (EMPL#):

     FILE ADM$DEMO:PERSONNEL.MAS
     *
     M$M/A2
     S$S/A6
     F$UNCKEY/A4
     STAT/I
     CTRLD/I(3)  4 4 0
     *
     

     PROGRAM
     *
     *  Delete current record, if cursor at key field <remove> 
     *  is pressed.
     *  
     IF ((M$M EQ 'FX') AND (S$S EQ 'EMPL#') AND (F$UNCKEY EQ 'REMO')) 
        THEN STAT = SETKEY(CTRLD) END
16 - 28   ADMINS User Guide



F$UNCKEY - Function Key Detection in RMO
16.14.2  Detecting User Defined Function Keys (VT terminals)

On VT compatible terminals F$UNCKEY can detect up to 15 extra user-defined 
function keystrokes (UDKs)10 that normally are not detected by TRANS, or by the 
terminal driver. These extra function keys are:

To enable TRANS to detect UDKs (and to load F$UNCKEY with the proper 
mnemonic) assign the F$UNCKEY mnemonics for the UDKs to the logical name 
ADM$UDK. For example:

    $ assign "SF7,SHLP" ADM$UDK

tells TRANS to detect and load F$UNCKEY when Shift F7 and Shift Help are pressed, 
but to ignore all the other UDKs (that perhaps are used in other applications).

If the ADM$UDK logical name has the single value "ALL", all 15 UDKs will be 
detected by F$UNCKEY:

    $ assign "ALL" ADM$UDK

This facility is implemented as follows:

1. When TRANS is called it checks the value of logical name ADM$UDK. If 
ADM$UDK is assigned it downloads unique values for each of the specified 
UDKs.

10.   See Section 13.9 “UDK: Load User Defined Function Keys” for more information 
about UDKs.

VT Function Keys F$UNCKEY Mnemonic

Shift F6 through Shift F14 SF6-SF14

Shift Help SHLP

Shift Do SDO

Shift F17 through Shift F20 SF17 - SF20
ADMINS User Guide  16 - 29



Subscreen Status and Control: ADM$SUBSCR
2. The values are assigned according to the following table:     

3. When any of the downloaded shift-function key are pressed, TRANS recognizes 
its unique value and loads F$UNCKEY with the corresponding mnemonic.

16.15  Subscreen Status and Control: ADM$SUBSCR

The special field ADM$SUBSCR/A18 provides the RMO with subscreen status and 
control.11 If ADM$SUBSCR is declared as an A18 field, TRANS sets it to the current 
subscreen name or "MAIN", if there is no current subscreen. To change to another 
subscreen, the RMO may set ADM$SUBSCR to the new subscreen name. Note that 
C$C12 can be set in the same RMO call as ADM$SUBSCR, to change subscreens and 
put the cursor at some field other than the first editable field in the subscreen.

Since the main screen will typically have very little on it when subscreens are in use, 
it will often be desirable for one of the subscreens to appear immediately when the 
user enters the screen. This is accomplished by setting ADM$SUBSCR at the post-link 
BEGREC RMO call.

F$UNCKEY 
mnemonic

Value loaded

SF6 <ESC>(6

SF7 <ESC>(7

SF8 <ESC>(8

SF9 <ESC>(9

SF10 <ESC>(A

SF11 <ESC>(B

SF12 <ESC>(C

SF13 <ESC>(D

SF14 <ESC>(E

SHLP <ESC>(F

SDO <ESC>(G

SF17 <ESC>(H

SF18 <ESC>(I

SF19 <ESC>(J

SF20 <ESC>(K

11.   See Section 5.14 “Subscreens”.
12.   See Section 16.3 “Cursor Control: C$C and C$MULREC”
16 - 30   ADMINS User Guide



ADM$ENTER: Force TRANS Field Entry Processing
If ADM$SUBSCR is present, then whenever TRANS switches from one subscreen to 
another, or between the main screen and a subscreen, there is a special RMO call. S$S 
is set to "BEGSCR"; M$M is set to "UP", "AP", or "IN"; and ADM$SUBSCR contains 
the new subscreen name. This special call can be used, for example, to set values of 
fields in the subscreen, to set C$C, or to call the EDFLDS subroutine, etc. This 
BEGSCR RMO call and the ADM$SUBSCR field can be used together to display 
several subscreens in succession: at the a BEGSCR call, set ADM$SUBSCR to another 
subscreen name to display that subscreen immediately after the current one is 
displayed.

16.16  ADM$ENTER: Force TRANS Field Entry 
Processing

The special integer field ADM$ENTER provides easy method to have TRANS act as 
if a field had been entered, without actually entering any field (or simulating entering 
a field). This facility is useful to retry links when link keys are changed, but no field 
has been entered (links ordinarily are only retried if a link's KC or C field is typed 
into), to refresh fields on the screen, or to cause additional RMO calls.

Setting ADM$ENTER to 1 in the RMO makes TRANS behave as though an 
editable field on the screen named ADM$ENTER had been typed (and changed) 
by the user.

Normally, ADM$ENTER is set at a post-link RMO call. All normal processing occurs 
after the post-link call. Then, at the point where TRANS would normally wait for user 
input at the next field, TRANS instead sets ADM$ENTER to zero and issues pre-link 
and post-link RMO calls with S$S set to 'ADM$ENTER' (truncated to 'ADM$EN' if 
S$S is A6). After the ADM$ENTER calls, all normal processing occurs, just as if a field 
had been entered. (If ADM$ENTER is set at a pre-link call, the normal post-link call 
occurs, followed by the pair of S$S = ADM$ENTER calls.)

The RMO can force LINKs to be retried by making ADM$ENTER a C field in one or 
more LINK paragraphs.13   LINK KC fields can be set at a pre-link ADM$ENTER call. 
The RMO can get another pair of calls by setting ADM$ENTER again at an 
ADM$ENTER call. C$C14 (cursor control) can be set either before or at ADM$ENTER 
calls: it takes effect after the ADM$ENTER calls occur.

13.    See Section 5.4 “External Files”
14.    See Section 16.3 “Cursor Control: C$C and C$MULREC”
ADMINS User Guide  16 - 31



Special Keystroke to Call the RMO
16.17  Special Keystroke to Call the RMO

TRANS can be instructed to perform a special RMO call, regardless of where the 
cursor is, by using the RMO15 keystroke (either manually or via SETKEY). This 
feature is enabled if the character "7" is included in the string assigned to the logical 
name OPTION (see Appendix A: “Options”).

If enabled, and the RMO key is pressed before entry into a field, TRANS calls the 
RMO with S$S set to the field the cursor is on, and M$M set to 'XX'. This feature can 
be used, for example, to trigger special RMO processing regardless of where the 
cursor is, or processing that would not occur at any of the other RMO calls.

16.18  Using the RMO with Table Driven Error 
Messages

Error messages for Check statements can be placed in an ADMINS data file keyed on 
an integer error message code number, with an alphanumeric field containing the 
message text. Using table driven error messages involves several screen components:

1. An error message table (see Section 5.5.6.1 “Table Driven Check Statement Error 
Messages”);

2. A LINK paragraph in the TRS (see Section 5.4.1 “LINK Paragraph”);
3. Check statement(s) in the TRS (see Section 5.5.6.1 “Table Driven Check 

Statement Error Messages” and Section 16.18.1 “Check Statement Syntax for 
Table Driven Messages”);

4. Optional RMO logic "behind" the screen (see Section 16.18.2 “Error Message 
Table Example”).

15.   By default, the RMO keystroke is CTRL/L.
16 - 32   ADMINS User Guide



Using the RMO with Table Driven Error Messages
16.18.1  Check Statement Syntax for Table Driven Messages

Check statements can activate the link to the error message table in two ways.

The RMO "behind" the screen can set the local integer field E$RR equal to the 
appropriate error code number when the RMO logic detects an error condition. The 
TRS contains a check statement which handles errors triggered via E$RR:

     C E$RR NE 0
     Error: no message

E$RR may also be used in a CLF Check Statement.

When the RMO sets E$RR to a positive non-zero value, this Check statement is 
triggered. The link to the error message table executes using the value of E$RR set by 
the RMO, and the message from the table is displayed on the error message line of 
the screen. This is a special link that is performed after an error condition is triggered 
by a Check statement. If there is no record in the error message table with the code 
which is in E$RR, or if the E$RRMSG field in the table is blank, then the message in 
the TRS (above, "Error: no message") is displayed on the terminal. The E$RR field is 
automatically reset to zero by TRANS before the next RMO call.

The other method for triggering table driven error messages does not require an 
RMO and is described in Section 5.5.6.1 “Table Driven Check Statement Error 
Messages”.

These two kinds of table driven check statements, as well as standard Check 
statements, may be mixed within a screen.

16.18.2  Error Message Table Example

ERRORS.TAB holds error messages used by many different screens. In particular, 
message 21, "Invalid Program Code for this Cost Center" and message 32, "Invalid 
Object Code for this Program Code" have many applications.

     *    ERRORS.DEF 
     *    Table driven error message file 
     *
     TAB 250
     ERROR# I KEY1      "Error Number"
     MESSAGE A60        "Error Message"

The contents of ERRORS.TAB are displayed below.

Error # Message

1 Invalid Fund Code

2 Invalid Cost Center Code

3 Invalid Program Code

4 Invalid Object Code

5 Invalid Appropriation Code

...

20 Invalid Cost Center for this Fund Code

21 Invalid Program Code for this Cost Center
ADMINS User Guide  16 - 33



Using the RMO with Table Driven Error Messages
The following budget entry screen, links to the error message table ERRORS.TAB to 
obtain the messages for error conditions detected in the BUDENTRY.RMO.

     *    BUDENTRY.TRS
     *      
     BUDENTRY BUDGET.MAS 1 BUDENTRY.RMO INSERT NOMSG
     *
     LINK ERRORS.TAB
     KC E$RR
     L MESSAGE E$RRMSG
     END
     *
     LINK PROGRAM.TAB
     KC PROG
     L DESC
     END
     *
     LINK OBJECT.TAB
     KC OBJ
     L DESC ODESC
     END
     *
     E COSTCTR
     E PROG
     E OBJ
     E BUDGET
     *
     DR E$RR/I
     DR E$RRMSG/A60
     *
     C E$RR NE 0
     Error: No Message
     ...

When the local field E$RR is set to a non-zero value in the RMO, then the link to 
ERRORS.TAB displays an error message at the bottom of the screen. When inserting 
a new record, BUDENTRY.RMO sets E$RR to a non-zero value when a program code 
other than 401 or 402 or 403 is entered for cost center code B, or when an object code 
greater than 300 is entered for a program code between 121 and 125.

     * BUDENTRY.RMS
     FILE BUDGET.MAS
     LOCAL
     M$M/A2
     S$S/A6
     E$RR/I
     PROGRAM
     ...
     IF M$M EQ 'IN' THEN GOTO NEWREC END
     ...
     NEWREC: IF S$S EQ 'PROG' AND COSTCTR EQ B AND 
             (PROG NE 401 AND 402 AND 403) THEN E$RR = 21 ;
             GOTO DONE END ;
             IF (S$S EQ 'OBJ') AND (PROG BET 121 AND 125) 
             AND (OBJ GT 300) THEN E$RR = 32 ;
             GOTO DONE END
     ...
     DONE: STOP

...

32 Invalid Object Code for this Program Code

...

Error # Message
16 - 34   ADMINS User Guide



Calculated Branches with Variable Branch Keys
16.19  Calculated Branches with Variable Branch 
Keys

The special RMO array B$KEYFIELDS/An(n) enables a single calculated branch16 to 
be used with any set of key fields, i.e. to branch to any number of screens with 
different key structures.

B$KEYFIELDS must be an alpha (An) array dimensioned for at least two elements (if 
not, then this field has no special effect).

If a calculated branch has explicit key fields in the BRANCHES paragraph, then 
B$KEYFIELDS has no effect and TRANS uses the explicitly stated fields to search for 
a record in the branch target screen. If a calculated branch does not list any key fields 
in the BRANCHES paragraph, TRANS will look for the B$KEYFIELDS array. If the 
B$KEYFIELDS array does not exist, TRANS branches with no key values, to the top 
of the target file. If B$KEYFIELDS does exist, its contents are used as the names of the 
key fields to use in the branch: e.g. the name of the first key field is in 
B$KEYFIELDS(1), the second is in B$KEYFIELDS(2), etc.

Field names cannot be abbreviated in the B$KEYFIELDS array. The array element 
after the last key field name must be blank (if B$KEYFIELDS(1) is blank, TRANS 
branches with no key value). The developer must insure that the fields named in 
B$KEYFIELDS have the correct field types for the keys of the target screen.

For example, if a TRS contains

     BRANCHES
     . 
     .
     A B$BRANCH/XX
     Branch to specified screen.
     .
     .

and the RMS contains:

     LOCAL
     .
     .
     B$KEYFIELDS/A10(5) 'K1' 'K2' ' '
     .
     .

then when branch A is requested, TRANS forms the branch key using the values of 
fields K1 and K2. The key field names in B$KEYFIELDS can be changed at any time, 
including the EOFREC RMO call.

16.   see Section 5.7.3 “Calculated Branches”
ADMINS User Guide  16 - 35



Managing Ignored Record Locks - ADM$NOLOCK and ADM$NLREC
There is a second way to use B$KEYFIELDS: instead of loading the array with key 
field names, it can be loaded with key field values. Convert the key field values to 
alpha (An) format (use NCAT or FCAT subroutine)17 and place them in the 
B$KEYFIELDS array before branching.

If B$KEYFIELDS(1) is not a field name, TRANS will assume that the B$KEYFIELDS 
array contains key values rather than key field names. You cannot mix field names 
and field values in B$KEYFIELDS (TRANS will exit with a message). However, any 
'value' string in B$KEYFIELDS can begin with 'A$': if it does, TRANS assumes the 
string is a logical name which contains a branch key value in alpha format.18 When 
B$KEYFIELDS is used to contain key values rather than key names, TRANS handles 
the B$KEYFIELDS array the same way as it handles key values provided on the 
TRANS command line (see Section 6.13 “Entering TRANS On A Specific Record”).

16.20  Managing Ignored Record Locks - 
ADM$NOLOCK and ADM$NLREC

The special local RMO integer field ADM$NOLOCK and local RMO alphanumeric 
array ADM$NLREC provide information which enable the RMO running with 
TRANS to control the screen when record locks are ignored:19  i.e., when the user 
answers "I" at the "Wait or Ignore" prompt, or when file option 'I' is invoked and the 
record is already locked by another user. With file option 'I', the RMO can be given 
complete control over record locking conflict resolution (the user isn't prompted).

16.20.1  ADM$NOLOCK: Record Lock Ignored Flag

ADM$NOLOCK/I allows the RMO to detect when the user elects to ignore a record 
lock at the "Wait or Ignore" prompt, or when file option 'I' is in effect and the record 
is already locked by another user.

If ADM$NOLOCK is declared in the RMO it is maintained automatically by TRANS, 
and is normally (i.e., when no locks have been ignored) set to zero. If a lock on the 
active file is ignored, ADM$NOLOCK is set to 1 before the BEGREC pre-link RMO 
call in a single record screen, or before the MULREC pre-link call in a multi-record 
screen. If the active record is locked successfully but the user subsequently ignores a 
lock on one or more LINK W files, ADM$NOLOCK is set to 1 before the post-link 
RMO call.

17.  see Appendix H.3 “Concatenation Subroutines”
18.  The only way to branch with a BLANK alpha key field value, is to assign the 

blank to an "A$" logical name and put the "A$" logical name, not the blank, in 
B$KEYFIELDS.

19.  See Section 19.3 “Resolving Record Access Conflicts”
16 - 36   ADMINS User Guide



Managing Ignored Record Locks - ADM$NOLOCK and ADM$NLREC
Thus, the RMO must check ADM$NOLOCK and take appropriate action at every call 
(or at least every post-link call) where a lock may have been ignored.

In either case, once ADM$NOLOCK is set, it remains set until the user goes to 
another record in the active file or branches.

16.20.2  ADM$NLREC: Identify Ignored Locks

The local alphanumeric array ADM$NLREC20 allows the RMO to detect which 
record locks have been ignored. The RMO could then take different actions 
depending on which records are not locked.

If ADM$NLREC is declared in the RMO it is maintained automatically by TRANS 
and should not be set by the RMO.

If a record lock on the screen's main file is ignored, ADM$NLREC's first element , i.e. 
ADM$NLREC(1), is set to "MAIN" at the BEGREC pre-link and post-link RMO calls 
in a single-record screen, or at the MULREC calls in a multi-record screen.

If a record lock on a LINK W file is ignored, then at the immediately following post-
link RMO call, the LINK name prefix21 is placed in the first non-blank element of 
ADM$NLREC.

Several record locks may be ignored at BEGREC/MULREC or at the entry of a field 
which sets key or C fields for more than one LINK W. "MAIN" and/or all the LINK 
name prefixes for all ignored locks appear in ADM$NLREC at the post-link RMO 
call. A blank element in the ADM$NLREC array indicates that the array contains no 
more entries.

TRANS blanks out all elements of ADM$NLREC after every post-link RMO call. 
Therefore, ADM$NLREC must be checked at every RMO call where a record lock 
may have been ignored: at either the pre-link or the post-link BEGREC/MULREC 
call, and at post-link calls when field entry changes key fields in LINK W's.

The ADM$NLREC array should be dimensioned at least large enough for the 
number of LINK W's in the screen, plus two. This will enable it to contain, at 
maximum, "MAIN" and the link name prefix of every LINK W in the screen, plus a 
terminating blank element.

ADM$NLREC can have any alpha (An) field size. If "MAIN" or a LINK prefix name 
is too long to fit in the specified field size, it is truncated. The field size should be large 
enough to contain unique strings for "MAIN" and for all LINK prefix names.

20.  ADM$NLREC can be used regardless of whether ADM$NOLOCK (see Section 
16.20.1 “ADM$NOLOCK: Record Lock Ignored Flag”) is also in the RMO: these 
two features are independent.

21.  See Section 5.4.1 “LINK Paragraph” for the "=PREFIX" link name syntax. To use 
ADM$NLREC without automatically renaming the link fields, use the syntax "-
PREFIX" instead of "=PREFIX". The "=PREFIX" or "-PREFIX" syntax must be used 
in LINKs with writeback in order for those links to be visible to the RMO in 
ADM$NLREC. If for some reason the RMO does not need to know about ignored 
locks on a certain LINK with writeback, then that LINK need not have a prefix.
ADMINS User Guide  16 - 37



Multi-Record RMO Support
16.21  Multi-Record RMO Support

RMOs operating behind multi-record screens22 have several uses, some example are 
as follows:

1. To maintain summary information in local RMO fields for display on the multi-
record screen.

2. To allow record selection on multi-record screens using the S$SEL fields as 
described in Section 16.10.1 “Implementation of Record Selection”.

3. To allow automatic branching based on the contents of a particular record in a 
multi-record screen. (An automatic branch may be executed as each record is 
displayed.)

4. To control when LINK files are written (using W$W).

RMOs behind multi-record screens get an additional call when there is a page break 
on the screen. S$S is set to "PGBRK" and M$M is still set to "UP".

When the cursor is moved from record to record on a multi-record screen display, the 
links will be re-evaluated and the RMO will receive a pre-link and post-link 
"MULREC" call, i.e. S$S is set to "MULREC". The reason for re-executing the link and 
RMO logic is so that if a branch is taken while the cursor is at a particular record on 
the screen, the branch will be based on correct values.

When the user moves to a new record in a multi-record screen (when a MULREC 
RMO call would occur), the values of fields in that record are refreshed on the screen 
immediately if they have changed since the page of records was originally displayed. 
Fields are refreshed both in the heading part of the screen and in the repeating line(s) 
for the new record. This ensures that the values shown on the screen for the current 
record are up to date. Any local fields displayed on the screen, or local fields which 
link information for display on the screen, must be calculated at MULREC as well 
as BEGREC.

Local ER fields23, which in principle may be updated, should not be used on the 
repeating portion of the screen. If a local or calculated field is needed for display on 
the repeating portion of the screen, the field should be made DR, i.e. display only.

If there is an RMO and the multi-record screen contains at least one LINK W, then 
there is an EOFREC call every time TRANS leaves the active record, rather than just 
when TRANS goes to a new page of records. At these EOFREC calls, the user may set 
field values and may set the special field W$W (as described in Section 16.1 
“Controlling Changes Written To Disk”) to control when changes in LINKed fields 
are written back to the LINK file. These EOFREC calls should not be used for any 
other purpose. In particular, ER or DR fields set at EOFREC calls will generally not 
be refreshed on the screen.

22.  see Section 5.9 “Multi-Record Screens”
23.Main file and linked-in fields that are referenced in the TRS as ER fields (because 

they might be changed by the RMO) may be used (and commonly are used) in 
the repeating portion of a multirecord screen. 
16 - 38   ADMINS User Guide



Multi-Record RMO Support
16.21.1  ADM$RECNO: Record Position in Multi-Record Screen

If the special integer field ADM$RECNO is present in the RMO TRANS will set it to 
the current record number in a multi-record screen. ADM$RECNO is set correctly at 
post-link BEGREC and MULREC RMO calls (not at pre-link calls).

For example, if a record is the top record displayed on the screen, TRANS will set 
ADM$RECNO to 1 for that record. If a record is the seventh record displayed on the 
screen, TRANS will set ADM$RECNO to 7 for that record.

16.21.2  Multi-Record Summary Screens

Local RMO fields in the heading of a multi-record screen can be used to allow the 
RMO behind a multi-record screen to maintain summary information on the multi-
record screen. That is, the heading of the multi-record screen can contain summaries 
(sub-totals), while the rest of the screen contains the repeating detail records.

A multi-record screen stops displaying records at a "page break". A page break 
occurs for any of the following reasons:

1. The requisite number of records have been displayed as per the records per 
screen keyword (see Section 5.3 “Screen Header Line”).

2. The BREAK (see Section 5.9.2 “BREAK In a Multi-Record Screen”) criteria have 
been satisfied.

3. The S$SEL local field in the RMO behind the screen causes a page break, as 
described in Section 16.10.1 “Implementation of Record Selection”.

TRANS will display local fields in the heading as they are altered by the RMO. 
Maintenance of relevant and accurate summary information in these fields is the 
responsibility of the RMO behind the multi-record screen.

16.21.2.1  Example of a Multi-Record Summary Screen
We have a personnel file ordered by department number containing salary per 
employee. We wish to create a multi-record screen showing information about one 
employee per line and show number of employees and total salary per screen and per 
department displayed thus far.

     *      DEPT.DEF
     MAS 2000
     DEPT# X999 KEY1
     EMPL# X99999 KEY2
     NAME A30
     SALARY D

     *      DEPT.TRS
     DEPT DEPT.MAS 5 DEPT.RMO NOMSG BREAK DEPT#
     DR TEPS/I         "total employees per screen"
     DR TSPS/D         "total salary per screen"
     DR TEPDD/I        "total employees per department displayed"
     DR TSPDD/D        "total salary per department displayed"
     E DEPT#
     E EMPL#
     D NAME
     D SALARY
     SCREEN
     CE DEPARTMENT REVIEW SCREEN
     BL
          ---TEPS  THIS SCREEN                 -----TSPS
          --TEPDD  THIS DEPARTMENT SO FAR    ------TSPDD
ADMINS User Guide  16 - 39



Multi-Record RMO Support
     BL
     DEPT#  EMPL#  NAME                           SALARY
     DEP-   EMP--  NAME----------------------  ------SAL
     END

     *      DEPT.RMS
     FILE DEPT.MAS
     LOCAL
     S$S/A6
     M$M/A2
     LAST/X999
     TEPS/I
     TSPS/D
     TEPDD/I
     TSPDD/D
     PROGRAM
     *
     * Process only at BEGREC in UP mode.
     *
     IF S$S NE 'BEGREC' OR M$M NE 'UP' THEN GOTO DONE END
     *
     * Check if this record is for the same department.
     *
     IF DEPT# EQ LAST THEN GOTO SAME END
     *
     * If it is for a new department, reset all the counters.
     *
     TEPDD = 1 ; TSPDD = SALARY
     *
     NEWPAGE: TEPS = 1 ; TSPS = SALARY
     LAST = DEPT#
     DONE: STOP
     *
     * If it is the same department, add to the counters.
     *
     SAME: TEPDD = TEPDD + 1 ; TSPDD = TSPDD + SALARY
     TEPS = TEPS + 1 ; TSPS = TSPS + SALARY
     *
     * If employees per screen is greater than 5, that
     *  means we are actually on a new screen.
     *
     IF TEPS GT 5 THEN GOTO NEWPAGE ELSE GOTO DONE END

The displays for department 133 which has eight employees might look as follows. 
(The second screen is displayed after the user presses the NEXT keystroke to the first 
screen.)

               DEPARTMENT REVIEW SCREEN

                5     THIS SCREEN                 79,600
                5     THIS DEPARTMENT SO FAR      79,600

     DEP#   EMPL#    NAME                         SALARY
     133    00462    JONES, DAVID                 16,300
     133    05031    SMITH, PETER                 15,200
     133    06428    BARNES, FRANK                16,300
     133    06513    WILSON, MARY                 17,100
     133    07002    ALBERT, BOB                  14,700

User presses NEXT

                DEPARTMENT REVIEW SCREEN

                3      THIS SCREEN                49,200
                8      THIS DEPARTMENT SO FAR    128,800

     DEPT#   EMPL#    NAME                        SALARY
     133     07814    WORTH, SUE                  16,500
     133     08007    HILL, PETER                 18,100
     133     09138    JAMISON, HARRY              14,600
16 - 40   ADMINS User Guide



Subroutines Used with TRANS
16.22  Subroutines Used with TRANS

In general, all the subroutines described in Appendix H: “Subroutines” may be used 
in an RMO behind the screen. The subroutines in the following list, however, have a 
specific functionality or special utility when used in TRANS.

Subroutine Description See:

ASKSCR Prompt screen from RMO. Appendix H.15.2 
“ASKSCR: Prompt 
directly from RMO”

AUTOBR Automatic branch control. Appendix H.14.1 
“AUTOBR: Automatic 
Branch Control”

CTRLP Print a portion of a screen. Appendix H.14.3 
“CTRLP - Print All or 
Part of a Screen in 
TRANS”

DISPFLDS Modify list of fields displayed. Appendix H.14.4 
“DISPFLDS: Modify 
Field Display List in 
TRANS”

EDFLDS Modify cursor order. Appendix H.14.5 
“EDFLDS - Modify List 
of Editable Fields in 
TRANS”

EDIT Text editing on a paragraph. Appendix H.6.5 “EDIT: 
"Paragraph" Editing in 
TRANS”

MOVFLD Move multiple fields between files, 
generalized.

Appendix H.14.11 
“MOVFLD - Move 
Fields Among Files 
Accessed via TRO”

NOEK Read with no echo. Appendix H.14.7 
“NOEK - Set TRANS to 
Read Next Field With 
No Echo”

PAUSE Pause. Appendix H.14.8 
“PAUSE - Create a 
Pause in TRANS”

READBR Make branch screens read-only. Appendix H.13.12 
“POPUP - Displaying a 
Popup Menu in the 
Screen”

REFGRP Refresh shared memory emulation. Appendix H.10.4 
“REFGRP - Refresh 
Shared Memory 
Emulation in TRANS”
ADMINS User Guide  16 - 41



Subroutines Used with TRANS
      

SETKEY Simulate keystrokes. Appendix H.14.10 
“SETKEY - Simulate 
Keystrokes in TRANS”

SPAWN Create subprocess Appendix H.15.11 
“SPAWN - Create 
Subprocess from 
ADMINS Command”

SYNC Synchronize processes. Appendix H.15.14 
“SYNC - Synchronize 
Access to a File”

TTCOM Communicate with another terminal. Appendix H.15.15 
“TTCOM - 
Communication With 
Another Terminal”

VIEWTEXT Display text file. Appendix H.6.9 
“VIEWTEXT: Display 
Text File in TRANS”

BATCHJOB Submit ADMINS command file to batch 
queue.

Appendix H.15.3 
“BATCHJOB: Submit 
Batch Job”

Subroutine Description See:
16 - 42   ADMINS User Guide



TX$INITF: Automatic Initialization of Text Fields
16.23  TX$INITF: Automatic Initialization of Text 
Fields

The general discussion of initialization of text fields that appears in Appendix J.7 
“The Text Initialization File” describes the purpose and syntax of Text Initialization 
Files. Appendix I.2.3 “Text Fields” describes how to associate a particular text 
initialization file with a text field. This section describes how the RMO special local 
field TX$INITF can control which of the initialization files available in the Data 
Dictionary will be used to initialize a text field.

When TRANS is about to open the TED window for edit on a text field, it checks the 
contents of the local RMO integer field TX$INITF. If TX$INITF is present, TRANS 
will attempt to use its value to search the "Initialization Files for Text Fields" 
Codelist Table24 in the ADMINS Data Dictionary. If an entry for that value is found 
in the codelist table TRANS will use the initialization file specified in the description 
field for that codelist entry to initialize the file TED is about to edit.

16.23.1  TX$INITF Example

Assume that a screen includes a text field named TEXT, and that we have written the 
following initialization file for it (see Appendix J.7 “The Text Initialization File”):

Customer: <%40sL$CUSTNAME>    Account.: <%12sL$ACCOUNT>    Date....: 
<%TODAY>

Further assume that we have placed an entry (code value "2") identifying this 
initialization file in the Data Dictionary ADM$DD_TEXT_INITFILES codelist table.

We can then have the RMO:

1. Check that we are about to edit field TEXT. If we are, check that TEXT is empty. 
(If it isn't empty we don't want to initialize it!)

2. Load the logical names L$ACCOUNT and L$CUSTNAME with the account 
number (ACCOUNT) and customer name (CUSTNAME) from the virtual 
record, to be automatically passed to the initialization file.

3. Use the TX$INITF field to specify initialization file number 2.
4. The initialization file is automatically inserted at the beginning of TEXT, with 

the values of the L$ACCOUNT and L$CUSTOMER logical names automatically 
substituted, as follows:

              Customer: Ms. Jenny Lee
              Account.: X92080215588
              Date....: 12-Jan-1991

24.   This table is DD ID# CT0013, Codelist Table name is 
ADM$DD_TEXT_INITFILES.
ADMINS User Guide  16 - 43



ADM$LRC: Log RMO Calls
The following RMO code would accomplish this:

.
    .
    TX$INITF/I
    F$UNCKEY/A4
    STAT/I
    VALUE/A24
    LOGNAM1/A24 'L$ACCOUNT'
    LOGNAM2/A24 'L$CUSTNAME'
    .
    .
    IF S$S NE 'TEXT' THEN STOP END      ! Do only for TEXT field
    IF TEXT NE ' ' THEN STOP END        ! Do only if TEXT is empty
    IF M$M EQ 'FX' AND F$UNCKEY EQ 'edit' THEN ;
 *                                      ! If EDIT just pressed to
 *                                      ! edit TEXT...
       TX$INITF = 2 ;                   ! Use initfile # 2
       VALUE = NCAT(VALUE,ACCOUNT) ;
       STAT = CRLOG(LOGNAM1,VALUE) ;    ! Create L$ACCOUNT
       STAT = CRLOG(LOGNAM2,CUSTNAME) ; ! Create L$CUSTNAME
       END

16.24  ADM$LRC: Log RMO Calls

If the reserved field ADM$LRC/I (for Log RMO Calls) is present in the virtual record 
and set to a non-zero TRANS will log the values listed below upon entry to the RMO 
and exit from the RMO. 

On entry  to RMO: 

M$M
S$S
F$UNCKEY

When the RMO exits:

C$C
B$B
R$R
W$W
C$MULREC

The values are logged in a file with the same name and directory as the RMO, with a 
file extension of .lrc, (i.e. if the rmo is “c:\myfiles\obj\sched_insp.rmo” the log file 
produced will be “c:\myfiles\obj\sched_insp.lrc”

Here’s an example of the contents of a log file produced via ADM$LRC:

M$M S$S                F$UNCKEY    C$C                B$B R$R W$W C$MULREC
UX  ADM$LRC            RET                                           
UP  ADM$LRC            RET                                           
FX  N                  RET                                           
FX  FLD                RET                                           
FX  TEST               down                                          
UP  EOFREC             down                                          
UX  MULREC             down                                          
UP  MULREC             down                                          
FX  TEST               next                                          
UP  EOFREC             next                                          
UX  BEGREC             next                                          
UP  BEGREC             next                                          
UX  BEGREC             next                                          
UP  BEGREC            next                                     
16 - 44   ADMINS User Guide



ADM$LRC: Log RMO Calls
ADMINS User Guide  16 - 45



ADM$LRC: Log RMO Calls
16 - 46   ADMINS User Guide



Chapter 17:External Data Files

This section describes ADMINS commands for dealing with non-ADMINS data files. 
On OpenVMS systems ADMINS provides facilities for reading and writing directly to 
tape, as well as to external data files on disk. 

Tools are needed to examine these files, to acquire them into ADMINS files, and to 
create external non-ADMINS files from data in ADMINS files. The various commands 
provide the following functions:

                 Acquire     Create     Examine
                 -------     ------     -------
     Tape*       ACQUIR      DATAP      TAPDMP
                 TAPCOPY     TAPSPL
    
     Disk        FACQUIR     FDATAP
                 TXTACQ
                 IE          IE                  

Briefly, the function of each command is as follows:

The ADMINS OpenVMS tape handling commands, ACQUIR, DATAP, TAPDMP, 
TAPCOPY, and TAPSPL, all use the logical name ADM$MAGTAP in order to 
determine which physical tape drive should be used. Further, the commands all 
assume the tape has been loaded on the tape drive, is ready to be accessed, and the 

ACQUIR Read data from a tape into an ADMINS file.

FACQUIR Read data from an external file into an ADMINS 
file.

TXTACQ Read data from an external text file into a ADMINS 
file.

DATAP Write data to a tape from an ADMINS file.

FDATAP Write data to an external file from an ADMINS file.

TAPDMP Print (dump) the contents of a tape.

TAPCOPY Copy a tape to an external disk file which can then 
be read with FACQUIR.

TAPSPL Write data to a tape from an external file containing 
“print lines”, e.g., an “ADMINSxx.LIS” file created 
by REPORT. This command could be used to write 
a tape with report output which could then be used 
as input to a COM (computer output microfilm/
microfiche) device.

IE Transfer information between standard ASCII files 
and ADMINS data files. IE has capabilities that are 
especially useful for passing information to and 
from the data interchange formats used by many 
popular desktop computer applications, such as 
spreadsheet and graphics applications.
ADMINS User Guide   17 - 1



TAP Instruction File
OpenVMS MOUNT command has been issued. For example, if the device to be used 
is "MTA0" you would mount the tape on drive "MTA0", press the load button, and 
then issue the following commands:

     $ assign _mta0: adm$magtap
     $ mount/foreign mta0:

The remainder of this section is a complete description of the above commands.

17.1  TAP Instruction File

ACQUIR, FACQUIR, DATAP, and FDATAP require an instruction file to describe 
the layout of the record to be read or created either on the tape or in the external file. 
The file type of this instruction file is always ".TAP".

17.1.1  Outline of the TAP Instruction File

The general outline of a TAP instruction file is as follows. The options associated with 
a specific command are presented with the command.

     BPREC  RPBLK  [NRECS]  [ASCII]     file description line

     NAME  BPOS  BLEN  FORM  [OPT]      field description line(s)

Any line that begins with an asterisk (*) is ignored and may be used for comments.  
No other comment delimiters are supported.

17.1.2  TAP - File Description Line

The initial line of the TAP instruction file,

     BPREC RPBLK [NRECS] [ASCII]

describes the size and characteristics of the non-ADMINS (i.e. tape or external) file. 
The first two elements, BPREC and RPBLK, must be present.

• BPREC: The number of bytes per tape record or the maximum number of 
bytes per external record.

• RPBLK: The number of records per tape block.1 If the tape or disk file is not 
blocked, RPBLK would be 1. RPBLK is always 1 for FDATAP, i.e. files are 
never written "blocked" by FDATAP.
For example, the following file description line:
     50 10

would mean 50 bytes per logical record and 10 logical records per physical 
tape block for a physical block size of 500 bytes.

1.    Tape blocking is when, for efficiency, several logical records are written together 
as one large physical record. The large physical record is called a tape block. The 
efficiency is achieved because the tape contains fewer "inter-record gaps", i.e. less 
blank space.
17 - 2   ADMINS User Guide



TAP Instruction File
     250 40

would mean 250 bytes per logical record and 40 logical records per physical 
tape block for a physical block size of 10,000 bytes.
There will be cases where, rather than blocking several logical tape records 
into one physical tape block, one will find a single logical record spread across 
more than one physical tape block. For example, card image (80 byte) records, 
one card per physical tape block, with three card images per logical record. 
ACQUIR,FACQUIR and DATAP handle this situation correctly.2 When 
logical records cross physical blocks a notation of form "1/n" is used in the 
RPBLK field, where n is the number of physical records used to make up one 
logical record. BPREC is the physical record size (block size). In our example 
of 3 card images per logical record, BPREC would be 80 and RPBLK would be 
"1/3". The file description line would read as follows:
     80 1/3

• NRECS: The optional specification NRECS may be used in test runs. By 
placing a number as the third element of the initial line, the command using 
the TAP will only read or write that number of records. This number is for 
testing purposes only and must be removed to read or write the file 
completely.

•  ASCII: All commands assume the external file is EBCDIC. However ASCII 
tape or disk files can also be read or created. This is instructed by placing the 
word ASCII on the first line of the TAP instruction file. For example, "160 3 
ASCII" would read or write ASCII blocks of 480 bytes with 3 records per 
block.

17.1.3  TAP - Field Description Line(s)

The field description line in the TAP instruction file relates a specified portion of the 
logical record in a tape file or disk file to a particular field in an ADMINS data file. 
Field description lines have the following syntax:

     NAME BPOS BLEN FORM [OPT]
• NAME: The name of the field in the DEF of the ADMINS file into which this 

field is to be acquired or from which this field is to be written.
• BPOS: The starting byte position of the field in the tape or external file record. 

(Regardless of whether the records are blocked or not. BPOS is relative to the 
beginning of the logical record.)

• BLEN: The length in bytes of this particular tape or external file field.
• FORM: The format of this particular tape or external file field, and is one of 

the following:3

— E: The field contains EBCDIC or ASCII characters.
— EN: The field contains EBCDIC or ASCII numeric digits.
—  PD: The field contains packed decimal data.
—  B:The field contains binary data.

2.  FDATAP does not support records spread across blocks.
3.     In addition to the common formats described here, ACQUIR and FACQUIR have 

the capability to read other "optional" formats. These format options are 
described in Section 17.2.4.1 “ACQUIR and FACQUIR Format Options”.
ADMINS User Guide  17 - 3



TAP Instruction File
• OPT: The options associated with the field description lines are different for 
acquiring external data and writing external data. The ACQUIR/FACQUIR 
field description options are described in Section 17.2.4 “ACQUIR and 
FACQUIR Field Description Options” and the DATAP/FDATAP field 
description options are described in Section 17.4.3 “DATAP and FDATAP 
Field Description Options”.

17.1.4  Example Of A TAP Instruction File

     *VENDOR.TAP - used to transfer vendor information
     120 15
     #VEND       2     4    EN
     VENDOR     10    50    E
     ADDR       80    20    E
     CITYS     100    15    E
     ZIP       115     5    EN
17 - 4   ADMINS User Guide



TAP Instruction File
17.1.5  EBCDIC and ASCII Character Sets

              ASCII Character Set (Hexadecimal Codes)
     |Char  Code|Char  Code|Char  Code|Char  Code|Char  Code|
     | NUL   00 | SUB   1A | 4     34 | N     4E | h     68 |
     | SOH   01 | ESC   1B | 5     35 | O     4F | i     69 |
     | STX   02 | FS    1C | 6     36 | P     50 | j     6A |
     | ETX   03 | GS    1D | 7     37 | Q     51 | k     6B |
     | EOT   04 | RS    1E | 8     38 | R     52 | l     6C |
     | ENQ   05 | US    1F | 9     39 | S     53 | m     6D |
     | ACK   06 |blank  20 | :     3A | T     54 | n     6E |
     | BEL   07 | !     21 | ;     3B | U     55 | o     6F |
     | BS    08 | "     22 | <     3C | V     56 | p     70 |
     | HT    09 | #     23 | =     3D | W     57 | q     71 |
     | LF    0A | $     24 | >     3E | X     58 | r     72 |
     | VT    0B | %     25 | ?     3F | Y     59 | s     73 |
     | FF    0C | &     26 | @     40 | Z     5A | t     74 |
     | CR    0D | '     27 | A     41 | [     5B | u     75 |
     | SO    0E | (     28 | B     42 | \     5C | v     76 |
     | SI    0F | )     29 | C     43 | ]     5D | w     77 |
     | DLE   10 | *     2A | D     44 | ^     5E | x     78 |
     | DC1   11 | +     2B | E     45 | _     5F | y     79 |
     | DC2   12 | ,     2C | F     46 | `     60 | z     7A |
     | DC3   13 | -     2D | G     47 | a     61 | {     7B |
     | DC4   14 | .     2E | H     48 | b     62 | |     7C |
     | NAK   15 | /     2F | I     49 | c     63 | }     7D |
     | SYN   16 | 0     30 | J     4A | d     64 | ~     7E |
     | ETB   17 | 1     31 | K     4B | e     65 | DEL   7F |
     | CAN   18 | 2     32 | L     4C | f     66 |          |
     | EM    19 | 3     33 | M     4D | g     67 |          |

             EBCDIC Character Set (Hexadecimal Codes)
     |blank  40 | `     79 | m     94 | B     C2 | S     E2 | 
     | .     4B | :     7A | n     95 | C     C3 | T     E3 | 
     | <     4C | #     7B | o     96 | D     C4 | U     E4 | 
     | (     4D | @     7C | p     97 | E     C5 | V     E5 | 
     | +     4E | '     7D | q     98 | F     C6 | W     E6 | 
     | &     50 | =     7E | r     99 | G     C7 | X     E7 | 
     | !     5A | "     7F | ~     A1 | H     C8 | Y     E8 | 
     | $     5B | a     81 | s     A2 | I     C9 | Z     E9 | 
     | *     5C | b     82 | t     A3 | }     D0 | 0     F0 | 
     | )     5D | c     83 | u     A4 | J     D1 | 1     F1 | 
     | ;     5E | d     84 | v     A5 | K     D2 | 2     F2 | 
     | -     60 | e     85 | w     A6 | L     D3 | 3     F3 | 
     | /     61 | f     86 | x     A7 | M     D4 | 4     F4 | 
     | |     6A | g     87 | y     A8 | N     D5 | 5     F5 | 
     | ,     6B | h     88 | z     A9 | O     D6 | 6     F6 | 
     | %     6C | i     89 | [     AD | P     D7 | 7     F7 | 
     | _     6D | j     91 | ]     BD | Q     D8 | 8     F8 | 
     | >     6E | k     92 | {     C0 | R     D9 | 9     F9 | 
     | ?     6F | l     93 | A     C1 | \     E0 |          |
ADMINS User Guide  17 - 5



ACQUIR and FACQUIR: Read External File
17.2  ACQUIR and FACQUIR: Read External File

The contents of external files can be read into an ADMINS file using ACQUIR, for 
tape files, or FACQUIR for disk files.

17.2.1  ACQUIR: Read Tape File

ACQUIR is used on OpenVMS systems to load data directly from tape into an 
ADMINS file. Before using ACQUIR, TAPDMP, described in Section 17.5 “TAPDMP: 
Printing Tape Contents”, can be used to display or print the tape records, and the 
user can verify the tape layout by reviewing the output produced by TAPDMP.

ACQUIR can read EBCDIC or ASCII tapes, unblocked or blocked, with block sizes 
up to 40,000 bytes.

ACQUIR uses the tape definition instruction file (".TAP") described above in Section 
17.1 “TAP Instruction File”. As well ACQUIR needs a defined ADMINS file with at 
least one key field where it will store the data read from the tape. By default, 
ACQUIR appends records read from the tape after any records that are already 
present in the ADMINS file. If the UPDATE keyword is present, ACQUIR will use 
the ADMINS file key values from the tape record to look for an existing record in the 
ADMINS file. If a record with that key value is found, ACQUIR will update the non-
key fields of that record with the values from the tape record. If no record already 
exists for that key value, the record from the tape is inserted into the ADMINS file.

If the OpenVMS tape handler detects an unrecoverable tape error, ACQUIR will stop 
running. However all records up to the tape's bad spot will be in the ADMINS file. 
Restarting ACQUIR without rewinding the tape will allow one to acquire "around" 
the bad spot.

The complete dialogue of the ACQUIR command is as follows:

     $ acquir
     ------.TAP  KB 16 6250, REWIND, LABEL, FI N, RE N, UPDATE, RUN
     ASSIGN TAPE DEVICE TO ADM$MAGTAP
     TYPE:pers.tap 16 rewind run
     DATA FILE NAME:persfinal.mas
     10:32:53.08
     EOF ON TAPE FILE. 639 RECORDS ACQUIRED  10:33:04.56
     $

Everything after ------.TAP, which is the name of the TAP instruction file, is optional. 
The optional instructions do the following.

KB Display printout on the user's terminal.

16 Read the tape using a density of 1600 bits per inch.

6250 Read the tape using a density fo 6250 bits per inch.

REWIND Rewind the tape.

LABEL Read a standard (IBM) tape label, print it on the 
terminal, and spact the tape past the end of file mark 
that follows the label.
17 - 6   ADMINS User Guide



ACQUIR and FACQUIR: Read External File
These optional instructions will be performed in the order they are given. For 
example:

     VENDOR.TAP REWIND LABEL

     BUDGET.TAP REWIND FI 2 LABEL RUN

The first example reads the instruction file called VENDOR.TAP, rewinds the tape 
reel, and then reads and prints the tape label. Then ACQUIR begins to acquire in test 
mode.

The second example reads the instruction file called BUDGET.TAP, rewinds the tape 
reel, skips two files on the tape, reads and prints a tape label, and then begins 
acquiring into an ADMINS file.

After reading the initial instruction line, ACQUIR prompts with "DATA FILE 
NAME:" for the name of the file into which the tape records are to be acquired. This 
file name is required whether or not the RUN option is being used because ACQUIR 
needs the "DEF" of the file. However, without the RUN option the file will not be 
altered as a result of this use of ACQUIR.

Then ACQUIR prints a list of tape fields not to be acquired. That is, those field names 
from the TAP instruction file that are not present in the DEF of the ADMINS file set 
up to receive the tape records. If there are any such un-acquired fields, ACQUIR 
prompts "OK TO CONTINUE", and will terminate in response to anything but "Y" 
for yes.

FI N Skip N files on the tape. N can be negative to 
backspace that number of files. Tape labels are 
considered to be files if separated from the data by 
an end of file mark. Skip N files can be used to 
bypass labels that are files.

RE N Skip N tape blocks (physical records) on the tape. N 
can be negative to backspace that number of tape 
blocks. Tape levels are considered to be tape blocks 
if they are not separated from the data by an end of 
file mark. Skip N tape blocks can be used to bypass 
labels that are tape blocks.

UPDATE Update the record in the ADMINS file when the key 
value read from the tape record already exists. If the 
key value does not already exist, insert the record 
read from tape into the ADMINS file. If UPDATE is 
not present, all records are appended to the 
ADMINS file.
As with any ADMINS command that accesses 
records by key value, UPDATE requires that the 
ADMINS file be “in sort”.

RUN The user wishes to acquire records into the data file. 
If RUN is not specified, then each tape record which 
ACQUIR reads is printed on the printer, field by 
field, along with the conversion of the value into its 
ADMINS format. By inspecting this printout, the 
user can check out the TAP instruction file to see if 
every field is being acquired properly.
ADMINS User Guide  17 - 7



ACQUIR and FACQUIR: Read External File
Then ACQUIR interprets the options that are present on its command line as we 
described above and begins to process the input tape. In RUN mode tape records are 
written into the ADMINS disk file.4

In test (non-RUN) mode tape record contents are printed, line by line with the 
ADMINS field names and the conversions into ADMINS data types.

In RUN mode, after reading and acquiring to the end of file on the tape, ACQUIR 
closes the ADMINS file and displays the number of records that were acquired. 
ACQUIR will read a block that crosses the end of tape mark, and then act as if end of 
file was encountered. Multi-volume tape input may be acquired as separate files and 
then merged.

If ACQUIR encounters tape blocks that are either shorter or longer then the physical 
block size it expects (i.e. BPREC * RPBLK) it prints a diagnostic message and 
continues processing.

17.2.2  FACQUIR: Acquire External Disk File

The FACQUIR command is used to acquire data from an external file into an 
ADMINS file. FACQUIR prompts for an external input file name as well as a "TAP" 
instruction file name describing the format of the records to be acquired. The 
dialogue of the FACQUIR command is as follows:

     $ facquir
     ------.TAP INPUT-FILE-NAME UPDATE RUN
     TYPE:text.tap text.fil run
     DATA FILE NAME:status.mas
     15:32:21:42
     EOF ON TEXT.FIL  50 RECORDS ACQUIRED  15:32:23:27

 $

4.    ACQUIR uses automatic data file enlargement (see Section 1.9 “Dynamic Data 
File Expansion”) if the volume of information on the tape exceeds the capacity of 
the defined file set up to receive the data. However, if automatic file enlargement 
is disabled (i.e. "9" is included in the logical name OPTION) then ACQUIR will 
acquire records up to the capacity of the disk file, and then close the file and stop 
processing.

UPDATE Update the record in the ADMINS file when the key 
value read from the tape record already exists. If the 
key balue does not already exist, insert the record 
read from tape into the ADMINS file. If UPDATE is 
not present, all records are appended to the 
ADMINS file.
As with any ADMINS command that accesses 
records by key value, UPDATE requires that the 
ADMINS file be “in sort”.

RUN The user wishes to acquire records into the data file. 
If RUNis not specified, then each tape record which 
ACQUIR reads is printed on the printer, field by 
field, along with the conversion of the value into its 
ADMINS format. By inspecting this printout the 
user can check out the TAP instruction file to see if 
every field is being acquired properly.
17 - 8   ADMINS User Guide



ACQUIR and FACQUIR: Read External File
FACQUIR will read external disk files of any internal record format.

The record size (BPREC) used in the "TAP" file description line is the largest possible 
record size that FACQUIR could encounter in the file. The record can contain any 
data format readable by ACQUIR from magnetic tape. Specifically, the external file 
can contain ASCII data or EBCDIC data records, blocked or unblocked. FACQUIR is 
often used on files received via communications lines from another computer.

FACQUIR can also be used to acquire a file created by a text editor.

17.2.3  External File Description Options

Use the following options to provide a description of the external file. Most external 
file description options apply only to ACQUIR, as they describe various alternative 
tape organizations. Where noted the option may also be used with FACQUIR to 
describe the external disk file.

17.2.3.1  Records Spread Across Blocks
ACQUIR and FACQUIR can handle the situation where, although logical records are 
blocked into physical blocks, a particular logical record positioned at the end of a 
physical block can be spread across a physical block boundary. ACQUIR/FACQUIR 
are instructed of this "spreading" condition via the use of an "S" prefix on the records 
per block specification (RPBLK). For example:

     160 S512

The logical record size is 160 bytes, the physical tape block is 512 bytes, and the 
logical record crosses the physical boundaries. The RPBLK specification contains the 
physical tape block size prefixed with an "S" rather than the blocking factor.

17.2.3.2  Skip N Bytes Per Tape Block
ACQUIR has the option to skip the first n bytes of each tape block. This is instructed 
on the TAP file description line by placing "OFFSET N" on the header line. For 
example:

     100 10 ASCII OFFSET 24

would mean 100 byte logical records blocked ten to a physical block. Data is in ASCII 
and the first 24 bytes of each block are to be ignored. Presumably each physical block 
would then be 1,024 bytes long.

17.2.3.3  Excess Bytes
ACQUIR and FACQUIR can handle the situation where there are excess bytes at the 
end of a physical block that are to be ignored when there are insufficient bytes 
remaining to form another logical record. This is instructed by prefixing the records 
per block (RPBLK) specification on the TAP file description line with the letter "F" for 
"fill". For example:

     120 F512

This means there are 120 bytes per logical record and a physical block size is 512 
bytes. When the "F" prefix is present the RPBLK specification contains the actual 
bytes per physical block rather than the number of logical records per physical block.
ADMINS User Guide  17 - 9



ACQUIR and FACQUIR: Read External File
17.2.3.4  Skipping Initial Bytes
ACQUIR can be instructed to skip N bytes on the initial record of the tape it is 
reading. This is done by placing a "SKIP N" on the end of the file description line of 
the TAP instruction file. For example:

     150 20 SKIP 100

This means to skip the first 100 bytes of the first physical record on the tape.

17.2.3.5  Ignore End of File Mark
ACQUIR can be instructed to ignore a single end of file mark on the input tape. When 
this option is used the tape file is considered to be terminated when a double end of 
file is encountered. To instruct ACQUIR to consider the double end of file marks to 
be the file terminator (i.e. to ignore single end of file marks) place DOUBLE on a line 
by itself preceding the file description instruction line that contains the record size 
and blocking factor. For example:

     DOUBLE
     120 6
     ...

17.2.4  ACQUIR and FACQUIR Field Description Options

The following options are associated with the field descriptions. Multiple options 
may be specified on the same field description line.

17.2.4.1  ACQUIR and FACQUIR Format Options
The following optional field format may be used on the field description line with 
ACQUIR and FACQUIR:

•  ENn: The external field contains EBCDIC or ASCII numeric digits with an 
imaginary decimal point.5 "N" zeroes are appended to the external value 
before it is stored in the ADMINS data file. The decimal point is then placed 
in the resulting value according to the number of decimal places the field is 
defined for. Thus if the value "125" is read into a D2 field with the EN0 
optional format (no zeroes added) it is stored as "1.25" (two decimal places).. 
If "125" is read into a D1 field with the EN2 optional format (two zeroes 
added) it is stored as "1250.0" (one decimal place).
ENn should not be used when an explicit decimal point could be encountered 
in the external file field.

5.    The optional ENn syntax is only needed if you are acquiring data from a field in 
the external file that has an assumed (or "imaginary") decimal point between two 
of its digits. If the decimal point is assumed at the extreme right of the field, or if 
the decimal point is explicitly present in the external file, EN (see Section 17.1.3 
“TAP - Field Description Line(s)”) will correctly acquire the data. The EN (by 
itself) syntax indicates that an explicit decimal point will be found in the external 
file field. If one is present it is used when the data is written to the ADMINS file. 
If none is found it is assumed to be at the extreme right of the field. For example, 
if the value "77" is read (using EN) into a field with type D2 in the ADMINS data 
file, the value "77.00" is stored. If the value "7.7" is read (using EN) into a D2 field 
"7.70" is stored.
17 - 10   ADMINS User Guide



ACQUIR and FACQUIR: Read External File
If ACQUIR or FACQUIR is asked to read an alphanumeric field from tape, any 
leading blanks will be "squeezed out" in the character data. This is because ADMINS 
does not keep leading blanks in An fields. (If leading blanks are entered via TRANS, 
they are squeezed out when the data field is displayed immediately after entry.) As 
discussed in Section 2.4.2 “Field Data Types”, ADMINS allows the insertion of the "^" 
character to signify leading blanks. The "^" character is displayed as a leading blank 
on all output representations of the alphanumeric data.

If the TAP file contains the letter "B" as an option on the field specification line then 
leading blanks on the tape will be converted to "^" characters as the field is being 
acquired. For example:

     TITLE 30 40 E B

17.2.4.2  Override Byte Address Outside Record
ACQUIR and FACQUIR always check that the TAP file doesn't reference a byte that 
is outside the logical record. For example:

     120 3
     ...
     ADDR 115 20 E
     ...

The TAP file says that ADDR starts at byte position 115 and extends for 20 bytes. 
However, the first line of the TAP instruction file says that there are only 120 bytes 
per logical record.

The letter "O" as an option on the field description line instructs ACQUIR not to 
check the byte address against the logical record size. The above example would be 
correct if we place the "O" on the ADDR line.

     ADDR 115 20 E O

17.2.5  TAP - SELECT Line

ACQUIR and FACQUIR can be instructed to acquire only records that satisfy a 
particular selection criteria. The selection is placed anywhere in the TAP instruction 
file after the initial line. Only one selection may be made. There are three possible 
formats for the selection instruction.

     SELECT BPOS X

     SELECT BPOS AB

     SELECT BPOS ABCD

BPOS: In all three formats, BPOS is a byte position in the 
tape or external disk file record.

X: The first format selects records that contain the 
character X in the byte position specified in the 
external file.
ADMINS User Guide  17 - 11



TXTACQ: Acquire Text Files
Note that the SELECT statement in the DEF of the ADMINS file being read or written 
is ignored by ACQUIR and FACQUIR. Only the SELECT in the TAP file is effective.

17.3  TXTACQ: Acquire Text Files

The TXTACQ command is used to acquire text files into ADMINS files in a specific 
way. A TAP instruction file is not used. However the ADMINS file must contain an 
alphanumeric (An) field named LINE1.6 For line of text in the file a record will be 
created in the ADMINS file with the first "n" characters of the text line being placed 
in the field LINE1. If the ADMINS file contains a second alphanumeric field named 
LINE2 then the characters that remain in each line in the file after LINE1 is filled up 
will be placed in the field LINE2. TXTACQ prompts for the names of the text file to 
be acquired and the ADMINS file which is to receive the text lines as records.

For example, assuming the following file has been defined:

     *   TEXT.DEF
     *
     MAS 1000
     *
     SEQ I KEY1
     ...
     LINE1 A80   "Columns 1-80 of the text line"
     LINE2 A40   "Columns 81-120 of the text line"
     ...

and TXTACQ was run as follows:

     $ txtacq
     TEXT-CONTROL-FILE ADMINS-FILE:payroll.rep text.mas
     42 RECORDS WRITTEN INTO TEXT.MAS
     $

then each line of PAYROLL.REP would be placed in the fields LINE1 and LINE2 of 
TEXT.MAS. The TEXT-CONTROL-FILE and the ADMINS-FILE names may be 
included on the command line as follows:

AB: The second format selects records that contain AB 
as the two hexadecimal digits starting at the 
specified byte position in the external file. The two 
hexadecimal digits comprise the code for a single 
EBCDIC (or ASCII) character. This format can be 
used to select for “non-printing” characters in the 
external file.

ABCD: The third format selects records that contain ABCD 
as the four hexadecimal digits starting at the 
specified byte position. These four hexadecimal 
digits comprise the code for two successive EBCDIC 
(or ASCII) characters in the external file. For 
example, to select For example, to select only those 
records in the (ASCII) external file that contain the 
character "A" in column 1 and the character "9" in 
column 2 use the following SELECT line:

     SELECT 1 4139

6.   LINE may be used in place of LINE1 for the name of the first field.
17 - 12   ADMINS User Guide



DATAP and FDATAP: Write External File
     $ txtacq payroll.rep text.mas
     42 RECORDS WRITTEN INTO TEXT.MAS
     $

TXTACQ can add records to a non-empty file and requests confirmation before doing 
so. Any response other then "Y" for yes will cause TXTACQ to terminate without 
processing the text file. For example:

     $ txtacq
     TEXT-CONTROL-FILE ADMINS-FILE:earnings.rep text.mas
     TEXT.MAS ALREADY HAS 42 RECORDS, OK?y
     38 RECORDS WRITTEN INTO TEXT.MAS
     $

The text file input to TXTACQ can contain indirect references.7

17.4  DATAP and FDATAP: Write External File

The contents of an ADMINS file can be written out to an external file using DATAP, 
to write to tape, or FDATAP to write to an external (disk) file.

7.    See Section 1.4.3 “Indirect References” for a general discussion of indirect 
references.
ADMINS User Guide  17 - 13



DATAP and FDATAP: Write External File
17.4.1  DATAP: Write Tape File

DATAP performs the complementary function to ACQUIR. Whereas ACQUIR reads 
data in EBCDIC or ASCII format and writes the data into ADMINS files, DATAP is 
used on OpenVMS systems to read ADMINS data files and directly write EBCDIC or 
ASCII formatted tapes. The DATAP dialogue is similar to the ACQUIR dialogue, as 
follows: 

     $ datap
     ------.TAP KB, REWIND,  FI N, RE N, WE, RUN
     ASSIGN TAPE DEVICE TO ADM$MAGTAP
     WE alone to just write EOF
     TYPE:pers.tap rewind we run
     DATA FILE NAME:persfinal.mas
     639 RECORDS WRITTEN
     $ datap we
     $

The command options are the same as ACQUIR except "WE".8

WE stands for write end of file, and means that after writing the tape records DATAP 
should place an end of file on the tape.

The simple command, "DATAP WE", can be used to write an end-of-file on the tape.

The TAP instruction file described in Section 17.1.1 “Outline of the TAP Instruction 
File” is used to instruct DATAP which ADMINS field names to use, the tape byte 
position, tape field length and format.

As we saw DATAP has a RUN option in its command line. When not in RUN mode, 
i.e. when DATAP has not been instructed to write a tape but is just in test mode, then 
DATAP prints a dump on the printer of the tape records it would be writing if it were 
in RUN mode. This dump is in the same format as tape dumps produced by 
TAPDMP described in Section 17.5 “TAPDMP: Printing Tape Contents”. The 
contents of the printout is identical to what TAPDMP would produce if asked to 
dump a tape written by the DATAP run.

DATAP can create multi-volume tape output. When DATAP sees the end of tape 
mark, it completes the block it is writing and then asks for another tape to be 
mounted.

8.    DATAP does not set the tape drive density. DATAP will write to a tape at the 
density the tape drive was mounted at. Consequently the command options 16 
(write data at 1600 bpi) and WE16 (write a End of File mark to tape at 1600 bpi) 
are obsolete and no longer required. If the 16 command option is present it is 
ignored. If the WE16 is found it is processed as a WE option (which will write and 
EOF mark at the tape's mounted density).
17 - 14   ADMINS User Guide



DATAP and FDATAP: Write External File
17.4.2  FDATAP: Write External Disk File

The FDATAP command is used to write an external file from an ADMINS file. The 
TAP instruction file used by FDATAP is the same as the TAP used by DATAP. The 
records per block (RPBLK) specification is always "1" in the file description line of a 
TAP file used with FDATAP. The dialogue of the FDATAP command is as follows:

     $ fdatap
     ------.TAP OUTPUT-FILE-NAME
     TYPE:text.tap text.fil
     ADMINS DATA FILE NAME:status.mas
     50 RECORDS WRITTEN INTO TEXT.FIL
     $

The user provides the name of the "TAP" instruction file describing the format of the 
output records to be created by FDATAP. Then the user provides the name of the 
disk file into which the output records are to be written. FDATAP creates standard 
variable length records that are all of one size. FACQUIR can re-acquire files 
produced by FDATAP. When ASCII output is requested on the TAP file description 
line then any text editor can be used to read and edit the output file created by 
FDATAP.

17.4.3  DATAP and FDATAP Field Description Options

Both DATAP and FDATAP support he following field description options:

17.4.3.1  Leading Zeroes In EN Fields
When a decimal or integer ADMINS field is written to tape as an EN field the digits 
are right justified with leading blanks. If the field description has the option "Z" then 
the leading blanks will be leading zeroes. For example:

     SALARY 24 10 EN Z

17.4.3.2  Overpunch (Minus) Sign In EN Fields
When a decimal or integer ADMINS field is written to tape as an EN field the number 
is written as an absolute. If the field description has the option "O" then negative 
numbers will be written with an overpunch (or minus) sign. Options "Z" and "O" may 
be used together. For example:

     BALANCE 47 10 EN Z O

17.4.3.3  Literals and Hexadecimal Constants
The user can also insert either literal data or a hexadecimal value anywhere in the 
output record. This is done by placing lines of the following format in the TAP file.

For literals:

     - BPOS BLEN FORM ADMTYP STRING
ADMINS User Guide  17 - 15



DATAP and FDATAP: Write External File
A dash is used for the NAME specification. BPOS, BLEN, and FORM are the same as 
any other field description. ADMTYP is an ADMINS data type notation and STRING 
is the literal data. For example:

     - 10 10 EN D2 9999.99
     - 30 2 E A2 C3

The first example places the D2 value "9999.99" as an EBCDIC (or ASCII) numeric 
field starting at byte position 10 on the external record and extending 10 bytes long. 
The second example places the A2 string "C3" as an EBCDIC (or ASCII) two byte field 
starting at byte position 30 on the tape record.

For hexadecimal values:

     HEX BPOS BLEN STRING

"HEX" is used as the NAME specification and BPOS and BLEN are the same as other 
field description lines. STRING is the hexadecimal digits to be placed in the record. 
For example:

     HEX 30 2 C1F1

This example places the hexadecimal value "C1F1" in byte position 30 and 31 of the 
external record.

17.4.3.4  Conditional Hexadecimal Constant
DATAP and FDATAP can be instructed to create a hexadecimal value in the output 
record conditionally on the value in an integer field in the ADMINS record. For 
example:

     HEX 10 2 F1F2 COND

This will place the hex value F1F2 in byte positions 10 and 11 on the output tape 
record if the integer field COND is non-zero. Otherwise, byte positions 10 and 11 will 
be set to zero.

17.4.4  Select Via Key Range Option

DATAP and FDATAP can be instructed to select only those records for output that 
fall within a specified key range. This is done by placing the word "KEY" followed by 
a low key(s) and a high key(s) in the TAP instruction file after the file description line. 
For example:

     120 20
     KEY 077385 888888
     *
     ACCT  1   6  EN
     BAL   7  10  PD2
     ...

would write to tape only those records whose key was between 077835 and 888888. 
If the file has multiple keys then the key values that make up each field are separated 
by blanks in the instruction line. For example:

     KEY 0100 4000 001 0100 4999 999

This illustrates three keys and the range is 0100-4000-001 to 0100-4999-999.

Because DATAP key range select uses the ADMINS direct access mechanism, the 
ADMINS data file should be in sort order for this feature to be correctly and reliably 
used.
17 - 16   ADMINS User Guide



TAPDMP: Printing Tape Contents
17.5  TAPDMP: Printing Tape Contents

The TAPDMP command is used on OpenVMS systems to produce a "raw" tape 
dump of the tape on the device assigned to ADM$MAGTAP. Tape contents are 
printed as hexadecimal values, and also interpreted in EBCDIC (or ASCII) where 
possible. The following is the TAPDMP dialogue. Just pressing carriage return to the 
options prompt (indicated by the "CR" in the dialogue) assumes an EBCDIC tape to 
be dumped on the printer from the beginning of the tape.

     $ tapdmp
     KB, ASCII, FI N, RE N, PR N, RW, ONLY N, HELP:
     ASSIGN TAPE DEVICE TO ADM$MAGTAP
     cr

The user waits until the desired number of tape blocks have been printed and then 
terminates TAPDMP with the ctrl/y keystroke.

When TAPDMP is asked to direct its output to the printer (no KB), a spool file called 
ADMINSxx.LIS (where xx is the terminal number) is created as described in Chapter 
21: “Printer Queues”. After terminating TAPDMP with the ctrl/y keystroke the spool 
file must then be printed as follows:

     $ print/noheader adminsxx.lis
     $

The options of the TAPDMP command are as follows:

KB Print the dump on the user’s terminal.

ASCII The tape is in the ASCII format.

FI +-N Skip files in either direction.

RE +-N Skip tape blocks (physical records) in either 
direction.

PR N Print n blocks only to the output file and queue the 
output file to ADM$SPOOL0 (see Section 21.1 
“ADM$SPOOLn: Logical Print Queue 
Specification”)

RW Rewind the tape.

ONLY N Dump only the first n bytes of each tape block.
ADMINS User Guide  17 - 17



TAPDMP: Printing Tape Contents
All these functions are performed before printing begins. Several functions may be 
requested together. They are interpreted and performed in the order they are typed. 
For example, "KB RW FI 2 RE 5" would rewind the tape, skip two files, skip 5 tape 
blocks, and then start dumping the tape to the user's terminal.

The following page contains a sample printout produced by TAPDMP.

As we see each tape block is preceded by its byte size. Page column headings precede 
each printed tape block. Fifty bytes are printed per line. For each byte a hexadecimal 
value (2 hex digits) is always shown. When the hexadecimal value corresponds to a 
legal EBCDIC (or ASCII) code, then that EBCDIC (or ASCII) character is printed 
underneath the pair of hexadecimal digits. Otherwise a blank appears underneath 
the hexadecimal digits.

TAPDMP assumes EBCDIC interpretation unless ASCII is requested on the 
instruction line.

HELP Display a brief summary of TAPDMP options and 
syntax, as follows:

$tapdmp 
KB, ASCII, FI N, RE N, PR N, RW, 
ONLY N, HELP: help  
KB      Print the dump on the 
user's terminal.
(Default dumps to ADM$SPOOL0)
ASCII   The tape is in ASCII 
format.
(Default is EBCDIC format)
FI +-N  Skip files in either   
(+-) direction.
RE +-N  Skip tape blocks 
(physical records) 
in either (+-) direction.
PR N    Print N tape blocks 
(physical records)
to ADM$SPOOL0
RW      Rewind the tape.
ONLY N  Dump only the first N 
bytes of each tape block 
(physical record).
17 - 18   ADMINS User Guide



TAPDMP: Printing Tape Contents
17.5.1  Sample of TAPDMP Output

 
           FILE NO.: 1,  RECORD/BLOCK NO.: 1,  RECORD/BLOCK BYTES: 512
           --------- --------- --------- --------- --------- --------- --------- --------- --------- --
------- 
           0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 
4 4 5 
           1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 
8 9 0 
           --------- --------- --------- --------- --------- --------- --------- --------- --------- --
------- 
      1    
4A617272657474202020202020202020202020202020202020204265726E617264202020202020202020202020204D203430
           J a r r e t t                                       B e r n a r d                           M   4 0 
      51   
3020496C6C696E6F6973204176652E2020202020202020202020202020202020202057617368696E67746F6E202020202020
           0   I l l i n o i s   A v e .                                       W a s h i n g t o n             
      101  
444332303033362832303229203238352D3137353620202020202020566F67656C2020202020202020202020202020202020
           D C 2 0 0 3 6 ( 2 0 2 )   2 8 5 - 1 7 5 6               V o g e l                                   
      151  
202020204B6576696E2020202020202020202020202020204D2034303020496C6C696E6F6973204176652E20202020202020
                   K e v i n                               M   4 0 0   I l l i n o i s   A v e .               
      201  
20202020202020202020202057617368696E67746F6E202020202020444332303033362832303229203238352D3137353620
                                   W a s h i n g t o n             D C 2 0 0 3 6 ( 2 0 2 )   2 8 5 - 1 7 5 6   
      251  
20202020202042617374617261636865202020202020202020202020202020204D696368656C202020202020202020202020
                       B a s t a r a c h e                                 M i c h e l                         
      301  
20204D2034333220436F6C756D6269612053742E202020202020202020202020202020202020202043616D62726964676520
               M   4 3 2   C o l u m b i a   S t .                                         C a m b r i d g e   
           FILE NO.: 1,  RECORD/BLOCK NO.: 1,  RECORD/BLOCK BYTES: 512
           --------- --------- --------- --------- --------- --------- --------- --------- --------- --
------- 
           0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 
4 4 5 
           1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 
8 9 0 
           --------- --------- --------- --------- --------- --------- --------- --------- --------- --
------- 
      351  
2020202020204D4130323134312836313729203439342D30303636202020202020204B657461626920202020202020202020
                       M A 0 2 1 4 1 ( 6 1 7 )   4 9 4 - 0 0 6 6               K e t a b i                     
      401  
202020202020202020204D61686D6F7564202020202020202020202020204D2034333220436F6C756D6269612053742E2020
                               M a h m o u d                           M   4 3 2   C o l u m b i a   S t .     
      451  
20202020202020202020202020202020202043616D627269646765202020202020204D41303231343128363137293439342D
                                               C a m b r i d g e               M A 0 2 1 4 1 ( 6 1 7 ) 4 9 4 - 
      501  353130302020202020202020                                                                          2D
           5 1 0 0                                                                                           - 
           FILE NO.: 1,  RECORD/BLOCK NO.: 2,  RECORD/BLOCK BYTES: 512
           --------- --------- --------- --------- --------- --------- --------- --------- --------- --
------- 
           0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 
4 4 5 
           1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 
8 9 0 
           --------- --------- --------- --------- --------- --------- --------- --------- --------- --
------- 
      1    
4C6F6E67636F70652020202020202020202020202020202020204A756C696520202020202020202020202020202046203433
           L o n g c o p e                                     J u l i e                               F   4 3 
      51   
3220436F6C756D6269612053742E202020202020202020202020202020202020202043616D62726964676520202020202020
           2   C o l u m b i a   S t .                                         C a m b r i d g e               
      101  
4D4130323134312836313729203439342D3030363620202020202020537065636B6D616E2020202020202020202020202020
           M A 0 2 1 4 1 ( 6 1 7 )   4 9 4 - 0 0 6 6               S p e c k m a n                             
      151  
2020202046726564202020202020202020202020202020204D2034333220436F6C756D6269612053742E2020202020202020
                   F r e d                                 M   4 3 2   C o l u m b i a   S t .                 
ADMINS User Guide  17 - 19



TAPCOPY: Copy from Tape to Disk
17.6  TAPCOPY: Copy from Tape to Disk

The TAPCOPY command is used on OpenVMS systems to copy fixed or variable 
length records from a tape file to an external disk file. This disk file will be readable 
by FACQUIR.9 (If the data is ASCII, this file will also be readable by a text editor.) 
The tape file blocks may be copied "as is" or the logical records may be "de-blocked" 
when the records are copied to disk.

TAPCOPY prompts for an output file name and an optional output record size, and 
then copies a file from the tape drive assigned to ADM$MAGTAP into the named 
output disk file. The dialogue of the TAPCOPY command is as follows:

     $ tapcopy
     OUTPUT FILE NAME [BYTES-PER-REC]: pers.fil
     64 RECORDS COPIED TO PERS.FIL
     $

The OUTPUT FILE NAME may be included on the command line as follows:

     $ tapcopy pers.fil
     64 RECORDS COPIED TO PERS.FIL
     $

Alternatively, TAPCOPY may be instructed to "de-block" the tape records by 
specifying (either on the command line or to the prompt) the number of bytes in the 
output (disk) records, as follows:

     $ tapcopy pers.fil 80
     640 RECORDS COPIED TO PERS.FIL
     $

17.7  TAPSPL: Write Text File to Magnetic Tape

The ADMINS TAPSPL command is used on OpenVMS systems to write files to a 
magnetic tape. TAPSPL writes data to a tape from an external file containing "print 
lines", e.g., an "ADMINSxx.LIS" file. By default, the tape is written in a standard 
industry format, i.e. records are 133 characters in length, 30 record per block. 
Alternatively, record length and/or blocking factor is supplied by the user. The full 
capacity for a TAPSPL record is 1024 bytes.

9.    In many circumstances it will be more efficient to copy a tape to disk using 
TAPCOPY, then FACQUIR the disk file into an ADMINS data file than it would 
be to ACQUIR the file into an ADMINS data file directly from tape.
17 - 20   ADMINS User Guide



TAPSPL: Write Text File to Magnetic Tape
Like all other ADMINS tape handling commands, TAPSPL uses the logical name 
ADM$MAGTAP to determine which physical tape drive should be used. Further, 
TAPSPL assumes the tape has been loaded on the tape drive, is ready to be accessed, 
and the OpenVMS MOUNT command has been issued, as in the following example:

     $ assign _mta0: adm$magtap
     $ mount/density=1600/foreign mta0:

The syntax of the TAPSPL command is as follows:

     $ TAPSPL "BFACTOR FILE -ASCII- -RECSZ- -CAPS- -JOIN-" OR "GO"

BFACTOR (blocking factor)  is the number of records which are to be written per tape 
block. If no blocking factor is given TAPSPL will write 30 records per tape block. FILE 
is the name of the disk file to be written to tape, if no file name is given TAPSPL 
assumes the name is ADMINSxx.LIS (xx is taken from ADM$TERM). The tape is 
written in EBCDIC format unless the optional keyword "ASCII" is included on the 
command line. "RECSZ" is the length10 of the records to be written to tape. If no 
RECSZ is given TAPSPL will write 133 character records. If RECSZ is given, a 
blocking factor must precede it on the command line. CAPS causes all lowercase 
alphabetic characters in the input to be converted to uppercase in the tape file. JOIN 
allows TAPSPL to produce long tape records. When JOIN is used, any number of 
lines in the input file can be combined into one output record on the tape. JOIN 
requires that the lines of the input identify where they are to be placed in the output 
record. This is explained in Section 17.7.1 “JOIN: Combine Multiple Input Lines” 
below.

If "GO" appears by itself on the TAPSPL command line, i.e. "TAPSPL GO", TAPSPL 
will use defaults for all its input parameters, as follows:

            Parameter             Default
            ---------             -------
            Blocking Factor       30
            File Name             ADMINSxx.LIS
            EBCDIC/ASCII          EBCDIC  
            Record Size           133             
            CAPS                  Off
            JOIN                  Off

For example:

     $ tapspl data2:adminsb6.lis

will write 133 character records, 30 per tape block, in EBCDIC format, and:

     $ tapspl 20 surveys.fil 60 ASCII CAPS

will write 60 character records, 20 per block, in ASCII uppercase.

10.  TAPSPL can read up to 255 characters from the input record (the largest record 
that REPORT can produce) and can write a maximum record size of 512 
characters (padded with blanks).
ADMINS User Guide  17 - 21



TAPSPL: Write Text File to Magnetic Tape
17.7.1  JOIN: Combine Multiple Input Lines

JOIN is especially useful for fulfilling magnetic tape reporting requirements to the 
U.S. Governments, as those requirements call for longer tape records than can be 
produced directly by ADMINS REPORT (maximum of 255 characters).

When JOIN is used, each line in the input file must begin with a starting byte position 
number. If there is any data at that position it should be separated from the starting 
byte position by a single blank. For example, part of a JOIN input file might be:

 201 This data starts at byte 201
 301 This data starts at byte 301
 201 Next record, data beginning at byte 201
 ...

The byte position number can start in the first or second column of each input line, 
and it must start in the same column in every input record. If the byte position starts 
in the second column, the first column must be blank. The byte position number can 
be up to 3 digits long, and leading zeroes are accepted. The byte position numbers 
must be in ascending order within each record, because when TAPSPL finds a byte 
position number less than or equal to the previous one, it begins a new output record. 
(A new record can always be forced with an input line whose byte position is 1.)

TAPSPL removes the byte position number and the blank after it, and places the 
remaining contents of the line in the tape record, starting at the specified byte 
position. The input file does not have to specify the contents of every byte in the tape 
record: TAPSPL fills all unused bytes with blanks.

REPORT (see Chapter 7: “AdmREPORT: Creating Reports”) can readily generate the 
input file for TAPSPL even when the tape records are more than 255 bytes long. The 
DETAIL section of a REPORT to produce a TAPSPL input file for a 400-byte tape 
record might be:

 DETAIL
      001 SSNO-----  LNAM--------------------
      (...)
 C    355 ---FICA
 END

SSNO would start in the first byte of the tape record; FICA would begin at byte 355; 
and all bytes after FICA would be filled with blanks. The TAPSPL command line for 
this report might be

      $ TAPSPL 1 USG.LIS ASCII 400 JOIN CAPS

The input file for TAPSPL must not contain any form feeds. REPORT produces a file 
without form feeds if a zero or negative LENGTH is specified.

If INDENT 0 is used in the REPORT, the byte position numbers above would begin 
in the first column of the LIS file; if not, they would begin in the second column and 
the first column would be blank. Either format is accepted by TAPSPL.
17 - 22   ADMINS User Guide



IE: the ADMINS Import/Export Facility
17.8  IE: the ADMINS Import/Export Facility

IE (AdmIE), the ADMINS Import/Export facility, provides a generalized capability 
for transferring information between standard ASCII files and ADMINS data files. 
This facility is especially useful for passing information to and from the data 
interchange formats used by many popular desktop computer applications, such as 
spreadsheet and graphics applications.

By default the command:

     $ ie n.mas

displays the contents of N.MAS on the standard output (e.g. the screen for an 
interactive terminal session).

IE options are specified using the following command line format:

     $ IE -qualifier_1=(modifier_1,modifier_2) -qualifier_2 \
     $         admins_datafile -qualifier_3

Note: there should be no blanks on either side of the "=" in the IE command 
qualifiers.

On OpenVMS systems DCL-like command line syntax is supported (slashes to 
delimit qualifiers and "dashes" to indicate continuation on the next line):

     $ IE /qualifier_1=(modifier_1,modifier_2)/qualifier_2 -
     $         admins_datafile/qualifier_3

Command qualifiers supported by the Import/Export facility are:

• COM - Read the command qualifiers and options for this run from the 
specified instruction (ASCII text) file. For example, if the file vsamp.ie has the 
following contents:11

     ! Sample IE instruction file
     vendor.mas 
     -header 
     -begin=++
     -delimiter=**
     -ending=&&
     -modify=(vname\s=10)
     !

then the command:

     $ ie -com vsamp.ie
will be equivalent to:

     $ ie vendor.mas -header -begin=++ -delimiter=** \ 
     -ending=&& -modify=(vname\s=10)

If the COM qualifier is used no other qualifiers are allowed on the command 
line (the rest of the IE specification must be in the COM instruction file).

• ACQUIRE=ASCII_filename
Read external data from an ASCII file into an ADMINS datafile. 

• CREATE=ASCII_filename 
Output ADMINS data into an external ASCII file.

• DELIMIT=character(s)
Use the given ASCII character(s) as a field delimiter.

11.  Note that "!" delimits comments in IE instruction files.

NOTE
ADMINS User Guide  17 - 23



IE: the ADMINS Import/Export Facility
• BEGIN=character(s)
Insert the given ASCII character(s) at the start of each record.

• ENDING=character(s)
Use the given ASCII character(s) as a record end delimiter.

You may use quotation marks to enclose the character strings specified by DELIMIT, 
BEGIN, and ENDING. Non-printing and context-sensitive characters are specified 
using the backslash12 character (\), followed by the decimal ASCII code (see 
Appendix H.2 “Integer Decimal Values for ASCII Characters”) for the character. For 
example, ENDING="\9\9" declares that two tab characters signal the end of a record.

• TABLE - The TABLE qualifier designates an ASCII file which contains a 
translation table to be used when exporting data (with CREATE) or acquiring 
data (with ACQUIRE). The translation file is in effect only for 
alphanumeric fields (An Fields).

The format for entries in the translation table file is "map:dd1=dd2"13. That is, 
translate the character whose ASCII decimal code is "dd1" into the character 
whose ASCII decimal code is "dd2". 
This capability is especially useful for conversion of special 7-bit ASCII 
characters into their 8-bit versions and vice-versa. In the following example, 
the 7-bit codes for some special Norwegian/Danish characters are converted 
to 8-bit.

     ! This is an example 
     ! of a translation table.
     !        1    1    2    2
     !---5----0----5----0----5
     ! from -> to
     !===========  
     map:123=230   ! converts "æ" to 8-bit
     map:124=248   ! converts "ø" to 8-bit
     map:125=229   ! converts "å" to 8-bit
     map:91=198    ! converts "Æ" to 8-bit
     map:92=216    ! converts "Ø" to 8-bit
      map: 93=197    ! converts "Å" to 8-bit

A "*" or "!" in the first column of the translation table file signals a comment 
line.

• FIELDS=(field_1[\L=m][\NOCR][\S[IZE]=n],field_2[\L=m][\NOCR],[\S=n].
..) 
By default, CREATE outputs all the fields in the ADMINS data file to the 
created ASCII file. Use the FIELDS qualifier to output a specific list of fields. 
The display width of fields in the list can be altered by appending the "\SIZE" 
field name qualifier. Output of text fields can be modified by appending the 
"\L" and "\NOCR" field name qualifiers, as described in Section 17.8.1 
“Managing Text Fields in IE”.

12.  Backslash (\) and quotes (") are examples of context-sensitive characters. 
Backslash's special meaning is to indicate that what follows it is the decimal 
ASCII code for a character. Quotes are used to include blanks in the character 
string specification. To designate the backslash itself in a delimiter or ending you 
must use the decimal ASCII code for backslash (e.g. DELIMIT="\92"). To 
designate quotes as an delimiter use DELIMIT="\34".

13.  For compatability with earlier versions of ADMINS, entries in the translation 
table may also be entered in the format map=dd1:dd2. However, this format is 
not supported in the REPORT environment file (REPORT$ENV) and the TRANS 
environment (TRANS$ENV). Using the recommended format map:dd1=dd2 
allows you to use common tables for all three commands.

NOTE
17 - 24   ADMINS User Guide



IE: the ADMINS Import/Export Facility
• MODIFY=(field_1[\L=m][\NOCR][\S[IZE]=n],field_2[\L=m][\NOCR],[\S=n
]...) 

Use the MODIFY qualifier to alter the output of specific named fields,14 while 
IE still outputs all the fields in the file. MODIFY supports the same field name 
qualifiers as FIELDS.

• HEADER - Use the datafile's fieldnames as a heading (with CREATE).
• LOTUS - Import  or Export  CSV-format ASCII text.  Using the LOTUS (or 

CSV) quailifier  sets up AdmIE  to correctly handle CSV-format data. 
Specifyiing DELIMTER and ENDING is not necessary..

With /CREATE: Output data in “CSV”  format. Enclose the values in 
alphanumeric, picture, and date field types within double quotes. Use comma 
as a field delimiter. Suppress commas in numeric fields. Always uses “minus 
sign” for negative numbers (that is, logical name  ADM$MINUS and setting 
“OPTION P” is ignored

With /ACQUIR:  Input ASCII file is in CSV format, first line must contain 
field names of ADMINS data file (delimited by commas).

• CSV - Same as LOTUS
• NOCRLF - (With CREATE) Do not append carriage return/line feed record 

terminator characters to the external record ending delimiter.
• NONULL - (With CREATE) Do not output zeroes for zero value numeric 

fields.
• NOPAD - (With CREATE) Squeeze out all trailing and leading blanks in fields 

being exported to an ASCII file.
• INSERT - (With ACQUIRE) Insert records read from the external ASCII file 

into the ADMINS datafile. (Records are appended by default, appending is a 
much faster operation.)

• NOBIN - (With ACQUIRE)
• LIST  - Display the fields within the ADMINS datafile on the user's terminal.
• NOSTAR - Do not display processing progress graphics during external file 

acquisition/creation.
• SELECT="expression"  

Use the specified ADMINS SELECT statement to determine whether to accept 
the external record read into an ADMINS datafile (with ACQUIRE) or 
whether to output the current ADMINS record to the external ASCII file. The 
entire expression must be enclosed by double quote characters (").

All command qualifiers can be abbreviated to a minimum of two characters (SE for 
SELECT).

To load data into an ADMINS file, the first external record acquired specifies the 
record format, using the full field names from the ADMINS data file, and the 
previously specified field and record delimiters. Subsequent records in the external 
file are then loaded into the ADMINS file according to this specification. For example, 
given the following IE command line:

     $ ie -acquire=mydat.dat mydat.mas -delimit="*" -ending="#"

14.  IE supports the D% or U% syntax in FIELDS and MODIFY lists for CREATE 
operations to reference the codelist description or user action code (see Appendix 
I.5.2.1) for a field i.e.: "FIELDS=(CUSTID,CUSTOMER,D%SALESREP,INVNO)", 
"MODIFY=(D%SALESREP\S=10)"
ADMINS User Guide  17 - 25



IE: the ADMINS Import/Export Facility
where MYDAT.MAS has the following definition:

     MAS 1000
     DEPT     X9999 KEY1
     REGION   A1
     AGENT    X99
     CURRENT  D
     1PREV    D
     2PREV    D
     3PREV    D
     4PREV    D
     COMMENT A80

The beginning of the ASCII file to be acquired could appear as follows:

     DEPT*REGION*AGENT*CURRENT*COMMENT#
     2132*W*67*    2345*New hire took over for H. Hines #
     2245*W*52*   67822*Was badly back ordered          #
     1655*W*12*   22566*No new clientele                #
     1654*C*22*   17881*Hard work starting to pay off   #
                     ...
     etc.

At least one delimiter character must separate each field, and at least one delimiter 
character (different from the field delimiter) must terminate each record.

When creating an external ASCII text file, users may use field and/or record 
delimiter characters, and external file fieldname header records optionally (as their 
application dictates). By default, IE outputs the following standard lengths for each 
ADMINS field type, without delimiters:

     ADMINS           Default           
     field type       length         Examples  
     ----------       -----------    -------
   Alphanumeric (An)  (n//2) * 2     Rounded up to even number  
                                     of chars. e.g:
                                     A16 = 16 chars., A5 = 6 chars. 
   Pictured  (Xpic)   Pic length     XA9999 = 5 char.
   Date (DA,DT)       ADM$DATE len   m d, Y4 = 18 char.
   Time (TM)            11            
   4-wd decimal (Fn)  36 + n         F2 = 38 char., F4 = 40 char.
   Decimal (Dn)       30 + n         D = 30 char., D3 = 33 char.
   Longword (Ln)      15 + n         L1 = 16 char
   Integer (I)           7       
   Internal Text (TI) Document length 
   External Text (TX) Document file name length

SELECT criteria are given using normal ADMINS expressions, and can be applied to 
either acquisition of external data, or creation of external files.

17.8.1  Managing Text Fields in IE

IE has special capabilities to aid in processing the transfer of information between 
external text files and ADMINS TI (internal text) fields.

• CREATE: To limit the length of internal text (i.e. TInn data type) output to the 
ASCII text file by CREATE, append "\L=m" to the TI field name, using either 
FIELDS or MODIFY. "\L=m" specifies that only the first "m" lines of the 
document contained in the TI field are to be output.

To control how CREATE interprets "hard" carriage returns15 found in internal text 
documents created by ADMINS' TED text editor, assign the decimal ASCII code for 
the character you want IE to output when a hard carriage return is encountered to the 
logical name ADM$HARD_CR, e.g.:

              $ ASSIGN 10 ADM$HARD_CR
17 - 26   ADMINS User Guide



IE: the ADMINS Import/Export Facility
would output a "Line Feed" (or "ctrl/j") character (decimal ASCII code 10) to the 
external file whenever a hard carriage return is encountered in the internal text 
document. If the logical name ADM$HARD_CR is not assigned hard carriage returns 
in internal text are output as blanks. The effect of ADM$HARD_CR is global to all 
internal text fields being exported. To override this global effect for a particular field 
append "\NOCR" to the field's name in the FIELDS list, e.g.:

  $ IE -CREATE=ASCII.TXT -FIELDS=(CUSTID,DELIVNOT\NOCR)

 "\NOCR" means interpret a hard carriage return as a blank character.

• ACQUIRE: IE provides text pattern substitution for documents being 
acquired into internal text (TI) fields.

The character string patterns to be replaced are listed with their replacement strings 
in a text file named PATTERNS.TBL in the current default directory. (If 
PATTERNS.TBL is not found in the current default directory IE will attempt to 
translate the logical name ADM$PATTERN, which can be used to identify a directory 
specification where IE will look for PATTERNS.TBL.)

Three kinds of pattern substitution operations are supported in IE: deletion (discard 
the string), substitution (replace the string with another), and insertion (add 
something before or after the string).

Each entry16 (line) in PATTERNS.TBL follows the general syntax:

      MAP = "FIND-PATTERN" : "SUBSTITUTE-PATTERN"

Spaces are not required between each component, but may be used to increase 
legibility.

Each substitution consists of two distinct operations: finding a pattern in the text 
buffer; and replacing that pattern with a new pattern. Deletion is specified by a rule 
that contains only a FIND-PATTERN. FIND-PATTERN and SUBSTITUTE-
PATTERN must be enclosed by double quotes (").

The backslash character (\) has a special function inside the quoted strings FIND-
PATTERN and SUBSTITUTE-PATTERN: it signals that the special character that 
follows it is to be used literally and passed as part of the string in FIND-PATTERN 
and SUBSTITUTE-PATTERN. Some examples:

                 !Find and replace
                 MAP = " mispell " : " misspell "
                 !Find and delete.
                 MAP = " very,"
                 !Replace Bill in quotes with 
                 !Bill in parentheses. 
                 MAP = "\"Bill\"" : "(Bill)"
                 !Replace \eta\admnat with ETA:[ADMNAT] 
                 MAP = "\\eta\\admnat" : "ETA:[ADMNAT]" 
                 !Find and insert: "active" becomes "inactive"
                 MAP = "active " : "in&"

15.  "Hard" carriage returns result when a new line in the original document has been 
forced, for example by a carriage return keystroke. "Soft" carriage returns, by 
contrast, are the result of automatic line wrapping.

16.  Lines that begin with an asterisk (*) or exclamation point (!) are ignored, and may 
be used for comments.
ADMINS User Guide  17 - 27



IE: the ADMINS Import/Export Facility
The last example demonstrates the use of the special "ditto" character, ampersand 
(&), in the SUBSTITUTE-PATTERN for insert operations. Ampersand is a place 
holder, representing the entire FIND-PATTERN transferred to the position of the 
ampersand in SUBSTITUTE-PATTERN. Some more examples:

                 !Find "a+b" and replace it by "(a+b)".
                 MAP = "a+b" : "(&)"
                 !
                 !Find " very" and replace it by " very, very".
                 MAP = " very" : "&,&"

To include a literal "&" in the SUBSTITUTE-PATTERN, precede it with a backslash. 
Ampersand has no special meaning in the FIND-PATTERN.

"Backslash" syntax can also be used to specify non-printing characters:

                 !Replace VT "bold on" escape sequence with TED's 
                 MAP = "\27\[1m" : "\28\248"
                 !
                 !Replace VT "bold off" escape sequence with TED's
                 MAP = "\27\[0m" : "\28\240"

A numeric value following backslash is interpreted as the decimal ASCII code for a 
character.

IE loads the input text into an internal buffer for processing the substitution rules. 
When the buffer is full, the substitution rules are applied, in order, on the contents of 
the buffer. Then the buffer is output to the TI field, where it is formatted according to 
that field's ruler (see Appendix I.5.2 “Overview of Internal Codelist Table Values ”).

Multiple-word FIND-PATTERNs are not supported.17 (FIND-PATTERN should 
have no imbedded blanks or tabs. Blanks or tabs should only occur at the beginning 
or the end of the FIND-PATTERN).

Patterns are case sensitive. There is no limit to the number of substitution rules that 
can be placed in "PATTERNS.TBL". The text being acquired is changed according to 
the first rule. The output of the first rule becomes the input text for the second rule, 
and so on until there are no more rules.

ACQUIRE supports special "meta character" syntax to search for patterns that match 
classes of characters or text of indefinite length.

17.  "Words" in the input text (i.e. a character string delimited by blank, tab, or 
carriage return/line feed) are never split between buffers. But because 
consecutive "words" may be split by the buffering process - before the FIND-
PATTERN is applied, FIND-PATTERNs that contain imbedded blanks or tabs 
cannot be found reliably in the input and consequently should not be used. When 
the text is placed in the buffer, blanks and tabs are preserved but CR/LF is 
converted to a blank. For consistency, a FIND-PATTERN that begins with a 
blank, e.g. " Hello" will match the first word of a document that begins: "Hello. 
Its me! My name is..." even though the document does not begin with a blank.

? Question mark matches any single character. The 
pattern X?Y matches XAY, X+Y or X?Y.

[ ] Square brackets mean that the characters following 
"[", up to the next "]", form a character class, i.e. any 
single character from the bracketed list is 
considered a match. The pattern [aA] matches a or 
A.
17 - 28   ADMINS User Guide



IE: the ADMINS Import/Export Facility
- In a bracketed string the dash indicates "through 
notation", i.e. [a-z] means "from a to z", or "match 
any lowercase letter".

^ Circumflex negates the character class that follows 
it in a bracketed string. [^a] means "not a" or "match 
any character except a.

Use backslash before the character if you want to include ^, -, [, or ] 
explicitly in a class.

* Any text pattern followed by an asterisk (*) means 
match zero or more successive occurrences the 
pattern. For example, a* matches zero or more a's; 
aa* matches one or more a's; [a-z]* matches any 
string of zero or more lower case letters.
ADMINS User Guide  17 - 29



IE: the ADMINS Import/Export Facility
17 - 30   ADMINS User Guide



Chapter 18:ADED: The Data File Editor

ADED is an editor for ADMINS data files which can be used from any ASCII 
terminal, i.e. both a CRT or a hard copy unit.

18.1  Function of ADED

1. Append or insert new records into a file.
2. Delete individual records in a file.
3. Search out records in a file by their key value, or by selection criteria based on 

comparing values in fields to constant values.
4. Change values in fields in the file.
5. Display either all fields or groups of fields from one or many records in a file. A 

columnar format is used when it "fits" within the display width, or else the detail 
of a record is spread across several lines.

18.2  ADED Dialogue

When ADED is called it prompts for a file name.

     $ aded
     TYPE "HE" FOR HELP
     FILE-NAME:

If the user types "HE" to the first FILE-NAME prompt, ADED displays a brief 
summary of all the ADED instructions and their use. When the help display is 
completed, ADED will re-prompt for the FILE-NAME. When the user types a file 
name, the file is opened by ADED, the fields in the file are displayed, the "record 
pointer" is placed at the first record of the file, the prompt "TYPE:" appears, and the 
user may begin editing.

The "record pointer" refers to the location, i.e. the specific record, in the file where 
ADED will begin processing the next instruction.

The user may type the file name directly on the command line if desired. For example:

     $ aded pers.mas
     PERS.MAS OPENED, 50 RECORDS
     SS#/K1  LNAME  ADDRESS  BIRTHDA
     ***** TOP OF FILE
     TYPE:
ADMINS User Guide   18 - 1



ADED Instructions
18.3  ADED Instructions

The ADED editing instructions that may be entered in response to the "TYPE:" 
prompt are as follows.

18.3.1  HEADING

     TYPE:hx field1 field2 etc.

The HEADING instruction is used to associate fields names with a "heading 
number". For example, "H3 LNAME ADDR BIR", would set heading number "3" to 
the fields LNAME, ADDRESS, and BIRTHDA. As we can see a partial letter match is 
sufficient to place a field name in a heading. From then on whenever the user refers 
to heading "3" ADED will understand it is to use these fields. (Key fields are 
automatically included in each heading. Heading "0", which consists only of the key 
fields, is automatically set by ADED when the file is opened, and is used whenever 
the user doesn't specify any heading.)

18.3.2  PRINT

     TYPE:p[x] [n]

The PRINT instruction displays "N" records from the record pointer according to the 
optional heading "X". The record pointer is left at the last record displayed. If "N" is 
absent it is assumed to be 1. If the page width is adequate then the data is displayed 
in columnar format under field name headings. Otherwise, the field names and the 
data are run together on as many output lines as are necessary to contain the 
requested information. In "brief" mode the field names are not displayed.

For example, "P3 2" in verify mode would display the following:

     SS#------  LNAME----  ADDRESS---------  BIRTHDA--
     059381528  JONES      3 ELM STREET      06-MAY-46
     047317665  SMITH      146 MAIN STREET   14-JUL-34

18.3.3  WIDTH

     TYPE:w n

The WIDTH instruction sets the page width. The maximum width is 128 characters. 
The initial width is 80 characters.
18 - 2   ADMINS User Guide



ADED Instructions
18.3.4  VERIFY

     TYPE:ve

The VERIFY instruction sets the brief option off. In brief mode ADED does not 
display the field names associated with the data.

18.3.5  BRIEF

     TYPE:br

The BRIEF instruction turns the brief option on which suppresses the display of field 
names. Initially the brief option is off.

18.3.6  TOP

     TYPE:t

The TOP instruction moves the record pointer to the top of the file, that is to the first 
record in the file.

18.3.7  END

     TYPE:e

The END instruction moves the record pointer to the end of the file, that is to the last 
record in the file.

18.3.8  NEXT

     TYPE:n[x] [n]

The NEXT instruction moves the record pointer forward "N" records and then 
displays the current record using optional heading "X". "N" is optional and assumed 
1 if absent.

18.3.9  UP

     TYPE:u[x] [n]

The UP instruction moves the record pointer backwards "N" records and then 
displays the current record using the optional heading "X". "N" is optional and 
assumed 1 if absent.
ADMINS User Guide  18 - 3



ADED Instructions
18.3.10  FIND

     TYPE:f[x] [key values]

The FIND instruction is used to find a record via its key values. Those key values not 
supplied on the instruction line by the user are requested by prompts from ADED. If 
a record is found it is displayed according to optional heading "X" and the record 
pointer is left at the found record. The search is applied across the whole file. For 
example, "F3 059361528" in brief mode would display the following:

     059361528  JONES      3 ELM STREET      06-MAY-46

18.3.11  LOCATE

The LOCATE instruction is used to locate records based on any value in the record. 
The syntax of LOCATE is:

     TYPE:l[x] [n]
     SELECTION:field op cons
     SELECTION:field op cons
     SELECTION:cr

This means locate "N" instances that satisfy the selection criteria and display using 
the optional heading "X". "N" is optional and assumed 1 if absent. If "N" is "0" the 
search limit is not for a specific number of instances, but rather for all matches until 
end of file is reached. The record pointer is left at the last record located.

The selection criteria is a relation between a named field and a constant. Multiple 
criteria are "and-ed" together, i.e., they must all be true to locate a record. The 
relational operators are "EQ LE GE NE GT LT IN". IN is for alphanumeric data, i.e. 
LNAME IN DAVID, for LNAME includes "DAVID", e.g. there is a match when the 
string "DAVID" is present in the field LNAME.

18.3.12  CHANGE

     TYPE:c field value [n]

The CHANGE instruction is used to change the content of fields in the record. The 
syntax means to take VALUE and put it in FIELD for "N" records. The record pointer 
is left at the last record changed. If "N" is absent it is assumed to be 1. Both key fields 
and non-key fields may be changed. However, while the key fields may be changed, 
the index structure is not modified to reflect that change, and the user must SORT the 
file after exiting from ADED.

18.3.13  APPEND

     TYPE:a[x]

The APPEND instruction puts ADED in a mode where it will append records to the 
end of the file until append mode is left. ADED will prompt the user to type values 
for the fields in the records to be appended. Only those fields in heading "X" will be 
prompted. However, if no heading number is given then ADED prompts for all the 
fields in the record. The user leaves append mode by typing carriage return to a 
prompt for the first key field. The record pointer is left at the last record appended.
18 - 4   ADMINS User Guide



ADED Instructions
18.3.14  INSERT

     TYPE:i[x] [key values]

The INSERT instruction proceeds like the FIND instruction, accepting key values 
from the user and trying to find the record with those key values. If a record is not 
found, then the INSERT instruction behaves like the APPEND instruction, except 
that INSERT does not prompt for key values, i.e. it uses the key values which it 
searched on. Also, INSERT inserts the record in sort order, whereas APPEND adds 
to the end of the file. ADED only inserts one record at a time, that is after the values 
are supplied for the new record, ADED asks for another instruction. The record 
pointer is left at the inserted record.

18.3.15  DELETE

     TYPE:de [key values]

   or

     TYPE:de this

The DELETE instruction proceeds like a FIND instruction only after the record is 
found it is deleted. If a record is not found with the key values then nothing is done, 
and the record pointer is placed at the first record in the file.

In the second variation "DE THIS" will delete the record at the current record pointer 
location. In either variation after a record deletion the record pointer is left at the 
record following the one that was deleted.

18.3.16  CLOSE

     TYPE:cl

The CLOSE instruction closes the active file and prompts for a new file name. The 
only proper way to leave ADED is to close the active file, and type carriage return to 
the next "FILE NAME:" prompt.
ADMINS User Guide  18 - 5



ADED Example
18.4  ADED Example

The following example illustrates the result of using all of the ADED instructions. A 
simple file with only 10 records is used. The contents of the entire file are shown at 
the beginning and the end of the ADED editing session.

     $ aded emp.mas
     EMP.MAS OPENED, 10 RECORDS
     EMP#/K1  FNAME  SEX  HIRE  STATUS
     ***** TOP OF FILE
     TYPE:h1 fname sex hire status
     TYPE:p1 15
     EMP#  FNAME-------  SE  HIRE-----  ST
     0013  DANIEL        M   29-SEP-80  P
     0204  JACK          M   24-FEB-75  P
     0293  GERALD        M   16-MAY-68  P
     0425  BARBARA       F   17-MAY-82  P
     0445  JEANNE        F   23-JUN-80  P
     0593  RAY           M   16-MAR-65  P
     0843  ALLEN         M   23-MAY-73  P
     0924  SUSAN         F   07-SEP-82  P
     1012  VERNON        M   10-SEP-76  P
     1213  CYNTHIA       F   29-APR-77  P
     ***** END OF FILE
     TYPE:t
     ***** TOP OF FILE
     TYPE:w 30
     TYPE:p1 2
     EMP#: 0013  FNAME: DANIEL
     SEX: M  HIRE: 29-SEP-80
     STATUS: P
     -------------------
     EMP#: 0204  FNAME: JACK
     SEX: M  HIRE: 24-FEB-75
     STATUS: P
     -------------------
     TYPE:w 80
     TYPE:br
     TYPE:p1
     0204  JACK          M   24-FEB-75  P
     TYPE:ve
     TYPE:p1
     EMP#  FNAME-------  SE  HIRE-----  ST
     0204  JACK          M   24-FEB-75  P
     TYPE:t
     ***** TOP OF FILE
     TYPE:p1
     EMP#  FNAME-------  SE  HIRE-----  ST
     0013  DANIEL        M   29-SEP-80  P
     TYPE:e
     ***** END OF FILE
     TYPE:p1
     EMP#  FNAME-------  SE  HIRE-----  ST
     1213  CYNTHIA       F   29-APR-77  P
     TYPE:u1 5
     EMP#  FNAME-------  SE  HIRE-----  ST
     0445  JEANNE        F   23-JUN-80  P
     TYPE:n 3
     EMP#
     0924
     TYPE:f1
     EMP#:0445
     EMP#  FNAME-------  SE  HIRE-----  ST
     0445  JEANNE        F   23-JUN-80  P
     TYPE:l1 1
     SELECTION:hire lt 01-jan-66
     SELECTION:cr
     EMP#  FNAME-------  SE  HIRE-----  ST
     0593  RAY           M   16-MAR-65  P
     TYPE:c status s 2
18 - 6   ADMINS User Guide



ADED Example
     STATUS: FROM "P" TO "S"
     STATUS: FROM "P" TO "S"
     TYPE:u
     EMP#
     0593
     TYPE:p1 2
     EMP#  FNAME-------  SE  HIRE-----  ST
     0593  RAY           M   16-MAR-65  S
     0843  ALLEN         M   23-MAY-73  S
     TYPE:i1 0234
     FNAME:robert
     SEX:m
     HIRE:01-NOV-82
     STATUS:p
     RECORD INSERTED
     TYPE:a1
     EMP#:0678
     FNAME:mary
     SEX:f
     HIRE:15-DEC-82
     STATUS:p
     RECORD APPENDED
     EMP#:cr
     ***** END OF FILE
     TYPE:de 0445
     RECORD DELETED
     TYPE:p1
     EMP#  FNAME-------  SE  HIRE-----  ST
     0593  RAY           M   16-MAR-65  S
     TYPE:de this
     RECORD DELETED
     TYPE:t
     ***** TOP OF FILE
     TYPE:p1 15
     EMP#  FNAME-------  SE  HIRE-----  ST
     0013  DANIEL        M   29-SEP-80  P
     0204  JACK          M   24-FEB-75  P
     0234  ROBERT        M   01-NOV-82  P
     0293  GERALD        M   16-MAY-68  P
     0425  BARBARA       F   17-MAY-82  P
     0843  ALLEN         M   23-MAY-73  S
     0924  SUSAN         F   07-SEP-82  P
     1012  VERNON        M   10-SEP-76  P
     1213  CYNTHIA       F   29-APR-77  P
     0678  MARY          F   15-DEC-82  P
     ***** END OF FILE
     TYPE:cl
     EMP.MAS CLOSED, 10 RECORDS
     FILE-NAME:cr
     $
ADMINS User Guide  18 - 7



Restricting Use of ADED
18.5  Restricting Use of ADED

All use of ADED can be restricted by placing "G" in the logical name OPTION. ADED 
can be restricted to read-only operations by placing "H" in the logical name OPTION. 
That is, the insert, append, delete and change operations are inhibited. Both options 
are described in Appendix A: “Options”. ADED checks the system and group logical 
name tables first for the presence of the "G" or "H" before the process table is used. 
Hence the ADED availability for the entire system or an entire group can be 
controlled because "GRPNAM" and "SYSNAM" privilege are needed to change 
logical names in the group and system tables, respectively.

ADED can also be restricted to operate on only one file each time ADED is invoked. 
If there is a lowercase "a" in the logical name OPTION ADED will exit when the file 
it is operating on is closed (using the ADED "CL" command), without prompting for 
another file name. This feature allows ADED use within command procedures to be 
restricted to a specific file in situations where file and data security are important 
issues.

These same options also restrict the use of TRANS General Editor Mode as described 
in Section 6.14.5 “Restricting Use of General Editor Mode”. 
18 - 8   ADMINS User Guide



Chapter 19:Concurrency Control: 
Multi-User Files

ADMINS Concurrency Control (the multi-user file facility) supports shared use of 
ADMINS data files by multiple users.

19.1  Modes of File Access

ADMINS commands all utilize the same concurrency control system when they read 
and write records in ADMINS data files. This makes it possible for any combination 
of ADMINS commands (for example, TRANS and PROD) to obtain fully coordinated 
concurrent access to the same file. Normally, though, a command such as PROD is the 
only "user" of its files.

There are four basic modes in which a file can be processed.

• EXCLUSIVE mode (X): While a user has EXCLUSIVE use of a file, no other 
user can open it for ANY purpose. If a file is already in use, it cannot be opened 
for EXCLUSIVE use.

• SINGLE USER mode (S): While a user has a file open for a SINGLE USER 
activity, no other user can open the file for writing (other users can open the 
file for READ ONLY use). If a file is already open for anything except READ 
ONLY use, it cannot be opened SINGLE USER.

• MULTI USER mode (M): Provides automatic record locking, block overwrite 
protection, and file index coordination. Any number of users can open a file in 
MULTI USER mode, and can perform any operations on the file concurrently. 
If a file is already open in EXCLUSIVE or SINGLE USER mode it cannot be 
opened MULTI USER.

• READ ONLY mode (R): READ ONLY mode provides the ability to read any1 
file, unless it is open for EXCLUSIVE use.

1.    ADMINS data files that contain text fields have two files associated with them, the 
text storage file (TSF) and the text catalog file (TCF), as described in Appendix K.1. 
Users must have write access to these files in order to access the ADMINS data file 
that contains text fields.
ADMINS User Guide   19 - 1



Modes of File Access
The compatibility among the four modes can be summarized as:

----------------------------------------------------------------
                                 EXCLUSIVE 
                                 |    SINGLE USER
                                 |    |    MULTI USER
                                 |    |    |    READ ONLY
                                 |    |    |    |
File Already Open in Mode -->   X    S    M    R
----------------------------------------------------------------
Try to Open File in Mode:  X |  N    N    N    N   EXCLUSIVE
                             |
                           S |  N    N    N    Y   SINGLE USER
                             |
                           M |  N    N    Y    Y   MULTI USER 
                             |
                           R |  N    Y    Y    Y   READ ONLY
----------------------------------------------------------------

Each ADMINS command has default file processing modes for the various files it 
uses. The default modes provide the appropriate and most efficient level of 
concurrency control for typical uses of the command.

Command File Default File Processing Mode

ACQUIR/
FACQUIR

OUTPUT Exclusive

ADED MAIN FILE Single User

ANALYZER ACTIVE, LINK Read Only

AV MAIN FILE Multi User if write, otherwise Read Only

AFU MAIN FILE Exclusive if INIT or RESTORE, otherwise 
Read Only

CMP All Read Only

DATAP/FDATAP INPUT Single User

IE MAIN FILE
with /CREATE
with/ACQUIRE

Read Only
Exclusive

MAINT MAIN FILE
OUTPUT

Single User
Exclusive

MOVE INPUT
LINK
LINK WRITE
ADD
OUTPUT

Single User
Read Only
Single User
Single User
Exclusive

MRGFIL INPUT
OUTPUT

Single User
Exclusive

PROD DETAIL
LOOKUP
OUTPUT

Single User
Single User
Exclusive

REPORT All Read Only

SCREEN All Read Only
19 - 2   ADMINS User Guide



Modes of File Access
    ----------------------------------------------------------------

In general, except for LINKs without writeback and LOOKUP, TRANS opens files 
MULTI USER by default. The "batch" processing commands generally open input 
files SINGLE USER and always open output files EXCLUSIVE.

These defaults provide automatic protection of data integrity. They simplify 
application development by reducing the need for developers to decide how files 
should be opened. The defaults provide optimum performance consistent with the 
degree of concurrency control usually needed by each ADMINS command.

19.1.1  Overriding the Default File Processing Mode

In some applications the default file processing mode may not give the desired type 
of protection. In those situations, the default file processing mode can be overridden 
by appending the codes (-X, -M, -S, -R) to the file name. EXCLUSIVE mode cannot be 
overridden when a file is being initialized (e.g. by AFU INIT or self-SORT, MOVE 
and SORT can also initialize the output file).

Three flexible file processing modes are available as options on a per-file basis (-RM, 
-SM, and -RX). When ADMINS commands read from the disk, whole "blocks" of 
data, which might contain several records, are read into memory. A command that is 
accessing a file read-only (-R) file physically re-reads the disk only if it needs a block 
not currently in memory, because read-only file access implies that other concurrent 
users of the file will not be changing it, or that any such changes do not impact this 
file access.

If this assumption is not valid, use "-RM" to instruct ADMINS to open the file for 
READ ONLY processing, but to check for updates (i.e. always re-read the record 
from the disk), and check for new record insertions or deletions (i.e. check for 
changes to the index). Like "-R", "-RM" access never locks the file, so it is compatible 
with all the same concurrent accesses as "-R". "-RM" file access is recommended for 
situations where concurrent users may add records or alter records in the file, but 
compatibility with concurrent users precludes file locking.

SORT SELF-SORT
INPUT
OUTPUT

Exclusive
Single User
Exclusive

TRANS ACTIVE
ACTIVE NOSHARE
FIELD LOG
LINK
LINK W
APPEND
INDEX
LOOKUP

Multi-User
Single User
same as active file
Multi User Read (RM)
Multi User
Multi User
Multi User
Read Only

SUBROUTINES that open an 
ADMINS file 
open the file
except...
OUTPUT

Read Only

Exclusive

Command File Default File Processing Mode
ADMINS User Guide  19 - 3



Resolving File Access Conflicts
However, because the file is never locked from being changed by another concurrent 
file access it is possible for "-RM" to try to access the file while it is in the midst of 
processing a change (insertion, deletion) initiated by another concurrent access. 
When this happens the "-RM" file access may exit with an error condition. Use file 
locking (-RX file access) to prevent this.

 If read-only access is desired, but concurrent file accesses are likely to add or delete 
records in this file and cause error exits, use "-RX" to instruct ADMINS to use file 
locking. Locking ensures that the processing of changes initiated by other concurrent 
accesses will be complete. "-RX" file access does lock the file for brief periods while 
searching the file's index and reading the record, so it has the same compatibility with 
other concurrent uses as "-M".

The "-RM" and "-RX" modes of file access take more time than read-only ("-R") access, 
due to the additional checking and disk i/o that is taking place.

 "-SM" tells ADMINS to try to open the file SINGLE USER; but, if it cannot be opened 
that way, try to open it MULTI USER.

19.2  Resolving File Access Conflicts

The following options control the action of ADMINS when a file cannot be opened 
because it is already open in a conflicting mode:

----------------------------------------------------------------
     Option  Meaning                               Default in: 
----------------------------------------------------------------
        A    Prompt User: Wait or Exit             --
        W    Wait for file to become available     Batch 
        E    Exit with error message               Interactive 
----------------------------------------------------------------

To change the default file opening action globally, the option letter (A, W, or E) is 
assigned to the logical name ADM$FILEOPTION in the system logical name table.

To override the default file opening action for a specific use of a file, append the 
appropriate letter to the file name (-A, -W, -E). A file opening action code can be 
combined with the optional file processing codes above. For example, STUFF.MAS-
XW would tell ADMINS to open STUFF.MAS in EXCLUSIVE mode and, if that is not 
possible, wait until the other users leave the file and it can be opened for EXCLUSIVE 
use.
19 - 4   ADMINS User Guide



Resolving Record Access Conflicts
19.3  Resolving Record Access Conflicts

The following options control how ADMINS behaves when a user is locked out of a 
record because another user currently has write access to the record.

----------------------------------------------------------------
   Option  Meaning                               Default in: 
----------------------------------------------------------------

L    Wait until record is available             Batch              
I    Ignore record lock                       --               
N     Prompt user: Wait or Ignore                    Interactive        
T    Do not lock top record in file (on a per file basis only)

----------------------------------------------------------------

When Record locking option "N" is in effect and the target record is not available the 
user is prompted "Record Lockout on <Filename> Do you want to Wait or Ignore"; 
i.e. do you want to wait for the record to become available, or, do you want to ignore 
record lockout and access the record for read-only use2. If the choice is to wait for the 
record, and the record does not become available; ADMINS will prompt with the 
same choice every ten seconds.

Record locking option "T" keeps the first record in the file free of locks, to 
accommodate applications that use this record as a special location3, i.e. MATCH or 
F$F in TRANS; or use a two-record file to maintain sequential numbers or running 
totals (one record to maintain values, the other  a “dummy” record to give 
applications “a place to land”). Option T is only available on a per file basis, i.e. 
XXX.MAS-T.

Record locking option "I" is provided only as an escape hatch for older applications 
which used the now obsolete record lockout (RLKOUT) feature, in case record 
locking causes problems in a specific application. Record locking option "I" bypasses 
the record locking facility in the sense that the user does not receive a message or a 
prompt if a record is locked, and the user can read the record. However, ADMINS 
will not write back the record. When option "I" is invoked, screens which use the old 
RLKOUT functionality will work exactly as they used to.

The RMO can detect when record locks are ignored, either as a result of record 
locking option "I" or because the user has typed "I" to the "Do you want to Wait or 
Ignore" prompt. This facility is discussed in Section 16.20 “Managing Ignored Record 
Locks - ADM$NOLOCK and ADM$NLREC”.

To override the default record locking action globally, assign the appropriate code to 
the logical name ADM$FILEOPTION.4

 To override the default record lockout action for a specific use of a file, append the 
code to the file name (STUFF.MAS-MWL tells ADMINS to try to open STUFF.MAS 
MULTI USER, wait until it can be opened that way, and, whenever a locked record 
is encountered, wait for it to become available).

2.If the TRANS Environment File (see Section 6.15.16.1 “TRANS main program”) 
contains the entry “recordlock.ask=once” then once a recordlock is ignored 
TRANS will enter “read-only” mode and remain in that mode until a new virtual 
record becomes active and no record locks are being ignored

3.“-T” should only be used to give applications a “safe” place they will not be locked 
out of.  ADMINS will not write the a record in a file that is not locked because it 
is the first record in a file opened using “-T”

4.    Option T "Do not lock the top record in the file" is available only on a per file basis, 
i.e. it cannot be enabled using ADM$FILEOPTION.
ADMINS User Guide  19 - 5



Resolving Record Access Conflicts
19.3.1  Special Treatment of Full-Block Records

ADMINS takes advantage if multi-user files are designed so that multiple users 
cannot simultaneously update the same disk block. If the record size is padded5 to 
exactly 512 words (1024 bytes - the size of an ADMINS disk block) then ADMINS 
does not need to re-read the disk block to check for someone else's updates to other 
records in the block before writing the block back to disk, because the record being 
written is the only one in the block. This can cut down disk i/o by up to 33%, and cut 
down processing time in batch-type operations that update records with the file open 
multi-user.

19.3.2  ADM$NOTIFYUSER - Periodically Displaying a Record Lock 
Message

If the  logical name ADM$NOTIFYUSER is assigned with a non-zero positive value, 
an ADMINS image running in a command file will display a record lock message 
periodically instead of silently waiting for another user to release the record lock it 
needed. The message notifies the user running the command file that the procedure 
has been waiting a “long time” for a record lock. This allows the user to take the 
appropriate action to release the record lock.

The message is the same that one that already appears in ADMINS:  

Record lock <filename> <username if available> <process ID>”. 

The message is displayed periodically, depending on how many minutes are 
assigned to the logical name ADM$NOTIFYUSER. For example, if 
ADM$NOTIFYUSER is set to 20, ADMINS displays the record lock message once it 
has been waiting for 20 minutes for a record lock. It then displays the message every 
20 minutes thereafter until the lock is released.

The message is displayed only if ALL of the following conditions are true:

1. ADM$NOTIFYUSER is set to a numeric value greater than zero;
AND

2. the ADMINS image that’s waiting for a record lock is running in a command 
file;

AND

3. the command file is not running in a batch queue;
AND

4. the record locking option or default for the file is “wait”.

ADM$NOTIFYUSER displays messages on SYS$COMMAND on VMS. If 
SYS$COMMAND is not a terminal (i.e. it’s not a batch job or you redirected 
SYS$COMMAND to a file), the ADM$NOTIFYUSER messages are disabled.

5.    Pad the file by adding fields to the DEF. Each A80 field adds 40 words to the 
record size. When AFU reports Record size is "512W" the file size is just right.
19 - 6   ADMINS User Guide



Scope of ADMINS Concurrency Control
19.4  Scope of ADMINS Concurrency Control

ADMINS concurrency control coordinates users within a UIC group by default, but 
the scope can be changed to system-wide for a specific file or for all file access6 When 
access to a file is controlled on a group basis, only one UIC group can have the file 
open for writing at any given time (READ ONLY access from other groups is 
allowed).

Unless group-level concurrency control is necessary, we recommend system-wide 
concurrency control be used on OpenVMS.

To obtain system wide concurrency control on OpenVMS systems, the string 
"SYSTEM" should be assigned to the system logical name ADM$SYNC_LEVEL (this 
logical name assignment should be added to the system startup procedure):

      $ ASSIGN /SYSTEM SYSTEM ADM$SYNC_LEVEL

On VMS clusters, this assignment should be made on each node.

When system wide concurrency control is not in effect, system wide coordination of 
specific files can be obtained by appending the code (-U) to the file name. Once a file 
is opened on a group wide or system wide basis, subsequent users must open it the 
same way.

Alternatively, the name of a text editable list of file names can be assigned to the 
system wide logical name 

ADM$SYNC_SYSTEM 

Each file name should be on its own line. The most important point is that the file 
names in the ADM$SYNC_SYSTEM list should be fully expanded (leading 
underscores in device names, and version numbers, are not required and, if present, 
are ignored). The file names in this list should not contain any logical names except 
concealed logical names. For example:

! Sample ADM$SYNC_SYSTEM List 
! Files with System Wide Concurrency Control
! 
DUA1:[DATA]STUFF.MAS
$DISK2:[PAYROLL]PA123.TAB    ! $DISK2 is a concealed logical name

Whether concurrency control is active at the group level or the system wide level, 
there is no internal limit on the number of files or records which can be coordinated.

ADMINS provides the option of updating a file on a remote DECnet node. For 
information on enabling concurrency control across DECnet, see Section 19.6 
“Concurrency Control Across DECnet”.

6.    When system wide concurrency control is used, all disks in the cluster should 
have unique device names, even if they are local disks for a node. Concurrency 
control operates by locking resources; the resource name for a file is the device 
name plus the file ID number. If two devices have the same name, resource 
names might not always be unique. This could lead to conflicts between users 
who are actually trying to access files on different disks.
ADMINS User Guide  19 - 7



Resolution of Deadlocks
19.5  Resolution of Deadlocks

ADMINS concurrency control automatically handles deadlocks. A deadlock 
situation can be visualized as follows:

                ----------------        ----------------
             |                |      |                | 

                 |    SCREEN 1    |      |    SCREEN 2    | 
                 |                |      |                | 
                  ----------------        ----------------
                         |^                    . |
                         |   ^   3          .    |
                         |      ^        .       |
                       1 |         ^  .          | 2
                         |         .  ^          |
                         |      .        ^       |
                         |   .   4          ^    |
                         |.                    ^ |
                  ----------------        ----------------
                 |                |      |                | 
                 |    RECORD 1    |      |    RECORD 2    | 
                 |                |      |                | 
                  ----------------        ----------------

The screen in this example has an active file and a link, and it can write back to both 
the active record and the link record. SCREEN 1 has RECORD 1 as its active record 
and SCREEN 2 has RECORD 2 as its active record. The screens each obtain locks on 
their active records without difficulty (Steps 1 and 2). Then (Step 3), SCREEN 1 tries 
to link to RECORD 2, is locked out of the record, and begins waiting for it to become 
free. In Step 4, SCREEN 2 tries to link to RECORD 1, is locked out, and begins waiting 
for record 1. Since each screen is waiting for the other one to complete a transaction, 
they will wait forever unless something is done.

Deadlocks are rare events which never happen in most applications. When they do 
occur, however, ADMINS concurrency control performs the following actions 
designed to protect data integrity:

1. First, the Lock Manager detects the deadlock and chooses one of the deadlocked 
users as a "victim".

2. TRANS notifies the victim that the screen is deadlocked and that it will pause 
before the user can continue the transaction.

3. If the victim has made any changes in editable fields which have not yet been 
written to the disk, TRANS updates the disk files.

4. TRANS releases all the victim's locks, submits new requests for locks on the 
same records, and starts to wait.

5. The other user obtains access to the record he was previously locked out of, and 
completes the transaction.

6. The ex-victim's pending lock requests are granted, all records in the screen are 
re-read from the disk, the screen is refreshed, and the ex-victim can complete the 
transaction.

Thus, ADMINS handles this difficult situation as smoothly as possible from the point 
of view of preserving the integrity of the data. If additional processing is required 
before the "victim" screen releases its locks or after it re-reads the disk, the RMO can 
obtain control. If the special field L$OCK/A4 is present as a local field in the RMO, 
the following occurs in the victim's TRANS during a deadlock:

     -------------------------------------------------
                                 RMO calls: 
                                 S$S     M$M   L$OCK
19 - 8   ADMINS User Guide



Resolution of Deadlocks
     -------------------------------------------------
     Normal pre-link RMO call    Field    UX   (blank)
     Link results in deadlock 
     Deadlock message 
     Pre-release RMO call        Field    UX   DLOC 
     Write back all records 
     Release record locks 
     Queue requests for records 
     Wait until records are available 
     Re-Read records
     Post-deadlock RMO call      Field    UX   WAKE 
     Normal post-link RMO call   Field    UP   (blank)
     Refresh screen 
     -------------------------------------------------

If L$OCK is in the RMO there is a pair of special RMO calls which occur only in a 
deadlock. Before TRANS writes back records because of a deadlock, TRANS calls the 
RMO with L$OCK set to 'DLOC'. When the records have been re-read from the disk, 
the second special call occurs, with L$OCK set to 'WAKE'. S$S has the usual value 
and M$M is set to the pre-link call.

For example, before writing back, the values of certain fields might be saved in local 
fields; and after re-reading the records, the fields might be compared with the saved 
values and action taken if the fields were changed by the other user.7

It should be emphasized that deadlocks will only present problems in a few 
applications. In most of those, the automatic deadlock handling provided by 
ADMINS will suffice to maintain data integrity. We have provided the hooks to the 
RMO for any applications where developers want additional control over deadlock 
processing.

Finally, if deadlocks occur in an application but for some reason they are truly not 
important, record locking can be disabled for the specific LINK W which causes the 
deadlock by using the (-I) record locking option after the link file name.

7.     At these special deadlock calls, the RMO should not try to make TRANS leave 
the record. TRANS will not leave the record, because the transaction is not 
complete.
ADMINS User Guide  19 - 9



Concurrency Control Across DECnet
19.6  Concurrency Control Across DECnet 

On OpenVMS systems ADMINS supports concurrency control across DECnet. If this 
facility is enabled, whenever an ADMINS image opens a file on a remote node, the 
image creates a lock-server process to act on its behalf on that remote node (if one 
does not exist already).

Concurrency control for all files opened on that remote node by that image 
running in that user's process are handled by this lock-server process. The lock-
server tells the requesting image whether the requested resource is available or not. 
When the ADMINS image exits, it terminates any lock-server process(es) that it 
initiated.

To enable this facility, a logical name of the form ADM$NODE_"node-name" must be 
assigned8 which describes the location of the command file, "TARGET.COM", that 
will be called on the remote node to execute the lock-server, e.g.:

     $ ASSIGN <CR>
     _DEVICE: "OFFICE""TRAFFIC HIDDEN""::""TASK=TARGET""" <CR>
     _LOG_NAME: ADM$NODE_OFFICE <CR>

In the above example, OFFICE is the name of the remote node to be assigned, so in 
this case the logical name to be assigned is ADM$NODE_OFFICE. "TRAFFIC" and 
"HIDDEN" are the access control information ("log in" information, i.e. the username 
and password) to allow users to gain access to resources on the remote node. 
TARGET.COM is the command file in the default (login) directory on the remote 
node (TRAFFIC's default directory) which contains the call to the server.

TARGET.COM simply runs the LOCKSERVER image:

     $ RUN ADM$DIST:LOCKSERVER.EXE

TARGET.COM should be copied from the distribution directory to each node in the 
network, and the appropriate ADM$NODE_"node-name" assigned to reflect the 
disk/directory location it was copied to. There must be an ADM$NODE_"node-
name" logical name assigned for each different remote node to be accessed by the 
ADMINS image. If the logical name ADM$NODE_"node-name" is not assigned 
ADMINS ignores concurrency control across DECnet for any files it opens on that 
node.

"Y" must be included in the string assigned to the logical name OPTION to allow 
writing to a network file via DECnet.9 If "Y" is not present in OPTION, and you try to 
open a network file single-user, multi-user or exclusive mode, the file will be opened 
read-only (-RM).

8.    ADM$NODE_"node-name" should be assigned in either the process, group, or 
system logical name tables.

9.    See Appendix A: “Options”.
19 - 10   ADMINS User Guide



MLOCK: Lock Monitor Utility
Files accessed via DECnet should be opened system-wide (append -U to the DECnet 
file specification or assign SYSTEM to ADM$SYNC_LEVEL on your own node, as 
described in Section 19.4 “Scope of ADMINS Concurrency Control”). Then users can 
share files on the remote node no matter what UIC group they log into. (If files 
accessed via DECnet are opened at the group level, the files can be shared only by 
processes logged into that group.)

Record and file locks created by the lock-server can only be monitored by the lock 
monitor utility, MLOCK, if it is running on the same remote node.

Activation of the server may take some time (20 seconds would not be unusual), 
depending on the configuration and the load of the remote node.

19.7  MLOCK: Lock Monitor Utility

Use MLOCK, the ADMINS Lock Monitor Utility, to monitor record and file locking.

MLOCK has several command line qualifiers:

Qualifier Function

s Sort MLOCK report by Process ID

c Continuous display (stop with Ctrl/C)

r (seconds) Refresh interval for continuous display (default = 5)

a Display multi-user file header detail information 
(i.e. last record, last index pointer, index root)

i (PID) Display locks for specified Process ID

g (GID) Display locks for specified Group ID

f (filename) Display locks for specified filenamea

a.    Selection by file specification (f) and user name (u) support 
partial string matching. For example, "$ mlock/user=fr" 
displays lock information for usernames FRED, 
FREDRICK, FRANK, FRMIS, etc.

u (username) Display locks for specified user.

t (termname) Display locks for specified terminal.

l (logid) (UNIX only) Display locks for the specified value 
of ADM$LOGICAL

fl[ock] Display FLOCKsb

b.    See Section 19.8 “FLOCK: File Lock Reservation Utility”

tex[t] (string) Text substitution facilityc

c.    See Section 19.7.2 “MLOCK Output Text Formatting 
Facility”

h Help
ADMINS User Guide  19 - 11



MLOCK: Lock Monitor Utility
Combinations of qualifiers are logically AND-ed, i.e.

      $ mlock -u fred -f vendor.mas   (UNIX)

displays locks for vendor.mas held by username fred.

19.7.1  MLOCK Output Display

The following shows a typical MLOCK output listing:
User     User         User   User User Locked  ADM$TERM w/ Lock Lock     No. of
PID_____ Name________ Task__ Grp. TTNO Resource_____  Lock Mode Queue__ Records
File: DISK$ALPHA_FT4:[BART.V70.AN]SUBF.MAS;1                      
 204018BC ADMV60       ADMAN     3 NTA2 Read-only File      NL   Granted 

File: DISK$THOR_D0:[ADMV84.DD]ADM_DD_ATTR.ADD;1                   
 204018BC ADMV60       ADMAN     3 NTA2 Read-only File      NL   Granted 

File: DISK$THOR_D0:[ADMV84.DD]ADM_DD_CLIST.ADD;1                  
 204018BC ADMV60       ADMAN     3 NTA2 Read-only File      NL   Granted 

File: DISK$THOR_D0:[ADMV84.DD]ADM_DD_NAME.ADD;1                   
 204018BC ADMV60       ADMAN     3 NTA2 Read-only File      NL   Granted 

File: DISK$THOR_D0:[ADMV84.DD]ADM_DD_RELA.ADD;1                   
 204018BC ADMV60       ADMAN     3 NTA2 Read-only File      NL   Granted 

File: DISK$THOR_D0:[BD.RECIDX]BOOKSUM.MAS;2                       
 20405A95 BD           ADMTRA   31 NTA5 Multiuser File      NL   Granted       1

File: DISK$THOR_D0:[BD.RECIDX]N.MAS;5                             
 20405A95 BD           ADMTRA   31 NTA5 Read-only File      NL   Granted 

File: DISK$THOR_D0:[BD.RECIDX]XSPOTS.MAS;2                        
 20405A95 BD           ADMTRA   31 NTA5 Multiuser File      NL   Granted     502
 20405A95 BD           ADMTRA   31 NTA5 Multiuser File      NL   Granted     502

File: DISK$VAXVMSRL054:[BD]N.MAS;1                                
 20405AA2 BD           ADMTRA   31 NTA6 Multiuser File      NL   Granted     254
                                        Record 192     A6   PW   Granted

Locked Resource ("Resource") could be one of the following:

Singleuse File
Exclusive File
Read-only File
Record

Lock queue ("Que") could be either

Granted
Convert
Waiting

The lock mode codes ("Mode") are:

NL - Null Lock
PW - Protected Write
EX - Exclusive

19.7.2  MLOCK Output Text Formatting Facility

To customize the output MLOCK produces for file locks use the TEXT qualifier:

     mlock /tex[t]=(character_string)
19 - 12   ADMINS User Guide



MLOCK: Lock Monitor Utility
When MLOCK is called with the TEXT qualifier it displays "character_string" for 
each file lock. Special tokens may be inserted into "character_string" to identify the 
points where MLOCK should substitute specified values from the file lock. These 
special tokens are:

The tokens can be abbreviated two characters, i.e. "%f" for "%file" and "%u" for 
"%username". If "character_string" contains embedded blanks it must be enclosed in 
parentheses.

The c (continuous) and fl (flock) qualifiers are disabled when the text qualifier is 
used.

Redirecting formatted MLOCK output text to a file can be useful for application 
monitoring and communicating with users. The output file could be used directly as 
a all or part of a command file.

For example the OpenVMS command:

    $MLOCK /TEXT=($REPLY/USERNAME=%U "Please log off the system") -
   _$ /output=reply.com

produces a command file that looks like this:

     $REPLY/USERNAME=CHUCK "Please log off the system"
     $REPLY/USERNAME=BART "Please log off the system"
     $REPLY/USERNAME=BILL "Please log off the system"
     $REPLY/USERNAME=AVI "Please log off the system"

which can be run to send a "Please log off..." message to all users that have ADMINS 
files locked.

Token MLOCK will replace with

%pid Process ID that holds file lock

%username Username that holds file lock

%group Group of user that holds file lock

%file Name of locked file
ADMINS User Guide  19 - 13



FLOCK: File Lock Reservation Utility
19.8  FLOCK: File Lock Reservation Utility

FLOCK provides a means to ensure that no ADMINS commands run by another user 
or session will have any access to the specified ADMINS data file until the FLOCK-
ing user or session releases the file.

All subsequent commands executed in the session that FLOCK-ed the file are 
guaranteed access to that file,10  unless and until that session un-FLOCKs the file 
(with FLOCK/UNLOCK).

For example, FLOCK-ing files prior to running a command procedure or script will 
guarantee that all the ADMINS commands in the procedure that need access to those 
files will have it.

If process "A" locks a file via FLOCK, process "B" will not be able to lock the file (via 
FLOCK or any other command) until process "A" releases the file.

FLOCK syntax is as follows:

If a file that was FLOCKed is deleted without being unlocked FLOCK will hold a lock 
on a file that no longer exists. (The command "$ mlock -F" will display a "no longer 
exists" message.)

To release all locks that no longer have a file associated with them, simply type "$ 
flock -k".11 This operation will release all unnecessary locks.  

10.    The command "$FLOCK X.MAS" locks X.MAS by file-id. If X.MAS is renamed 
the renamed version would remain locked, because it is the same file, and has the 
same file-id. Conversely, if in the course of a script, a file is FLOCKed but is then 
deleted and recreated the new file is not locked, because it has a new file-id. 
Because FLOCK cannot lock the output file of a self-SORT, FLOCKed files 
should not be self-sorted if the command procedure depends on locked access 
to the sorted file. When SORT is called without an output file specified, a 
FLOCKed input file is actually sorted into a temporary output file. When sorting 
is completed, the input file is deleted and the output file is renamed to the input 
file's name. But because the output is a new file with a new file-id, it is not 
FLOCKed.

Qualifier Function

(filename) Locks ADMINS file.

-u (filename) Unlock file locked by this session.

-k (filename) Unlock file locked by another session. (Must have 
privilege!)

-k Unlock all files that no longer exist.

11.    -k operations require "privilege". On OpenVMS system you must have "OPER" 
privilege. 

NOTE
19 - 14   ADMINS User Guide



FLOCK: File Lock Reservation Utility
If FLOCK fails to lock or unlock a file an error message is output and the OpenVMS 
symbol "$STATUS" or the UNIX environment variable "$$" is set to an error code, as 
follows:

$STATUS      $$            
(Open VMS)  (UNIX) Error condition
50000      100   Wrong number of arguments. 
50002      102   Illegal command.
50004      104   File is already locked by someone else.
50006       - File is locked by FLOCK on another node (OpenVMS only).
50008      108   Insufficient memory.
50010      110   File was locked by a different process ID.
50012      112   No such file.

50014      114   File was not locked.
50016       -    DECnet Files are not allowed (OpenVMS only).
50018       -    Group or System logical name ADM$FILE_HOLD 
                    must be defined (OpenVMS only).
50020      120   Kill operation requires OPER privilege.
50022      122   File is already locked by current process.
     -      126   Internal lock manager error (UNIX only).

19.8.1  FLOCK: OpenVMS Implementation and System 
Management Notes

The minimum privileges needed to execute FLOCK.EXE are SYSLCK, PRMMBX and 
SYSNAM.

The logical name ADM$FILE_HOLD must be assigned in either the group or system 
logical name tables, (the group table is translated first, then the system table) the 
assignment must be a full directory specification (if it isn't a full directory 
specification the process that calls FLOCK will hang!), and the assignment must 
point to the directory that contains FILEHOLD.EXE, which is usually the same 
directory that contains the rest of the ADMINS images (i.e. usually the directory that 
is assigned to the logical name ADM$DIST).12

If the process that creates the detached process ADM$FILE$HOLD does not have 
DETACH privilege, the PQL_DENQLM SYSGEN parameter and the process 
enqueue quota are compared and the smallest value will become the enqueue quota 
of the detached process.

If you do not want to grant processes DETACH privilege, make sure that all 
processes in every group that potentially can create the detached process have a 
sufficient enqueue quota.

If the process that creates the detached process ADM$FILE$HOLD has DETACH 
privilege, then the enqueue quota of the detached process is the value of 
PQL_DENQLM (SYSGEN parameter).

12.
ADMINS User Guide  19 - 15



FLOCK: File Lock Reservation Utility
You can install FLOCK.EXE with a detach privilege so the enqueue quota will always 
be taken from the SYSGEN parameter PQL_DENQLM.

Remember: The detached process holds the lock(s) until released via /UNLOCK or 
/KILL.

If you login to the process that created the detached process, you can see how many 
locks are still available (the "Enqueue quota").

 $ SH PROC/QUOTA ADM$FILE$HOLD 

 11-JUL-1994 09:42:39.61                      User: XXXX
 Process Quotas: 
 Account name:         
  CPU limit:                 Infinite  Direct I/O limit:  100
  Buffered I/O byte count quota: 9936  Buffered I/O limit: 18
  Timer queue entry quota:          8  Open file quota:    15
  Paging file quota:             6061  Subprocess quota:    8
  Default page fault cluster:      16  AST quota:         600
  Enqueue quota:                   87  Shared file limit:   0
  Max detached processes:           0  Max active jobs:     0

The detached process holds 2 permanent locks, ADM$FDETACH_<Node_Name> 
and ADM$FILE$H_<Node_Name> and 1 lock for each file you lock on the current 
node.

If the remaining enqueue quota of the detached process drops to zero no additional 
FLOCK locks can be held by that detached process, i.e. you will not be able to lock 
any more files on that system (or node).

In order to solve this problem the system manager has to:

1. Increase the enqueue quota that the detached process will be created with. This 
may entail increasing the PQL_DENQLM sysgen parameter, increasing the 
enqueue quota for the processes that might use FLOCK, or making sure 
PQL_DENQLM is always used by making sure the calling process or the 
FLOCK image, FLOCK.EXE, has DETACH privilege. 

2. Make sure that no one is working. 
3. Stop the detached process. Note: All locks held by the detach process will be 

gone. 
4. The first user after the ADM$FILE$HOLD has been stopped will create the 

detached process on that node, with the expanded enqueue quota. 
5. In a cluster environment, repeat step 1 to 3 on every node that currently has a 

detach process ADM$FILE$HOLD.

19.8.2  FLOCK: Changing the Default Action

You can also change the default action of FLOCK. Previously, FLOCK exited with an 
error stating that the file was opened by another process. If an A is appended to the 
file being FLOCKed, the user is prompted to either wait or exit the file (FLOCK tries 
again every 60 seconds). If a W is appended to the file being FLOCKed, FLOCK waits 
until the file is unlocked. If an E is appended to the file being FLOCKed, FLOCK exits 
as it did before.
19 - 16   ADMINS User Guide



Chapter 20:Shared Memory Emulation

The shared memory emulation facility allows multiple ADMINS users to share 
information, both in TRANS and in command files. True shared memory can only be 
used when multiple processes are running on the same OpenVMS node, but 
OpenVMS cluster applications and Windows applications can use Shared Memory 
Emulation.

20.1  Group Shared Area

Under OpenVMS it is possible to map a piece of a processes' virtual memory onto a 
file, and to allow multiple processes to perform this mapping function to the same file. 
This "group shared area" can be read and/or written, and can be shared by all users 
in the same group on the same node.1 When all the processes release the shared pages, 
the values in these shared pages are written back to the disk file. (The values in the 
shared pages can also be written back on request to the disk while they are being 
shared.)

20.2  Using the Group Shared Area

ADMINS implements the shared memory functionality as follows. All ADMINS 
commands that can execute subroutines, namely TRANS, MAINT, PROD, and 
REPORT can read or write fields stored in a 2,048 16-bit word "group shared area". 
These subroutines are described in Appendix H.10 “Group Shared Area Subroutines” 
as well as below.

Also, TRANS users can access the shared area without an RMO by placing "ER" or 
"DR" fields in the TRS that begin with the letters "SH$" (as in "SH$NAME") as 
described in Section 5.5.10 “Group Shared Area Fields”. These SH$ fields are mapped 
into the group shared area, in a similar way as the G$ global fields are mapped into 
the global area, as described in Section 5.5.9 “Global Fields”.

The subroutines for using the group shared area are as follows:

     STAT = GETGRP(FIELD-NAME,OFFSET)
     STAT = SETGRP(FIELD-NAME,OFFSET)

1.    This capability to share memory is not available across nodes. However, in order 
to allow applications to function in an OpenVMS Cluster or Windows 
environment, shared memory is emulated in ADMINS using a disk file. See 
Section 20.5 “Emulation of Shared Memory in the OpenVMS Cluster 
Environment”.
ADMINS User Guide   20 - 1



Using the Group Shared Area
GETGRP gets the value in the group shared area and places it in the field identified 
by FIELD-NAME, and SETGRP sets the value in the field identified by FIELD-NAME 
into the group shared area. FIELD-NAME can be of any type, and be either in a file or 
a local field. However, FIELD-NAME cannot be an explicit array expression.

OFFSET is an integer between 1 and 2,048 that identifies the word in the group shared 
area where the FIELD-NAME is stored. The same group shared area is used by all 
ADMINS users in the same group and therefore the mapping of the group shared area 
must be consistent for all users and all applications in that group. This consistency is 
not checked by ADMINS and is the responsibility of the applications designer. If the 
same word identified by OFFSET is used by two different users in two different ways 
the results will be wrong. Also, OFFSET must never cause GETGRP or SETGRP to 
read or write past word 2048 in the group shared area. That is, if the field being read 
or written is NW words in length then OFFSET must always be less than or equal to 
"2049 - NW".

We repeat the above point for emphasis. The association between the contents of the 
group shared area and the fields being read and written from that area is maintained 
at the application level by the users of the group shared area. These subroutines do 
not check for type and consistency between fields and the group shared area. These 
routines simply copy values between two places, the data area of the field and the data 
area in the group shared area designated by OFFSET.

STAT will contain values reflecting the status of the operation just attempted. A "1" 
indicates a successful operation. A "-1" indicates that OFFSET was outside the range 1 
to 2,048 as defined above, and consequently no operation was performed. If these 
subroutines get error indications in trying to create or map the group shared area, or 
deal with the group shared area file, the OpenVMS error message is displayed on the 
terminal, and the ADMINS command will exit with error status, i.e., a running 
command file will stop.

The GETGRP and SETGRP subroutines provide a way for ADMINS commands to 
communicate among themselves efficiently. SYNC can be used to synchronize access 
to the group shared area if this proves necessary. The synchronize facility is described 
in Section 13.5 “SYNC - Synchronization Between ADMINS Commands”.
20 - 2   ADMINS User Guide



Initial Setup of the Group Shared Area
20.3  Initial Setup of the Group Shared Area

This section describes the initial creation and naming of the disk file associated with 
the group shared area. Knowledge of these functions is not required by an application 
designer who uses the group shared area, but is needed by the System Manager in 
order to make the group shared area available.

As indicated by the letters "GRP" in the subroutines names GETGRP and SETGRP, the 
group shared area is shared on a group basis on a given node.2 That is, ADMINS 
creates a group-wide area called "ADM$GRPSHR" whenever an ADMINS command 
calls one of these two subroutines. Subsequent callers from the same group are 
mapped into this same area. The group shared area for that group is mapped onto a 
file called "ADM$GRPSHR:SHARED.FIL", where the device and directory of 
SHARED.FIL is assigned to the logical name ADM$GRPSHR in the group logical 
name table. If ADM$GRPSHR isn't assigned in the group table the ADMINS 
command exits with the message:

    log010 ADM$GRPSHR not assigned in Group Logical Name Table

SHARED.FIL should be at least eight 512-byte blocks long, and will be accessed more 
efficiently if it is contiguous. SHARED.FIL must be created before an ADMINS 
procedure may call the GETGRP or SETGRP subroutine. A convenient way to create 
SHARED.FIL is by copying (use COPY/CONTIG on OpenVMS) 
ADM$DIST:TEMPLATE.FIL.

The shared memory facility works by mapping eight virtual pages for each user 
running an ADMINS command onto the same eight physical pages in memory. These 
pages get their values from the eight 512-byte disk blocks of the SHARED.FIL. When 
all commands which used these shared pages exit, then these pages are written back 
to the disk blocks in the file. (Also if VAX/VMS has occasion to page these shared 
pages out to the disk, they are written to the SHARED.FIL.)

A third subroutine can be used to force the contents of the pages out to SHARED.FIL. 
The pages can then continue to be shared.

     STAT = UPDGRP(FIELD-NAME,OFFSET)

FIELD-NAME and OFFSET are present for syntax purposes, but are not used. STAT 
will be returned as "1" if the update was successful, and as "-1" if the user was not 
already mapped onto the group shared area, i.e., had not issued any previous calls to 
GETGRP or SETGRP.

2.    A "group" consists of those users who are assigned the same group id at login. 
However, for situations where an application designed to use shared memory 
must be made to run in an OpenVMS Cluster or Windows environment, ADMINS 
does offer a disk-based emulation of group shared memory. This emulation, 
described in Section 20.5 “Emulation of Shared Memory in the OpenVMS Cluster 
Environment”, is always in effect in Windows and is in effect on OpenVMS if "w" 
is in the string assigned to the logical name OPTION. If the OPTION "w" 
emulation is not in effect, and if SHARED.FIL is in use by another node in a 
OpenVMS Cluster environment, the ADMINS command will exit with the 
message "log011 ADM$GRPSHR in use on node "node_name".
ADMINS User Guide  20 - 3



Example Using the Group Shared Area
20.4  Example Using the Group Shared Area

Let us mock up a simple example of the use of this facility. Sixteen operators are 
posting payments to an accounts receivable file. A payment is posted by typing in the 
account number, and then posting the payment to the record brought onto the screen 
by TRANS. A supervisor wishes to monitor this activity by seeing a running count of 
how many payments have been posted by each operator. The supervisors display is 
refreshed each minute, showing for each operator how many payments have been 
posted in the last minute, since the start of the shift, and an average per minute during 
the shift.

For the sake of simplicity let us say each operator has been assigned a number from 1 
to 16, and that number exists in each operator's screen as a global field called "G$OP/
I". We will use the first sixteen words of the group shared area for this application.

To maintain the counts in the group shared area, we would need the following 
statements in the RMO behind the operators posting screens.

     ...
     S$S/A6
     M$M/A2
     G$OP/I
     STAT/I
     N/I
     PROGRAM
     IF S$S NE 'BEGREC' AND M$M NE 'UP' THEN GOTO NEXT END
     *
     * Get the current value, add 1 to it, and write it back
     *
     STAT = GETGRP(N,G$OP) ; N = N + 1 ; STAT = SETGRP(N,G$OP)
     *
     NEXT: ...

To create the supervisors display we create the following DEF, TRS, and RMS, place 
one record in the file created by the DEF, and then run the TRS on the supervisors 
terminal.

     *     SUPER.DEF
     *
     TAB 100
     NULL I KEY1
     S1 I     "count for entire shift for operator #1"
     S2 I     "count for entire shift for operator #2"
     ...
     S16 I    "count for entire shift for operator #16"
     *
     M1 I     "count for last minute for operator #1"
     M2 I     "count for last minute for operator #2"
     ...
     M16 I    "count for last minute for operator #16"
     *
     A1 I     "average for shift for operator #1"
     A2 I     "average for shift for operator #2"
     ...
     A16 I    "average for shift for operator #16"

     *     SUPER.TRS
     *
     SUPER SUPER.TAB 1 SUPER.RMO NOMSG
     E NULL
     DR MIN/I
     D S1
     D S2
     ...
     D S16
     D M1
     D M2
20 - 4   ADMINS User Guide



Example Using the Group Shared Area
     ...
     D M16
     D A1
     D A2
     ...
     D A16
     SCREEN
     CE SUPERVISORS REVIEW SCREEN
     BL
     NULL- MINUTES THIS SHIFT: ---MIN
     BL
     OP#   OPERATOR      SHIFT     MINUTE    AVERAGE
     BL
      1    Suzy Brown   ----S1     ----M1     ----A1
      2    David Jones  ----S2     ----M2     ----A2
      .    .....           ...        ...        ...
     16    Fred White   ---S16     ---M16     ---A16
     END

     *     SUPER.RMS
     *
     FILE SUPER.TAB
     LOCAL
     S$S/A6
     M$M/A2
     B$B/A2
     MIN/I
     J/I
     K/I
     COUNT/I
     STAT/I
     PROGRAM
     *
     * Pause 60 seconds between re-displays.
     *
     IF S$S EQ 'EOFREC' THEN STAT = PAUSE(60,2) ; GOTO DONE END
     IF M$M NE 'UP' OR S$S NE 'BEGREC' THEN GOTO DONE END
     *
     * For each of the operators update the shift count, the
     * last minute count, and the shift average.
     *
     MIN = MIN + 1 ; J = 0 ; K = 1
     LOOP: STAT = GETGRP(COUNT,K) ;
       S1(J) = S1(J) + COUNT ;
       M1(J) = COUNT - S1(J) ;
       A1(J) = S1(J) / MIN ;
       K = K + 1 ; J = J + 1 ;
       IF K LE 16 THEN GOTO LOOP END
     *
     B$B = 'LF'
     DONE: END

At the "beginning of record" (BEGREC) call, SUPER.RMS updates the fields in 
SUPER.TAB with the shift counts, the last minutes counts, and computes a running 
shift average. It also calls for an automatic NEXT which causes an "end of record" 
(EOFREC) call to SUPER.RMS which then pauses for 60 seconds. During this minute 
the operators are posting more payments. As each new account record is called up on 
their screen, the RMO behind their posting screens increments the count for that 
operator in the group shared area. After the minute is up, TRANS performs the NEXT 
keystroke on the single record SUPER.TAB file, which re-displays the record with the 
updated figures and recalls the RMO with the "beginning of record" call and the 
process continues until the end of the shift.
ADMINS User Guide  20 - 5



Emulation of Shared Memory in the OpenVMS Cluster Environment
Of course, this is only a simple example and as such does not deal with a lot of detail, 
such as initializing the group shared area from shift to shift (done easily by running 
MAINT or another screen), or capturing the operator statistics from minute to minute 
for later analysis in an ADMINS file (done easily by making SUPER.TAB have a 
record for each minute or by appending a record to another file each minute), or 
measuring different types of posting transactions, or a variety of other application 
specific enrichments. However, this example does illustrate the power of the group 
shared area techniques, particularly if we remember that there is virtually no 
overhead for keeping and monitoring these statistics.

20.5  Emulation of Shared Memory in the OpenVMS 
Cluster Environment

The group shared area can be accessed as a disk file which is not mapped to a global 
section, making it possible to use the group shared area concept, via SH$ fields and 
the GETGRP and SETGRP subroutines, in the OpenVMS Cluster environment.  This 
emulation is invoked by placing a "w" (lower case) in the OPTION logical name.

This option is for use in situations where an application designed to use group shared 
area on a single node must be used on more than one node in a VMSCluster, or is to 
be used in a Windows environment. Of course the emulation, being disk-based, is 
slower then real access to shared memory.

When the emulation is in effect, the SH$ fields in TRANS and the group shared 
memory subroutines function in exactly the same way, except that a disk file rather 
than memory is what is being written to and read from. That is, when TRANS writes 
a SH$ field under the emulation, the entire SHARED.FIL is re-written on disk. To 
avoid overwriting the changes made to SHARED.FIL by another process, before 
TRANS changes SH$ fields it should always call the REFGRP subroutine (see 
Appendix H.10.4 “REFGRP - Refresh Shared Memory Emulation in TRANS”) so that 
it has the latest copy of the SHARED.FIL to work with.

Note that (for the same reason) when using this disk based group shared area 
emulation, you cannot control different parts of the (SHARED.FIL) area with different 
SYNC flags. A single SYNC flag must be used to control access to the entire area. 
20 - 6   ADMINS User Guide



Chapter 21:Printer Queues

ADMINS commands use the operating system's printer queuing (or "spooling") 
facilities to handle printed output.

Printable output of ADMINS commands is placed in a file named ADMINSxx.LIS in 
the user's default directory (where "xx" is the value assigned to the logical name 
ADM$TERM on OpenVMS systems ). The ADMINSxx.LIS file is then placed on a 
print queue where the physical printing of the file is controlled by the operating 
system's queuing facilities.

Application users need not learn the inner workings of queuing. However, a working 
knowledge of how to create and control print queues is essential for the system 
manager.

21.1  ADM$SPOOLn: Logical Print Queue 
Specification

The output file ("ADMINSxx.LIS") may be queued to any print queue. Print queues 
are identified by number (0 through 255 with 0 the default) in the various ADMINS 
syntaxes described below. ADMINS commands append this number to the string 
"ADM$SPOOL" and then use the result as a logical name that identifies the 
destination print queue.

For example, if report output is routed to "queue 7" via REPORT's LP statement:

LP 1 7

then the output will be printed on the queue assigned to the logical name 
ADM$SPOOL7.

There may be any number of print queues assigned to "ADM$SPOOLn" logical 
names. For example:

     VMS: assign logical queue 0 to sys$print 
          and logical queue 26 to txa4.
          
     $ ASSIGN SYS$PRINT ADM$SPOOL0 
     $ ASSIGN TXA4:     ADM$SPOOL26 

The queue number is set by the respective ADMINS command as outlined below:

1. REPORT uses the second element of the "LP" statement to set the queue number 
as described in Section 7.17.8.2 “Logical Queuing Device Number”.

2. TRANS uses the SPn keyword on the screen header line to set the queue number 
as described in Section 5.3.1.9 “SPn or TTn: Print Device Specification”.
ADMINS User Guide   21 - 1



ADM$SPOOLn: Logical Print Queue Specification
3. RNF uses the second element of the ".SP" control word to set the queue number 
as described in Appendix N.3 “RNF Control Words”.

4. ANALYZER uses OPTION SP to set the queue number as described in Section 
12.19.10 “Spooler Number”.

Print job qualifiers can be specified by including them in the string assigned to the 
ADM$SPOOLn logical name. The following print job qualifiers are supported:

For  example:

 OpenVMS:

     $!Logical queue 34:  Use form LAND; print on queue SYS$PRINT  
     $!
     $ assign "sys$print/form=land" adm$spool34 
     $!
     $!Logical queue 2:  Use form SPECIAL
     $!                  always print one copy on queue TXB2
     $!
     $ assign "txb2/copies=1/form=special" adm$spool2    

FORM Form name and number. The FORM specified in 
ADM$SPOOLn is not checked if FORM is specified 
in the command syntax (e.g. in the LP statement for 
REPORT).

COPIES Number of copies to print. COPIES overrides 
whatever is specified in the command syntax (see 
Section 21.2 “Number of Copies Specification”).

BURST (OpenVMS only) Print two file flag pages with burst 
bar between them preceding the file to be printed.

NOBURST (OpenVMS only) Overrides BURST characteristic if 
it is default for queue.

SETUP (OpenVMS only) Specify SETUP module for job.
21 - 2   ADMINS User Guide



Number of Copies Specification
21.2  Number of Copies Specification

The various ADMINS command syntaxes described below are used to specify a 
number of original copies (maximum=99) of the ADMIINSxx.LIS file to be produced 
by the print job. As stated above, if the COPIES qualifier appears in the 
ADM$SPOOLn logical name the number of copies specified there overrides the 
number that appears in the command syntax.

1. REPORT uses the first element of the "LP" statement to request a number of 
copies as described in Section 7.17.8.1 “Multiple Copies”.

2. RNF uses the first element of the ".SP" control word to request a number of 
copies as described in Appendix N.3 “RNF Control Words”.

3. ANALYZER uses OPTION NC to request a number of copies as described in 
Section 12.19.11 “Number of Copies”.

21.3  Deleting the Output File (ADMINSxx.LIS)

If the letter "D" is included in the logical name OPTION (see Appendix A: “Options”) 
ADMINS will request deletion of the ADMINSxx.LIS file after it is printed.

If OPTION "D" is not implemented some provision must be taken by the system 
administrator or the user to delete the ADMINSxx.LIS files on a regular basis.

21.4  Output to Non-queued device, ADM$PRT0

In some cases the user may wish send output directly to a physical device, without 
creating a ".LIS" file and without using the system print queue. To do this, assign the 
name of the device to the logical name ADM$PRT0.

Output is sent directly to ADM$PRT0 if the OUTPUT TT0 statement is used in 
REPORT, as described in Section 7.17.7.7 “OUTPUT TT0 (Direct Output to Physical 
Device)”, or if the TT0 keyword is present on the screen header line, as described in 
Section 5.3.1.9 “SPn or TTn: Print Device Specification”.

For example, if a report contained OUTPUT TT0 and the following assignment 
existed, the output would be directed to terminal _TTB3:.

$ assign _ttb3: adm$prt0    (OpenVMS syntax)
ADMINS User Guide  21 - 3



Output to Non-queued device, ADM$PRT0
21 - 4   ADMINS User Guide



Appendix A:Options

The logical name OPTION may be assigned with up to a 24 character text string. Each 
character of the text string selects a specific optional behavior in ADMINS.

For example, the following assignment of the logical name OPTION will cause screens 
generated via ctrl/p to be immediately spooled for printing (S), enables inserts and 
deletes in APPEND paragraphs (V), and disables automatic file enlargement of Level 
2 files(9).

     $ ASSIGN SV9 OPTION

The brief descriptions of each option that follow include cross references to sections of 
this manual where you can find more information on their context and function.

ADMINS recommends that  "L" and "V" always be included in OPTION.

Character Function

* (asterisk) Line of asterisks to show progress through a file is 
suppressed in all ADMINS “batch” commands.

, (comma) Suppresses commas when TRANS is displaying 
numeric fields.

. (period or decimal 
point)

Turns off auto decimal point alignment in 
arithmetic expressions.

0 Zeroes in numeric fields are displayed as blanks as 
described in Section 2.4.2.1 “Input and Output 
Representation Options”.

5 The string %CR% is used to represent a “hard 
carriage return” in response to a parameterized 
<<prompt>>, instead of the string CR. This is for 
situations where CR may be a valid response to a 
prompt, and therefore cannot be used in a 
command file to indicate that the response to a 
substitutable parameter’s prompt should be a 
“carriage return.” Note that when used in 
command files, 5 must be present in the string 
assigned to the logical name option both when the 
command file is “compiled” (NATCOM.EXE) and 
when the resulting COMxxx.COM is run.

6 Modifies the function of the Y$EAR subroutine (see 
Appendix H.4.5 “Y$EAR - Extracting the Year from 
a Date”) so that it returns a value equal to the year 
of the date given less 1900, i.e. YEAR = 
Y$EAR(DATE) where DATE is set to July 23, 2004 
will load the value "104" into YEAR. Ordinarily 
(without 6 in OPTION), the value "2004" would be 
loaded into YEAR.

7 Enables a special RMO call in TRANS. If the user (or 
SETKEY) types CTRL/L before entry into a field, 
TRANS calls the RMO with S$S set to the field the 
cursor is on, and M$M set to ‘XX’. This feature can 
be used, for example, to trigger special RMO 
processing regardless of where the cursor is.

NOTE
ADMINS User Guide A - 1



9 Disables automatic file enlargement (see Section 1.9 
“Dynamic Data File Expansion”).

C ADMINS builds all files “contiguous” instead of 
“contiguous-best-try”.

D Delete the spool (.LIS) file after it has been printed. 
Section 21.3 “Deleting the Output File 
(ADMINSxx.LIS)” describes the use of the spool file 
and the delete and save option.

E Use the “European” character set option, i.e. treat 
the characters “[“, “]”, and “\” as ordinary 
characters. Therefore, in TRANS the KEY2 and 
KEY3 functions are disabled (see Section 6.5) and 
the “\” character is replaced by the “PF2” keystroke 
as the ERR keystroke (see Section 6.7 “Control 
Functions”).

F Accept “-” as a numeric character in a “9” (digit) 
position in a picture field as described in Section 
2.4.2 “Field Data Types”.

G Disables TRANS General Editor Mode (see Section 
6.14.5 “Restricting Use of General Editor Mode”) 
and ADED (see Section 18.5 “Restricting Use of 
ADED”). (The system logical name table is searched 
first, then the group logical name table, and finally 
the process logical name table.)

H TRANS General Editor Mode (see Section 6.14.5 
“Restricting Use of General Editor Mode”) and 
ADED (see Section 18.5 “Restricting Use of ADED”) 
are usable only in read-only mode. (The system 
logical name table is searched first, then the group 
logical name table, and finally the process logical 
name table.)

J Accept input with reversal of the comma and decimal 
point as used in Europe. This is applicable to integer (I), 
longword decimal (Ln), decimal (Dn), and four-word 
decimal (Fn) field types as described in Section 2.4.2.1 
“Input and Output Representation Options”.

K Output with the comma and decimal point reversed as 
used in Europe. This is applicable to integer (I), longword 
decimal (Ln), decimal (Dn), and four-word decimal (Fn) 
field types as described in Section 2.4.2.1 “Input and 
Output Representation Options”.

L Do not reset other "K" or "KC" fields when a LINK 
causes a CHECK statement in TRANS to evaluate to 
"true" as described in Section 5.4.1 “LINK 
Paragraph”. This is an optional fix due to the 
possible effect on existing application instruction 
files.

Character Function
A - 2   ADMINS User Guide



M Place monitoring information for the major 
ADMINS processing commands in the VMS process 
name.
(The major ADMINS processing commands are 
TRANS, REPORT, ANALYZER, MOVE, SORT, 
MRGFIL, ACQUIR, DATAP, FACQUIR, 
FDATAP, MAINT, and PROD.  The monitoring 
information can be gathered using DCL or any 
system monitoring tool which collects information 
about OpenVMS processes.  By default, a data file 
name, the RMO name, the TRO/SCREEN name, or 
the .REP/REPORT name is placed in the process 
name.  Data file names used are the input file of 
SORT, MOVE, and DATAP; the output file of 
MRGFIL, FACQUIR, and ACQUIR, and the detail 
file (or detail RMO) of PROD.  However, if the 
logical name ADM$APPLIC is assigned, its 
contents are placed in the process name instead 
(ADMINS looks in the system, group, and process 
logical name tables, in that order, when looking for 
OPTION M and ADM$APPLIC). The information 
placed in the process name is truncated to 12 
characters, and a 3-character sequence number 
string is appended, because OpenVMS requires that 
process names be unique within a group and not 
exceed 15 characters. The process name is not re-
set when the image exits.)

N Aggregation control in SORT is controlled only by 
the KEY fields as described in Section 2.4.4.1 
“Method of Operation”. Normally, aggregation is 
controlled by the KEY fields and the ASC/DESC 
fields.

P Use parentheses for minus values in output 
presentation. This is applicable to integer (I), 
longword decimal (Ln), decimal (Dn), and four-
word decimal (Fn) field types as described in 
Section 2.4.2.1 “Input and Output Representation 
Options”. This setting is IGNORED by AdmReport 
when it is creating CSV or Excel XML format data 
(see Section 7.25 “Report Command Line Options”) 

Q Modifies the behavior of various TRANS Menus 
and the LOOKUP window.
LOOKUP windows, and Branch, Subscreen and 
LOOKUP menus are all controlled using an 
alternative set of keystrokes. With Option "Q" in 
effect, when a LOOKUP window or a Branch, 
Subscreen, or LOOKUP menu is active pressing 
RETURN will choose the current item (the same as 
SELECT), and pressing MENU exits the menu 
without making a selection (the same as HOME).
For Menu Bars and submenus the display behavior 
as well as several keystroke functions are changed, 
in order to emulate popular PC or workstation 
window-based applications. Section 6.10.1 
“Alternate Menu Bar Behavior - "Option Q"” 
describes how this option modifies TRANS Menu 
Bar behavior.

Character Function
ADMINS User Guide  A - 3



R TRANS displays data in reverse video with the keys 
underlined as described in Section 5.10 “Video 
Highlighting Facilities”. (Underline requires a VT 
terminal with advanced video.) This is the same 
method TRANS uses when in the General Editor 
mode as described in Section 6.14 “General Editor 
Mode (“GENED”)”. This OPTION setting is re-
evaluated by TRANS after the first BEGREC RMO 
calls which occur when a screen is entered.

S Queue screen prints generated via the PRT (ctrl/p) 
keystroke for spooling immediately as described in 
Section 5.3.1.9 “SPn or TTn: Print Device 
Specification”. Normally, all screen prints 
requested in the same TRANS session are queued 
for printing when TRANS exits.

T Suppresses automatic left justification of characters 
in alphanumeric fields in TRANS. Leading blanks 
are not eliminated on input as described in Section 
5.6 “Screen Layout”.

V Activates the extended APPEND paragraph logic 
for inserts and deletes as described in Section 5.4.2.1 
“APPEND Paragraph INSERT and DELETE”. This 
option reserves the use of condition-letters "I", "A", 
and "D" (i.e., the character causing the APPEND 
paragraph to be executed).

W TRANS displays keys in reverse video and other 
data in increased brightness as described in Section 
5.10 “Video Highlighting Facilities”. (Increased 
brightness requires a VT terminal with advanced 
video.) This OPTION setting is re-evaluated by 
TRANS after the first BEGREC RMO calls which 
occur when a screen is entered.

X Enable the ctrl/ERR (ctrl/\) keystroke to terminate 
TRANS. This feature provides an "escape hatch" 
that allows you to exit from screens that prevent 
leaving by any other means. While useful during 
development, this capability can have nasty 
consequences, and should not be used in 
production environments.

Y Allow the writing of network files, i.e. files on 
another computer accessed via DECnet. This 
enables users to update files on another computer 
linked via DECnet. If "Y" is not present in OPTION, 
network files may only be read. Accessing files via 
DECnet is described in Section 1.8 “File 
Specification”.

Z RUNOFF (RNF) will generate an eject if an entire 
literal paragraph won't fit on the current page. '.nj' 
can be used in the source text to override this option 
as described in Appendix N.4 “Ejecting Before 
Printing Literal Paragraphs”.

Character Function
A - 4   ADMINS User Guide



_ (underscore) When ADMINS for OpenVMS looks for special 
ADMINS internal logical names it searches for 
names with an underscore (_) substituted for any 
dollar signs ($) that appear ion the logical name. 
That is, if this option is enabled, ADMINS images 
will attempt to translate the logical name 
ADM_DIST to find the distribution directory 
instead of the logical name ADM$DIST, and 
TRANS will check to see if the logical name 
ADM_READONLY is assigned to see if all TRANS 
file opens should be read-only, instead of the logical 
name ADM$READONLY.  Implemented to 
facilitate porting applications developed in UNIX 
environment to the OpenVMS environment.
(See Appendix B: “Special Logical Names used 
by ADMINS”. for a listing of ADMINS special 
internal logical names.)

a Enables TRANS "GENED" and ADED to restrict 
users to a specific file. TRANS (see Section 6.14.5 
“Restricting Use of General Editor Mode”) and 
ADED (see Section 18.5 “Restricting Use of ADED”) 
only open one file. The file name must be on the 
command line; the command exits when that file is 
closed by the user.

b When LFEXIT is active, the NEXT keystroke 
which files the record causes TRANS to continue 
displaying that record instead of advancing to the 
next record as described in Section 6.2.1.1 
“Update Mode Under LFEXIT Control”. This 
OPTION setting is re-evaluated by TRANS after 
the first BEGREC RMO calls which occur when a 
screen is entered.

c The echoing of prompt strings and parameter 
values for logical (L$) parameters are suppressed. 
If a logical parameter is assigned, then NATCOM 
(see Section 14.3.3 “Logical Parameters”), CMP 
(see Section 9.7.1 “Logical Parameters”), 
DEFINE (see Section 2.11.1 “Logical 
Parameters”), and REPORT (see Section 7.14.2 
“Logical Parameters”) do not display the prompt 
string or the value assigned.

d Tells REPORT to create the special field TODAY 
as field type DT rather than field type DA, which is 
the default. "d" must be present in OPTION at 
compile time if you want to use TODAY/DT in a 
pre-compiled REPORT (RPO).

e Display entire length of field currently being 
entered in reverse video. This OPTION setting is 
re-evaluated by TRANS after the first BEGREC 
RMO calls which occur when a screen is entered.

f Suppress formfeed at end of REPORT output.

Character Function
ADMINS User Guide  A - 5



g Disable automatic refresh of last three lines in 
TRANS after branch, messages, etc. This OPTION 
setting is re-evaluated by TRANS after the first 
BEGREC RMO calls which occur when a screen is 
entered.

h Using TRANS HELP: the transaction screen is not 
refreshed after the user exits the help display as 
described in Section 6.12 “HELP in TRANS”.

i DEFINE uses 16-bit index pointers if a data file is 
defined for less than 60000 records.

j Changes the default action of TRANS branching. 
When this option is in effect you must always 
terminate the BRANCH-NAME code with a 
carriage return. Entering a terminator allows 
TRANS to distinguish between one-character and 
two-character BRANCH-NAMES that begin with 
the same character, i.e. "A" and "AB". This option 
removes this possible ambiguity in three areas of 
TRANS branching: the specification of branch-
names (see Section 5.7 “Branches”), manual 
branching in TRANS (see Section 6.8 “Branching 
and Subscreens”), and automatic (RMO-initiated) 
branching (see Section 16.2 “Automatic 
Branching: B$B and R$R”).

k Changes the default action of TRANS when a 
partial or non-existent key value is entered in 
update mode. When this option is in effect, TRANS 
goes to the first record whose key is greater than the 
one which was entered, instead of the last record 
whose key is less (see Section 6.5 “Record 
Moving and Searching”).

l The LOOKUP window will be included in the ctrl/
p printout, as described in Section 6.9 “Lookup 
Windows”.

m Branch alternatives for a screen (TRANS) are 
displayed one at a time instead of within a "pop-up" 
window (as described in Section 5.7 “Branches”). 
Use the NEXT keystroke to display the next 
alternative.

n Modifies refreshing action of ctrl/w keystroke so 
that only the bottom four lines of the screen are 
refreshed the first time ctrl/w is pressed, and the rest 
of the screen is not refreshed unless ctrl/w is 
pressed a second consecutive time (see Section 6.7 
“Control Functions”).

o Suppresses the printing of any HEADING or 
SUMMARY when a REPORT SELECT OR KEY 
statement results in no records being processed.

p Enables the use of parameterization in SCREEN 
(see Section 5.16 “Parameterization”).

Character Function
A - 6   ADMINS User Guide



r Enable REPORT RETRY by turning off automatic 
deletion of RPxx.TMP file as described in Section 
7.14.4 “Rerunning Parameterized Reports, 
RETRY”.

s Re-read link directly from disk rather than buffer 
whenever KC or C field is entered, whether or not 
the KC or C field is changed. This OPTION setting 
is re-evaluated by TRANS after the first BEGREC 
RMO calls which occur when a screen is entered.

t Retranslate ADM$DATE at every display field as 
described in Section 2.4.2 “Field Data Types”.

u DEFINE will create files (by default) in the user's 
current default disk and directory. Normally 
DEFINE (by default) creates the file in the same 
disk/directory location as the DEF file. (Of course, 
any logical name or device name explicitly 
identified in the DEF itself ALWAYS takes 
precedence in determining the location of the 
output file). See Section 2.3.3.1 “Utilizing DEFs 
in Other Directories”.

v The VIEWTEXT window remains on the screen 
after VIEWTEXT exits, as described in Appendix 
H.6.9 “VIEWTEXT: Display Text File in 
TRANS”.

w Enables the disk-based emulation of group shared 
memory in a VAXCluster environment, as 
described in Section 20.5 “Emulation of Shared 
Memory in the OpenVMS Cluster 
Environment”.

x Suppresses the display of picture fields with null 
values (blanks and zeroes).

y All commands give a "Record Lockout" message, 
as TRANS does, when they are waiting for a locked 
record. By default, or if record locking option 'L' is 
in use, all commands (TRANS excepted) wait for a 
locked record with no message. This option has no 
effect in batch mode.

z Suppress formfeed at beginning of REPORT 
output.

Character Function
ADMINS User Guide  A - 7



A - 8   ADMINS User Guide



Appendix B:Special Logical Names 
used by ADMINS

The following logical names have special meanings and/or functions in ADMINS.

Logical Name and Function Reference

A$<string>
Communication with AV command

Section 13.6 “AdmAv - 
Communicate with ADMINS 
Files via Logical Names”

A$<string>
TRANS command line arguments

Section 6.13 “Entering TRANS 
On A Specific Record”

A$AV_ERR
Set to error status when AV error exits

Section 13.6 “AdmAv - 
Communicate with ADMINS 
Files via Logical Names”

A$BA_<string>
Communication with BATCHJOB subroutine

Appendix H.15.3 “BATCHJOB: 
Submit Batch Job”

ADM$APPLIC
Used with OPTION M to explicitly specify 
string to be placed in the process name.

Appendix A: “Options”.

ADM$CENTURY_CUTOFF_YEAR
Allows you to change how values entered with 
two digit years into date fields are interpreted 
and stored.

Section 2.4.2 “Field Data Types” 

ADM$COLLATE
Collating Table identifier

Section 2.12 “Alternative 
Collating Sequences”

ADM$COLLDIR
Collating Table directory identifier

Section 2.12 “Alternative 
Collating Sequences”

ADM$COM_STARTUP
Identifies a PERL script that executes just prior 
to executing the actual content of the ADMINS 
command file, and may be used to:

log startup information like the value of 
logical names, start time, user name, etc

Section  “”

ADM$COM_NORMALEXIT
Identifies a PERL script that executes if the 
PERL script exits normally (at the EOC: label) 

Section  “”

ADM$COM_ABNORMALEXIT
Identifies a PERL script that executes if the 
PERL script exits abnormally (at the EOC4: 
label)

Section  “”
ADMINS User Guide B - 1



ADM$DATE
Date format

Section 2.4.2 “Field Data Types”

ADM$DD
Data Dictionary data file directory

Appendix I.9.1 “Logical Names 
and Symbols ”

ADM$DD_CHECK_DESCR
Converting applications to ADD

Appendix I.10.1 “Converting 
Data Files ”

ADM$DD_DIST
Data Dictionary application directory

Appendix I.9.1 “Logical Names 
and Symbols ”

ADM$DD_FILE
Producing DEF files from Data Dictionary

Appendix I.8.1 “Data Dictionary 
Reports ”

ADM$DD_FILEDEF
Producing DEF files from Data Dictionary

Appendix I.8.1 “Data Dictionary 
Reports ”

ADM$DD_LOAD
Converting applications to ADD

Appendix I.10.1 “Converting 
Data Files ”

ADM$DD_LOAD_SOURCE_DESCR
Converting applications to ADD

Appendix I.10.1 “Converting 
Data Files ”

ADM$DIR_LOGEVENTS
Log occurrence of certain events.

Section 1.13 “Logging Fatal 
Errors”

ADM$DIR_LOGFATAL Section 1.13 “Logging Fatal 
Errors”

ADM$DIST
ADMINS commands directory identifier

Chapter 1: “Introduction”

ADM$EMSG
ADMINS diagnostic messages directory 
identifier

Section 1.12.1 “Operation of the 
Message Facility”

ADM$FILEOPTION
Global file access method control
Case sensitivity in path specification (UNIX 
only)

Section 19.2 “Resolving File 
Access Conflicts”

Appendix C.1 “File and Device 
Specification Differences”

ADM$FORMAT
Report automatic formatting file identifier

Section 7.20 “Data Description 
File for Automatic Formatting”

ADM$G0_ONLY
Select Graphic Character Set by Alternate 
Method

ADM$GBL
Identifies directory for use with GBLSTORE 
subroutine

Appendix H.14.6 “GBLSTORE - 
Access TRANS Global Area on 
Disk”

Logical Name and Function Reference
B - 2   ADMINS User Guide



ADM$GRPSHR
Group shared area directory identifier

Section 20.3 “Initial Setup of the 
Group Shared Area”

ADM$KB_TYPE
Override TRANS environment type

Section 6.15 “The TRANS 
Environment File”

ADM$HARD_CR
Control IE output of input hard CR

Section 17.8.1 “Managing Text 
Fields in IE”

ADM$HELPDIR
TRANS help file directory identifier

Section 6.12 “HELP in TRANS”

ADM$HELPEDIT
Identifies/enables TRANS help editor

Section 6.12.1 “Development 
Facility for HELP in TRANS 
files”

ADM$HELPFILE
TRANS help file identifier

Section 6.12 “HELP in TRANS”

ADM$KEY_ESC
Allows you to escape from a key sequence.

Section 6.5 “Record Moving and 
Searching”

ADM$LEVEL
Controls diagnostic message level

Section 1.12.2 “Expanded 
Message Facility”

ADM$LISTFILE (UNIX-only)
Name given to most recent “ADMINSxx.LIS”

Appendix C.1.1 “Differences in 
Print File and Temporary File 
Naming”

ADM$LNKMEM
Control maximum file size for ANALYZER 
LINK MEM

Section 12.3.2 “Efficiency 
Considerations”

ADM$LOCALE
Localizing messages and prompts

Section 1.10 “Localizing 
ADMINS”

ADM$LOGFILE
Interactive command dialogue log file 
identifier

Section 1.6 “Logging Interactive 
Sessions”

ADM$MAGTAP
Magnetic tape device identifier

Chapter 17: “External Data Files”

ADM$MASK_LOGEVENTS
Specify events to log

Section 1.13 “Logging Fatal 
Errors”

ADM$MAX_FIELDS
Control maximum number of fields in TRANS

Appendix F.2 “SORT”

ADM$MINUS
Control indicator for negative number

Section 2.4.2.1 “Input and Output 
Representation Options”

ADM$NAT
ADMINS control file directory identifier

Appendix L.4 “Installation 
Control”

Logical Name and Function Reference
ADMINS User Guide  B - 3



ADM$NODE_<node_name>
Concurrency control across DECnet

Section 19.6 “Concurrency 
Control Across DECnet”

ADM$NOTIFYUSER
Notifies user that a procedure has been waiting 
for a record lock so the user can take the 
appropriate action to release the lock.

Section 19.3.2 
“ADM$NOTIFYUSER - 
Periodically Displaying a Record 
Lock Message”

ADM$OBJECT
Object files directory identifier, SCREEN

Chapter 5: “AdmScreen: 
Compiling Screen Forms”

ADM$OBJECT
Object files directory identifier, REPORT

Section 7.21 “Pre-Compiled 
Reports”

ADM$OBJECT
Object files directory identifier, CMP

Chapter 9: “CMP: The Record 
Maintenance Compiler”

ADM$OUTPUT_RFM
Specify alternate record format for REPORT 
output file.

Section 7.17.7.2 “OUTPUT LP 
(Line Printer)”

ADM$PATTERN
IE pattern substitution table directory identifier

Section 17.8.1 “Managing Text 
Fields in IE”

ADM$PERM_OPEN
Permanently open files list identifier

Section 6.17 “File Access 
Optimization: Files Left Open at 
Branch”

ADM$PRINTERn
Printer type

Appendix N.3 “RNF Control 
Words”

ADM$PRT<n>
Bypass spooling/queuing

Section 21.4 “Output to Non-
queued device, ADM$PRT0”

ADM$READONLY
Make all TRANS file opens read-only

Section 6.3 “Entering or 
Changing Fields”

ADM$REPSRT
Control max number of records for SORT in 
REPORT

Section 7.12.2 “Comparison of 
SORT Statement and SORT 
Command”

ADM$SCRNAM
Name of currently active TRANS screen

Section 5.5.8.7 
“ADM$SCRNAM”

ADM$SCR_VIDEO
Video attributes

Section 5.10 “Video Highlighting 
Facilities”

ADM$SPOOL<n>
Print queue identifier

Section 21.1 “ADM$SPOOLn: 
Logical Print Queue 
Specification”

ADM$SRTMP
SORT temp working file directory identifier

Section 4.2.1 “Temporary Files”

Logical Name and Function Reference
B - 4   ADMINS User Guide



ADM$SRTOUT
SORT temp output file directory identifier

Section 4.2.1 “Temporary Files”

ADM$STYLE
Style table identifier - REPORT

Section 7.17.3 “LENGTH 
Statement”

ADM$SYNC_HOLD
Identifies directory to find SYNCHOLD.EXE

Section 13.5.1.2 
“ADM$SYNC_HOLD logical 
name assignment”

ADM$SYNC_LEVEL
Enable system-wide concurrency control

Section 19.4 “Scope of ADMINS 
Concurrency Control”

ADM$SYNC_SYSTEM
Identifies system-wide concurrency control file 
list

Section 19.4 “Scope of ADMINS 
Concurrency Control”

ADM$TERM
Logical name usually loaded with terminal 
identifier

Appendix C.1.1 “Differences in 
Print File and Temporary File 
Naming”

ADM$TEST_TODAY
Creates “testing value”  for TODAY and NOW. 

Section 5.5.8.1 “TODAY: Current 
Date”

ADM$TEST
Enables TRANS test mode

Section 15.3 “Test Mode in 
TRANS”

ADM$TEXTEDIT
Identifies/enables VIEWTEXT editor

Appendix H.6.9 “VIEWTEXT: 
Display Text File in TRANS”

ADM$TRANS_MESSAGE
Status line message

Section 6.11 “Status line”

ADM$TRANS_VIDEO
Run-time video attributes

Section 5.10 “Video Highlighting 
Facilities”

ADM$TRONAM
Name of currently active TRO

Section 5.5.8.8 
“ADM$TRONAM”

ADM$TX_DEFAULT
External text file directory identifier

Appendix K.1 “Special 
Considerations”

ADM$TX_DIRECTORIES
External text file directories list identifier

Appendix K.1 “Special 
Considerations”

ADM$USAGE_SLOT
Usage slot file identifier

Appendix L.6.1 “Usage 
Management File”

ADM$VTLEN
Control TRANS display size

Section 5.6 “Screen Layout”

BRIEF
Control terminal dialogue in command files 

Section 14.8 “BRIEF and 
VERIFY”

Logical Name and Function Reference
ADMINS User Guide  B - 5



KEY$<string>
Value for REPORT KEY statement

Section 7.13.3 “KEY Statement”

L$<string>
Logical parameters

Section 1.4.4 “Parameterization”

L$<string>
Communication with AV command

Section 13.6 “AdmAv - 
Communicate with ADMINS 
Files via Logical Names”

L$<string>MAINT
Key range using logical names

Section 10.3.1 “Operate on Key 
Range”

L$<string>PROD
Key range using logical names

Section 11.2.1 “PROD with Key 
Range: PROD/KEY”

L$AV_ERR
Set to error status code when AV error exits

Section 13.6 “AdmAv - 
Communicate with ADMINS 
Files via Logical Names”

OPTION
Set ADMINS optional functionality

Appendix A: “Options”

PERL_OPTION
Wait  for RETURN after abnormal termination
(if set to “W”) 

Section 14.16 “PERL_OPTION 
Logical Name: Pause Before Exit 
at Abnormal Termination”

REPORT$ENV
REPORT environment file identifier

Section 7.22 “The REPORT 
Environment File”

TED$ENV 
TED environment file identifier

Appendix J.5 “The TED.ENV 
File”

TPR$ENV
TPR environment file identifier

Appendix J.11.1 “The TPR.ENV 
Environment File”

TPR$FIELD
Specify field for TPR/INT

Appendix J.11 “Printing Text 
Fields: TPR”

TPR$FILENAME
Specify file for TPR/INT

Appendix J.11 “Printing Text 
Fields: TPR”

TPR$FROM_PAGE
Specify starting page for TPR/INT

Appendix J.11 “Printing Text 
Fields: TPR”

TPR$KEY<n>
Specify key value for TPR/INT

Appendix J.11 “Printing Text 
Fields: TPR”

TPR$TO_PAGE
Specify last page for TPR/INT

Appendix J.11 “Printing Text 
Fields: TPR”

TRANS$ENV
TRANS environment file identifier

Section 6.15 “The TRANS 
Environment File”

Logical Name and Function Reference
B - 6   ADMINS User Guide



Appendix C:Platform and Operating 
System Differences

ADMINS provides an environment for building, supporting and running 
applications that is consistent, compatible, and highly portable across all supported 
hardware platforms and operating systems. Usually, instructions (e.g. source code, 
command procedures, syntax) for application modules can be utilized without change 
in any supported environment. When instructions must vary depending on the 
operating environment, conditional compilation instructions can be imbedded in the 
source code, so that only a single copy of the source need be maintained.

The sections that follow describe the areas where ADMINS applications are or may be 
affected when moving to a different operating system or the hardware platform.

C.1  File and Device Specification Differences

ADMINS handles path specifications (file or directory specifications) in the same way 
wherever they appear, i.e. the specification is converted to all lowercase characters 
(case insensitive) and handed over directly to the operating system, except that on 
Win32 systems if the path specification character string begins with a logical name, it 
is translated by the ADMINS logical name server, and the translation is substituted 
into the string before the string is handed to the operating system.

If WORK_DISK is a logical name and you type the following command at the system 
prompt in any supported environment:

    $ trans work_disk:demo.mas

you begin a TRANS General Editor Mode session on the file DEMO.MAS, which is 
located in the directory assigned to the logical name WORK_DISK. Similarly this same 
file is specified in any supported environment by a REPORT or RMS instruction file 
that includes the statement:

    FILE WORK_DISK:DEMO.MAS

Path specifications strings (after logical name substitution on Win32 systems) must 
result in a valid path or file specification in the host environment.

Devices are usually specified in ADMINS via the use of logical names, e.g. the direct 
print device is identified the logical name ADM$PRT0, and the default print queue is 
identified by the logical name ADM$SPOOL0. Any device identifier string you use 
with ADMINS, whether directly or by assigning it a logical name, must be a valid 
device name in the host environment.
ADMINS User Guide C - 1



Commands and Procedures
C.1.1  Differences in Print File and Temporary File Naming

Some ADMINS commands create temporary files which they utilize during their 
processing, e.g. SORT creates a temporary work file with a name in the form 
SORTxx.TMP and COM creates a host operating system command file with a name 
in the form COMxx.

ADMINS commands that format and queue files for printing automatically name the 
print file with a name in the form ADMINSxx.LIS.

On OpenVMS systems the contents of the logical name ADM$TERM is used to 
automatically name these files, i.e. SORTA2.TMP and ADMINSA2.LIS are created if 
the value A2 is assigned to the logical name ADM$TERM.1

On Win32 systems the ADMINS lock manager server process ensures that each one 
of these temporary files gets a unique name when it is created.2 To provide access to 
automatically-named shell procedures created by COM, the server loads the logical 
name adm_script with the name of the most recently created script file. To provide 
access to automatically named print files the server loads the logical name 
adm_listfile with the name of the most recently created "ADMINSxx.LIS" file.

For example, if after running a report you want to merge the output into another 
document, you can find out the name given to the output file by translating 
adm_listfile after running the REPORT.

C.2  Commands and Procedures

 Many ADMINS commands accept arguments and/or qualifiers on the command 
line (if required arguments are not given on the command line the command will 
prompt for them).

The method for expressing positional and/or keyword arguments for a particular 
command does not vary when the host environment changes, e.g. the following 
commands are valid either for OpenVMS or for Win32.

     $ cmp journal

     $ trans vendor.tab 132 insert

The method for expressing command line qualifiers does vary depending on the host 
environment. On Win32 systems, command line qualifiers are delimited by the "-"  or  
"/" characters preceded by a space, while on OpenVMS systems command line 

1.     OpenVMS distributions of ADMINS include a command procedure, 
"ADMTERM.COM", that can be called at login to automatically assign a value to 
ADM$TERM. This procedure assigns the unique portion of the device name to 
ADM$TERM for interactive sessions and the last three digits of the job name to 
ADM$TERM for batch sessions.

2.    Unique names are required on Win32 systems because the Win32 file system is 
"versionless". If a file is created with the same pathname (full file specification) as 
an existing file the new file will over-write the old file. On OpenVMS systems the 
new file would be created with a new version number, the old file would persist.
C - 2   ADMINS User Guide



Commands and Procedures
qualifiers are delimited by the "/" character (no preceding space is required). The 
following examples show equivalent commands in the OpenVMS and Win32 
environments:

     $ move/v                ! OpenVMS MOVE/Virtual
     > move -v               # Win32 MOVE/Virtual

     $ define/redef vendor   ! OpenVMS Re-Define file
     > define /redef vendor  # Win32 Re-Define file

ADMINS commands may be run in batch procedures or  perl scripts on Win32 and  
in DCL command procedures on OpenVMS. These procedures have entirely 
different syntaxes, so they are not portable between the two environments.

ADMINS provides a highly portable alternative to direct coding of command and 
shell procedures, the ADMINS command procedure pre-processor, which is 
described in Chapter 14: “Command Files”. The pre-processor reads an "ADMINS 
command file" and translates it into a procedure appropriate for the operating 
environment3. For example the following simple ADMINS command file runs a 
report:

   display running demo report...
   report demo
   display demo report complete

On OpenVMS NATCOM translates this command file into the following command 
procedure

     $ Q :== 
     $ ADM$EXIT_SEVERITY :== 
     $ ON ERROR THEN GOTO EOC4
     $ASSIGN/nolog N BRIEF
     $WRITE SYS$OUTPUT " COMA2.COM   STARTED"
     $SHOW TIME
     $WRITE SYS$OUTPUT " ----------------------------"
     $WRITE ADM$OUTPUT "running demo report..."
     $IF Q THEN GOTO EOC2
     $report demo
     $WRITE ADM$OUTPUT "demo report complete"
     $EOC:
     $ RE$START :== 
     $WRITE SYS$OUTPUT " -----------------------------"
     $WRITE SYS$OUTPUT " COMA2.COM   TERMINATED"
     $GOTO EOC1
     $EOC2:
     $WRITE SYS$OUTPUT " -------------------------------"
     $WRITE SYS$OUTPUT " QUIT FROM COMA2.COM  "
     $GOTO EOC1
     $EOC4:
     $ ADM$EXIT_SEVERITY :== '$SEVERITY
     $WRITE SYS$OUTPUT " --------------------------------"
     $WRITE SYS$OUTPUT " ABNORMAL TERMINATION COMA2.COM  "
     $WRITE ADM$OUTPUT " ABNORMAL TERMINATION COMA2.COM  "
     $EOC1:
     $SHOW TIME

3.     On Win32 systems a perl script is generated and executed. On OpenVMS systems 
a DCL command file is generated and executed.
ADMINS User Guide  C - 3



Commands and Procedures
On Win32 Adm2Perl translates this command file into the following shell procedure.

     use Cwd;
use File::Basename;
fileparse_set_fstype("MSWin32");
$ENV{'ADM_INCOM'}="Y";
$exit_sev='ADM_EXIT_SEVERITY';
$adm_basename = "showacf";
$fatal_exit=1;
system("AdmLcr $exit_sev 0");
($adm_cwd = cwd()) =~ tr/\//\\/;
$last = substr($adm_cwd, -1, 1);
if ($last eq '\\') { chop $adm_cwd; }
system("AdmLcr ADM_SCRPATH $adm_cwd\\A0020e40.pl");
$dttm = localtime(time());
$startmsg = "A0020e40.pl started $dttm";
$| = 1;
print " $startmsg\n";
print(" -----------------------------\n");
print ("running demo report...\n");
system('report demo ');
$cur_exit = $? >> 8;
if ($cur_exit == $fatal_exit) {
   system("AdmLcr $exit_sev $cur_exit");
   goto EOC4;
   }
print ("demo report complete\n");
EOC:
print(" -----------------------------\n");
print("A0020e40.pl TERMINATED\n");
$dttm = localtime(time()); print $dttm, "\n";
system('admldl RESTART_0020e40');
system("AdmDel ADM_SCRPATH");
exit 0;
EOC4:
print(" -----------------------------\n");
print("ABNORMAL TERMINATION A0020e40.pl\n");
$dttm = localtime(time()); print $dttm, "\n";
$cur_exit = `AdmLtr $exit_sev`;
exit $cur_exit; 

The two procedures listed above are very different, but the results the user sees when 
the ADMINS command file is run in either host environment is quite similar:

  $ COM DEMO            ! on OpenVMS

  READING DEMO.COM
  COMA2.COM   WRITTEN
     
  COMA2.COM   STARTED
  28-MAY-1993 10:26:09
  ----------------------------
  running demo report...
  REPORT DEMO
  demo report complete
  -----------------------------
  COMA2.COM   TERMINATED
  28-MAY-1993 10:26:20

  com demo                    !On Win32
  Reading showacf.acf
  A0020e57.pl written
  A0020e57.pl started Fri Mar 21 12:47:56 2003
  -----------------------------
  running demo report...
  REPORT demo
  demo report complete
  -----------------------------
  A0020e57.pl TERMINATED
  Fri Mar 21 12:47:57 2003
C - 4   ADMINS User Guide



Concurrency Control and Network Access
C.3  Concurrency Control and Network Access

Concurrent access to ADMINS data files and individual records in ADMINS data  is 
essentially the same in either the OpenVMS or the Win32 environments. On 
OpenVMS the "distributed lock manager" is used by ADMINS to control concurrent 
file and record access. For Win32 systems ADMINS provides a "lock manager" 
server4 to provide similar control of file and record access.

On OpenVMS systems concurrency control is provided for network access (read or 
write) via either VMS clusters5 or DECnet.

On Win32 TCP/IP networks concurrency control is provided for network access 
(read or write) for all client Win32 nodes that request file access via the same 
ADMINS Win32 lock manager server process..

See Chapter 19: “Concurrency Control: Multi-User Files” for details.

C.4  Setting up ADMINS for the User

On OpenVMS ADMINS commands are called using a symbolic name, e.g. "TRANS" 
is usually the symbolic name given to the executable image 
"ADM$DIST:TRANS.EXE". The symbolic names that are commonly used for 
ADMINS commands are listed in Appendix C.4.1 “OpenVMS Symbols for ADMINS 
commands”.

On Win32, when ADMINS commands are called they are found via the PATH 
environmental variable, which contains a list of directories to be searched whenever 
a command is typed, e.g. if PATH is set as follows:

     X:\ADMINS\BIN;N:\ADMDIST\BIN

then when the user enters "admtrans" at the shell prompt the shell program will 
search for the executable file admtrans.exe first in the directory x:\admins\bin and 
then in the directory N:\admdist\bin.

Symbolic names on OpenVMS and the PATH on Win32 systems are examples of the 
"environment" that must be put in place in order to give users easy access to 
ADMINS tools and applications.

For OpenVMS this user environment consists of the symbolic names for commands 
(see Appendix C.4.1 “OpenVMS Symbols for ADMINS commands”) and logical 
names that are used to configure ADMINS (see Appendix B: “Special Logical Names 
used by ADMINS”), and also logical names and symbolic names that are used at the 
application level.

4.    The ADMINS Win32  lock manager server must be running in order to use 
ADMINS (admsv is usually found in the ADM$DIST directory). Usually the 
ADMINS lock manager server runs as a service on one of the nodes in a network, 
and the other nodes designate that node as their lock manager server node.

5.    VMS clusters are so closely coupled that for ADMINS purposes they may be 
considered a single system.
ADMINS User Guide  C - 5



Setting up ADMINS for the User
For Win32 this user environment consists of environment variables (including 
PATH) and logical names accessed via the ADMINS logical name server. The 
"process logical name table" and environmental variables can be used 
interchangeably6 to configure the user environment for ADMINS and for ADMINS-
based applications.

This user environment is usually put in place via command procedures that execute 
automatically at login (e.g. system-wide and user login command files on OpenVMS, 
and login scripts on Win32).

C.4.1  OpenVMS Symbols for ADMINS commands

ADMINS commands are referenced by OpenVMS symbols established when a user 
logs on to the system. The following list represents a standard list of these symbols. 
The examples in the Manual assume this symbol list. This list is also included on the 
ADMINS distribution as ADMSYMDEF.COM. The asterisk (*) in the symbol means 
that the symbol can be abbreviated at that point. Characters after the asterisk can be 
omitted. For example, entering any of the strings ACQ, ACQU, ACQUI, or ACQUIR 
will be interpreted as the command ACQUIR.

     $ ACQ*UIR    :==  $ADM$DIST:ACQUIR
     $ ADE*D            :==  $ADM$DIST:ADED
     $ AD*IFF   :==  $ADM$DIST:ADIFF            
     $ AFU      :==  $ADM$DIST:AFU
     $ AN*ALYZER        :==  $ADM$DIST:AN
     $ AV               :==  $ADM$DIST:AV
     $ BAC*KUP          :==  $ADM$DIST:AFU
     $ CLR              :==  @ADM$DIST:CLR              
     $ CMP              :==  $ADM$DIST:CMP
     $ COM              :==  @ADM$DIST:NATCOM
     $ DAT*AP           :==  $ADM$DIST:DATAP
     $ DEF*INE          :==  $ADM$DIST:DEFINE
     $ ED               :==  $ADM$DIST:TED -CLM
     $ EN*LARGE         :==  $ADM$DIST:ENLARG
     $ FAC*QUIR         :==  $ADM$DIST:FACQUIR
     $ FDA*TAP          :==  $ADM$DIST:FDATAP
     $ FILECONVERT      :==  $ADM$DIST:FILECONVERT      
     $ FLAG*S           :==  $ADM$DIST:FLAGS
     $ FL*OCK           :==  $ADM$DIST:FLOCK            
     $ IE               :==  $ADM$DIST:IE
     $ MAI*NT           :==  $ADM$DIST:MAINT
     $ MAN*UAL          :==  $ADM$DIST:MANUAL
     $ MERGE            :==  $ADM$DIST:MERGE
     $ ML*OCK           :==  $ADM$DIST:MLOCK            
     $ MOV*E            :==  $ADM$DIST:MOVE
     $ MRG*FIL          :==  $ADM$DIST:MRGFIL
     $ NATCOM           :==  $ADM$DIST:NATCOM
     $ PASSW            :==  $ADM$DIST:PASSW
     $ PREPROCESS       :==  $ADM$DIST:PREPROCESS
     $ PRO*D            :==  $ADM$DIST:PROD
     $ REP*ORT          :==  $ADM$DIST:REPORT
     $ RNF              :==  $ADM$DIST:RNF
     $ SCR*EEN          :==  $ADM$DIST:SCREEN
     $ SEND             :==  $ADM$DIST:SEND
     $ SOR*T            :==  $ADM$DIST:SORT
     $ SEQ              :==  $ADM$DIST:FILECONVERT
     $ SPR*OD           :==  $ADM$DIST:PROD
     $ SYN*C            :==  $ADM$DIST:ADMSYNC
     $ TAPCOPY          :==  $ADM$DIST:TAPCOPY
     $ TAP*DMP          :==  $ADM$DIST:TAPDMP

6.    Requests to translate logical names will return the value of an environment 
variable that matches the logical name if the logical name is not present in the 
process, desktop, or system table.
C - 6   ADMINS User Guide



Setting up ADMINS for the User
     $ TAPSPL           :==  $ADM$DIST:TAPSPL
     $ TED              :==  $ADM$DIST:TED
     $ TPR              :==  $ADM$DIST:TPR
     $ TRA*NS           :==  $ADM$DIST:TRANS
     $ TXT*ACQ          :==  $ADM$DIST:TXTACQ
     $ UDK               :==  $ADM$DIST:UDK
     $ VIEW             :==  $ADM$DIST:TED -READ
ADMINS User Guide  C - 7



Setting up ADMINS for the User
C - 8   ADMINS User Guide



Appendix D:Reserved Field Names

A number of "names" have specific meaning to certain ADMINS commands and the 
user should not use these "names" as field names. The following is a list of reserved 
"names" in ADMINS. 

D.1  Reserved Field Name List

 

ADM$ENTER The name of a special integer field that can instruct 
TRANS to act as if a field has been entered without 
actually entering any field (see Section 16.16 
“ADM$ENTER: Force TRANS Field Entry 
Processing”).

ADM$NLREC The name of a field that allows the RMO to detect 
which record locks have been ignored (see Section 
16.20.2 “ADM$NLREC: Identify Ignored Locks”).

ADM$NOLOCK The name of a field that allows the RMO to detect 
when the user elects to ignore a record lock at the 
“Wait or Ignore” prompt, or when file option “I” is 
in effect (see Section 16.20.1 “ADM$NOLOCK: 
Record Lock Ignored Flag”)

ADM$SCRNAM The name of a field that TRANS will automatically 
load with the current screen name (see Section 
5.5.8.7 “ADM$SCRNAM”).

ADM$SUBSCR The name of a field that is used to track and change 
the active subscreen (see Section 16.15 “Subscreen 
Status and Control: ADM$SUBSCR”).

ADM$RECNO The name of a special integer field that can TRANS 
will set to the current record number in a multi-
record screen (see Section 16.21.1 “ADM$RECNO: 
Record Position in Multi-Record Screen”).

ADM$RECORDLOCK MAINT sets this field and checks it to allow 
alternative ways of handling records that are locked 
(see Section 10.1.1 “ADM$RECORDLOCK”)

ADM$TESTSW The name “ADM$TESTSW” is the name of a field 
used to switched Test Mode in TRANS on and off 
(see Section 15.3 “Test Mode in TRANS”).

ADM$TRONAM The name of a field that TRANS will automatically 
load with the current TRO name (see Section 5.5.8.8 
“ADM$TRONAM”).
ADMINS User Guide D - 1



Reserved Field Name List
AND The name “AND” is used as a logical operator for 
connecting comparison expressions to make 
Boolean expressions (see Section 8.4 “Logical 
Operators”).

B$B The name “B$B” is a local field in an RMO behind a 
screen which when set to a branch code causes an 
automatic branch in TRANS (see Section 16.2 
“Automatic Branching: B$B and R$R”).

B$OB The name “B$OB” is a local field in an RMO behind 
a screen which is used to request a second end-of-
record RMO call in TRANS (see Section 16.8 “Post-
Writeback EOFREC RMO Call: B$OB”).

B$fieldname The name “B$fieldname” (where “fieldname” is 
any name) is used in TRANS as an actual or local 
field set to a value of a “screen-name” which can 
then be used as a branch location (see Section 5.7.3 
“Calculated Branches”).

B$KEYFIELDS The name of a special TRANS field that enables a 
single calculated branch (see Section 5.7.3 
“Calculated Branches”) to be used with any set of 
key fields (see Section 16.19 “Calculated Branches 
with Variable Branch Keys”).

BACKSPACE The name “BACKSPACE” is a local field in a 
MAINT used to instruct MAINT to backspace any 
number of records (see Section 10.10 “Backspace 
Records: BACKSPACE”).

BEGREC The name “BEGREC” should not be used as a field 
name because of the communication between 
TRANS and the RMO behind the screen. When S$S 
is set to “BEGREC” it means the RMO call is a 
“beginning of record” call (see Section 15.1.1 
“Status: S$S”).

BET The name “BET” is used as a comparison operator 
meaning “between” in an ADMINS expression (see 
Section 8.3 “Comparison and Special Operators”).

C$C The name “C$C” is a local field in an RMO behind a 
screen which is used to control the movement of the 
cursor in TRANS (see Section 16.3 “Cursor Control: 
C$C and C$MULREC”).

CHGDAT The name “CHGDAT” is used as a field name in an 
automatic field log meaning “change date” (see 
Section 6.4 “Field Logging”). Since KEY fields of the 
master file are also included as a field in the field 
log, “CHGDAT” should be avoided as a field name 
of a KEY field in a DEF.

CR The name “CR” is used in a command file (see 
Chapter 14: “Command Files”) to indicate the 
response to a command prompt is a “carriage 
return”. Since field names are also used as 
responses to command prompts, “CR” should be 
avoided as a field name in a DEF.
D - 2   ADMINS User Guide



Reserved Field Name List
 D$D The name “D$D” is a local field in an RMO used 
with PROD to control deletion of records in the 
lookup file (see Section 11.13 “Record Deletion: 
D$D”), or with MAINT to specify deletion of the 
current record (see Section 10.5 “Record Deletion: 
D$D”).

D$IR The name “D$IR” is the name of an internal field 
maintained by TRANS to provide the active screen 
with the user’s default directory (see Section 5.5.8.4 
“D$IR: Default Directory”).

DI$DI The name “DI$DI” is the name of an actual field in 
the detail field in a PROD which is used to control 
insertion of records into the lookup file (see Section 
11.12 “Controlling Lookup File Insertion: DI$DI”).

DLC The name "DLC" is the name of a field automatically 
added to a DEF when an automatic field log is 
created. The field "DLC" means "date of last change" 
(see Section 2.10 “Field Logs”) and should not be 
explicitly added to the DEF of a file which is to be 
logged unless the user intends the field to have the 
transaction sequence number function.

E$NDSCR The name of a field used in TRANS to detect which 
manual (keystroke) method was used to attempt to 
exit the current screen (see Section 16.12 “Check 
Screen Exit Keystroke: E$NDSCR”)

E$RR The name "E$RR" is the name of a field used in a 
TRANS LINK statement as the key to access a table 
of check statement error messages (see Section 
5.5.6.1 “Table Driven Check Statement Error 
Messages”).

E$RRMSG The name "E$RRMSG" is the name of a field used by 
TRANS to display values linked from a table of 
check statement error messages (see Section 5.5.6.1 
“Table Driven Check Statement Error Messages”).

E$XIT The name "E$XIT" is used as a local field in an RMO 
which is used to terminate the execution of a 
command file. E$XIT may be used in a MAINT (see 
Section 10.7 “Terminating a Command File: 
E$XIT”) or in an RMO used with PROD (see Section 
11.14 “Terminating a Command File: E$XIT”).

ELSE The name "ELSE" is part of the 
IF_THEN_ELSE_END structure used to 
conditionally compute a result (see Section 8.5 
“Conditional Statements”).

END The name "END" is part of the 
IF_THEN_ELSE_END structure used to 
conditionally compute a result (see Section 8.5 
“Conditional Statements”).

EOF The name "EOF" should not be used as a field name 
if the lookahead facility is used because of the 
special meaning of the NX$EOF field (see Section 
16.9 “Look Ahead: NX$fieldname”).
ADMINS User Guide  D - 3



Reserved Field Name List
EOFREC The name "EOFREC" should not be used as a field 
name because of the communication between 
TRANS and the RMO behind the screen. When S$S 
is set to "EOFREC" it means the RMO call is an "end 
of record" call (see Section 15.1.1 “Status: S$S”).

EQ The name "EQ" is used as a comparison operator 
meaning "equal to" in an ADMINS expression (see 
Section 8.3 “Comparison and Special Operators”).

F$F The name "F$F" is a local field in an RMO behind a 
screen which is used to force the display of the first 
record in the master file in TRANS (see Section 16.7 
“Top of File Control: F$F”).

FLDNAM The name "FLDNAM" is used as a field name in an 
automatic field log meaning "field name of the 
changed field" (see Section 6.4 “Field Logging”). 
Since KEY fields of the master file are also included 
as a field in the field log, "FLDNAM" should be 
avoided as a field name of a KEY field in a DEF.

FLDTYP The name "FLDTYP" is used as a field name in an 
automatic field log meaning "field type of the 
changed field" (see Section 6.4 “Field Logging”). 
Since KEY fields of the master file are also included 
as a field in the field log, "FLDTYP" should be 
avoided as a field name of a KEY field in a DEF.

F$UNCKEY The name of a special local RMO field which causes 
TRANS to make a special RMO call whenever a 
function key is pressed by itself, or to "trap" what 
function key was used to terminate an entry into an 
editable field (see Section 16.14 “F$UNCKEY - 
Function Key Detection in RMO”).

G$+nnn The name "G$+nnn" (where "nnn" is a number of 
words) is used in TRANS to skip over a section of 
the global area (see Section 5.5.9).

G$RP The name "G$RP" is the name of an internal field 
maintained by TRANS to provide the active screen 
with the group number of the UIC under which the 
user is currently operating (see Section 5.5.8.5 
“G$RP: UIC Group Number”).

G$TMO The name "G$TMO" is a local field in an RMO 
behind a screen which is used to cause TRANS to 
"timeout" and exit (see Section 5.5.16 “TIMEOUT 
statement”).

G$fieldname The name "G$fieldname" (where "fieldname" is any 
name except "TMO", "RP", and "+nnn" which have 
special meaning as described above) refers to a 
"global field" in TRANS. TRANS maps all field 
names that start with "G$" onto the global area (see 
Section 5.5.9 “Global Fields”).

GE The name "GE" is used as a comparison operator 
meaning "greater than or equal to" in an ADMINS 
expression (see Section 8.3 “Comparison and 
Special Operators”).
D - 4   ADMINS User Guide



Reserved Field Name List
GOSUB The name "GOSUB" ("go to subroutine") enables an 
RMO to go to another paragraph, execute 
statements and then return to the statement 
following that GOSUB call (see Section 9.6.3 “The 
GOSUB Statement”).

GOTO The name "GOTO" is used to transfer control to a 
labeled paragraph in an RMO (see Section 9.6.2 
“Record Maintenance Statements”).

GT The name "GT" is used as a comparison operator 
meaning "greater than" in an ADMINS expression 
(see Section 8.3 “Comparison and Special 
Operators”).

H$CODE The name "H$CODE" is a local array in an RMO 
behind a screen which is used to specify the 
highlighting codes for the fields specified in 
H$NAME in TRANS (see Section 16.5 
“Highlighting Fields”).

H$ELPNAME The name "H$ELPNAME" is used to identify the 
section name to be displayed by the HELP in 
TRANS facility (see Section 6.12 “HELP in 
TRANS”).

H$NAME The name "H$NAME" is a local array in an RMO 
behind a screen which is used to specify fields 
which should have special highlighting effects in 
TRANS (see Section 16.5 “Highlighting Fields”).

HEX The name "HEX" should not be used as a field name 
in a file which is to be written to an external file via 
DATAP. In a TAP used with DATAP the field name 
HEX refers to a hexadecimal constant (see Section 
17.4.3.3 “Literals and Hexadecimal Constants”).

I$I The name of a special PROD/NOMATCH local 
RMO field that enables the RMO to control insertion 
into the PROD lookup file (see Section 11.10 
“NOMATCH qualifier: Functionality without 
LOOKUP link”).

IF The name "IF" is part of the IF_THEN_ELSE_END 
structure used to conditionally compute a result 
(see Section 8.5 “Conditional Statements”).

INCL The name "INCL" is used as a comparison operator 
meaning "includes" in an ADMINS expression (see 
Section 8.3 “Comparison and Special Operators”).

LE The name "LE" is used as a comparison operator 
meaning "less than or equal to" in an ADMINS 
expression (see Section 8.3 “Comparison and 
Special Operators”).

LINE The name "LINE" used as a field name in a file has a 
special meaning when the file is to be used as the 
output file of a TXTACQ (see Section 17.3 
“TXTACQ: Acquire Text Files”).

LINE2 The name "LINE2" used as a field name in a file has 
a special meaning when the file is to be used as the 
output file of a TXTACQ (see Section 17.3 
“TXTACQ: Acquire Text Files”).
ADMINS User Guide  D - 5



Reserved Field Name List
LSEQ The name "LSEQ" can be used as a field name in a 
field log meaning "last transaction sequence for the 
master file". If it is present it is used and updated 
when field logging occurs (see Section 6.4.3 
“Expanded Field Log Facilities”).

LT The name "LT" is used as a comparison operator 
meaning "less than" in an ADMINS expression (see 
Section 8.3 “Comparison and Special Operators”).

M$LOC The name of a special TRANS local RMO field that 
is used to designate the location of the status line 
(see Section 16.11 “Status Line Control: M$MSG and 
M$LOC”).

M$M The name "M$M" is a local field in an RMO behind 
a screen which contains the "mode" of each call of 
the RMO by TRANS (see Section 15.1.2 “Mode: 
M$M”).

M$MSG The name of a special TRANS local RMO field that 
is used to set the contents of the status line (see 
Section 16.11 “Status Line Control: M$MSG and 
M$LOC”).

MODE The name "MODE" can be used as a field name in a 
field log. If it is present it turns on record logging 
and it is updated when logging occurs (see Section 
6.4.3 “Expanded Field Log Facilities”).

MULREC The name "MULREC" should not be used as a field 
name because of the communication between 
TRANS and the RMO behind the screen. When S$S 
is set to "MULREC" it means the RMO call is a 
"multi-record" call on a multi-record screen (see 
Section 16.21 “Multi-Record RMO Support”).

NE The name "NE" is used as a comparison operator 
meaning "not equal to" in an ADMINS expression 
(see Section 8.3 “Comparison and Special 
Operators”).

NEW The name "NEW" is used as a field name in an 
automatic field log meaning "new field value" (see 
Section 6.4 “Field Logging”). Since KEY fields of the 
master file are also included as a field in the field 
log, "NEW" should be avoided as a field name of a 
KEY field in a DEF.

NOT The name "NOT" is used as a logical operator for 
connecting comparison expressions to make 
Boolean expressions (see Section 8.4 “Logical 
Operators”).

NOW The name "NOW" is an internal field in ADMINS 
which contains the current time in hours, minutes, 
and seconds. NOW may be used in a screen and in 
an RMO behind a screen (see Section 5.5.8.2 “NOW: 
Current Time”), in a REPORT (see Section 7.16 
“Internal Field Names”), in a MAINT (see Section 
10.9 “Internal Fields: TODAY, NOW, and TICKS”), 
or in an RMO used with PROD (see Section 11.10 
“NOMATCH qualifier: Functionality without 
LOOKUP link”).
D - 6   ADMINS User Guide



Reserved Field Name List
NX$EOF The name "NX$EOF" is a local field used in 
conjunction with "NX$fieldname" fields (lookahead 
facility) and is set to "-1" when the current record is 
the last record in the file.

NX$fieldname The name "NX$fieldname" (where "fieldname" is 
the name of a field in the master file) is a local field 
which is set to the value of the "fieldname" field in 
the record following the current record. This is the 
"lookahead" facility.

OLD The name "OLD" is used as a field name in an 
automatic field log meaning "old field value" (see 
Section 6.4 “Field Logging”). Since KEY fields of the 
master file are also included as a field in the field 
log, "OLD" should be avoided as a field name of a 
KEY field in a DEF.

OPER The name "OPER" can be used as a field name in a 
field log meaning "operator id". If it is present it is 
used and updated when field logging occurs (see 
Section 6.4.3 “Expanded Field Log Facilities”).

OR The name "OR" is used as a logical operator for 
connecting comparison expressions to make 
Boolean expressions (see Section 8.4 “Logical 
Operators”).

OUTFILE The name "OUTFILE" is used as a local field in a 
MAINT to specify the name of an output file (other 
than the master file) which is to be written (see 
Section 10.12 “Writing Other Files: OUTFILE/
OUTRECS”).

OUTRECS The name "OUTRECS" is used as a local field in a 
MAINT to specify the number of records which are 
to be written to the output specified in "OUTFILE" 
(see Section 10.12 “Writing Other Files: OUTFILE/
OUTRECS”).

P$P The name "P$P" is used as a local field in an RMO to 
print on-line messages. P$P may be used in a 
MAINT (see Section 10.8 “Printing On-line 
Messages: P$P”) and in an RMO behind a screen 
(see Section 16.6 “Printing Messages: P$P”).

PAGE The name "PAGE" is an internal field in REPORT 
which holds the current page number and thus 
should not be used elsewhere in a REPORT.

PGBRK The name "PGBRK" should not be used as a field 
name because of the communication between 
TRANS and the RMO behind the screen. When S$S 
is set to "PGBRK" it means the RMO call is a "page 
break" call on a multi-record screen (see Section 
16.21 “Multi-Record RMO Support”).

PGNO The name "PGNO" is an internal field in REPORT 
which holds the current page number and can be 
used as a print field designator (see Section 7.16 
“Internal Field Names”).
ADMINS User Guide  D - 7



Reserved Field Name List
PROD$LINK The name of a special PROD/NOMATCH local 
RMO field that is used to identify whether or not the 
Detail file record linked to a record in the Lookup 
file (see Section 11.10 “NOMATCH qualifier: 
Functionality without LOOKUP link”).

Q$Q The name "Q$Q" is used as a local field in an RMO 
to stop the execution of the a MAINT (see Section 
10.6 “Quitting Before End of File: Q$Q”) or a PROD 
(see Section 11.15 “Quitting Before End of File: 
Q$Q”) after processing the current record. In 
REPORT a created field named "Q$Q" is used to 
stop REPORT execution at the current record (see 
Section 7.13.9 “Quit Before the End of File: Q$Q”).

R$R The name "R$R" is a local field in an RMO behind a 
screen which when set causes an automatic return 
to the last branch in TRANS (see Section 16.2 
“Automatic Branching: B$B and R$R”).

RECPOS  The default name of an obsolete special purpose 
field that is automatically set by SORT to the 
relative record sequence number of the input record 
which created that output record. REPORT can then 
be instructed to use the contents of the RECPOS 
field in place of the key field in a LINK.

RET The name "RET" (for 'return') enables an RMO to go 
to the statement just after the last executed GOSUB 
and continue processing from that point (see 
Section 9.6.3 “The GOSUB Statement”).

REP$SECLEN The name of a special REPORT local RMO field that 
is used to tell REPORT how many lines a DETAIL or 
SUMMARY section will contain before REPORT 
processes it (see Section 7.19.1 “REP$SECLEN - 
Controlling Section Length in the RMO”).

RJ$RJ The name "RJ$RJ" is a local field in an RMO behind 
a screen which is used to reject APPEND, INSERT, 
and DELETE operations in TRANS (see Section 
16.1.2 “Reject APPEND, INSERT, UPDATE, 
DELETE, or Transfer”).

RLKOUT The name "RLKOUT" was required as a field name 
in a file that is be used with the pre-Version 3.0 
ADMINS "record lockout" facility (obsolete - see 
Appendix O).

S$S The name "S$S" is a local field in an RMO behind a 
screen which contains the "status" of each call of the 
RMO by TRANS (see Section 15.1.1 “Status: S$S”).

S$SEL The name "S$SEL" is a local field in an RMO behind 
a screen which is used to determine whether a 
record is to be displayed (i.e. selected) in TRANS 
(see Section 16.10 “Select Records: S$SEL”).

SELECT The name "SELECT" is a keyword in a DEF (see 
Section 2.5 “Record Selection”) and also in a TAP 
(see Section 17.2.5 “TAP - SELECT Line”) 
identifying the SELECT statement which is used to 
determine the records to be included in a MOVE, 
SORT, or ACQUIR.
D - 8   ADMINS User Guide



Reserved Field Name List
SEQ The name "SEQ" is used as a field name in an 
automatic field log meaning "sequence of a multi-
line change" (see Section 6.4 “Field Logging”). Since 
KEY fields of the master file are also included as a 
field in the field log, "SEQ" should be avoided as a 
field name of a KEY field in a DEF.

SH$+nnn The name "SH$+nnn" (where "nnn" is a number of 
words) is used in TRANS to skip over a section of 
the group shared area (see Section 5.5.10 “Group 
Shared Area Fields”).

SH$fieldname The name "SH$fieldname" (where "fieldname" is 
any name except "+nnn" which has special meaning 
as described above) refers to a "group shared area 
field" in TRANS. TRANS maps all field names that 
start with "SH$" onto the group shared area (see 
Section 5.5.10 “Group Shared Area Fields”).

SK$SK The name "SK$SK" is a local field in an RMO behind 
a screen which is used to control the "skipping" of 
fields in TRANS (see Section 16.4 “Controlling the 
Skipping of Fields: SK$SK”).

STOP The name "STOP" is used to stop execution of an 
RMO on a particular record (see Section 9.6.2 
“Record Maintenance Statements”).

T$T The name "T$T" is the name of an internal field 
maintained by TRANS to provide the active screen 
with the terminal number of the terminal using the 
screen (see Section 5.5.8.3 “Terminal Number”).

THEN The name "THEN" is part of the 
IF_THEN_ELSE_END structure used to 
conditionally compute a result (see Section 8.5 
“Conditional Statements”).

TICKS The name "TICKS" is an internal field in ADMINS 
which contains the hundredth of a second of the 
current time. TICKS may be used in a MAINT (see 
Section 10.9 “Internal Fields: TODAY, NOW, and 
TICKS”), or in an RMO used with PROD (see 
Section 11.9 “Internal Fields: TODAY, NOW and 
TICKS”).

TIME The name "TIME" can be used as a field name in a 
field log meaning "time of logging". If it is present it 
is used and updated when field logging occurs (see 
Section 6.4.3 “Expanded Field Log Facilities”).

TODAY The name "TODAY" is an internal field in ADMINS 
which contains today's date. TODAY may be used 
in a screen and in an RMO behind a screen (see 
Section 5.5.8.1 “TODAY: Current Date”), in a 
REPORT (see Section 7.16 “Internal Field Names”), 
in a MAINT (see Section 10.9 “Internal Fields: 
TODAY, NOW, and TICKS”), or in an RMO used 
with PROD (see Section 11.9 “Internal Fields: 
TODAY, NOW and TICKS”).
ADMINS User Guide  D - 9



Reserved Field Name List
TSEQ The name "TSEQ" is the name of a field 
automatically added to a DEF when an automatic 
field log is created. The field "TSEQ" means 
"transaction sequence number" (see Section 2.10 
“Field Logs”) and should not be explicitly added to 
the DEF of a file which is to be logged unless the 
user intends the field to have the transaction 
sequence number function.

TTNO The name "TTNO" can be used as a field name in a 
field log meaning "terminal number". If it is present 
it is used and updated when field logging occurs 
(see Section 6.4.3 “Expanded Field Log Facilities”).

TTYP The name "TTYP" is used as a field name in an 
automatic field log meaning "transaction type" (see 
Section 6.4 “Field Logging”). Since KEY fields of the 
master file are also included as a field in the field 
log, "TTYP" should be avoided as a field name of a 
KEY field in a DEF.

TX$OPTION Sets various options for internal text editing. The 
following options are defined:

1 - Run “Initfile” always. If the field already contains 
text, this text is replaced by the output from “Initfile.”

U$SER The name "U$SER" is the name of an internal field 
maintained by TRANS to provide the active screen 
with the user number of the UIC under which the 
user is currently operating (see Section 5.5.8.6 
“U$SER: UIC User Number”).

W$W The name "W$W" is used as a local field in an RMO 
to control the write back of records to the disk. 
W$W may be used in a MAINT (see Section 10.4 
“Controlling Write Back: W$W”), in an RMO used 
with PROD (see Section 11.11 “Controlling 
Writeback and Output: W$W”), and in an RMO 
behind a screen (see Section 16.1 “Controlling 
Changes Written To Disk”).

[PR} The name "[PR]" is an internal field in REPORT 
which is a counter of the number of records printed 
this page and can be used as a print field designator 
(see Section 7.16 “Internal Field Names”).

[TR] The name "[TR]" is an internal field in REPORT 
which is a counter of the total number of records 
printed thus far and can be used as a print field 
designator (see Section 7.16 “Internal Field 
Names”).
D - 10   ADMINS User Guide



Appendix E:File Concepts

ADMINS data files contain fixed length records. A record's size is determined by the 
number of fields it contains, and the size of those fields. For example, a file with 10 A20 
(20 character alphanumeric) fields will have a record size of 200 bytes, or 100 words, 
while a file with 10 I (2-byte integer) fields will have a record size of 20 bytes, or 10 
words.

ADMINS locates records via the file's built-in index,1 which relates the key value for 
each record to the record position for that record (see Appendix E.3 “Key Index 
Structure”).

Variable length data is handled as small repeating groups in a master record, or as 
repeating records in a file where sequences of records have the same (partial) key. 
Linkage between related records is achieved in the application instruction files, not in 
the file definitions themselves.

ADMINS files are stored on disk in space pre-allocated by DEFINE. When DEFINE is 
used to create an ADMINS file for a particular number of records, DEFINE requests 
enough disk blocks to hold that number of records assuming that the built-in index 
area of the file will be "fully packed". A fully packed built-in index block is one where 
there is no more space available in the index block for additional record pointers. This 
assumption is valid when the file is built with ACQUIRE, MOVE, or SORT. These 
ADMINS commands build a file by appending records to the end of the file. The 
append operation always results in a fully packed index. Record insertion and 
deletion can lead to partially full index blocks.

E.1  Internal File Layout

The internal file structure changed fundamentally with the introduction of Level 3 
files. The following two sections describe the differing internal layouts of Level2 files 
and Level 3 files.

1.    Level 3 files can maintain secondary indexes automatically, as described in Section 
2.7 “Multiple Indices”. Secondary indexes can also be achieved at the application 
level (when, for example, Level 2 files are in use) by using other files as cross 
reference files pointing to records in the master file. Secondary index files are 
allocated by DEFINE, initially created using SORT, and then must be maintained 
by the INDEX feature of TRANS or by using SORT to recreate the index after the 
master file has been updated.
ADMINS User Guide E - 1



Internal File Layout
E.1.1  File Level 2

   A keyed file contains three areas.

1. The header area which contains the information from the file "DEF" and file 
statistics. These statistics include the number of records in the file, the last 
record position used in the file, the last index block used in the file, and the 
location of the root index block.

2. The records area which contains fixed length records in the chronological order 
of how the records were added to the file. The last used record position kept in 
the header area marks the current boundary of the records area.

3. The built-in key index area which contains a hierarchical key indexing structure 
for the file in key value order. The key index area consists of index blocks, each 
equal in size to one ADMINS block,2 extending from the last ADMINS block in 
the file up to the last index block used, as recorded in the file header. The area 
between the record position last used and the index block last used comprises 
the available space in the file. The indexing structure originates logically at the 
root index block whose address is recorded in the file header area.

The key values are stored twice in a file. Once in the record itself and again in the key 
index area as part of the pointer to the record. This double storage must be taken into 
account in estimating disk requirements for an installation.

The general layout of a Level2 ADMINS data file is:

A sequential file only has two areas, one for the header and one for the records. (The 
FILECONVERT task, described in Section 13.4.1 “Sequentialize an ADMINS data 
file”, is used to bypass the key index structure by altering the header of the file to 
make a keyed file appear to be sequential.)

The File Header, containing meta-data information about the file, is in the front, and 
Data records are added immediately following the header, growing towards the end.  
Index blocks start at the end, growing forward.  When the two meet, the file needs to 
be extended.  That consists of adding a number of blocks to the end of the file, and 
moving the index blocks to the new end of the file.  Except for the number of blocks 
in the file, and the movement of the index blocks to the new end of the file, nothing 
else changes.

E.1.2  File Level 3

The general layout of a Level 3 file is:

Immediately following the File header is one or more index blocks, followed by data 
records and possibly new index blocks, intermixed and both growing towards the 
end of the file.

2.   An ADMINS block contains 512 16 bit words (1024 bytes).

Header Data Records Index Blocks

Header Index 
Block(s)

Data Records Index 
block(s)

Data 
Records
E - 2   ADMINS User Guide



File Operations
Level 3 file structure enables the implemention of multiple indices, a feature that can 
be supported both on Win32 and OpenVMS.  In addition, deleted records are marked 
as deleted, and do not reappear in the file if all indices are to be dropped and the 
indices rebuilt by reading the file sequentially.

E.2  File Operations

How are the basic file operations of record append, insert and delete performed?

E.2.1  Finding Records by Key Value

Many critical operations in ADMINS applications, i.e. LINKs, PRODs (Lookup file), 
KEY statements KEY ranges, DELETEs, INSERTs etc. on are based on an optimized 
method for searching the key index for a particular key value. This search method 
requires3 that the keys in the index appear in sort order. (ADMINS cannot tell if 
the file is out of sort; any operation that depends on the key index search method 
assumes the index is in sort order). If the file is not in sort order, these operations 
should not be used.

Other operations, e.g. simple MAINTs, MOVEs, REPORTs, PRODs (Detail file), etc., 
start at the beginning of the index and read the record referenced by each index 
pointer, until the last index pointer is encountered. These operations find all the 
records in the file even if it the index is not in sort.

Appending records to a file is the most common way to put a sorted file out of sort 
order. For this reason Append operations are not recommended. Records should 
always be added to files by insertion. If appends are used, they should be used with 
caution. It is the responsibility of the application developer to make sure "out of sort" 
files are not accessed by key value.

Append The record is added after the last record in the 
records area incrementing the last record position 
used and the key value is added after the last key 
index pointer in the key index area.a

a.Append mode is not available for alternate indices. When 
the initial record is input, the file is taken out of Append mode 
and put into Update mode automatically.

Insert The record is added just as in Append, only the key 
index pointer is inserted in its proper sort order 
position in the key index blocks of the file.

Delete The key index pointer is deleted. The actual record 
is left in place.

3.     When searching in an index block at any level of the hierarchy (see Appendix E.3 
“Key Index Structure”) if a key value is encountered that is higher than the target 
value, the method returns to the previous key value in the index block and uses 
pointer associated with that value to complete the search. This method cannot 
find all the records in the file if the key index is out of sort.
ADMINS User Guide  E - 3



Key Index Structure
E.3  Key Index Structure

A key index is a hierarchical structure of sorted pointers. A pointer4 either points to 
a lower level index block or to a record position in the file. A record search is 
performed starting at the root index block (identified in the file header) then 
proceeding down a level to another index block, until a pointer to a record position 
is reached or it is determined that the record is not in the file. ADMINS supports up 
to ten levels in the index hierarchy. This means that a record search can never 
perform more than ten disk seeks (nine for index blocks and one for the record; the 
root index block is kept in memory) in order to find a record.

Files very rarely have ten index levels unless they are huge to begin with and are then 
heavily updated via insert operations. In these cases the index should periodically be 
rebuilt to achieve full packing of the index pointers using MOVE or SORT. The 
typical file usually will have two, three, or at most four levels in the index structure 
and will therefore require two, three, or four disk seeks per record search.

Index blocks may either be partially or completely full. Building a file via append 
operations packs the index blocks fully and therefore is usually the most efficient 
way to build a file. However, insert and delete operations may be required for file 
maintenance.

When ADMINS is asked to insert a record at a point in a file where the index blocks 
are full, ADMINS divides the full index block in half creating two half full index 
blocks, adds the record pointer to one of the half full index blocks, and then performs 
the record insertion. The pointer to the second index block (i.e. the new additional 
half full index block) is propagated back to the root index block. As required, full 
index blocks on this path back to the root index block are also split in half. This 
method of inserting adds levels to the index structure "very slowly". Only huge files 
have more than three or four levels.

For example, if we have the following structure.

           Index                Index              Records
          Level 1              Level 2              Area
          (Root)
       Key  Pointer         Key  Pointer         Record  Key 
       ------------         ------------         -----------
      | 10  -------|------>| 10  Rec 1  |       |   1    10 |
      | 22  ----   |       | 12  Rec 2  |       |   2    12 |
      | 34  --  |  |       | 14  Rec 3  |       |   3    14 |
      |  .    | |  |       | 16  Rec 4  |       |   4    16 |
      |  .    | |  |       | 18  Rec 5  |       |   5    18 |
      |  .    | |  |       | 20  Rec 6  |       |   6    20 |
      |       | |  |        ------------        |   7    22 |
      |       |  --|------>| 22  Rec 7  |       |   8    24 |
      |       |    |       | 24  Rec 8  |       |   9    26 |
      |       |    |       | 26  Rec 9  |       |  10    28 |
      |       |    |       | 28  Rec 10 |       |  11    30 |
      |       |    |       | 30  Rec 11 |       |  12    32 |
      |       |    |       | 32  Rec 12 |       |  13    34 |
      |       |    |        ------------        |   .       |
      |        ----|------>| 34  Rec 13 |       | 100   208 |
      |            |       |  .         |       |   .       |

4.    Files are created with 32-bit (4-byte) pointers, however if the file was created for 
less than 60,000 records by an older version of DEFINE or if "i" (lowercase) is in 
the string assigned to the logical name OPTION (see Appendix A: “Options”) 
when a file is DEFINEd for less than 60,000 records, the file will have 16-bit (2-
byte) pointers.
E - 4   ADMINS User Guide



Key Index Structure
We see records with key values: 10, 12, 14, 16, 18, 20, 22, etc.

There are two levels of indexing: The root, level 2, and then the actual records area.
ADMINS User Guide  E - 5



Key Index Structure
If we asked ADMINS to insert a record with a key value of "13", then the picture 
would look as follows:

           Index                Index              Records
          Level 1              Level 2              Area
          (Root)
       Key  Pointer         Key  Pointer         Record  Key 
       ------------         ------------         -----------
      | 10  -------|------>| 10  Rec 1  |       |   1    10 |
      | 16  -----  |       | 12  Rec 2  |       |   2    12 |
      | 22  ---  | |       | 13  Rec 101|       |   3    14 |
      | 34  -  | | |       | 14  Rec 3  |       |   4    16 |
      |  .   | | | |       |            |       |   5    18 |
      |  .   | | | |       |            |       |   6    20 |
      |      | | | |        ------------        |   7    22 |
      |      | |  -|------>| 16  Rec 7  |       |   8    24 |
      |      | |   |       | 18  Rec 8  |       |   9    26 |
      |      | |   |       | 20  Rec 9  |       |  10    28 |
      |      | |   |       |            |       |  11    30 |
      |      | |   |       |            |       |  12    32 |
      |      | |   |       |            |       |  13    34 |
      |      | |   |        ------------        |   .       |
      |      |  ---|------>| 22  Rec 7  |       | 100   208 |
      |      |     |       | 24  Rec 8  |       | 101    13 |
      |      |     |       | 26  Rec 9  |       |   .       |
      |      |     |       | 28  Rec 10 |       |           |
      |      |     |       | 30  Rec 11 |       |           |
      |      |     |       | 28  Rec 12 |       |           |
      |      |     |        ------------        |           |
      |       -----|------>| 34  Rec 13 |       |           |
      |            |       | .          |       |           |

As we see there are still two levels of indexing required to access records "14", "16", 
"18", and "20", but two of the index blocks are only partially filled. When the root 
block fills up, then we will require three levels of index blocks.

E.3.1  Structure Level

Three structure levels exist for ADMINS files. The oldest structure level, Level 0, is 
found in files created by versions of ADMINS prior to Version 3.2. Structure level 1 
files are created by the commands of Versions 3.2, 3.3, and 3.4 of ADMINS. Structure 
level 2 files are created by Version 4.0 of ADMINS.

It is never necessary to re-define files with the older structure level (AFU 
"Describe" and "Detail Describe", described in Section 13.2 “AdmFu: ADMINS File 
Utility”, give the structure level of the file). All older files are fully forward 
compatible.

And, for the most part, Level 1 files are backward compatible. When they are not, an 
appropriate error message is given.

The only Level 1 data files which are NOT compatible with earlier versions of 
ADMINS are:

1. Files with descending keys. (Descending keys are not supported in Level 0 files).
2. Files with at least one numeric key field (I, Dn, or Fn). (The FILECONVERT 

utility quickly converts such files back to the old format if necessary as 
described in see Section 13.4.2 “Convert Structure Level”.)

Level 2 files are not backward compatible. You must convert Level 2 files (with 
FILECONVERT) to use them with earlier versions of ADMINS.
E - 6   ADMINS User Guide



Available Space
E.4  Available Space

The available space5 in a file can be characterized in several ways.

1. The number of records that can still be appended to a file before the file becomes 
full, i.e. before the records area and the key index area overlap somewhere in the 
file. It is this number of available record spaces that the "AFU DESCRIBE" 
(Section 13.2.9 “Help”) and AV logical name A$RA (Section 13.6 “AdmAv - 
Communicate with ADMINS Files via Logical Names”) report as available 
space. This number is computed based on a record requiring the record size 
plus the key size plus the pointer size, and adding a factor for "breakage" (i.e. 
index blocks come in multiples of 512 16 bit words) and higher level key and 
pointer storage.

2. The number of records that still can be inserted at random points in the file. This 
number is harder to compute because it depends on the order and distribution 
of the insertions. However, given the "splitting index blocks" algorithm used for 
inserting new index entries, on average the index blocks are never more then 
half full. Hence if one allocates twice the numbers of index blocks than one 
would need if records were only being appended, and adds a factor (say five 
percent) to account for the higher level index blocks, there will always be 
enough space to store the inserted records.

5.    Most ADMINS commands (except TRANS) can add records to a file will 
automatically enlarge the file if an impending overflow condition is detected (see 
Section 1.9 “Dynamic Data File Expansion”). If a file is opened multi-user 
however, it cannot be enlarged automatically.
ADMINS User Guide  E - 7



Available Space
E - 8   ADMINS User Guide



Appendix F:Limits

This Appendix outlines the limits contained in the ADMINS commands.

F.1  DEFINE

The number of fields in a record cannot exceed 250.

The number of bytes per record cannot exceed 2,048.

The size of a single file is constrained only by the limits of ten index levels (see 
Appendix E: “File Concepts”), and by the limit that the total number of index blocks 
must be less than 2 raised to the 31st power (more than 2.1 billion!). That is, the size of 
a single file is unlimited for most practical uses.1

The number of characters in a field name can not exceed 18.

There may be up to 9 KEY fields and the combined number of characters of the sort 
key fields can not exceed 200.

The largest alphanumeric field is 80 characters (A80).

The number of characters in a picture field cannot exceed 18.

The range for an integer field (I) is +32,767 to -32,767.

The range of value that can be stored in a longword (32-bit) decimal field (L) is plus/
minus 2,147,483,647 (2 to the 31st power minus 1). The maximum number of decimal 
places is 9.

The range of value that can be stored in a three word (48-bit) decimal field (D) is plus/
minus 140,737,488,355,327 (2 to the 47th power minus 1). The maximum number of 
decimal places is 9.

The range of value that can be stored in a four word (64-bit) decimal field (F) is plus/
minus 9,223,372,036,854,775,807 (2 to the 63rd power minus 1). The maximum number 
of decimal places is 9.

The highest date handled by the DA date format is 31DEC2060. The lowest date is 1-
JAN-01. The DT date format handles dates in any year.

The SELECT statement in a DEF cannot exceed 180 characters.

1.     It is theoretically possible to exceed ten index levels if the key size is extremely 
large (greater than 100 bytes), and large numbers of records are inserted non-
randomly (i.e. at the same point in the file), without rebuilding the index via 
SORT.
ADMINS User Guide F - 1



SORT
F.2  SORT

The combined number of characters of the sort keys can not exceed 200.

There must also be adequate disk space for the input file, an output file of the same 
size as the input file, and a SORTXX.TMP file of the following size measured in 1,024 
byte ADMINS disk blocks.

     (((NWKEY + 1) / 2 + 2) * 2 * NRECS) / 500

Where:

NWKEY is the number of 16 bit words in the sort key.

NRECS is the number of records being sorted.

The three files involved in a sort can be on separate disks.

F.3  SCREEN

There may be up to 1000 editable fields referenced per screen.2 In preparing multi-
record screens one must multiply the number of editable fields displayed from one 
record times the number of records per screen to arrive at the number of editable 
fields on the screen.

There may be 60 open files per screen.

There may be 50 LINK paragraphs per screen. There may be 300 LINK fields per 
screen.

There may be up to 250 BOXes in a screen layout, resulting either from BOX 
statements or from boxes drawn3 in the screen layout.

The Global Area is 1,024 words.

The Group Shared Area is 2,048 words.

2.    The limit on the number of fields that can be referenced in a screen (i.e. the 
screen's "virtual record") is 1,023 by default. This limit can be lowered by 
assigning a value in the range 250 to 1023 to the logical name 
ADM$MAX_FIELDS. Decreasing the limit frees up extra DA array space for 
other program functions.

3.    see Section 5.5.11.1 “Drawing BOXes in the screen layout”
F - 2   ADMINS User Guide



SCREEN
The number of branches allowed in a single TRS form is constrained by all of the 
following rules:

1. The number of words4 required to store the names of all the screens in one TRS 
file should not exceed 90.

2. The number of words required to store all the unique branch descriptions (two 
lines of text) plus the unique branch codes should not exceed 2000.

3. The number of words required to store all the branch codes in a single 
BRANCHES paragraph plus the number of key fields in the BRANCHES 
paragraph plus an additional word per branch plus the text of the branch phrase 
should not exceed 2000.

The SCREEN command has an option which displays the capacity and utilization 
during compilation. To display this information, the SCREEN command is followed 
by the TRS name and the letter "C" on the command line.

  $ screen test c
  TEST.MAS: 234 WORDS IN DA
  N200.MAS: 1885 WORDS IN DA
  TEST READ
  TEST:  61 DERIVED,  2119 FOR OPEN FILES, TOTAL DA: 2180
  TEXT  ELES  LITS  BRTXT  BRWRDS  EDFLDS  VIREXT  NLINKS  EXTWRDS
  USED  21    24    69    18     18      40      1        1       12
  MAX   2000  2000  8000  2000   2000    1000    2000     100     4000
  TEST: 89 OF 8500 WORDS IN TR
  TEST COMPILED
  1 SCREEN(S) COMPILED

Each of these statistics is described below. The numbers represent the number of 
words of storage.

4.    When we refer to the storage of a text string in this appendix we are referring to 
the storage of the string in the "ADMINS string" format. The formula for 
computing storage size of an ADMINS string is (NC+3)/2 words, where NC is 
the number of characters in the text string.

TEXT includes the messages in Check statements and 
Message statements, plus the source code of 
executable statements (Check, Message, Virtual). 
The limit is 2000 words.

ELES is the space required to store the items in the 
FIELDS section. The limit is 2000 words.

LITS is the storage for literal text in the SCREEN layout 
section. The limit is 8000 words.

BRTXT is the storage for all the text in the BRANCHES 
paragraph. The limit is 2000 words.

BRWRDS is the amount of object code which results from the 
BRANCHES paragraph. The limit is 2000 words.

EDFLDS is the number of editable fields. The limit is 1000 
editable fields.

VIREXT is storage for LINK, APPEND, and INDEX fields 
names which are not in the DEF of the active file. 
For each such field SCREEN uses two 16-bit words, 
plus an additional word of storage for every two 
characters in the field name, rounded up (i.e. a five 
character field name counts the same as a six 
character field name). The limit is 2000 words.
ADMINS User Guide  F - 3



TRANS
The message in Pass 2 for each screen, "<n> OF 8500 WORDS IN TR", includes the 
branch tables, constants, object tables compiled from expressions, and check and 
message statement text.

F.4  TRANS

There may be up to 60 open files.

The "DA" array which holds TRANS' "virtual record" and the MD array which holds 
"metadata" (field names, types, "pics", etc.) contain 32,760 words each. The definition5 
of each open file plus the definitions of all local fields and arrays must fit in the MD 
array. The record buffer of each open file plus space for all local fields and arrays 
(field size times number of elements) must fit in the DA array.

All fields in external files count against these limits, even if they are not referenced in 
the screen or RMO. Total referenced fields, actual and virtual, are limited to 1,000 per 
screen.

Also note that there is always a global area (see Section 5.5.9 “Global Fields”) of 1,024 
words in the DA array, and there is a group shared area of 2,048 words if, and only 
if, GETGRP/SETGRP subroutines (see Section 20.2 “Using the Group Shared Area”) 
and/or "SH$" fields (see Section 5.5.10 “Group Shared Area Fields”) are used.

The General Editor Mode of TRANS is limited to the number of fields which can be 
displayed on the screen to a maximum of 1,000. It is variable depending on field 
types, field sizes, and whether 132 character screen width is used.

NLINKS is the number of LINK paragraphs. There may be up 
to 100 LINK paragraphs.

EXTWRDS is the storage for object tables which result from 
external paragraphs, i.e. LINK, INDEX, and 
APPEND paragraphs. The limit is 4000 words.

5.     The size of the ADMINS data file’s self-contained definition can be obtained with 
AFU's DD option.
F - 4   ADMINS User Guide



REPORT
F.5  REPORT

REPORT can support up to 1000 fields, including actual fields in the file and derived 
fields. A derived field is created in one of the following ways:

1. Each CREATE statement creates one derived field.
2. Each field in a LINK or TABLE statement creates one derived field.
3. Each field operated upon by a TOTAL statement creates one derived field.

REPORT supports up to 10 levels of subtotaling. If SUPPRESS or RECODE is used, 
REPORT is limited to six levels of subtotaling.

REPORT has DA and MD arrays of 32,760 words and has limits similar to TRANS, 
i.e. up to 60 open files. (There is no global area in REPORT, but the group shared area 
could be used. If the group shared area is used, it consumes 2,048 words of the DA 
array.)

REPORT allows up to 1000 display fields, however, if automatic formatting is used 
REPORT is limited to 50 display fields.

REPORT supports up to 299 operations table elements. The operations that count 
against this limit are:

     1) each LINK statement
     2) each TABLE statement
     3) each EXECUTE statement
     4) each DIRECT statement
     5) each LAYOUT statement
     6) each SELECT or ORSELECT statement
     7) each RECODE statement
     8) each CREATE statement
     9) each TOTAL statement
    10) each conditional SUPPRESS statement
    11) the KEY statement (the KEY statement counts 
        as two operations if it includes KEY$fieldname
         logical name references.

REPORT can print up to 63 lines in a single layout section (i.e. HEADING, DETAIL, 
PREVIEW or SUMMARY).

REPORT can handle up to 63 RECODE statements.

REPORT can output lines up to 254 characters wide (including carriage control 
characters in column one, if present).

F.6  CMP

The number of fields in a TABLE file cannot exceed 30.

There is a limit of 500 paragraphs in an RMS.

The total number of fields is 1000, including actual fields in the file, plus local fields 
and TABLE fields.
ADMINS User Guide  F - 5



PROD
F.7  PROD

There can be up to 200 transfer fields in PROD.

There is no limit to the size of an RMO running with PROD.

PROD handles any valid ADMINS key, up to 100 words long, when linking to the 
lookup file.

F.8  ACQUIR

ACQUIR can read and process tapes with block sizes up to 40,000 bytes.

F.9  DATAP

DATAP can prepare output tapes with block sizes up to 40,000 bytes.

F.10  TAPDMP

TAPDMP can read and dump tapes with block sizes up to 40,000 bytes.

F.11  FACQUIR

FACQUIR can read and process files with record sizes up to 10,000 bytes.

F.12  FDATAP

FDATAP can prepare files with record sizes up to 2,048 bytes.
F - 6   ADMINS User Guide



TAPCOPY
F.13  TAPCOPY

TAPCOPY can read tape record sizes up to 32,764 bytes. 
ADMINS User Guide  F - 7



TAPCOPY
F - 8   ADMINS User Guide



Appendix G:TKB File: Keystroke Table

Certain keystrokes have special functions in TRANS. One key causes a LOOKUP 
window to be displayed, another key is used to initiate a branch to another screen, etc. 
Other keystrokes are recognized by TRANS as function keys (i.e. by F$UNCKEY) but 
have no pre-defined TRANS functions.

TRANS must be told first how to map the physical keys of your keyboard to "standard 
function keystrokes", and then which standard function keystrokes are to invoke 
TRANS special functions.

Consider the following table:

   +-------------+---------+------------+
   |             |   on    |            | 
   | Keystroke   | KB type | Sends Code | 
   +-------------+---------+------------+
   | HOME        | PC      | Escape [ H |
   +-------------+---------+------------+
   | F2          | PC      | Escape O Q |
   +-------------+---------+------------+
   | Page Up     | PC      | Escape [ V |
   +-------------+---------+------------+
   | Page Down   | PC      | Escape [ U |
   +-------------+---------+------------+
   | PF2         | VT      | Escape O Q |
   +-------------+---------+------------+
   | Prev Screen | VT      | Escape [ 5~|
   +-------------+---------+------------+
   | Next Screen | VT      | Escape [ 6~|
   +-------------+---------+------------+

The Next Screen key on the VT keyboard and the Page Down key on the PC keyboard 
occupy similar positions and are used in the same way, but send different codes. The 
PF2 key on the VT keyboard and the F2 key on the PC keyboard send the same code 
but occupy different positions. There is no key on the VT keyboard that has a similar 
name or sends the same code as the HOME key on the PC keyboard.

This only begins to describe the complications, conflicts and confusion that could arise 
in trying to develop and maintain portable applications. Given all this complexity, 
how can applications be written to run in both a VT-type environment and a PC-type 
environment?

The ".tkb" file provides TRANS with the information it needs to recognize standard 
function keystrokes. The TRANS environment file (see Section 6.15 “The TRANS 
Environment File”) is used to modify and extend how TRANS uses these standard 
function keystrokes.

      Physical Key 
           |
        <tkb file>    <----- "the key that sends escape[29~ 
             |                is standard key name DO"      
           Standard Key
                |
             <environment>  <----- "standard key DO performs 
                   |               TRANS function MENU (by default)"
               TRANS function
ADMINS User Guide G - 1



The following excerpt from vt100.tkb tells TRANS how to handle the Next Screen and 
Prev Screen keystrokes sent by vt100-type terminals:

 !K# ESC_SEQ    KEY_NAME        KY# HEX DESCRIPTION
 !-- -------    ------------    --- --- --------------------------
-------

 338 \033[6~    NEXT             82 152 Next Page
 339 \033[5~    PREV             83 153 Prev Page

Below is the corresponding section from at386.tkb which tells TRANS how to handle 
the Page Up and Page Down keystrokes sent by 386 PC-type terminals:

 !K# ESC_SEQ    KEY_NAME        KY# HEX DESCRIPTION
 !-- -------    ------------    --- --- --------------------------
-------

 338 \033[U     NEXT             82 152 Next Page
 339 \033[V     PREV             83 153 Prev Page

TRANS reads the .tkb files to find out what standard function should be assigned to 
the physical key that generates a particular key code (or "escape sequence"). This 
allows TRANS and TRANS-based applications to be designed to act based on 
standard keyboard functions.

Your applications can be converted to run in a new keyboard environment by simply 
telling TRANS to use a different ".tkb" file. For example if vt100.tkb is in use the 
standard function "PREV" is recognized when you press the VT Prev Screen key. With 
at386.tkb in use that same function will be recognized if you press the PC Page Up key.

TRANS uses the environment variable (or logical name) ADM_TERM_INFO to 
decide which .tkb file to use:1

ADM_TERM_INFO=/home/acct/myterm.tkb     #environment variable 
(UNIX)
      
lcr adm_term_info /home/acct/myterm.tkb #logical name assignment 
(UNIX)

assign HOME:[ACCT]MYTERM.TKB ADM$TERM_INFO !logical name assignment 
(OpenVMS)

ADM_TERM_INFO must contain the full, complete file specification.

 If ADM_TERM_INFO is not present, TRANS uses the environment variable TERM 
and the logical name ADM$DIST to find the .tkb file, i.e. if TERM is vt100 TRANS will 
use vt100.tkb in the directory assigned to the logical name ADM$DIST.

The .tkb file tells TRANS how to recognize standard function keys in different 
environments. The TRANS environment file (see Section 6.15 “The TRANS 
Environment File”) allows you to control how TRANS keystroke functions are 
mapped to these standard function keys.

1.    On OpenVMS systems TRANS uses a default "built-in" tkb key mapping 
(equivalent to vt300.tkb) if ADM$TERM_INFO is not specified and the terminal 
type is VT300. On UNIX systems a tkb file is always read from the disk.
G - 2   ADMINS User Guide



Sample TKB file
G.1  Sample TKB file

!************************************************************  
vt300.tkb
 ! Definition of the vt300 keyboard
 !K# ESC_SEQ    KEY_NAME        KY# HEX DESCRIPTION
 !-- -------    ------------    --- --- --------------------------
-------
 256 \000                         0 100
 257 \003       BREAK             1 101 Break
 258 \033[B     DOWNARROW         2 102 Downarrow
 259 \033[A     UPARROW           3 103 Uparrow
 260 \033[D     LEFTARROW         4 104 Leftarrow
 261 \033[C     RIGHTARROW        5 105 Rightarrow
 262 \000       HOME              6 106 Home
 263 \177       BACKSPACE         7 107 Backspace
 264 \000       F0                8 108 F0
 265 \033OP     PF1               9 109 F1
 266 \033OQ     PF2              10 10a F2
 267 \033OR     PF3              11 10b F3
 268 \033OS     PF4              12 10c F4
 269 \000       F5               13 10d F5
 270 \033[17~   F6               14 10e F6
 271 \033[18~   F7               15 10f F7
 272 \033[19~   F8               16 110 F8
 273 \033[20~   F9               17 111 F9
 274 \033[21~   F10              18 112 F10
 275 \033[23~   F11              19 113 F11
 276 \033[24~   F12              20 114 F12
 277 \033[25~   F13              21 115 F13
 278 \033[26~   F14              22 116 F14
 279 \033[28~   HELP             23 117 HELP
 280 \033[29~   DO               24 118 DO
 281 \033[31~   F17              25 119 F17
 282 \033[32~   F18              26 11a F18
 283 \033[33~   F19              27 11b F19
 284 \033[34~   F20              28 11c F20
 285 \000       F21              29 11d F21
 286 \000       F22              30 11e F22
 287 \000       F23              31 11f F23
 288 \000       F24              32 120 F24
 289 \000       F25              33 121 F25
 290 \000       F26              34 122 F26
 291 \000       F27              35 123 F27
 292 \000       F28              36 124 F28
 293 \000       F29              37 125 F29
 294 \000       F30              38 126 F30
 295 \000       F31              39 127 F31
 296 \000       F32              40 128 F32
 297 \000       F33              41 129 F33
 298 \000       F34              42 12a F34
 299 \000       F35              43 12b F35
 300 \000       F36              44 12c F36
 301 \000       F37              45 12d F37
 302 \000       F38              46 12e F38
 303 \000       F39              47 12f F39
 304 \000       F40              48 130 F40
 305 \000       F41              49 131 F41
 306 \000       F42              50 132 F42
 307 \000       F43              51 133 F43
 308 \000       F44              52 134 F44
 309 \000       F45              53 135 F45
 310 \000       F46              54 136 F46
 311 \000       F47              55 137 F47
 312 \000       F48              56 138 F48
 313 \000       F49              57 139 F49
 314 \000       F50              58 13a F50
 315 \000       F51              59 13b F51
 316 \000       F52              60 13c F52
 317 \000       F53              61 13d F53
ADMINS User Guide  G - 3



Sample TKB file
 318 \000       F54              62 13e F54
 319 \000       F55              63 13f F55
 320 \000       F56              64 140 F56
 321 \000       F57              65 141 F57
 322 \000       F58              66 142 F58
 323 \000       F59              67 143 F59
 324 \000       F60              68 144 F60
 325 \000       F61              69 145 F61
 326 \000       F62              70 146 F62
 327 \000       F63              71 147 F63
 328 \000       DL               72 148 Delete line
 329 \000       IL               73 149 Insert line
 330 \033[3~    REMOVE           74 14a Delete char
 331 \033[2~    INSERT           75 14b Insert
 332 \000                        76 14c
 333 \000                        77 14d Erasae screen
 334 \000                        78 14e Clear to eos
 335 \000                        79 14f Clear to eol
 336 \000                        80 150 Scroll forw.
 337 \000                        81 151 Scroll backw.
 338 \033[6~    NEXT             82 152 Next Page
 339 \033[5~    PREV             83 153 Prev Page
 340 \000                        84 154 Set tab
 341 \000                        85 155 Clear tab
 342 \000                        86 156 Clear all tabs
 343 \000       SEND             87 157 Enter/send
 344 \000                        88 158
 345 \000                        89 159
 346 \000                        90 15a
 347 \000                        91 15b
 348 \000       K_A1             92 15c
 349 \000       K_A3             93 15d KEY_A3 Upr rgt
 350 \000       K_B2             94 15e KEY_B2 Center of keypad
 351 \000       K_C1             95 15f KEY_C1 Lwr lft
 352 \000       K_C3             96 160 KEY_C3 Lwr rgt
 353 \000       BTAB             97 161 Back-tab
 354 \000       BEG              98 162 KEY_BEG
 355 \000       CANCEL           99 163 KEY_CANCEL
 356 \000       CLOSE           100 164 KEY_CLOSE
 357 \000       COMMAND         101 165 KEY_COMMAND
 358 \000       COPY            102 166 KEY_COPY
 359 \000       CREATE          103 167 KEY_CREATE
 360 \000       END             104 168 End key
 361 \000       EXIT            105 105 169 Exit key
 362 \033[1~    FIND            106 16a Find key
 363 \000       HELP            107 16b Help key
 364 \000       MARK            108 16c Mark key
 365 \000       MESSAGE         109 16d Message key
 366 \000       MOVE            110 16e Move key
 367 \000       N_OBJECT        111 16f Next object
 368 \000       OPEN            112 170 Open key
 369 \000       OPTIONS         113 171 Options key
 370 \000       P_OBJECT        114 172 Prev object key
 371 \000       REDO            115 173 Redo key
 372 \000       REFE            116 174 Ref(erence) key
 373 \000       REFRESH         117 175 Refresh key
 374 \000       REPLACE         118 176 Replace key
 375 \000       RESTART         119 177 Restart key
 376 \000       RESUME          120 178 Resume key
 377 \000       SAVE            121 179 Save key
 378 \000       SBEG            122 17a Shift Beg. key
 379 \000                       123 17b
 380 \000                       124 17c
 381 \000                       125 17d
 382 \000                       126 17e
 383 \000                       127 17f
 384 \000                       128 180
 385 \033[4~    SELECT          129 181 Select key
 386 \000       S_END           130 182 Shift end key
 387 \000                       131 183
 388 \000                       132 184
 389 \000                       133 185
 390 \000                       134 186
 391 \000                       135 187
G - 4   ADMINS User Guide



Sample TKB file
 392 \000                       136 188
 393 \000                       137 189
 394 \000                       138 18a
 395 \000                       139 18b
 396 \000                       140 18c
 397 \000                       141 18d
 398 \000                       142 18e
 399 \000                       143 18f
 400 \000                       144 190
 401 \000                       145 191
 402 \000                       146 192
 403 \000                       147 193
 404 \000                       148 194
 405 \000                       149 195
 406 \000                       150 196
 407 \000       SUSPEND         151 197 Suspend key
 408 \033[M#    MBUP            155 19b Mouse Button UP
 409 \033[M\040 MB_1            153 199 Mouse Button 1
 410 \033[M!    MB_2            154 19a Mouse Button 2
 411 \033[M"    MB_3            155 19b Mouse Button 3
 !************************************************************
 !                End of UNIX def. keys                      *
 !-----------------------------------------------------------*
 412 \033Op     KP_0           156 19c Keypad 0
 413 \033Oq     KP_1           157 19d Keypad 1
 414 \033Or     KP_2           158 19e Keypad 2
 415 \033Os     KP_3           159 19f Keypad 3
 416 \033Ot     KP_4           160 1a0 Keypad 4
 417 \033Ou     KP_5           161 1a1 Keypad 5
 418 \033Ov     KP_6           162 1a2 Keypad 6
 419 \033Ow     KP_7           163 1a3 Keypad 7
 420 \033Ox     KP_8           164 1a4 Keypad 8
 421 \033Oy     KP_9           165 1a5 Keypad 9
 422 \033On     KP_.           170 1aa Keypad .
 423 \033Ol     KP_,           167 1a7 Keypad , or +
 424 \033Om     KP_-           168 1a8 Keypad -
 425 \033OM     KP_E           169 1a9 Keypad Enter
 426 \000                      170 1aa Keypad /
 427 \000                      171 1ab
 428 \000                      172 1ac
 429 \000                      173 1ad
 430 \000                      174 1ae
 431 \000                      175 1af
 432 \000       ERASE_LINE     176 1b0 Erase line
 433 \000       AL_A           177 1b1 Alt A
 434 \000       AL_B           178 1b2 Alt B
 435 \000       AL_C           179 1b3 Alt C
 436 \000       AL_D           180 1b4 Alt D
 437 \000       AL_E           181 1b5 Alt E
 438 \000       AL_F           182 1b6 Alt F
 439 \000       AL_G           183 1b7 Alt G
 440 \000       AL_H           184 1b8 Alt H
 441 \000       AL_I           185 1b9 Alt I
 442 \033{6     SF6            186 1ba UDK Shift F6
 443 \033{7     SF7            187 1bb UDK Shift F7
 444 \033{8     SF8            188 1bc UDK Shift F8
 445 \033{9     SF9            189 1bd UDK Shift F9
 446 \033{A     SF10           190 1be UDK Shift F10
 447 \033{B     SF11           191 1bf UDK Shift F11
 448 \033{C     SF12           192 1c0 UDK Shift F12
 449 \033{D     SF13           193 1c1 UDK Shift F13
 450 \033{E     SF14           194 1c2 UDK Shift F14
 451 \033{F     SHLP           195 1c3 UDK Shift HELP
 452 \033{G     SDO            196 1c4 UDK Shift DO
 453 \033{H     SF17           197 1c5 UDK Shift F17
 454 \033{I     SF18           198 1c6 UDK Shift F18
 455 \033{J     SF19           199 1c7 UDK Shift F19
 456 \033{K     SF20           200 1c8 UDK Shift F20
 457 \000       AL_Y           201 1c9 Alt Y
 458 \000       AL_Z           202 1ca Alt Z
 459 \000       AL_[           203 1cb Alt [
 460 \000       AL_\           204 1cc Alt \
 461 \000       AL_]           205 1cd Alt ]
 001 \001       CT_A           206   1 Ctrl A
ADMINS User Guide  G - 5



Sample TKB file
 002 \002       CT_B           207   2 Ctrl B
 003 \003       CT_C           208   3 Ctrl C
 004 \004       CT_D           209   4 Ctrl D
 005 \005       CT_E           210   5 Ctrl E
 006 \006       CT_F           211   6 Ctrl F
 007 \007       CT_G           212   7 Ctrl G
 008 \010       CT_H           213   8 Ctrl H
 009 \011       TAB            214   9 Ctrl I
 010 \012       CT_J           215   a Ctrl J
 011 \013       CT_K           216   b Ctrl K
 012 \014       CT_L           217   c Ctrl L
 013 \015       CR             218   d Ctrl M (CR)
 014 \016       CT_N           219   e Ctrl N
 015 \017       CT_O           220   f Ctrl O
 016 \020       CT_P           221  10 Ctrl P
 017 \021       CT_Q           222  11 Ctrl Q
 018 \022       CT_R           223  12 Ctrl R
 019 \023       CT_S           224  13 Ctrl S
 020 \024       CT_T           225  14 Ctrl T
 021 \025       CT_U           226  15 Ctrl U
 022 \026       CT_V           227  16 Ctrl V
 023 \027       CT_W           228  17 Ctrl W
 024 \030       CT_X           229  18 Ctrl X
 025 \031       CT_Y           230  19 Ctrl Y
 026 \032       CT_Z           231  1a Ctrl Z
 027 \033       CT_[           232  1b Ctrl [
 028 \034       CT_\           233  1c Ctrl \
 029 \035       CT_]           234  1d Ctrl ]
 030 \036       CT_^           235  1e Ctrl ^
 031 \037       CT__           236  1f Ctrl _
 032 \040       SPACE          237  20 Space (blank)
 039 \047       APOS           238  27 ' (Apostrophee)
G - 6   ADMINS User Guide



Appendix H:Subroutines

This Appendix describes the subroutines that are in the ADMINS subroutine library. 
These subroutines may be used any place where an expression is permitted, namely:

1. Record maintenance procedures (RMO's) which can be used with TRANS, 
MAINT,MOVE, PROD, and REPORT.

2. SELECT, CREATE, and RECODE statements in a report instruction file (REP)
3. Virtual and Message fields and the Check statements in a screen instruction file 

(TRS)
4. SELECT statements in a file definition (DEF)

Generally, most subroutines are usable in most contexts, unless they are specifically 
designed for or limited to particular commands. This will be noted in the 
documentation.

H.1  Format of Presentation

For each subroutine there is a functional description, syntax presentation, and 
examples to illustrate the use if necessary. Field names used in the syntax as 
arguments are used for clarity. The same field names are not required in the actual use 
of the subroutine. Brackets, [ ], surrounding an argument in the syntax means that 
argument is optional.

H.2  Integer Decimal Values for ASCII Characters

Several subroutines refer to the integer decimal value of an ASCII character. The 
following is a table of all possible values:

 Value Character             Val Char    Val Char  Val Char
 --- ----------------------  --- ------  --- ----  --- -------
  0  ctrl/space               32  space   64  @     96  `
  1  ctrl/A                   33  !       65  A     97  a
  2  ctrl/B                   34  "       66  B     98  b
  3  ctrl/C                   35  #       67  C     99  c
  4  ctrl/D                   36  $       68  D    100  d
  5  ctrl/E                   37  %       69  E    101  e
  6  ctrl/F                   38  &       70  F    102  f
  7  ctrl/G (bell)            39  '       71  G    103  g
  8  ctrl/H (backspace)       40  (       72  H    104  h
  9  ctrl/I (horizontal tab)  41  )       73  I    105  i
 10  ctrl/J (linefeed)        42  *       74  J    106  j
 11  ctrl/K (vertical tab)    43  +       75  K    107  k
 12  ctrl/L (form-feed)       44  ,       76  L    108  l
 13  ctrl/M (return)          45  -       77  M    109  m
 14  ctrl/N                   46  .       78  N    110  n
 15  ctrl/O                   47  /       79  O    111  o
ADMINS User Guide H - 1



Concatenation Subroutines
 16  ctrl/P                   48  0       80  P    112  p
 17  ctrl/Q                   49  1       81  Q    113  q
 18  ctrl/R                   50  2       82  R    114  r
 19  ctrl/S                   51  3       83  S    115  s
 20  ctrl/T                   52  4       84  T    116  t
 21  ctrl/U                   53  5       85  U    117  u
 22  ctrl/V                   54  6       86  V    118  v
 23  ctrl/W                   55  7       87  W    119  w
 24  ctrl/X                   56  8       88  X    120  x
 25  ctrl/Y                   57  9       89  Y    121  y
 26  ctrl/Z                   58  :       90  Z    122  z
 27  ctrl/[ (escape)          59  ;       91  [    123  {
 28  ctrl/\                   60  <       92  \    124  |
 29  ctrl/]                   61  =       93  ]    125  }
 30  ctrl/~                   62  >       94  ^    126  ~
 31  ctrl/?                   63  ?       95  _    127  delete

H.3  Concatenation Subroutines

The concatenation subroutines, NCAT, FCAT, and CCAT are provided for 
composing fields of all types.

NCAT is designed to perform concatenation and field type conversion only.

FCAT is also designed to perform concatenation and field type conversion, but FCAT 
will interpret certain values in the arguments given to it as instructions for formatting 
the result field. FCAT can be used for retaining punctuation when converting 
numeric fields to alphanumeric fields, for right justification of data within a display 
field, or for placing custom-formatted date strings into a display field.

CCAT is the original ADMINS concatenation subroutine. It has been superseded by 
the two subroutines, NCAT and FCAT, to avoid a potential for ambiguity in 
interpretation of its arguments. In most cases CCAT will still function as it always has 
and need not be changed in existing procedures.1 Either NCAT or FCAT should be 
used in new procedures.

1.     CCAT originally could perform both simple concatenation and special 
formatting of the result fields. However, this dual capability created a potential 
ambiguity in interpretation of CCAT syntax that could cause unintended special 
formatting of the result field. If this ambiguous syntax is encountered by the 
compiler, the line number and the CCAT statement are printed under the 
message "The following CCAT is ambiguous. Use NCAT or FCAT." All such 
ambiguous CCATs are listed before the compiler exits. Each of these CCAT calls 
must be changed. If data reformatting is desired, change CCAT to FCAT (F 
stands for formatting). If data reformatting is not desired, change CCAT to 
NCAT (N stands for no formatting). Nothing else need be changed, just the name 
of the subroutine. The various uses of CCAT are for concatenating fields, 
converting fields between data types, and retaining punctuation when 
converting numeric to alphanumeric.
H - 2   ADMINS User Guide



Concatenation Subroutines
H.3.1  NCAT - Concatenating fields

NCAT concatenates the contents of one or more fields together and places the result 
in another field. (NCAT only operates on field names. A constant can always be 
placed in a field if a constant is needed as an argument for NCAT.) If all the fields 
were simply of type An, and the result field was large enough to hold the 
concatenated alphanumeric strings, then the operation of NCAT would be apparent. 
However, NCAT is fully generalized to operate on any number of arguments of any 
type.

How does NCAT work? First each argument is converted to a character string. The 
conversion rules for each data type is as follows:

1. Ln or Dn: Punctuation is removed and leading zeroes are inserted to create a 15 
character field. For example, "12,376" becomes "000000000012376", "1.35" 
becomes "000000000000135", and "9,765,235.14" becomes "000000976523514".

2. I: Punctuation is removed, and leading zeroes are inserted to create a 5 character 
field. For example, "1" becomes "00001" and "1,279" becomes "01279".

3. DA or DT: Exactly as in a printout, e.g., "17-MAR-78", "January 11, 1997".
4. An: Trailing blanks are removed. A blank in an A1 field is not removed.
5. Xpic: Exactly as in a printout, e.g., "B000210".
6. Fn: Punctuation is removed and leading zeroes are inserted to create a 20 

character field. For example, "12,376" becomes "00000000000000012376", "1.35" 
becomes "00000000000000000135", and "9,765,235.14" becomes 
"00000000000976523514".

7. TM: Exactly as in a printout, e.g., "11:44:35.07".

Then these converted strings are concatenated. The concatenated string is interpreted 
as an input string to the NCAT result field, and converted according to the type of 
that result field.

H.3.1.1  NCAT Syntax for Concatenating Fields
           A = NCAT(A,B,C,D...)

A/__ Alphanumeric or picture field for the results of 
concatenation.

B/__ First field of the concatenation (any type).

C/__ Second field of the concatenation (any type).

D/__ Third field of the concatenation (any type). 
(Etc.)
ADMINS User Guide  H - 3



Concatenation Subroutines
H.3.1.2  NCAT Concatenation Examples
Given the following fields and values,

     ACCT/XA999999
     LET/A1 'B'
     SEQ/I '21'
     ZERO/X9 '0'

then

     ACCT = NCAT(ACCT,LET,SEQ,ZERO)

would create an account number where ACCT would be "B000210".

Given the following fields and values,

     NAME/A30
     FNAME/A10 'JOHN'
     INIT/A1 'A'
     LNAME/A12 'SMITH'
     BLANK/A1 ' '

then

     NAME = NCAT(NAME,FNAME,BLANK,INIT,BLANK,LNAME)

would create a full NAME of "JOHN A SMITH".

H.3.2  NCAT - Converting Between Field Types

NCAT can be used to convert from any field type to another. NCAT recognizes when 
it is being used to convert one "numeric" type to another. A numeric type, i.e., Ln, Dn, 
I, DA, or Fn, is a type on which arithmetic can be performed. When NCAT is called 
with only two arguments which are both from those four types then NCAT does a 
direct conversion (in "binary") rather than converting via character strings. However, 
when NCAT is called with only two arguments, but one or both are of the type An or 
Xpic, then the conversion is done as described in Appendix H.3.1 “NCAT - 
Concatenating fields”.

H.3.2.1  NCAT Syntax for Converting Fields
           A = NCAT(A,B)

Converting a DA field to a D field works properly, that is a positive D field results 
even when the DA field is past 26-NOV-81, which treated as a 16-bit quantity is a 
negative integer.

A/__ Dn, I, DA, Fn, An, Xpic type field for the result.

B/__ Dn, I, DA, Fn, An, Xpic type field to be converted. 
Remember, if both fields are of a numeric type, then 
the conversion is a binary conversion.
H - 4   ADMINS User Guide



Concatenation Subroutines
H.3.2.2  NCAT Example of Converting Fields
For example, assume D is of type D, I of type I, DA of type DA and F of type F.

     D = NCAT(D,DA)
     I = NCAT(I,D)
     DA = NCAT(DA,I)
     D = NCAT(D,F)

All of the above are acceptable conversions. When converting to a smaller format, i.e. 
F to D, F to I, D to I, the most significant part of the number is lost. This is done 
because one is presumably converting to a "smaller" format because the most 
significant part of the "larger" format is not used. Also the conversion proceeds 
without regard to the number of decimal places in either field and does not 
automatically adjust the position of the decimal point. Decimal point alignment must 
be handled explicitly by the application developer.

H.3.3  FCAT - Retaining Punctuation

The FCAT subroutine may be instructed to retain all punctuation when 
concatenating numeric fields into alphanumeric fields. This is done by making the 
second argument to FCAT an alphanumeric A2 field containing the characters ".,". 
This instructs FCAT not to remove punctuation, nor to insert leading zeroes, in all 
numeric fields that follow in that call to FCAT. That is, when FCAT converts the D 
field to the 15 character field, the punctuation is left in.

FCAT also has the additional option to suppress the commas and leading zeroes 
when converting decimal to ASCII, but to leave the decimal point intact. This is a 
variation of the ".," facility described above. This feature is requested by placing an 
A2 field containing "0," as the second argument to FCAT.

FCAT can also convert a D field to an A field and be instructed where to place the 
decimal point. This is done by letting the second argument be an A2 field containing 
".D", and letting the third argument be an I field containing the number of decimal 
places.
ADMINS User Guide  H - 5



Concatenation Subroutines
H.3.3.1  FCAT Syntax for Retaining Punctuation
           A = FCAT(A,DC,[NDEC,]B,C,D...)

H.3.3.2  FCAT Retaining Punctuation Examples
The feature for retaining punctuation is useful in formatting messages for the P$P 
field that contain numeric data. For example:

     FILE ACCT.MAS
     LOCAL
     DC/A2  '.,'
     P$P/A40
     ACCOUNT/A7  'ACCOUNT'
     MSG/A10  'BALANCE IS'
     BLANK/A1  ' '
     PROGRAM
     P$P = FCAT(P$P,DC,ACCOUNT,BLANK,ACCT#,MSG,BALANCE)

The above example might print a message as follows:

     ACCOUNT 34512 BALANCE IS 12,562.34

If the DC field had contained '0,' the message would have printed as follows:

     ACCOUNT 34512 BALANCE IS 12562.34

The following is an example of decimal point placement.

     ...
     LOCAL
     DC/A2  '.D'
     NDEC/I  2
     PROGRAM
     A12 = FCAT(A12,DC,NDEC,VALUE)
     ...

If VALUE was a "D" field containing the value "2,350", this will cause the A12 field to 
contain "23.50" after the FCAT is performed.

A/__ Alphanumeric field for the result.

DC/A2 ‘.,’ or ‘0’, or ‘.D’

‘.,’ FCAT does not remove punctuation or insert 
leading zeroes in the numeric fields that follow.

‘0,’ FCAT suppresses the commas and leading zeroes 
when converting decimal fields to alpha, but leaves 
the decimal point intact.

‘.D’ FCAT places the decimal point in a position 
specified in the NDEC field when converting 
decimal to alpha.

NDEC/I Number of decimal places when using ‘.D’ in the DC field.

B/__ First field of the concatenation (any type).

C/__ Second field of the concatenation (any type).

D/__ Third field of the concatenation (any type). 
(Etc.).
H - 6   ADMINS User Guide



Concatenation Subroutines
H.3.4  FCAT - Right Justify Decimal Values in Alpha Field

FCAT will right justify a decimal value concatenated into an alphanumeric field if an 
A2 field with value "RJ" precedes the decimal field in the subroutine argument. 
Alphanumeric fields are usually left justified.

           A = FCAT(A,XX,D)

H.3.4.1  FCAT Right Justification Example
Given the following fields and values,

     DC/A2 '0,'
     XX/A2 'RJ'
     AL/A10
     DEC/D2  1234.56

then

     AL = FCAT(AL,DC,XX,DEC)

results in the value

     '1234.56'

for the field AL. The leftmost three characters are blank in the alphanumeric string.

H.3.5  FCAT - Custom Formatted Dates in Alpha Fields

FCAT will place a custom-formatted conversion of a date (DA or DT) field into an 
alphanumeric field when an An field (or constant) that contains a date formatting 
string precedes the date field in the list of FCAT arguments. An FCAT date 
formatting string consists of two periods followed by a format specified in the same 
manner used with the logical name ADM$DATE (see Section 2.4.2 “Field Data 
Types”).

For example, given the following fields and values:

      ALPHA/A20
      DATE/DA    '26-JAN-93'
      FMTDAT/A10 '..m D, Y4'

Then:

      ALPHA = FCAT(ALPHA,FMTDAT,DATE)

Would result in the string "January 26, 1993" being loaded into field ALPHA.

A/_ Alphanumeric field for the result of concatenation.

D/_ Ln, Dn, or Fn field.

XX/A2 ‘RJ’
ADMINS User Guide  H - 7



Concatenation Subroutines
H.3.6  FCAT - Converting a String to a Date Field

FCAT can use a format argument to convert a string to a date field bypassing the 
current settings of ADM$DATE. The syntax is:

DATE = FCAT (DATE, FORMAT, FLD1 [,FLD2, FLD3...])

where DATE is a field type DA or DT, and FORMAT is an alpha field (or constant) 
which starts with two dots(‘..’) followed by the date format. 

The arguments that follow FORMAT can be a single alpha or picture (X...) field, or 
multiple fields which, when concatenated, create a date string in the form specified 
in FORMAT. For example:

LOCAL

STARTDATE/DA

DATEFMT/A10 ‘..Y4MD’

YEAR/X9999 ‘2005’

MONTH/X99  ‘05’

DAY/X99  ‘17’

PROGRAM

STARTDATE = FCAT (STARTDATE, DATEFMT, YEAR, MONTH, DAY)

results in the value “May 17, 2005” being loaded into the field STARTDATE 
regardless of the current ADM$DATE setting.

If the FORMAT contains all numerics three integer fields may be used to hold the 
year , month and day, e.g

DATE = FCAT(DATE,FORMAT,YEAR,MONTH,DAY

where FORMAT/A8 = '..Y4MD'.

H.3.7  FCAT - Format result with source field’s edit mask

If FCAT’s second argument contains ‘EM’ FCAT will load the result field with the 
contents of the source field, formatted according to the source field’s edit mask.

Example: If the ACCNT/A20 has an Edit Mask of '%E999%-%E999%-%E99999' the 
account displayed as “010-200-51000” is actually stored in the ACCNT field as 
“01020051000”.  Given a field WACCNT/A20 (without an Edit Mask) the following 
will be true:

WACCNT = ACCNT                ! WACCNT contains '01020051000'
WACCNT = NCAT(WACCNT,ACCNT)   ! WACCNT contains '01020051000'

FMT/A2 'EM'
WACCNT = FCAT(WACCNT,FMT,ACCNT)  ! WACCNT contains '010-200-51000'
H - 8   ADMINS User Guide



Date and Time Subroutines
H.4  Date and Time Subroutines

The subroutines in this group are all associated with either a date field (field type DA 
or DT) or a time field (field type A8, format HH:MM:SS or field type TM, format 
HH:MM:SS.TT).

H.4.1  TMDIFF - Difference Between Dates and Times

The TMDIFF subroutine is used to determine the time difference between two given 
points in time. TMDIFF accepts two pairs of date and time fields, or just two dates, 
or just two times, and returns the difference between in the specified format. TMDIFF 
can also be used to break a time field into its components, or to check the validity of 
time input in an A8 field.

TMDIFF Syntax:2

  STAT = TMDIFF([DATE_1,DATE_2][,TIME_1,TIME_2][,D_DATE][,D_TIME])
            

2.     Handling the numerous STAT return values is simpler than it may appear. STAT 
return values 1 and (-1) indicate a successful call: (1) means that D_TIME is 
positive; (-1) means that it is negative. All STAT error codes except (-6) result only 
from programming errors in the RMS, so, once the RMS is tested there is no need 
to write logic to handle them.

STAT/I
1

-1

-2
-3
-4
-5
-6

Status Code
OK, and D_TIME, if any, is positive
OK, and D_TIME is negative (needed when 
D_TIME is unsigned field type A8 or TM)
Must have either 3 or 6 arguments
D_DATE is not an L, D, or F field
D_TIME is not an A8, TM, I, L, D, or F field
DATE_n or TIME_n has bad field type
A8 TIME_n field has invalid value

DATE_1/DA 
or DT

Field or constant containing starting date. If 
DATE_1 is given, DATE_2 and D_DATE must be 
supplied.

DATE_2/DA 
or DT

Field or constant containing ending date. If DATE_2 
is given, DATE_1 and D_DATE must be supplied.

TIME_1/A8 or 
TM

Field or constant containing starting time. If 
TIME_1 is given, TIME_2 and D_TIME must be
supplied.  A8 time must be in 24-hour HH:MM:SS

TIME_2/A8 or 
TM

Field or constant containing ending time.
If TIME_2 is given, TIME_1 and D_TIME must be
supplied.  A8 time is checked as for TIME_1.

D_DATE/
L,D,F

Field. If DATE_1 and DATE_2 are given, 
D_DATE is the positive or negative 
difference in days. No decimal places 
allowed in L, D, or F field.
ADMINS User Guide  H - 9



Date and Time Subroutines
Different time and date field types can be used freely in the same call to TMDIFF. If 
"ticks" (hundredths of a second) are required in time calculations TM fields must be 
used for the TIME_1, TIME_2, and D_TIME arguments.

Because TMDIFF can return the difference between two dates, with no times, or can 
return the difference between two times, with no dates, it has superseded the 
ADMINS subroutines DIFFDA and DIFFTM (see Appendix O: “Obsolete Commands 
and Syntax”).

To break a time field (TM or A8) into its hour, minute, and second components, use 
TMDIFF to get the difference between 00:00:00 and the given time and place the 
result in an Integer array. For example, an RMS declares an integer array with three 
elements:

 D_TIME/I(3)

and then calls TMDIFF as follows:

    STAT = TMDIFF('00:00:00/TM',TIME_1,D_TIME)

To check the validity (format, etc.) of a time input into an A8 field,3 Make a similar 
TMDIFF call as in the above example and check whether the STAT return is (-6).

Given the following fields and values,

     STAT/I
     DATE1/DA '17-NOV-92'
     DATE2/DA '25-NOV-92'
     TIME1/TM '13:35:00'
     TIME2/TM '15:45:30'
     DAYDIFF/L
     TMARRAY/I(3)

then

     STAT = TMDIFF(DATE1,DATE2,DAYDIFF)

would result in the value "8" in the field DAYDIFF, and

     STAT = TMDIFF(DATE1,DATE2,TIME1,TIME2,DAYDIFF,TMARRAY)

would result in the value "8" in the field DAYDIFF, and the values 2 (hours), 10 
(minutes), and 30 (seconds) being loaded into the three elements of the local integer 
array TMARRAY. (In each case STAT would be set to 1.) 

D_TIME/A8 
or TM

Field. If TIME_1 and TIME_2 are given, D_TIME is 
the difference in A8 24-hour HH:MM:SS format or 
TM format. STAT tells whether D_TIM is positive or 
negative.
or I(3)  If D_TIME is an Integer array, the time 
difference is returned as three signed integers:
D_TIME(1) is hours, D_TIME(2) is minutes; and
D_TIME(3) is seconds.  To ignore seconds, D_TIME
can be an array of two integers rather than three;
to ignore both minutes and seconds it can be
a simple I field rather than an array.
or L,D,F   If D_TIME is a Long integer or Decimal 
field, the time difference is returned as a signed
number of seconds.  No decimal places are allowed
in these fields.

3.    Whenever possible TM fields should be used for time strings because they have 
automatic validity checking.
H - 10   ADMINS User Guide



Date and Time Subroutines
If the first two arguments are date (DA or DT) fields, and the third argument is an 
integer (I) array with at least three elements, TMDIFF returns the difference between 
the two date fields as years, months, and days in the integer array. For example:

BORN/DT   ‘23-Feb-1996’

DATE/DT   ‘30-Oct-1999’

AGE/I  (3)

STAT/I

...

STAT = TMDIFF(BORN,DATE,AGE)

would return AGE(1) = 3 (years).  AGE(2) = 8 (months) and AGE(3) = 7 days (i.e. a 
person born on 23-Feb-1996 would be 3 years, 8 months, and 7 days old on 30-Oct-
1999.

H.4.2  ADDA and ADDT - Add a Number of Days to a Date

ADDA and ADDT add or subtract a number of days to or from a date and place the 
result in second date field. Use ADDA to place the result in a field of type DA, or use 
ADDT to place the result in a field of the type DT.

H.4.2.1  ADDA and ADDT Syntax
DATE2 = ADDA(DATE1,NUMDAYS)

or
DATE2 = ADDT(DATE1,NUMDAYS)

H.4.2.2  ADDA Example
Given the following fields and values,

     I/I 8
     DATE1/DA 17-NOV-79
     DATE2/DA

then

     DATE2 = ADDA(DATE1,I)

would result in the value "25-NOV-79" in the field DATE2.

H.4.3  ADDTM - Time and Date Calculation

The ADDTM subroutine adds a given number of seconds, minutes, hours, days, 
months, or years to a date or a date and time. ADDTM performs time and date 
arithmetic for a single time unit. For example, any number of months can be added 
to a date;4 but a number of months and a number of days must be added separately, 
in two ADDTM calls.

DATE2/DA or DT Result of DATE1 + NUMDAYS. Field type will be 
DA if ADDA is called, DT if ADDT is called.

DATE1/DA or DT Date to be added to.

NUMDAYS/I or L Number of days to add. If the number is negative, 
then it is the number of days to subtract.
ADMINS User Guide  H - 11



Date and Time Subroutines
When ADDTM is used to add or subtract seconds, minutes, or hours, the two last 
arguments (A8 time fields) are required. When the unit is days, months, or years, 
these arguments are not required.

ADDTM Syntax:

           STAT = ADDTM(DATE_1,UNIT,DELTA,DATE_2,[TIME_1,TIME_2])

4.    When some number of months are added to or subtracted from a date, the exact 
same day may not exist in the result month. In such cases (31-Mar plus one 
month, which means "the same day in April") ADDTM gives the last day of the 
result month as the result day (i.e.,30-Apr).

STAT/I Status of the operation requested. 1 means the 
operation was successful.  - 1 means there was an 
error in the arguments.

DATE_1/DA or DT Initial date

UNIT/I Time unit code, as follows:
2 seconds
3 minutes
4 hours
5 days
6 months
7 years

DELTA/I The number of time units to add (positive or 
negative)

DATE_2/DA or DT Date which results from the date or time 
calculation.

TIME_1/A8 or TM Initial time, not required for date calculations. 
TIME_1 must have the format HH:MM:SS (leading 
zeroes are required).

TIME_2/A8 or TM Time which results from a time calculation, not 
required for date calculations. TIME_2 has the 
format HH:MM:SS.
H - 12   ADMINS User Guide



Date and Time Subroutines
H.4.4  CHKDATE

The CHKDATE subroutine verifies that a date falls within a certain range of dates. 
The syntax is:

STAT = CHKDATE(DATE,BASEDATE,PRIOR,AFTER)

where:

Example:

IF CHKDATE(DATE,TODAY,30,5) EQ 1 THEN...

would check if DATE was within 30 days prior to TODAY, and 5 days later than 
TODAY.

H.4.5  Y$EAR - Extracting the Year from a Date

The Y$EAR subroutine is used to extract the year5 from an ADMINS date field.

Syntax:
           I = Y$EAR(DATE)

           I/I         The year (4 digits)
           
           DATE/DA     Date
           or
           DATE/DT

Given the following fields and values,

     I/I
     DATE/DA '15MAY2004'

then

     I = Y$EAR(DATE)

would result in field I being set to the value "2004".

STAT/I 1:  OK, DATE is within range
0:  DATE is outside range
-1: DATE is not DA or DT field
-2: BASEDATE is not DA or DT field

DATE DA or DT field with date to check

BASEDATE DA or DT field to check against

PRIOR/I Number of days prior to BASEDATE that is 
allowed.

AFTER/I Number of days after BASEDATE that is allowed.

5.    If "6" is included in the string assigned to the logical name OPTION (see 
Appendix A) then function of Y$EAR is modified so that it returns a value equal 
to the year of the date given less 1900, i.e. YEAR = Y$EAR(DATE) where DATE 
is set to July 23, 2004 will load the value "104" into YEAR. Ordinarily (without 6 
in OPTION), the value "2004" would be loaded into YEAR.
ADMINS User Guide  H - 13



Date and Time Subroutines
H.4.6  M$ONTH Extracting the Month from a Date

The M$ONTH subroutine is used to extract the month as an integer (1 through 12) 
from an ADMINS date.

           I = M$ONTH(DATE)

           I/I         Result is an integer from 1 through 
                       12, where 1 = January, ... 12 = December.
           
           DATE/DA     Date
           or
           DATE/DT

Given the following fields and values.

     I/I
     DATE/DA '15-MAY-84'

then

     I = M$ONTH(DATE)

would result in the field I being set to the value "5".

H.4.7  D$AY Extracting the Day from a Date

The D$AY subroutine is used to extract the day of the month from an ADMINS date.

Syntax:
           I = D$AY(DATE)

           I/I         The result is an integer between 1
                       and 31 containing the day of the month.

           DATE/DA     Date
           or
           DATE/DT

Given the following fields and values,

     I/I
     DATE/DA 15-MAY-84

then

     I = D$AY(DATE)

would result in the field I being set to the value "15".
H - 14   ADMINS User Guide



Date and Time Subroutines
H.4.8  TIMESTR - Extract Hours, Minutes, Seconds from Time

TIMESTR provides a flexible way to extract integer values for the hour, minute, and/
or second from a field containing a time value. TIMESTR can also be used simply to 
check that an input time value is valid without returning any of its components. 
TIMESTR accepts a wide variety of time formats. The input time string can be stored 
in an alphanumeric (An) field, a time-of-day (TM) field, a picture (X) field such as 
X99A99 or X9999, or in an integer (I) field (hours and minutes only). Hours and 
minutes must always be present; and the components must be left to right order, 
hours first, then minutes, and then seconds (if present). Any single-character 
delimiter between components may be used; or the time string may have no 
delimiters. Minutes and seconds must be given in two digits; hours can be one or two 
digits. The following are examples of time formats that are acceptable to TIMESTR:

       7:05      07:05    0705    07:05:06
       7.05.06   070506   70506   705

TIMESTR is called using the following syntax:

    STAT = TIMESTR(TIME,HOUR[,MIN[,SEC]])

TIMESTR can return any, all, or none of the time string components. If the HR, MIN, 
and/or SEC argument is omitted, or if its position is occupied by a constant (i.e. zero), 
then the corresponding time component is not returned.

 Some sample calls and results:
                                   Returns:
                                   ------------------------
 STAT = TIMESTR(TIME,HR,MIN,SEC)   Hours, minutes, seconds
 STAT = TIMESTR(TIME,HR)           Hours
 STAT = TIMESTR(TIME,HR,MIN)       Hours, minutes
 STAT = TIMESTR(TIME,0,MIN)        Minutes
 STAT = TIMESTR(TIME,0,0,SEC)      Seconds
 STAT = TIMESTR(TIME,0)            (Format check only)

If the time string does not contain a value for seconds, seconds is returned as zero.

TIME Field containing time string in any of the formats 
described above. May be an An, X, TM, or I field.

HOUR/I Field to receive value of hour. If not needed, a 
constant such as zero may be given as a place holder 
for HOUR.

MIN/I Field to receive value of minute. If not needed, use 
a constant or, if SEC is not needed, omit MIN.

SEC/I Field to receive value of second. If not needed, SEC 
may be omitted.

STAT/I Status:   
1   OK
-1  Error in number of arguments 
or argument field types
-2  Error in TIME string format 
or value
ADMINS User Guide  H - 15



Character String Handling Subroutines
TIMESTR always makes the following checks on the time string (if the string fails one 
of these checks TIMESTR returns a STAT of -2):

1. There cannot be more than one non-numeric character in succession.
2. Hour and minute must be present.
3. Minute and second (if present) must be two characters long.
4. Hour cannot exceed 23; minute and second cannot exceed 59.
5. If hours, minutes, and seconds are all present, there must be either two delimiter 

characters which are the same, or no delimiter characters.
6. There cannot be any characters in the field after a valid time string.

H.5  Character String Handling Subroutines

ADMINS has a data type of alphanumeric string. The only operator for searching an 
alphanumeric field, INCL, is limited to searching for literal strings only. Although 
the character handling operators in ADMINS are limited, the subroutines described 
below do provide a complete character string handling facility in ADMINS.

H.5.1  STR - Select Part of a Field

The STR subroutine is provided to decompose fields of all types. STR will work on 
any type of field, but note that before the characters are selected, the field the data is 
to be taken from is converted to its output representation, left justified. Therefore, on 
An, Xpic, and DA fields, the characters selected will be where you expect them. 
However on I, Ln, Dn, and Fn fields, the output representation varies depending on 
the value of the number due to insertion of commas and decimal point. Before using 
STR on a numeric field, you should first convert the numeric field to an alphanumeric 
field using NCAT or FCAT (as described in Appendix H.3 “Concatenation 
Subroutines”) and then use STR on the alphanumeric field.

H.5.1.1  STR Syntax
           A = STR(A,B,J,K)

A/__ Alphanumeric or picture field for the result.

B/__ Field of any type that the data is to be taken from. 
Note however, that before the ‘stringing’ occurs, B 
is converted to its output representation form as in 
a printout.

J/I Starting position in B (may be a constant as ‘3/I’).

K/I Ending position in B (may be a constant as ‘5/I’).
H - 16   ADMINS User Guide



Character String Handling Subroutines
H.5.1.2  STR Example
For example, assume an account number of the form X99999999 where the first two 
digits were the fund, the next three digits were the department, and the last three 
digits were the object. The following use of the STR subroutine and a check statement 
in a TRS would insure that only department "020" was entered.

     ...
     E ACCT
     V DEPT/X999 STR(DEPT,ACCT,'3/I','5/I')
     C DEPT NE 020
     DEPARTMENT 020 PLEASE
     ...

H.5.2  CASE - Convert Between Upper and Lower Case Letters

The CASE subroutine will change a character string from upper case to lower case or 
from lower case to upper case.

CASE will change the case starting at the character specified in LEFT up to the 
character specified in RIGHT depending on the value in WHICH.

H.5.2.1  CASE Syntax
           NULL = CASE(FIELD,LEFT,RIGHT,WHICH)

NULL/I Required for syntax purposes only.

FIELD/An Field to be modified from LEFT through RIGHT.

LEFT/I Starting position in FIELD.

RIGHT/I Ending Position in FIELD.

WHICH/I If 0: the conversion is to lower case. If 1: the 
conversion is to upper case. If 2: everything except 
the first character of each word is converted to 
lower case. For example:

JOHN N. JOHNSON

will be converted to 

John N. Johnson
ADMINS User Guide  H - 17



Character String Handling Subroutines
H.5.2.2  CASE Example
Given the following fields and values,

     NULL/I
     NAME/A10 'Barbara'
     LEFT/I 1
     RIGHT/I 10
     WHICH/I 1

then

     NULL = CASE(NAME,LEFT,RIGHT,WHICH)

would result in an all upper case name, "BARBARA", in the field NAME.

H.5.3  SQUEEZ - Remove Extra Blanks in One or More Fields

The SQUEEZ routine can be used to remove extra blanks from an alphanumeric field. 
Consecutive alphanumeric fields from the DEF of the file (not local RMO fields) can 
be treated as one large alphanumeric field. After SQUEEZ is called the result will 
only contain single blanks between words and trailing blanks at the end of the field.

H.5.3.1  SQUEEZ Syntax
           NULL = SQUEEZ(ALPH,NLETS)

NULL/I Required for syntax purposes only.

ALPH/An Field with which to begin removing extra blanks.

NLETS/I Number indicating how many characters long 
ALPH is. NLETS may include multiple consecutive 
alphanumeric fields which follow ALPH. SQUEEZ 
is not sensitive to field boundaries, that is, fields are 
squeezed together as if they are one very large field.
H - 18   ADMINS User Guide



Character String Handling Subroutines
H.5.3.2  SQUEEZ Example
Given the following file definition and field values in a file,

     * TEST.DEF                Field Values
     MAS 100            ------------------------------
     FIELD1 A30        "This  is an example of        "
     FIELD2 A30        "how the  SQUEEZ  subroutine   "
     FIELD3 A30        "works   on    multiple        "
     FIELD4 A30        "fields.                       "

then executing the following RMO,

     * TEST.RMS
     *
     FILE TEST.MAS
     LOCAL
     NULL/I
     N/I 120
     PROGRAM
     NULL = SQUEEZ(FIELD1,N)

would result in the data being squeezed into FIELD1 through FIELD4 as follows:

     FIELD1       "This is an example of how the "
     FIELD2       "SQUEEZ subroutine works on mul"
     FIELD3       "tiple fields.                 "
     FIELD4       "                              "

H.5.4  SETRPL - Set Up Character Replacements for REPLAC

There are two subroutines to support character replacement. SETRPL is used once to 
activate a table of character translations ("replacements") that are used by REPLAC 
to convert characters in one or more alpha fields.

H.5.4.1  SETRPL Syntax
           NULL = SETRPL(FROM,TO)

H.5.5  REPLAC - Replace Characters Based on SETRPL

The second subroutine to support character replacement is called REPLAC. After 
SETRPL is used to activate a table of character translations then REPLAC is used to 
actually convert the characters in one or more alpha fields.

NULL/I Required for syntax purposes only.

FROM/I(n) Array containing integer decimal values of 
characters to be replaced. The last entry in the array 
is a -1 to indicate the end of the array.

TO/I(n) Array the same size as the FROM array containing 
integer decimal values of the character to replace 
the corresponding character found in the FROM 
array. The last entry in the array is a -1 to indicate 
the end of the array.
ADMINS User Guide  H - 19



Character String Handling Subroutines
H.5.5.1  REPLAC Syntax
           NULL = REPLAC(STRING,N)

H.5.5.2  SETRPL and REPLAC Example
For example, consider the following DEF.

     *  TRN.DEF
     MAS 100
     N I KEY1
     A1 A30
     A2 A30
     A3 A30

The following RMO will run on TRN.MAS and convert the vowels in the fields A1, 
A2 and A3 to integers.

     FILE TRN.MAS
     LOCAL
     FROM/I(7) 65 69 73 79 85 48 -1
     TO/I(7)   49 50 51 52 53 32 -1
     J/I 0
     STAT/I
     PROGRAM
     IF J EQ 0 THEN J = 1 ; STAT = SETRPL(FROM,TO) END
     STAT = REPLAC(A1,'3/I')

Note that the values for the ASCII characters A E I O and U are 65 69 73 79 85 and the 
values for the ASCII characters 1 2 3 4 5 are 49 50 51 52 53. (See Table in Appendix H.2 
“Integer Decimal Values for ASCII Characters”) The last entry in the FROM array is 
a -1 to indicate to SETRPL that it has reached the end of the table. The FROM and TO 
arrays also converts zero to blank (i.e. "48" to "32"). Note also that the SETRPL 
subroutine is only executed once and stays in effect for all subsequent executions of 
REPLAC.

H.5.6  LOCSTR - Locate a String Within a String

LOCSTR finds a string in another string. LOCSTR searches for the first (or last) 
occurrence of STR1 in STR2 starting at a specified character (FIRST) in STR2. If FIRST 
is negative LOCSTR returns the position of the last occurrence of the STR1 (the 
absolute value of FIRST identifies the starting position in STR2).

LENGTH is the length of STR1 that is to be used in the search. If LENGTH is negative 
LOCSTR performs a case insensitive search. (the absolute value of length indicates 
the length of STR1 that is to be used). POINT contains the integer pointer to the place 
in STR2 where STR1 was found. If POINT is returned as zero then STR1 could not be 
found in STR2.

NULL/I Required for syntax purposes only.

STRING/An Starting field on which the character replacement as 
established by the SETRPL subroutine is to be 
performed.

N/I Number of consecutive An fields of the same length 
REPLAC subroutine is to be performed.
H - 20   ADMINS User Guide



Character String Handling Subroutines
H.5.6.1  LOCSTR Syntax
           POINT = LOCSTR(STR1,STR2,FIRST,LENGTH)

H.5.6.2  LOCSTR Example
Given the following fields and values,

     LOC/I
     ARG/A1 ','
     FIELD/A30 'Find a comma (,) in the text.'
     START/I 1
     LEN/I 1

then

     LOC = LOCSTR(ARG,FIELD,START,LEN)

would result in the value "15" in the field "LOC".

H.5.7  LOCATE: Find a String within a String (any data type)

The LOCATE subroutine will search for the occurrence of a string of characters in 
another string.  The main difference from LOCSTR is that the arguments may be any 
data type.  They are converted to ASCII strings before the search starts.  Thus it is 
possible to have an integer containing the value 123 and search for the occurrence of 
the string "123" within an alpha field.  The syntax is:

POS = LOCATE(WHAT,STRING,START,FLAGS)

POINT/I Pointer to the place in STR2 where the first character 
of STR1 was found or zero if STR1 was not found.

STR1/An Field containing the value that is to be located. This 
may be a constant.

STR2/An Field that is to be searched.

FIRST/I Starting point in STR2 where search is to begin. If 
FIRST is negative LOCSTR returns the position of 
the last occurrence of the string.

LENGTH/I Length of STR1 that is to be used in the search. If 
LENGTH is negative LOCSTR will perform a case 
insensitive search.
ADMINS User Guide  H - 21



Character String Handling Subroutines
Where:

The values in WHAT and STRING are converted to ASCII, left justified, and without 
punctuation or leading zeros.

H.5.8  CLEN - Find the Length of a String

CLEN returns the actual length of a character string in an alphanumeric field. That is, 
trailing blanks do not count as part of the string.

H.5.8.1  CLEN Syntax
           LENGTH = CLEN(STRING)

H.5.8.2  CLEN Example
Given the following fields and values,

     LEN/I
     FIELD/A60 'What is the length of this string?'

then

     LEN = CLEN(FIELD)

would result in the value "34" in the field "LEN".

H.5.9  BLDSTR - Build a String From Another String

BLDSTR builds a new string from a section of an existing string. BLDSTR takes the 
FIRST through LAST characters of STR1 and places then in STR2 followed by trailing 
blanks.

WHAT Field containing the string to search for. May be any 
data type.  Will be converted to ASCII before the 
search starts.

STRING Field to search in.  May be any data type.  Will be 
converted to ASCII before search starts.

START/I Position within STRING (after being converted to 
ASCII) where to start the search.  May be field or 
constant.  0 (zero) is treated as 1 (one).

FLAGS/I Bitwise mask to modify the behavior of the search.  
The following values are defined:
1: Reverse search (start from the back to find last 
occurrence).
2: Case blind search

POS/I Returned with the position where WHAT was 
found in STRING, or 0 (zero) if no match was 
found.

STRING/An Field to be used LENGTH/I. Actual length of the 
character string in STRING not including trailing 
blanks.
H - 22   ADMINS User Guide



Character String Handling Subroutines
H.5.9.1  BLDSTR Syntax
           NULL = BLDSTR(STR1,FIRST,LAST,STR2)

H.5.9.2  BLDSTR Example
Given the following fields and values,

     NULL/I
     STR1/A50 'Part of this field will be placed in STR2'
     FIRST/I 9
     LAST/I 23
     STR2/A20

then

     NULL = BLDSTR(STR1,FIRST,LAST,STR2)

would result in the field STR2 as follows:

     STR2/A20 'this field will     '

NULL/I Required for syntax purposes only.

STR1/An Take the FIRST through the LAST characters of 
STR1 and place them in STR2 followed by trailing 
blanks.

FIRST/I First character of STR1 to be used.

LAST/I Last character of STR1 to be used.

STR2/An Result field.
ADMINS User Guide  H - 23



Character String Handling Subroutines
H.5.10  INSTR - Insert a String into Another String

INSTR inserts a string into a section of another string. INSTR places the initial 
LENGTH characters of STR1 into STR2 starting at the FIRST character of STR2. That 
is, INSTR overwrites a section of STR2. Also to allow insertion of non-printable 
characters, e.g. escape sequences, an integer argument will be accepted in place of 
STR1. In this case LENGTH is assumed to be "1", regardless of its actual value.

H.5.10.1  INSTR Syntax
           NULL = INSTR(STR1,STR2,FIRST,LENGTH)

INSTR supports spanning of multiple fields. If the LENGTH argument is negative, 
then the actual length of the STR2 argument is not checked. This allows INSTR to 
place values into any number of consecutively allocated An fields by referencing the 
first An field.

If the FIRST (starting point) argument is negative the actual length of the STR1 
argument is not checked. This allows INSTR to read values from any number of 
consecutively allocated An fields by referencing the first An field.

Only consecutively defined An fields in a file DEF, G$ fields, and array elements are 
guaranteed to be consecutive.

PLEASE NOTE: When using negative arguments with the INSTR subroutine you 
are bypassing the regular field length checking in ADMINS. It is the 
responsibility of the developer to insure that data is read and written correctly 
when ADMINS checking is bypassed.

NULL/I Required for syntax purposes only.

STR1/An or I Field to move from, or integer decimal value of a 
character.

STR2/An Field to insert to.

FIRST/I Starting point of the insert into STR2.

LENGTH/I Number of characters of STR1 to use. Place the 
initial LENGTH characters of STR1 into STR2 
starting at the FIRST character of STR2, overwriting 
a section of STR2. If STR1 is an integer decimal 
value of a character, the corresponding character is 
overwritten into STR2 (LENGTH is assumed to 
equal 1 regardless of actual value). This permits 
inserting non-printing characters such as ESCAPE 
into alpha fields.

NOTE
H - 24   ADMINS User Guide



Character String Handling Subroutines
H.5.10.2  INSTR Example
Given the following fields and values,

     NULL/I
     STR1/I 27
     STR2/A4 ' (0l'
     FIRST/I 1
     LENGTH/I 1

then

     NULL = INSTR(STR1,STR2,FIRST,LENGTH)

would result in the escape character (decimal 27) being placed in the first position of 
the field STR2. STR2 then would contain the string "<ESC>(0l" which is the escape 
sequence used to instruct a VT terminal to use the graphics character set.

H.5.11  OUTSTR - Extract a String from Another String

OUTSTR does the exact opposite of INSTR. OUTSTR can extract a string from a series 
of consecutively stored An fields.

A specified number of bytes from one string, starting at a specified place in that 
string, are moved into another string, using the following syntax:

     NULL = OUTSTR(STR1,STR2,FIRST,LENGTH)

If LENGTH is negative, OUTSTR does not check whether the FIRST position is 
within the actual length of STR2. Only as many characters as will fit in STR1 will be 
moved.

H.5.12  INTC - Find Integer Decimal Value of a Character

INTC returns the Nth character of STRING as an integer decimal value.

NULL/I Required for syntax purposes only.

STR1/An Field to be moved into.

STR2/An Field to be moved from.

FIRST/I Starting point in STR2 of the string to be moved into 
STR1.

LENGTH/I Number of characters of STR2 to move.
ADMINS User Guide  H - 25



Character String Handling Subroutines
H.5.12.1  INTC Syntax
           VALUE = INTC(STRING,N)

H.5.12.2  INTC Example
Given the following fields and values,

     VALUE/I
     CHAR/A1 '^'
     N/I 1

then

     VALUE = INTC(CHAR,N)

would result in the value "94" in the field "VALUE". A table of the integer decimal 
value of all characters is included in Appendix H.2 “Integer Decimal Values for 
ASCII Characters”.

H.5.13  FLDEQL - Find Value in Group of Fields

The FLDEQL subroutine is used to check if any of a number of consecutive, equal-
length alpha fields has a given value. The syntax is:

    FLDNO = FLDEQL(STR1,BASE,FIRST,LAST)

VALUE/I Integer decimal value of the Nth character in 
STRING.

STRING/An Field to use.

N/I Character in STRING to convert to its integer 
decimal value.

STR1/An Alpha string to search for. STR1 can be a field or a 
constant.

BASE/An The base field for numbering the fields to be 
searched. BASE must be a field.

FIRST/I Field number, relative to BASE, where to start. 
BASE is field #1. FIRST can be a field or an integer 
constant.

LAST/I Last field, relative to BASE, to use. The fields must 
all be alpha fields of the same length as the base 
field. Last can be a field or an integer constant.

FLDNO/I 0 if not found, else field # relative to BASE if STR1 
matched that field.
H - 26   ADMINS User Guide



Character String Handling Subroutines
H.5.13.1  FLDEQL Example
Assume the following .DEF:

      MAS 100
      IDENT   X9999  KEY1
      NAME    A24
      GRADE1  A4
      GRADE2  A4
      GRADE3  A4
      GRADE4  A4
      GRADE5  A4
      GRADE6  A4
      GRADE7  A4
      GRADE8  A4
      GRADE9  A4
      GRADEA  A4

where the fields GRADE1 - GRADEA is used to store various degrees a person might 
have. A similar .DEF with the SELECT statement:

SELECT FLDEQL('MBA',GRADE1,1,10) GT 0

could be used to select all records that have the value 'MBA' in any of the 10 GRADEn 
fields.

Also, the following RMO statements could be used to detect if any record had more 
than one GRADEn field containing the value 'MBA':

      LOCAL
      FLDNO/I
      START/I
      .
      PROGRAM
      .
      FLDNO = FLDEQL('MBA',GRADE1,1,10)
      IF FLDNO GT 0 AND FLDNO LT 10 THEN ;
         START = FLDNO + 1 ;
         IF FLDEQL('MBA',GRADE1,START,10) GT 0 THEN ;
            ... more than one 'MBA' ...
ADMINS User Guide  H - 27



Character String Handling Subroutines
H.5.14  FSEARCH - Find Character String in Group of Fields

The FSEARCH subroutine is used to search for a given text string anywhere within a 
number of consecutive alpha fields. The syntax is:

    POS = FSEARCH(STR1,LEN,BASE,NFLDS,SPOS)        

H.5.14.1  FSEARCH Example
Assume the following .DEF:

      MAS 1000
      .
      TXT1   A60
      TXT2   A60
      TXT3   A60
      TXT4   A60
      TXT5   A60
      .

then the following RMO statement would locate the first occurrence of the string 
'VAX 6240' anywhere within the TXT1 - TXT5 fields:

      LOCAL
      POS/I
      FLDNO/I
      SPOS/I
      .
      PROGRAM
      .
      POS = FSEARCH('VAX 6240',8,TXT1,5,1)
      IF POS GT 0 THEN ;
         ... 'VAX 6240' was present ...

If you want to know which field it was found in,

FLDNO = (POS / 60) + 1

would give you the field number, relative to TXT1.

If you wanted to know if 'VAX 6240' was mentioned more than once, the following 
statement would give you the answer:

SPOS = POS + 8
IF SPOS LT 300 AND FSEARCH('VAX 6240',8,TXT1,5,SPOS) GT 0 THEN ;
         ... 'VAX 6240' present more than once ....

STR1/An Alpha string to search for. STR1 can be a field or a 
constant.

LEN/I Length of STR1 to use in the search. LEN can be a 
field or a constant.

BASE/An The base field for the search. BASE must be a field.

NFLDS/I Number of consecutive fields to use. NFLDS can be 
a field or a constant.

SPOS/I Position number, relative to the beginning of BASE, 
where to start the search. SPOS = 1 will start the 
search from the beginning of BASE. SPOS can be a 
field or a constant.

POS/I 0 if not found, else position  number relative to the 
beginning of BASE where the matching string was 
found.
H - 28   ADMINS User Guide



Character String Handling Subroutines
H.5.15  FORMAT - Format Alphanumeric Strings

The FORMAT subroutine provides a convenient way to format alphanumeric strings 
which contain values from various fields and/or literal text. Using FORMAT you can 
build strings up to 254 characters in length by placing the output in an array. 

The FORMAT subroutine syntax is as follows:

STAT = FORMAT(FMTSTR [,FLD1,FLD2,...] ,RESULT)

                         

FMTSTR/An Format control string (field or alpha constant).
Contains literal text and these special symbols:

*   represents value of next field (FLDn)
AP)  represents a literal apostrophe (')
(SL)  represents a literal slash ('/')
(BL)  represents a literal blank (' '), for inserting 
leading blanks in output string. 
(n)  "tab to column n" place the next item at 
character position n in the output string 
(character position numbers start with zero, not 
one). Ignored if already past this position.  N is 
between 1 and 254: that is, the control strings (1) 
through (254) are valid.
 =*   represents a literal '*' character
=(   represents a literal '(' character
 ==   represents a literal '=' character

FLDn/any Up to 14 fields of any data types whose values are
substituted for each '*' symbol in FMTSTR.

RESULT/
An[(n)]

Field (or local array) containing 
formatted result stringa

a.     FORMAT result arrays must be “local” arrays declared  
in the RMO.  FORMAT treats the RESULT as a single 
“field” with a size equal to the size of the field times the 
number of elements in the array (maximum size 254 
characters). For example, a RESULT A40 array with 6 
elements is  treated as a 240-character alpha field. If the 
string loaded into this array is 153 characters long, 
RESULT(1), RESULT(2), and RESULT(3) would have 40 
characters loaded; RESULT(4) would have 33 characters 
loaded; and RESULT(5) and RESULT(6) would be blank.

STAT/I Status: 1  OK
-1  FORMAT requires at least 2 arguments 
(FMTSTR and RESULT), and cannot have more 
than 16 arguments
-2  FMTSTR and RESULT must be alphanumeric 
(An)
-3  Internal format conversion error
-4  Parenthesis error in FMTSTR: Unless 
preceded by '=', parentheses must contain
either a column number or AP, SL, or BL.
 -5  Number of FLDn arguments is not
same as number of '*' symbols in FMTSTR
ADMINS User Guide  H - 29



Character String Handling Subroutines
In the ADMINS RMO syntax, an apostrophe is a constant delimiter and a slash 
delimits the value of a constant from its type. In ADMINS in general, leading blanks 
are squeezed out of alpha fields. Therefore, an attempt to place one of these 
characters directly in an alpha string usually fails. With the formatting symbols (AP), 
(SL), and (BL), FORMAT provides a straightforward way to place these troublesome 
characters in an output string. (AP) is converted to an apostrophe; (SL) is converted 
to a slash; and (BL) can be used to begin the output string with a blank. Note that 
regardless how many leading blanks are desired in the output string, you need to use 
(BL) only once, at the beginning of the format string.

When formatting numeric fields (I, Ln, Dn, and Fn), FORMAT never inserts leading 
zeros; always inserts commas (or dots if K is in the string assigned to the logical name 
OPTION (see Appendix A)); and never discards the decimal point indicator.

Some advantages of FORMAT over other methods are:

1. To simply concatenate fields separated by blanks, you do not need any local 
fields containing blanks if you use FORMAT. If you use NCAT or FCAT, you 
need them.

2. FORMAT provides an easy solution to the problem of inserting apostrophes, 
slashes, and leading blanks in alpha fields. This can be done with INSTR; but 
FORMAT is more straightforward.

3. In general, FORMAT has greater capacity than NCAT and FCAT, because 
NCAT and FCAT usually require more arguments to do the same thing. An 
RMO subroutine call can never have more than 16 arguments; and this limit is 
more likely to be reached with NCAT and FCAT than with FORMAT.

H.5.15.1  FORMAT Example
The following example illustrates the use of the FORMAT subroutine.

    DATE/DA                  ! Build string with FORMAT
    NAME/A30                 ! ------------------------
    AMOUNT/D2
    RESULT/A60
    STAT/I
    PROGRAM
    STAT = FORMAT('As of *, I owed * $*.    
A24',DATE,NAME,AMOUNT,RESULT)

FORMAT substitutes the values of the fields DATE, NAME, and AMOUNT, in order, 
where the '*' symbols occur in the format string. If the values of the fields DATE, 
NAME, and AMOUNT are respectively '03-AUG-89', 'Kevin', and '1.00', then, after 
the FORMAT call, the RESULT field contains:

    As of 03-AUG-89, I owed Kevin $1.00.
H - 30   ADMINS User Guide



Character String Handling Subroutines
H.5.16  STRTYP - Check Format of Alphanumeric String

The STRTYP subroutine checks the value of an alphanumeric (An) field to see if it can 
be successfully converted into a field of some other data type. STRTYP performs the 
same checks as the automatic data entry format check in TRANS.

STRTYP is useful for checking input when different kinds of data can be entered in a 
single alphanumeric field, and in other cases where alphanumeric data will later be 
converted to another data type.

The syntax of the STRTYP subroutine is as follows:

    STAT = STRTYP(STRING,TYPE)

H.5.16.1  STRTYP Example
STRTYP allows an application to be designed to accept data into an alpha field, while 
ensuring that the data is in the proper format to be subsequently converted to another 
field type. In the following example, the ASKSCR (see Appendix H.15.2 “ASKSCR: 
Prompt directly from RMO”) subroutine prompts for a string in date format, and 
STRTYP is used to ensure the response is correctly formatted:

        LOCAL
        ASTAT/I
        SSTAT/I
        ESTAT/I
        PROMPT/A34 'Enter the starting date DD-MMM-YY:'
        EPROMPT/A24 
        Y/I 10
        X/I 10
        Z/I 11
        ANSWER/A9
        TYPE/A2 'DA'
        PROGRAM
        * Prompt for start date, and check format of reply
        STARTPROMPT: ASTAT = ASKSCR(Y,X,PROMPT,ANSWER)
        EPROMPT = 'Format error, try again' ;
        SSTAT = STRTYP(ANSWER,TYPE) ;
         IF SSTAT NE 1 THEN ESTAT = ASKSCR(Z,X,EPROMPT) ;
              GOTO STARTPROMPT ;
          ELSE EPROMPT = ' ' ; ESTAT = ASKSCR(Z,X,EPROMPT) ; END

STRING/An Field containing alphanumeric data to check.

TYPE/An Field or constant containing a data type (I, D2, X999, 
etc.).

STAT/I Status:  1 OK: STRING matches TYPE
            0:   STRING does not match TYPE
            -1:  TYPE is not valid
ADMINS User Guide  H - 31



Character String Handling Subroutines
H.5.17  CHECKCHAR - validate field contents for special purpose

The CHECKCHAR subroutine is used to check that an alpha (An) field contains only 
characters from a certain subset of characters.  For example, this subroutine provides 
an easy way to ensure that a field contains no “illegal” characters for use in an email 
address or web site name. The syntax is:

   STAT = CHECKCHAR(MASK,STRING)

where:

Example:

   IF CHECKCHAR(11,TEXT) LE 0 THEN …

Would check if TEXT contains only 7 bit alphabetical characters (both upper and 
lower case) and underscores (1 + 2 + 8 = 11).

The CHECKCHAR subroutine also checks that an A field contains no non-printable 
characters (control characters in the range 0 - 31).  If such a character is found a -1 is 
returned. This check is performed first regardless of what character combinations 
CHECKCHAR is being asked to check for.

STAT/I
1
0

-1

Return Values
OK, only valid characters
Illegal characters presen
Non-printing character present (ASCII codes 1-31)

MASK/I
1
2
4
8

16
32
64

128
256
512

1024
2048

A code to determine which characters are legal:
Uppercase 7-bit alphabetical (A-Z)
Lowercase 7-bit alphabetical (a-z)
Numerical (0-9)
_ (Underscore)
- (Hyphen)
Space
Any 7-bit punctuation character
Any uppercase character (7 and 8 bit)
Any lowercase character (7 and 8 bit)
Any punctuation character (7 and 8 bit)
URL
Email address

STRING/An An alpha string to check
H - 32   ADMINS User Guide



Character String Handling Subroutines
H.5.18  SPLIT - Splitting an Alpha String into Several Fields

The SPLIT subroutine splits an alpha string into several fields.  

The general syntax is:

   STAT = SPLIT(INPUT,SEP,OUT1 [,OUT2 ...])

where:

INPUT/An An An field containing the string to be split into 
separate fields. Each sub-field is separated by the 
SEP character(s).

SEP Character(s) that separates the sub-fields in INPUT.  
SEP may be an An field, in which case it contains up 
to eight characters that serve as separators between 
the sub-fields, or an I field, in which case it contains 
the decimal value of a single character that serves as 
separator (e.g. SEP/I = 9 to indicate that the TAB 
character is used as separator).  Positive integer 
values of SEP are normally used only if the 
separator character is non-printable.

If the SEP argument is an integer and is negative, 
then the behavior of the subroutine is changed. 
When the last nonblank character in INPUT is the 
SEP character, SPLIT will load an additional blank 
subfield, and report an additional subfield in STAT.

See the example below.

OUTn One or more fields to receive the values of the sub-
fields.  The values of the sub-fields specified in the 
INPUT field must have a data format that match the 
data type of the corresponding OUTn field.

Instead of listing each output field as separate 
arguments, the output field can be an array.  If the 
output array is of data type An, where n is between 
6 and 18, e.g. OUT/A18(10), and the first element in 
the output array (e.g. OUT(1)) contains the value 
'@@', the rest of the array contains a list of field 
names to receive the output values.  In all other 
cases the elements of the output array will receive 
the output values, i.e. the first value in OUT(1), the 
second in OUT(2) etc.

If an array is used, it must be the ONLY output field.

STAT/I Return status.
> 0: Number of sub-fields found
0:  No sub-field values found
-n (0 < n < 99): Argument n has invalid format
-99: The SEP field has invalid type (must be An or 
I)
-98: Separator of type I must be <=255
-100: Too few elements in the output array
-10n: Field name in array(n) not found
ADMINS User Guide  H - 33



Character String Handling Subroutines
In the followiing example RMS the input string is split using the three alternatives for 
SEP, an ASCII character, an integer, and a negative integer, 

file testdir:n.mas
m$m/a2
s$s/a10
longstr/a60 
1sub/a40
2sub/a40
3sub/a40
4sub/a40
5sub/a40
*
asep/a1 '#'
*
isep/i 35      !ASCII code for '#'
*
negsep/i -35   ! negative integer signals alternate behavior
*              ! when final input character is a separator
1splcnt/i
2splcnt/i
3splcnt/i
program
if m$m ne 'UP' then STOP ; END
if s$s ne 'LONGSTR' then STOP ; END
1sub = '' ; 2sub = '' ; 3sub = '' ; 4sub = '' ; 5sub = '' ; 
1splcnt = split(LONGSTR,ASEP,1SUB,2SUB,3SUB,4SUB,5SUB)  !Case 1
1sub = '' ; 2sub = '' ; 3sub = '' ; 4sub = '' ; 5sub = '' ;    
2splcnt = split(LONGSTR,ISEP,1SUB,2SUB,3SUB,4SUB,5SUB)  !Case 2
1sub = '' ; 2sub = '' ; 3sub = '' ; 4sub = '' ; 5sub = '' ; 
3splcnt = split(LONGSTR,NEGSEP,1SUB,2SUB,3SUB,4SUB,5SUB)  !Case 3

The screen shot below shows the results, note that the negative integer argument 
results in an extra reported subfield because the last chracter in the input is a 
seperator.
H - 34   ADMINS User Guide



Text Handling Subroutines
H.6  Text Handling Subroutines

The TEXTCOPY subroutine is used for moving data between two TXnn or TInn 
fields, or for moving data between alphanumeric fields or arrays and a TXnn or TInn 
field. The TEXTATTR subroutine provides access to the attributes of the text stored 
in a TXnn or TInn field. The SEARCH subroutine searches for a specified string in a 
TXnn or TInn field.

Two other subroutines are provided that allow: consecutive alphanumeric fields of 
the same size in the main file of a screen to be edited as a paragraph (the EDIT 
subroutine); a generalized capability to justify several consecutive alphanumeric 
fields as a paragraph (the PARAG subroutine).

H.6.1  TEXTCOPY: Move Information Between Text Fields

Use the TEXTCOPY subroutine to copy text in one text field or array of alphanumeric 
fields to another text field or array of alphanumeric fields.

Syntax:
   
STAT = TEXTCOPY(FROMFLD,TOFLD,OPTION[,DIM[,TOPRUL[,BOTRUL]]])

STAT/I
(Value Returned)

 1:
 0:
-1:
-2:
-3:
-4:
-5:
-6:
-7:
-8:
-9:

-10:
-11:
-12:
-13:
-14:
-15:
-16:
-17:
-18:
-19:
-20:
-21:

Status:

OK: Text was successfully copied
FROMFLD was empty, no text copied
FROMFLD has improper data type
TOFLD has improper data type
OPTION has improper data type
OPTION has invalid value
Output file is open Read Only
TOFLD does not provide File Name
Unable to create output file
Too few arguments (must be at least 3)
Too many arguments
DIM is not of type integer
TOPRUL is not of type integer
TOPRUL not found in Data Dictionary
BOTRUL is not of type integer
BOTRUL not found in Data Dictionary
Invalid From field/Option combination
TO field invalid text format
Unable to open work file for RTF format
Unknown error getting internal RTF text
Error removing old lock mark
Cannot open input text file
Cannot create the output file

FROMFLD/TIn
                   Txn
                   An

Text field to copy from. This field can be a text field 
(internal or external), or an array of alphanumeric 
fields (e.g. ALPHA/A60 (6)).
ADMINS User Guide  H - 35



Text Handling Subroutines
TOFLD/Tin
             TXn
             An(n)

Text field to copy to. If FROMFLD is internal text 
and TOFLD is external text, and no text is presently 
in TOFLD or you are replacing the current text in 
the external TOFLD, a file name
must be provided in this field.

If TOFLD is alphanumeric, DIM lines of text will be 
loaded into the TOFLD array.

TEXTCOPY may be used to copy data from one 
array of alphanumeric fields to another array of 
alphanumeric fields, perhaps with a different field 
length.

 OPTION/I
0
1
2
3

5

8

16

32

+1000

+2000

+4000

Copy option
Replace text in TOFLD with text in FROMFLD 
Append text in FROMFLD to text in TOFLD 
Insert text in FROMFLD at top of text in TOFLD
If FROMFLD is text and TOFLD is alphanumeric 
TOPRUL contains line number to start at in 
FROMFLD, load DIM lines in TOFLD array.
If FROMFLD is alphanumeric and TOFLD is 
internal text (TI), replace DIM lines in TOFLD 
starting at line TOPRUL.
Append text in FROMFLD to text in TOFLD, but 
use existing ruler in TOFLD rather than ruler in 
FROMFLD.
FROM is an alpha field containing the file name 
of a text file to copy to the TO field. The text must 
be plain text.
TO field is an alpha field containing the file name 
where the output text is sent as a plain ASCII file.
TO field is an alpha field containing the file name 
where the output text is sent in RTF format.
If you add 1000 to the OPTION setting, any 
locked line mark in the from text will be removed 
when copied to the To text field.
If you add 2000 to the OPTION setting, control 
characters (bolding, underline, etc.) will be 
removed when copying from a text field to an 
array of alphanumeric fields.
Act as if a hard carriage return occurs at the end 
of each field when copying from an array of 
alpha fields (i.e. result will not be normalized

DIM/I Optional field (or constant) that gives the 
dimension of the alphanumeric array used as 
FROMFLD (e.g. in ALPHA/A60 (6) DIM would be 
6).

TOPRUL/I Optional ruler number to use when copying alpha-
numeric fields to a text field. A ruler with the same 
number should exist in the Data Dictionary.

BOTRUL/I Optional ruler number to end with when copying 
alphanumeric fields to a text field. A ruler with the 
same number should exist in the Data Dictionary.
H - 36   ADMINS User Guide



Text Handling Subroutines
The RMO should set W$W to 3 to force writeback of LINK records in TRANS after a 
call to TEXTCOPY, or else the copied text information in the TOFLD may not be 
available until EOFREC processing has taken place.

Be aware that if FROMFLD is alphanumeric, DIM = 0, TOPRUL = 0, and BOTRUL > 
0, the TEXTCOPY call will have the effect of changing the top ruler in the text.

H.6.1.1  Using TEXTCOPY to set a Lock Mark
TEXTCOPY has a special syntax for setting the lock mark at the end of  an internal 
text (TInn) field:

STAT = TEXTCOPY(MARK,TI_FIELD,OPTION)

Where

H.6.1.2  TEXTCOPY Examples
In the following code excerpt TEXTCOPY is used to insert the string "Explanation: ", 
which is stored in a local alphanumeric field at the top (OPTION = 2) of the text 
stored in the internal text field EXPLANATION (if its not already there!). The DIM 
argument is 1, as one line is to be inserted. TOPRUL is 3, specifying that Data 
Dictionary Ruler #3 is to be placed at the top of the file.

     FILE: ERRMSG.MAS
     LOCAL
     .
     EXPL_LAB/A13 'Explanation: '
     EXPL_TEST/A13 
     TCSTAT/I
     .
     PROGRAM
     .
     LABEL_CHECK: ;
     .
     EXPL_TEST = STR(EXPL_TEST,EXPLANATION,1,13) ;
     IF EXPL_TEST EQ EXPL_LAB THEN STOP ;
         ELSE TCSTAT = TEXTCOPY(EXPL_LAB,EXPLANATION,2,1,3) END
     .

In this next code excerpt TEXTCOPY is used to copy the text stored in field 
SCR_EXPL to the field EXPLANATION. Any text already in EXPLANATION would 
be replaced.

     FILE: ERRMSG.MAS
     LOCAL
     .
     SCR_EXPL/TI60
     TXSTAT/I
     .
     PROGRAM
     .
     TXSTAT = TEXTCOPY(SCR_EXPL,EXPLANATION,0)

The next code excerpt loads five lines at a time from the text field EXPLANATION 
into an array of alphanumeric fields.

     FILE: ERRMSG.MAS
     LOCAL
     .

MARK/I Mark to append.  The only allowed value is 11

TI_FIELD/TI Internal text field to append the Lock Mark in.

OPTION/I Must be set to 1.
ADMINS User Guide  H - 37



Text Handling Subroutines
     TCSTAT/I
     ALPARR/A80(5)
     J/I 1
     .
     PROGRAM
     .
     IF F$UNCKEY EQ 'F17' THEN GOSUB MORETEXT END
     .
     MORETEXT:  TCSTAT = TEXTCOPY(EXPLANATION,ALPARR,3,5,J) ; 
                J = J + 5 ; RET

H.6.1.3  TEXTCOPY - Appending a Lock Mark at the End of 
Internal Text
The TEXTCOPY subroutine now appends a Lock Mark at the end of an internal text.  
The syntax is:

STAT = TEXTCOPY(MARK,TI_FIELD,OPTION)

where:

When copying an array of alpha fields to a TI field, TEXTCOPY can be instructed to 
act as if there is a hard C.R. at the end of each field (i.e. the text is not normalized).  
Add 4000 to OPTION to get this behavior.

TEXTCOPY can also be told to take its input from an ASCII file.  Make the FROM 
field (1st argument) an An field containing the file name of the input text, and set 
OPTION = 8.  If TEXTCOPY cannot open the file STAT is returned with -20.

To output internal text to an ASCII file make the TO field an An file containing the 
file name, set OPTION = 16, and if the internal text is in RTF format set the DIM field 
to the maximum line length you want in the output file.  If the output file cannot be 
created STAT is returned with -21.

H.6.2  TEXTATTR: Get Text Field Attributes

Use the TEXTATTR subroutine to obtain the attributes (e.g. Number of lines, Date 
Last Modified, etc.) of the piece of text stored in the specified text field (field type 
TInn or TXnn).

Syntax:

       STAT = TEXTATTR(TXTFLD|BLOBFLD,OPTIONS,FLD1,...)

MARK/I Mark to append. The only allowed value is 11.

TI_FIELD/TI Internal text field in which to append the Lock 
Mark.

OPTION/I Must be set to 1.
H - 38   ADMINS User Guide



Text Handling Subroutines
STAT/I
Value

1
0

-1
-2
-3
-4

-5

-6

-101
-102
-1xx
-201
-202
-2xx

Status
OK. Text attributes successfully loaded
TXTFLD contains no text
TXTFLD is not a text field 
OPTIONS is not an alpha field 
More options than target fields 
 Invalid editor code (only 2 or 3 may be used for RTF 
text) 
Invalid format (cannot change format unless text/
blob has code 2, 3 or > 256). 
Unable to write back new format (file may be 
opened Read Only)
Target field 1 has incorrect data type 
Target field 2 has incorrect data type 
Target field xx has incorrect data type 
Option # 1 has unrecognized value 
Option # 2 has unrecognized value 
Option # xx has unrecognized value.

TXTFLD/TIn
or TXn or
BLOBFLD/BLOB 

Text field or BLOB to get attributes for. Must be a 
field.

OPTIONS/An

Valid Attribute Codes
DATCRE
TIMCRE

DATMOD
TIMMOD
LOCKED
NLINES

NCHARS
FORMAT

EDITOR

(Field or constant) String made up of alpha codes 
that designate attribute(s) to be loaded into target 
field(s). If more than one attribute is requested, 
codes are concatenated together, separated by a "+" 
(plus) character. For each attribute requested, a 
corresponding target field of appropriate data type 
must be declared following the OPTIONS 
argument.
(Target field type) Description
(DT) Date created
(TM) Time created
(DT) Date last modified
(TM) Time last modified
(L) Line # locked at
(L) Lines in text
(L) Characters in text
(I) Text editor 

1=ADMINS Internal(VMS)
2=AdmTed
3=MS Word
>256=BLOB format

(I) Used to change the format
(the default text editor or the
 BLOB format), e.g.:

STAT = TEXTATTR(TFIELD,'EDITOR/A6',FMT)

where the value in the FMT/I field will update the 
format attribute in the TCF record for the text field 
or BLOB. The only allowed values for FMT are 2 
and 3 to set which editor will be used for this text 
field, or a value > 256 when setting the format for a 
BLOB.

FLD1/xx Field(s) to receive attribute value(s). There must be 
as many target fields as there are option codes in 
OPTIONS, and each field must have the correct data 
type for the attribute value it is to receive.
ADMINS User Guide  H - 39



Text Handling Subroutines
H.6.2.1  TEXTATTR Example
In the following example TEXTATTR is used to get the number of lines of text in 
TXTFLD, and the line number where TXTFLD is locked.

     FILE TEXTFILE.MAS
     LOCAL
     .
     ATTROPT/A20 'LOCKED+NLINES'
     TXTLINES/L
     LCKLINE/L
     .
     PROGRAM
     .    
     STAT = TEXTATTR(TXTFLD,ATTROPT,LCKLINE,TXTLINES)

H.6.3  SEARCH: Find Character String in Text Field

The SEARCH subroutine finds the specified character string in the specified text field 
(TInn or TXnn). SEARCH is called using the following syntax:

FOUND = 
SEARCH(TXTFLD,STR[,CASE[,LINE[,NLNS[,WRD[,DIREC[,METACH]]]]]])

FOUND/I 1 = String was found.
0 = String was not found
-1 = Invalid # of arguments
-2 = Invalid search direction (use 0 or 
1)
-3 = Invalid case sensitivity code (use 
0 or 1)

TXTFLD/TIn    
       /TXn

Text field, internal or external, to be searched.

STRING/An (Field or constant.) 
Character string to be searched for in TEXTFIELD.

CASE/I (Optional.) 
 0 = case insensitive search.
 1 = case sensitive search.

LINE/L         
                 

(Optional.)
Line # to start the search. 
If 0 or 1, start at beginning of text, 
if -1, start at end of text.
Returns line number where STRING was found.

#LINES/I (Optional.) 
Number of lines to search relative to 
LINE.

WORD/I (Optional.) 
Start search within LINE at this word number.
Returns the number of the word within LINE 
where STRING was found.
H - 40   ADMINS User Guide



Text Handling Subroutines
Be aware that SEARCH does not work like a text editor search. A search for "WORD" 
using SEARCH will try to find "WORD" embedded in white space. (the beginning 
and end of a line is considered a white space, along with tabs, blanks, etc.). If you 
want to do a text editor like search for 'WORD' you would have to embed it in meta 
characters ("wildcards), i.e. "*WORD*". The various options are:

• WORD - Find 'WORD' embedded in white space
• *WORD - Find any word ending with 'WORD'
• WORD* - Find any word starting with 'WORD'
• *WORD* - Find any occurrence of 'WORD', regardless of surrounding 

characters.
E.g., if your search string contained:
'port* * *'
SEARCH would pick up constructs like 'Port of Spain', 'ports in Spain', 
'Portugal and Spain', etc.

DIREC/I (Optional.) 
0 = search forward in file from LINE.
1 = search backward in file from LINE.

METACH/A1 (Optional.)Default meta character for 
wildcard search is '*' (asterisk). 
Provide this argument if you want to 
override the default meta character.
If METACH is blank, no character is 
treated as a meta character.
ADMINS User Guide  H - 41



Text Handling Subroutines
H.6.4  SUBSTITUTE: Replace character string with another string

The SUBSTITUTE subroutine can be used to replace a character string in an internal 
text field (or an Alpha field) by another character string.  The syntax is:

   STAT = SUBSTITUTE(FIELD,FROM,TO,OPTION)

Where:

FIELD/TI
FIELD/An

An internal text (TI) or Alpha field to operate on

FROM/An An An field containing the character string to be 
replaced.

TO/An An An field containing the character string that 
should replace the character string in the FROM 
field if found.

OPTION/I

1

2

4

8

16

Options controlling the substitution:

Change all occurrences (by default only the first 
occurrence is changed).

The FROM text is case insensitive (by default only 
character strings that match exactly using the 
character case will be changed, e.g. "text" and "Text" 
does not match)
.
Change whole words only, i.e. do not change a 
match if it is part of a longer word.

Process only TI format 2 (AdmTed RTF) and 3 
(WORD RTF).  On Windows, by default old TED 
WPT format text will be converted to RTF before a 
search for matching strings are performed.  With 
this option set old style text is not changed.

Convert old style TED WPT text to RTF even if no 
substitution took place.  By default, if there is no 
match found in the field the field is left unchanged 
in TED WPT format.

STAT/I
>0

 0

-1
-2
-3

-4

-5
-6

Return status:
Number of occurrences changed

No match found

Invalid number of arguments in subroutine call
FIELD is not TI (Internal text) or A (alpha)
An internal text field matched to a field in an 
external file (e.g. LINK file) does not match in data 
type
File is opened in Read Only mode, and cannot be 
changed.
Matching TI$FIELD not found (an internal error)
Unable to convert WPT to RTF format
H - 42   ADMINS User Guide



Text Handling Subroutines
H.6.5  EDIT: "Paragraph" Editing in TRANS

TRANS "Edit Mode" allows editing of individual characters within a field without 
retyping the entire field.6 The EDIT subroutine expands this capability to allow 
editing of several consecutive alphanumeric fields in the main file of the screen as a 
group, or "paragraph". In this facility leading blanks are retained to support 
indentation of paragraphs.

When the EDIT subroutine is called the message

     --------------------EDIT--------------------

appears on the screen directly above the group of fields to be edited as a paragraph, 
signaling that the EDIT subroutine is enabled and delimiting the width of the 
paragraph. This message disappears when the EDIT subroutine exits.

When the EDIT subroutine is enabled the following keystroke functions may be used 
in addition to the normal TRANS editing keystroke functions:7

The last line of the "paragraph" must be empty in order to insert a line while the EDIT 
subroutine is enabled. If the last line is not empty TRANS sounds a warning tone and 
displays the message:

     Last line NOT empty

Normalizing text will not remove leading blanks (indents are preserved) or blank 
lines.

H.6.5.1  EDIT Syntax
           NULL = EDIT(FIELD,X,Y,NF,WIDTH)

6.    See Section 6.3.1 “Keystrokes: Entering or Changing Fields”.

KEYSTROKE EDIT subroutine function (Paragraph Editing)

ed.ext Leave EDIT subroutine

ed.dell Delete the current line

ed.down Move the cursor down one line, same column.

ed.insl Insert a line after the current line*.

ed.norm Normalize the paragraph from the current cursor 
position to the bottom, by putting as many words as 
possible on a line, once space between each.

ed.up Move the cursor up one line, same column.

7.    When the EDIT subroutine is enabled the "Show TRANS editing keys" display is 
extended to include the paragraph editing functions.

NULL/I Required for syntax purposes only.

FIELD/An The first of a consecutive sequence of An fields in 
the main file of the screen, that are to be edited as a 
group, or “paragraph”.
ADMINS User Guide  H - 43



Text Handling Subroutines
H.6.5.2  EDIT Examples
Following are two examples of instruction files that use the EDIT subroutine. The 
first screen (TEXT) allows editing of a single paragraph, while the second (TEXT2) 
supports editing of two separate paragraphs.

     *  TEXT.DEF
     *
     MAS 100
     N    I    KEY1
     L1   A30
     L2   A30
     L3   A30
     L4   A30
     L5   A30
     L6   A30
     L7   A30

     *  TEXT.TRS
     *
     TEXT TEXT.MAS 1 TEXT.RMO NOMSG APPEND AUTOCR
     E N
     ER ED/A1  [4,19,1]
     E L1
     E L2
     E L3
     E L4
     E L5
     E L6
     E L7
     SCREEN
     CE TEST OF TEXT EDITING IN TRANS
     BL
     N: N-
     TYPE 'X' TO EDIT:
     BL
     L1----------------------------
     L2----------------------------
     L3----------------------------
     L4----------------------------
     L5----------------------------
     L6----------------------------
     L7----------------------------
     END

X/I The line number of the upper left corner of the 
rectangle where the group of fields have been 
placed on the screen.

Y/I The column number of the upper left corner of the 
rectangle where the group of fields have been 
placed on the screen.

NF/I Number of fields in the group to be edited as a 
paragraph.

WIDTH/I The width of the paragraph (the size of FIELD1 and 
the NF consecutive fields of the same size). WIDTH 
must be even, and less than or equal to 80.
H - 44   ADMINS User Guide



Text Handling Subroutines
     *  TEXT.RMS
     *
     FILE TEXT.MAS
     LOCAL
     M$M/A2
     S$S/A6
     *
     * FIELDS TO DESCRIBE POSITION OF
     * PARAGRAPH TO BE EDITED
     X/I 6
     Y/I 1
     NF/I 7
     WIDTH/I 30
     *
     * LOCAL FIELD TO INDICATE INTENTION TO EDIT
     ED/A1
     *
     * DUMMY FIELD REQUIRED FOR SYNTAX
     NULL/I
     PROGRAM
     IF M$M EQ 'UP' THEN ;
        IF S$S EQ 'ED' AND ED NE ' ' THEN ;
        NULL = EDIT(L1,X,Y,NF,WIDTH) ;
        ED = ' ' END END

The second example allows editing on two different paragraphs.

     *  TEXT2.TRS
     *
     TEXT2 TEXT.MAS 1 TEXT2.RMO NOMSG APPEND AUTOCR
     E N
     ER ED/A1 [5,55,1]
     E L1
     E L2
     E L3
     E L4
     E L5
     E L6
     E L7
     SCREEN
     CE  TEST OF TEXT EDITING IN TRANS
     BL
     N: N-
     BL
     TYPE '1' TO EDIT FIRST PARAGRAPH, '2' TO EDIT SECOND:
     BL
     L1----------------------------
     L2----------------------------
     L3----------------------------
     L4----------------------------
     BL
     BL
     BL
     L5----------------------------
     L6----------------------------
     L7----------------------------
     END

     *  TEXT2.RMS
     *
     FILE TEXT.MAS
     LOCAL
     M$M/A2
     S$S/A6
     *  FIELDS TO DESCRIBE POSITION OF FIRST PARAGRAPH
     X1/I 7
     Y1/I 1
     NF1/I 4
     *  FIELDS TO DESCRIBE POSITION OF SECOND PARAGRAPH
     X2/I 14
     Y2/I 1
     NF2/I 3
     *  NUMBER OF CHARACTERS IN A LINE FOR BOTH PARAGRAPHS
     WIDTH/I 30
ADMINS User Guide  H - 45



Text Handling Subroutines
     *  FIELDS USED FOR EDITING BOTH PARAGRAPHS
     ED/A1
     NULL/I
     PROGRAM
     IF M$M EQ 'UP' THEN ;
        IF S$S EQ 'ED' THEN ;
           IF ED EQ '1' THEN ;
              NULL = EDIT(L1,X1,Y1,NF1,WIDTH) END ;
           IF ED EQ '2' THEN ;
              NULL = EDIT(L5,X2,Y2,NF2,WIDTH) END ;
           ED = ' ' END END

H.6.6  GETMSG - Retrieving “Literal” Text From a File

The GETMSG subroutine retrieves "literal" text from a file.  This feature makes it 
possible to store and maintain text strings in an ADMINS file rather than as literal 
constants in an RMO, thus avoiding having those character strings count against the 
internal constant array in the RMO.

To use this subroutine, you must define an ADMINS file where the first field is an I 
(integer) field, and the second field is an A80 field (the field names do not matter).  
The file may or may not contain additional fields, but only the two first fields in the 
file are used for this feature.

The first field contains a number that uniquely identifies the text in the second field.

Then, create a logical name ADM$MESSAGEFILE containing the full pathname of 
the file.  Then GETMSG can be used to retrieve the text strings from the file.  The 
syntax is:

STAT = GETMSG(ID,TEXT)

where:

The first time GETMSG is called, it loads all the records in the ADM$MESSAGEFILE 
file into memory, and keeps the texts in memory for the rest of the TRANS session. 
This memory does not count against any of the limited memory arrays in TRANS.

The following subroutines will also retrieve messages from the 
ADM$MESSAGEFILE file if arguments are passed on the form: #nn# i.e. the 
character '#' followed by the message number followed by the character '#':

DLGBOX, MSGBOX and ASKSCR

ID/I The unique number that identifies a certain text 
string. The number can be a field or a constant.

TEXT/An An alpha field to receive the text string identified by 
ID.

STAT/I 1 = OK
0 = No such text id
-1 = ADM$MESSAGEFILE not assigned or not 
found
-2 = ADM$MESSAGEFILE has invalid format
-3 = Unable to allocate memory for text strings
H - 46   ADMINS User Guide



Text Handling Subroutines
H.6.7  PARAG: Reformat Consecutive Fields as Paragraph

PARAG reformats the data in a series of alphanumeric (An) ADMINS fields into a left 
justified paragraph. PARAG does not split words across field boundaries unless a 
word is longer than the field length.

      STAT = PARAG(FIELD,NFLDS,OPTION)  

PARAG handles input data in which words are assumed not to be split across field 
boundaries. It also has an option for data, such as that produced by ACQUIR, where 
input words may cross field boundaries and fields may have hat (^) characters to 
hold leading blanks. For example:

      NOT SPLIT (OPTION = 0)              SPLIT (OPTION = 1)
 ------------------------------     ------------------------------ 
 This text was entered in           This text was ACQUIRed. Assume
 a screen.                          ^that leading and trailing
 Assume                             blanks in fields indicate gaps
 that the                           ^between words, and
 beginning of each line is the      leading hats indicate blanks.
 beginning of a word.

The alpha fields on which PARAG operates must be fields in the DEF of the RMO file, 
the fields must all be the same size, and they must be in consecutive order. PARAG 
does the following:

1. Changes tabs to blanks.
2. If input words cross field boundaries (OPTION argument is 1), changes leading 

hats in input fields to blanks (in case data was created with ACQUIR 'B' option).
3. If words do not cross field boundaries (OPTION argument is 0), inserts a blank 

between the end of one field and the beginning of the next field. Otherwise, 
fields are joined end to end.

4. Squeezes out leading blanks, trailing blanks, and multiple blanks.
5. Writes the data back beginning with the first field, putting as many words as 

possible in each field without splitting words across field boundaries. The 
output may occupy fewer fields than the input did; unused fields at the end of 
the paragraph are blanked out.

FIELD/An: Name of first An field in paragraph

NFLDS/I: Number of fields in paragraph

OPTION/I: 0 if input words do not cross field boundaries
1 if input words cross fields

STAT/I: -5: FIELD is not in file
-4: Not all fields are in file
-3: Invalid OPTION
-2: fields in paragraph are not all same size or are 
not all An fields 
-1: not enough fields for normalized text (can occur 
when option is set to 1)
1: OK
ADMINS User Guide  H - 47



Text Handling Subroutines
If you are using option 1 (the input contains words split across field boundaries), the 
output data may occupy more fields than the input data. If using option 1, space for 
expansion (blank fields) should be provided at the end of the paragraph. The shorter 
your fields and the longer your words, the more extra fields you will need. The 
maximum number of extra fields needed for expansion equals the number of fields 
which contain input data. If there aren't enough fields for the output data, PARAG 
returns a status of (-1). If this occurs the RMO should not write back the record (use 
W$W), because if the record is written, data will be lost.

Another result of option 1 is that after joining the fields, a "word" may be longer than 
the field length. In this case PARAG splits the word across as many fields as 
necessary.

H.6.8  TED: Call TED Text Editor in TRANS

The TED subroutine lets you invoke the TED Text EDitor to view and edit a text 
editable file, or an array of ADMINS An fields. The syntax is:

 
STAT = TED(WH,TXT,COL,LN[,OPT])

TXT must be a field. WH, COL, and LN may be fields or numeric constants.

WH/I 0 = Edit the text file named in TXT.
1 = TXT is the name of a field that is the base of an 
array of An elements.

TXT/An 
[(dim)]

If WH is 0, an An field that contains 
the name of a text file. If WH is 1, 
the base of an array of type An (n 
should always be an even number, i.e. 
A48, A56, A80)

COL/I Maximum width of text. If WH = 1, COL must 
match the size of the Alpha field, i.e. if TXT is field 
type A60 COL must be 60. COL should always be an 
even number.

LN/I Maximum number of lines to edit. If WH = 1 LN 
must be equal to or less than (dim), the size of the 
text array.

OPT/I Optional
0 = Read only
1 = Edit (Read/Write)

STAT/I >0 = OK (number of lines edited)
-1 = Invalid function code (WH not 0 or 1)
-2 = TXT not An type field
-3 = COL and/or LN missing or invalid for WH = 1
-4 = COL < 20 or COL > 80 for WH = 1
-5 = Invalid syntax for file name
-100 = Text not saved
H - 48   ADMINS User Guide



Text Handling Subroutines
H.6.9  VIEWTEXT: Display Text File in TRANS

The VIEWTEXT subroutine provides the capability to display and/or edit a text file 
in a window on the TRANS screen. VIEWTEXT syntax is as follows:

STAT = VIEWTEXT(TFILE,LINE,COL,NL,NC)

where:

When the RMO calls VIEWTEXT, the beginning of the specified file TFILE is 
displayed in a box whose size and location are defined by LINE, COL, NL and NC. 
(Specify NL and NC to be 2 greater than the actual display area you want, to allow 
for the horizontal and vertical borders.)

The following keystrokes are used to move around in the VIEWTEXT file:

1. The UP and DOWN arrows scroll up and down 1 line at a time.
2. ENTER displays the next line.
3. PREV and NEXT scroll up and down one "page" (3/4 of the scrolling region 

size.
4. NRECS prompts with "n:" and accepts the UP or DOWN arrows to go to the 

beginning or end of the file. Use HOME to cancel the request at the "n:" prompt. 
(All other responses to the "n:" prompt cause a warning tone.)

5. HOME exits from VIEWTEXT and return the user to the TRANS screen.
6. The RGHT and LEFT Arrows scroll right and left. If the text is wider than the 

specified window, the right side of the box enclosing the text is opened to 
indicate that there is more text to the right. Use the right arrow key to scroll the 
text sideways to the right. When the text is scrolled to the right, the left side of 
the box is opened to indicate there is more text to that side. Use the left arrow to 
scroll back to the left.

7. SEL prompts for a "Search string:". Enter the character string you want to find; 
the press LOOK to search for it starting at the current position in the file (the top 
line displayed), or press the UP arrow to begin the search at the beginning of the 
file. If the search text is found, the text will be highlighted.
Once a search string has been entered you can find additional instances of the 
string by pressing LOOK again.

8. SHFK displays keystroke help.

Other keystrokes beep and do nothing.

TFILE/An Name of text file to display

LINE/I Top screen line for text display box

COL/I Left screen column for text display box

NL/I Number of lines in window

NC/I Number of columns in window

STAT/I Return values are:
1 = OK
0 = File was empty
-1 = File not found
-2 = Syntax error or illegal window specification
ADMINS User Guide  H - 49



File Information Subroutines
The screen is normally refreshed after leaving the window: the box and the text 
disappear, and the portions of the screen that were overlaid are redisplayed.

The box containing the text can optionally be kept on the screen after VIEWTEXT 
exits. This is enabled by placing the "v" (lower case v) into the string assigned to the 
logical name OPTION (see Appendix A: “Options”). When OPTION 'v' is in effect the 
VIEWTEXT display will be printed out as part of the screen display with the PRT 
keystroke.

 You may also invoke an editor to edit your VIEWTEXT text file from inside the 
VIEWTEXT window. Assign the name of an editor to the logical name 
ADM$TEXTEDIT, e.g.

$ ASSIGN "EDIT/EDT" ADM$TEXTEDIT

Then, if you press EDIT in the VIEWTEXT window, VIEWTEXT will then SPAWN 
the editor with the VIEWTEXT file as the file to be edited. Once you exit from the 
editor, you will be back in the VIEWTEXT window, displaying the newly edited 
version of the file.

H.7  File Information Subroutines

The two subroutines FILE32 and FIELD allow for the capture of the file definition 
information stored in the header of an ADMINS file.

H.7.1  FILE32 - Retrieve File Information From File Header

FILE32 is used to access the file header of an ADMINS file and retrieve information 
as to the number of records in the file, the size (in blocks), number of fields, size of 
the key (in words), and last record and index positions used. When FILE32 is called 
with another file name, the current file is closed.

H.7.1.1  FILE32 Syntax
         STAT = FILE32(FILNAM,NRECS,NBLOKS,NFLDS,KSZ,LSREC,LSIDX)

STAT/I Set to 1 if the file is found and 0 if the file is not 
found.

FILNAM/An Name of the file to be queried.

NRECS/D Set to the number of records in the file.

NBLOKS/D Set to the number of ADMINS blocks (1024 bytes) in 
the file.

NFLDS/I Set to the number of fields in the file.

KSZ/I Set to the size in words (1 word = 2 bytes) of the key 
in the file.

SLSREC/D Set to the last record position used in the file.

LSIDX/I Set to the last index block used in the file.
H - 50   ADMINS User Guide



File Information Subroutines
H.7.1.2  FILE32 Example
The file EXAMPLE.MAS has 10 records and the following file definition:

     *  EXAMPLE.DEF
     *
     MAS 100
     FLD1 I KEY1
     FLD2 A16 - /LA
     FLD3 D2 - /MAX
     FLD4 F5
     FLD5 DA
     FLD6 XA9A9A9

Given the following fields and values,

     STAT/I
     FILNAM/A20 'EXAMPLE.MAS'
     NRECS/D
     NBLOKS/D
     NFLDS/I
     KSZ/I
     LSREC/D
     LSIDX/I

then

     STAT = FILE32(FILNAM,NRECS,NBLOKS,NFLDS,KSZ,LSREC,LSIDX)

would result in the fields having the following values:

     STAT/I     1
     FILNAM/A20 'EXAMPLE.MAS'
     NRECS/D    10
     NBLOKS/D   13
     NFLDS/I    6
     KSZ/I      1
     LSREC/D    61
     LSIDX/I    1

H.7.2  FIELD - Retrieve Field Information From File Header

Once a file is opened via a call to FILE32, then the FIELD subroutine can be used to 
get information about its fields. FIELD would be called once for each field in the file 
if information about all fields is required. The information available is the field's 
name, type, and size (in words); whether it is a key field; its picture (if applicable), 
and its derivation operator (if it has one).
ADMINS User Guide  H - 51



File Information Subroutines
H.7.2.1  FIELD Syntax
           NULL = FIELD(N,FNAM,TYPE,NWRDS,KEY,PICT,DER)

NULL/I Required for syntax purposes only.

N/I Number of the field that FIELD is to retrieve based 
on its ordinal position in the file.

FNAM/A24 Set to the name of the Nth field.

TYPE/I Set to code for field type of the Nth field, as 
follows:

Code   Field Type    
1        Dn
2        Ln
3        I
4        DA
5        An
6        Picture
7        Fn
8        DT
9        TM

The type is placed in the right byte of TYPE. In the 
case of Dn or Fn, the number of decimal places is 
placed in the left byte of TYPE. For Ln, Dn or Fn 
fields, FIELD returns values for TYPE according to 
the following formula (where NDEC is the number 
of decimal places, and FTYP is "1" for Dn fields, "2" 
for Ln fields, and "7" for Fn fields):

TYPE = (256 * NDEC) + FTYP
That is, for file type D TYPE is 1, D1 is 257 ((256 * 1) 
+ 1), F2 is 519 ((256 * 2) + 7), etc.

NWRDS/I Set to the number of words occupied by the data for 
the Nth field.

KEY/I Set to the key status of the Nth field. For example, 
2 means the second key field. Negative values 
indicate descending keys, i.e. -2 means the second 
key field and a descending key. For non-key fields, 
KEY is zero.

PICT/A24 Set to the picture for the Nth field, if applicable.

DER/I Set to the derivation operator for the Nth field, if 
applicable. The operation codes are 1 to 9, 
corresponding to /V, /E, /AVG, /MAX, /MIN, /FI, /
LA, /C and /SA. If no operator is present, DER is 0.
H - 52   ADMINS User Guide



File Information Subroutines
H.7.2.2  FIELD Example
The file EXAMPLE.MAS has been opened using the FILE32 subroutine (see 
Appendix H.7.1.2 “FILE32 Example”) and has the following file definition:

     *  EXAMPLE.DEF
     *
     MAS 100
     FLD1 I KEY1
     FLD2 A16 - /LA
     FLD3 D2 - /MAX
     FLD4 F5
     FLD5 DA
     FLD6 XA9A9A9

Given the following fields and values,

     NFLDS/I 6
     NULL/I
     N/I
     FNAM/A24
     TYPE/I
     NWRDS/I
     KEY/I
     PICT/A24
     DER/I

then looping through the FIELD subroutine

     NX: N = N + 1 ; IF N GT NFLDS THEN GOTO DONE END
     NULL = FIELD(N,FNAM,TYPE,NWRDS,KEY,PICT,DER) ; GOTO NX
     DONE: STOP

would result in the above fields having the following values for each field in the file 
EXAMPLE.MAS.

     N  FNAM  TYPE  NWRDS  KEY   PICT   DER
     -  ----  ----  -----  ---  ------  ---
     1  FLD1     3    1     1            0
     2  FLD2     5    8     0            7
     3  FLD3   513    3     0            4
     4  FLD4  1287    4     0            0
     5  FLD5     4    1     0            0
     6  FLD6     6    3     0   A9A9A9   0
ADMINS User Guide  H - 53



Arithmetic Subroutines
H.8  Arithmetic Subroutines

This group of subroutines perform special purpose arithmetic functions.

H.8.1  CARITH - Perform Array Arithmetic on D Type Fields

The CARITH subroutine is provided to give the user the ability to perform a repeated 
arithmetic operation between two (2) data structures and store the result(s) in a third 
data structure for a given number of iterations in a single RMS statement. These data 
structures can be either arrays (local or in the DEF) or single elements, allowing for 
six (6) modes of use:

1. Many to many to many (Array to array with the result in an array)
2. Many to many to one (Array to array with the result a single element)
3. Many to one to many (Array to a single element with the result in an array)
4. Many to one to one (Array to a single element with the result in a single 

element)
5. One to one to one (Single element to single element with the result in a single 

element)
6. One to one to many (Single element to single element with the result in each 

element of an array)

For example, in a financial application, CARITH could be used to:

1. Subtract twelve (12) monthly expense figures from twelve (12) monthly revenue 
figures resulting in twelve (12) monthly profit figures.

2. Divide the single constant 1000 into twelve (12) monthly profit figures resulting 
in twelve (12) monthly profit figures in thousands.

3. Add twelve (12) monthly profit figures in a single field resulting in a single full 
year profit figure.

Although CARITH can be used to achieve reductions in RMO size and complexity by 
alleviating the need to write "loop" paragraphs, its major benefit is its speed. Testing 
has shown CARITH to be 10 to 15 times faster than the equivalent explicit statements 
in an RMO, depending on the arithmetic operation performed.

It is possible to use CARITH to change the elements of an input array. In this case the 
output argument is one of the input arguments. However, a single element should 
not be used as both an input and an output argument.

CARITH is meant to be used with D fields only. If fields that have decimal places (i.e. 
field type D1, D3 etc.) are used the decimal point is ignored, i.e. 3.67 is treated as 367. 
and 0.05720 is treated as 5,720.
H - 54   ADMINS User Guide



Arithmetic Subroutines
H.8.1.1  CARITH Syntax
           NULL = CARITH(OP,IN1,SB1,IN2,SB2,OUT,SB3,NELE)

NULL/I Required for syntax purposes only.

OP/I Arithmetic operation to perform. 
1 means add IN1 to IN2. 
2 means subtract IN2 from IN1. 
3 means multiply IN1 times IN2
4 means divide IN1 by IN2 and round.
5 means divide IN1 by IN2 and truncate.

IN1/D First input argument which can be either an array or 
single element.

SB1/I Starting subscript for IN1. Note that for all 
subscripts (SB1, SB2, SB3), a subscript of 1 is used 
for the first element regardless of whether the array 
is a local array or from the data record. A subscript 
of 0 defines the argument to be a single element.

IN2/D Second input argument which can be either an array 
or single element.

SB2/I Starting subscript for IN2.

OUT/D Output argument which can be either an array or 
single element.

SB3/I Starting subscript for OUT.

NELE/I Number of elements to be processed in each of the 
arrays upon which CARITH is being performed. If 
only single elements are being processed NELE 
must be ‘1’ to perform correctly.
ADMINS User Guide  H - 55



Arithmetic Subroutines
H.8.1.2  CARITH Example
Using the following file definition with the sample record shown, the TEST record 
maintenance will shown the use of CARITH in three different modes of use.

     *   TEST.DEF
     *
     MAS 10                 Record Content
     *                      --------------
     KY A1 KEY1                  'A'
     VAL1 D                       1
     VAL2 D                       2
     VAL3 D                       3
     VAL4 D                       4
     VAL5 D                       5
     TOTAL D                      0

     *   TEST.RMS
     *
     FILE TEST.MAS
     LOCAL
     ZERO/I    0
     I/I
     NELE/I
     TVAL/D(5) 6 10 9 7 12
     OP/I
     CONS/D    2
     NULL/I
     DUMMY/D
     PROGRAM
     *
     * Subtract the value found in each of the 5 fields 
     * (VAL1 thru VAL5) in the sample record from the values in each 
     * of the 5 elements in the local array TVAL and place 
     * the resulting values into VAL1-VAL5. (Results in 
     * column 'AFTER STATEMENT 1' in the table below)
     *
     OP = 2 ; I = 1 ; NELE = 5 ;
      NULL = CARITH(OP,TVAL,I,VAL1,I,VAL1,I,NELE)
     *
     * Multiply the values found in VAL3 thru VAL5 by the value
     * found in CONS (2) and place the results in VAL3-VAL5.
     * (Results in column 'AFTER STATEMENT 2' in table below)
     *
     OP = 3 ; I = 3 ; NELE = 3 ;
      NULL = CARITH(OP,CONS,ZERO,VAL1,I,VAL1,I,NELE)
     *
     * Sum the values in VAL1 thru VAL5 and place the result in
     * TOTAL. (Result in column 'AFTER STATEMENT 3' in the 
     * table below)(Note the use of a dummy field for an 
     * input argument)
     *
     OP = 1 ; I = 1 ; NELE = 5 ;
      NULL = CARITH(OP,VAL1,I,DUMMY,ZERO,TOTAL,ZERO,NELE)
     *

The following table shows the results of the above uses of CARITH.

              Results in VAL1 thru VAL5 and TOTAL

                       AFTER         AFTER         AFTER
            START   STATEMENT 1   STATEMENT 2   STATEMENT 3

     VAL1     1          5             5             5
     VAL2     2          8             8             8
     VAL3     3          6            12            12
     VAL4     4          3             6             6
     VAL5     5          7            14            14
     TOTAL    0          0             0            45
H - 56   ADMINS User Guide



Arithmetic Subroutines
H.8.2  FARITH - Perform Array Arithmetic on F Type Fields

The FARITH subroutine is identical to the CARITH subroutine except that the arrays 
or single elements are field type F instead of D.

FARITH is meant to be used with F fields only. If fields that have decimal places (i.e. 
field type F1, F3 etc.) are used the decimal point is ignored, i.e. 3.67 is treated as 367. 
and 0.05720 is treated as 5,720.

H.8.2.1  FARITH Syntax
           NULL = FARITH(OP,IN1,SB1,IN2,SB2,OUT,SB3,NELE)

NULL/I, OP/I, SB1/I, SB2/I, SB3/I, and NELE/I function the same as in 
CARITH.
IN1/F, IN2/F, and OUT/F function the same as in CARITH except they 
are F type fields.

H.8.3  DPOWER - Raise a D Type Field to a Power

Use the DPOWER subroutine to raise a Dn type field to a power.

Syntax:
           A = DPOWER(B,C)

A/Dn Result of B raised to the power of C. Both B and C 
can have decimal places and be fractions and/or be 
negative. DPOWER assumes that the result field has 
the same type as the first argument; the result is 
calculated to the accuracy of the first argument. 
Since C can be a fraction, DPOWER can take roots.

B/Dn Number to be raised to the Cth power.

C/Dn Power to raise B to.
For example, given the following fields and values:
     A/D3
     B/D3 1.75
     C/D 2
then
     A = DPOWER(B,C)
would result in the value "3.063" in the field A.
ADMINS User Guide  H - 57



Arithmetic Subroutines
H.8.4  FPOWER - Raise a F Type Field to a Power

Use the FPOWER subroutine to raise a Fn type field to a power. FPOWER's syntax is 
identical to DPOWER (above) except that all fields are type Fn.

Syntax:
           A = FPOWER(B,C)

H.8.5  RANDOM - Random Number Generator

The RANDOM subroutine generates a random number between 1 and a specified 
value.

    RND = RANDOM(RANGE)

       RANGE/I        RANGE is a positive value supplied by the user. 
                      RANGE can be a field name or a constant.

       RND/I          A random number between one and range.
                      If RND is 0 an error has occurred
                      (i.e. RANGE LT 1, too many/too few arguments).

 N DUMMY.MAS 1 RANDOM.RMO NOMSG
     DR N
     ER NUM/I
     ER MONEY/D2
     ER ACTION/I
     DR RND/I
     *
     BOX DEFAULT
     SCREEN
     BL
                             +===================+
     DW           DICE GAME
                             +===================+
     BL
                     ENTER # [1-6]: NUM-   MONEY : MONEY--- 
     BL
                     ROLL[1/0]: ACTION--   RANDOM #: RND---
     END     *
     *  RANDOM.TRS
     *  ==========

 *
     *  RANDOM.RMS
     *  ==========
     FILE DUMMY.MAS
     S$S/A6
     M$M/A2
     NUM/I
     MONEY/D2
     RND/I
     ACTION/I
     M$MSG/A40
     M$LOC/I 12
     STAT/I
     *
     PROGRAM
     M$MSG = ' ' ;
     IF M$M NE 'UP' THEN STOP END
     IF S$S EQ 'ACTION' AND ACTION EQ 1 THEN RND = RANDOM(6) ; 
      IF NUM EQ RND THEN 
      STAT = FORMAT('Congratulations, You won $*',MONEY,M$MSG) 
          ELSE 
      STAT = FORMAT('Too Bad, You lost $*, try again!',MONEY,M$MSG)  
        END
      END
H - 58   ADMINS User Guide



Arithmetic Subroutines
H.8.6  SEQINC - Sequential Number Generator

Use SEQINC to generate unique sequence numbers for any number of series with 
fully-controlled concurrent access by any number of users. SEQINC is implemented 
using a regular ADMINS data file, from which SEQINC reads the current sequence 
number, increments or decrements it by the specified amount, and then writes it 
back, all under full ADMINS concurrency control. The general format for the 
sequence number file definition is:

   tab 100
   SEQID   type    KEY1
   SEQSUB  type    KEY2
   SEQNO   F             ! Sequence number
   SEQINC  F             ! Amount to increment/decrement
                         ! Contains '1' if you want to
                         ! increment by one.
   SEQMAX  F             ! If >0 specifies max value
                         ! when this value is returned
                         ! SEQNO reset to zero

This general format allows for any number of different sequence IDs, and any 
number of series for a given sequence ID, e.g. you could have independent sequential 
numbers for each month of the year. The field names may be whatever you want, the 
only requirements are that the file must have two key fields (of any field type), 
followed by two F fields, the first of which contains the last sequence number given, 
and the second contains the amount to increment (decrement if negative) the 
sequence number field with for each call to the SEQINC subroutine. Optionally a 
third field of type F may be included to impose a maximum value on the sequential 
number (after the maximum value is achieved the SEQNO is reset to zero). If the 
SEQMAX field is zero SEQINC imposes no maximum.

The syntax of the SEQINC subroutine is:

   STAT = SEQINC(FILENAME,KFLD1,KFLD2,TARGETFIELD)

where

STAT/I 
1

-1
-2
-3
-4
-5
-6
-7

-8

-9

Return values
OK
Invalid number of arguments
FILNAME has invalid type (not alpha)
File FILENAME not found
KFLD1 wrong type or length
KFLD2 wrong type or length
SEQNO or SEQINC not field type F 
TARGETFIELD has invalid type (must  be I, L, 
D, F, X99..99 or An)
New value of SEQNO exceeds capacity of
TARGETFIELD
Specified record not found

FILENAME/An Name of file where sequence number field is
located. The file name must not have any
options appended to it, as this could break
the concurrency control of the file.
ADMINS User Guide  H - 59



Arithmetic Subroutines
The following example uses SEQINC in a TRANS RMO to automatically generate a 
sequential number for both purchase orders and invoices in either of two years 1995 
and 1996. 

Assume file SEQDIR:SEQFILE.TAB contains the following records:

   SEQID/A8   YEAR/X9999    SEQNO/F           SEQINC/F
   INVOICE      1995        95001056             1
   INVOICE      1996        96000000             1
   PO           1995          950326             1
   PO           1996          960000             1

Each user enters fields on the screen indicating whether a new purchase or invoice 
(SEQID) is to be created, and for which year (YEAR). When the YEAR entry is made, 
SEQINC will open SEQDIR:SEQFILE.TAB, get a lock on the record identified by 
SEQID and YEAR, increment the value of the SEQNO field in that record, write the 
new value back to SEQDIR:SEQINC.TAB, release the lock, and return the 
incremented value in the NEWNO field, converted to X9999999.

   *EXAMPLE.RMS:
   *
   FILE CENTRAL:NEW_ENTRY.MAS
   LOCAL
   *
   M$M/A2
   S$S/A12
   STAT/I
   FILNAM/A24 'SEQDIR:SEQFILE.TAB'
   SEQID/A8   
   INVNO/X9999999
   ERROR/I
   *
   PROGRAM
   IF M$M NE ‘UP’ THEN STOP ; END
   IF S$S EQ ‘YEAR’ THEN ;
      STAT = SEQINC(FILNAM,SEQID,YEAR,NEWNO) ;
      IF STAT NE 1 THEN ERROR = 900 ELSE ;
         IF SEQID EQ ‘INVOICE’ THEN ;
             INVNO = NEWNO ELSE PONO = NEWNO END ;
         END ;
      END
   ... 

If a user entered “INVOICE” and “1996”, SEQINC would return 96000001 in the field 
NEWNO. The next user who entered “INVOICE” and “1996” would get 96000002 in 
NEWNO.

KFLD1 Field identifying the sequence field we want
to increment/manipulate. Must match the type and 
length of key field 1 in FILENAME

KFLD2 Identifies the specific subseries of SEQID we
want, e.g. year. If there is only one occurrence
of a given SEQID, may be blank. Must match the
type and length of key field 2 in FILENAME.

TARGETFIELD Field in the virtual record that is to receive
the incremented value of the SEQNO asked for. 
Must have type I, L, D, F, X9..9 or An.
H - 60   ADMINS User Guide



Logical Name and Symbolic Name Subroutines
H.9  Logical Name and Symbolic Name 
Subroutines

The subroutines handle creation and translation of logical names and local symbols.

H.9.1  CRLOG - Create or Delete a Logical Name

The CRLOG subroutine is used to create or delete logical names. Logical names 
created with CRLOG remain effective for the full login session.

H.9.1.1  CRLOG Syntax
           STAT = CRLOG(LOGNAM,VALUE,[TABLE])

H.9.1.2  CRLOG Example
Given the following fields and values,

     STAT/I
     LOGNAM/A20 'DATA'
     VALUE/A10 '_DBA1:'

then

     STAT = CRLOG(LOGNAM,VALUE)

would create the logical name "DATA" with the value "_DBA1:". The equivalent DCL 
command is as follows:

     $ assign _dba1: data

If the field VALUE had been blank when the CRLOG subroutine was called, then the 
logical name "DATA" would be deassigned. The equivalent DCL command is as 
follows:

     $ deassign data

STAT/I Set to the return status code received from the 
system directive (OpenVMS).

LOGNAM/An Logical name to which the VALUE is to be 
ASSIGNed. Maximum length is 80.

VALUE/An Value to be ASSIGNed to the logical name. If 
VALUE is blank the logical name referenced by 
LOGNAM is DEASSIGNed. Maximum length is 
80.

TABLE/A1 Optional. Field name or constant that specifies 
which logical name table to use: "S" for system 
table, "G" for group table, "P" for process table, or 
"J" for job table.
ADMINS User Guide  H - 61



Logical Name and Symbolic Name Subroutines
H.9.1.3  Special CRLOG Syntax for Modifying OPTION
The CRLOG subroutine has a special syntax to make it easier to modify the contents 
of the logical name OPTION (see Appendix A: “Options”). This syntax is enabled 
only when the first argument (the logical name) given to CRLOG has the value 
"OPTION".

If the logical name is OPTION then if the first character of the second argument (the 
"value") is '+', the rest of the value is added to the OPTION string.

      LOGNAM = 'OPTION' ; VALUE = '+WA'
      STAT = CRLOG(LOGNAM,VALUE)

In the above example, if OPTION contains 'VILO' before CRLOG is called it will 
contain VILOWA after CRLOG is called.

Similarly, if the logical name is OPTION then if the first character of the second 
argument (the "value") is "-" then the subsequent characters in that argument will be 
removed from the string assigned to the logical name OPTION.

 
      LOGNAM = 'OPTION' ; VALUE = '-VO'
      STAT = CRLOG(LOGNAM,VALUE)

In this example, if OPTION contains 'VILOWA' before CRLOG is called it will 
contain 'ILWA' after CRLOG is called.

H.9.2  TRLOG - Translate a Logical Name

The TRLOG subroutine is used to translate logical names.

H.9.2.1  TRLOG Syntax
           STAT = TRLOG(LOGNAM,VALUE,[TABLE])

STAT/I 0 = no translation
1 = OK (logical name translated)
2 = VALUE not long enough, truncated

LOGNAM/An Logical name from which the VALUE is to be 
translated. Maximum length is 80.

VALUE/An Set to the value currently ASSIGNed to the logical 
name referenced by LOGNAM. VALUE will be 
blank if nothing is assigned to LOGNAM. 
Maximum length is 80.

TABLE/A1 Optional. Field name or constant that specifies 
which logical name table to use: "S" for system table, 
"G" for group table, "P" for process table, or "J" for 
job table.

If set to “R” TRLOG can retrieve named values from 
the registry .
H - 62   ADMINS User Guide



Logical Name and Symbolic Name Subroutines
H.9.2.2  TRLOG Example
Given the following fields and values, and that "_DBA1:" is assigned to the logical 
name "DATA",

     STAT/I
     LOGNAM/A20 'DATA'
     VALUE/A10

then

     STAT = TRLOG(LOGNAM,VALUE)

would translate the logical name "DATA" and place the string "_DBA1:" into the field 
VALUE. The value of STAT would be set to "1".

H.9.3  CRSYMBOL: Create/Delete Symbolic Name

The CRSYMBOL subroutine is used on OpenVMS systems to create or delete a 
symbolic name in the local symbolic name table. Symbolic names created with 
CRSYMBOL are available to the current command level that defined it, and to lower 
command levels, for the full login session, i.e. if the current process calls a command 
procedure, the symbolic name created will be available to that command procedure.

CRSYMBOL Syntax:

           STAT = CRSYMBOL(SYMBOL,VALUE)

       

For example, given the following fields and values,

     STAT/I
     SYMBOL/A17 'RESULTS'
     VALUE/A20 'NORMAL'

SYMBOL/An Symbol name to which the VALUE is to be 
ASSIGNed. Maximum length is 80. SYMBOL can be 
a field name or a constant.

VALUE/An Value to be ASSIGNed to the symbol name.  If 
VALUE is blank the symbol name referenced by 
SYMBOL is deleted. Maximum length is 80. VALUE 
can be a field name or a constant.

STAT/I 1 = Symbol created or deleted.
0 = No such symbol (Only for Delete)
-1 = Failed to create symbol.
-2 = Failed to delete symbol.
ADMINS User Guide  H - 63



Logical Name and Symbolic Name Subroutines
then

     STAT = CRSYMBOL(SYMBOL,VALUE)

would create the symbolic name "RESULTS" with the value "NORMAL". The 
equivalent DCL command is as follows:

     $ RESULTS := NORMAL

If the field VALUE had been blank when the CRSYMBOL subroutine was called, then 
the symbolic name "RESULTS" would be deleted. The equivalent DCL command is 
as follows:

     $ DELETE/SYMBOL RESULTS

H.9.4  TRSYMBOL: Translate a Symbolic Name

The TRSYMBOL subroutine is used on OpenVMS systems to translate symbol names 
from the local symbol table.

TRSYMBOL Syntax

           STAT = TRSYMBOL(SYMBOL,VALUE)

For example, given the following fields and values,

     STAT/I
     SYMBOL/A17 'TRANS'
     VALUE/A20

then

     STAT = TRSYMBOL(SYMBOL,VALUE)

would translate the symbolic name "TRANS" and place the string 
"$ADM$DIST:TRANS" into the field VALUE. STAT would be set to 15.

SYMBOL/An Symbol name from which the VALUE is to be 
translated. Maximum length is 80. SYMBOL can be 
a field name or a constant.

VALUE/An Set to the value currently ASSIGNed to the symbol 
name referenced by SYMBOL. Maximum length is 
80. VALUE must be a field name.

STAT/I 1 = Length of translation.
0 = No such symbol 
-1 = Failed to translate the symbol.
-2 = Length of field smaller than 
translation.
-3 = Convert error.
H - 64   ADMINS User Guide



Group Shared Area Subroutines
H.10  Group Shared Area Subroutines

ADMINS has a facility to share a portion of virtual memory between all users and 
applications in the same group. This "group shared area" can be read and/or written 
by all users in the same group. This provides a very effective method of 
communication between users and applications with virtually no overhead. All 
ADMINS commands that can execute RMO's, namely TRANS, MAINT,  and PROD, 
can call subroutines to read or write fields stored in a 2,048 16-bit word "group shared 
area". A complete discussion of the "group shared area", including examples, is found 
in Chapter 20: “Shared Memory Emulation”.

H.10.1  GETGRP - Get a Value From the Group Shared Area

The GETGRP subroutine is used to retrieve a value from the group shared area and 
make it available to the user or application.

H.10.1.1  GETGRP Syntax
           STAT = GETGRP(VALUE,OFFSET)

STAT/I Status of the operation attempted. 
1 indicates a successful operation
-1 indicates the OFFSET was outside the 1-2048 
range.

VALUE/__ Field of the appropriate type to receive the data 
from the group shared area from the position 
referenced by OFFSET.

OFFSET/I Number between 1 and 2048 that references where 
in the group shared area the first word of VALUE is 
stored.
ADMINS User Guide  H - 65



Group Shared Area Subroutines
H.10.2  SETGRP - Set a Value Into the Group Shared Area

The SETGRP subroutine is used to write a value into the group shared area which 
makes it available to other users or applications.

H.10.2.1  SETGRP Syntax
           STAT = SETGRP(VALUE,OFFSET)

H.10.3  UPDGRP - Write the Group Shared Area to Disk

The UPDGRP subroutine is used to force the group shared area to be copied to the 
disk file called ADM$GRPSHR:SHARED.FIL. This is the file which contains the 
group shared area when it is not actively stored in memory.

H.10.3.1  UPDGRP Syntax
           STAT = UPDGRP(VALUE,OFFSET)

H.10.4  REFGRP - Refresh Shared Memory Emulation in TRANS

The REFGRP subroutine is used to refresh TRANS shared memory emulation (see 
Section 20.5 “Emulation of Shared Memory in the OpenVMS Cluster Environment”) 
from the disk file when ADMINS shared memory emulation is in use in an OpenVMS 
Cluster.

STAT/I Status of the operation attempted. 
1 indicates a successful operation
-1 indicates the OFFSET was outside the 1-2048 
range.

VALUE/__ Field of the appropriate type containing a value to 
be set into the group shared area in the position 
referenced by OFFSET.

OFFSET/I Number between 1 and 2048 that references where 
in the group shared area the first word of VALUE 
should be stored.

STAT/I Status of the operation attempted. 
1 indicates a successful operation
-1 indicates the operation was unsuccessful

VALUE/__ Field of any type required for syntax purposes only.

OFFSET/I Required for syntax purposes only.
H - 66   ADMINS User Guide



Record and Field Access Subroutines
H.10.4.1  REFGRP Syntax
           STAT = REFGRP(VALUE,OFFSET)

H.11  Record and Field Access Subroutines

These subroutines provide various ways of finding, accessing, and creating ADMINS 
data records and virtual records.

H.11.1  DDATTR: Get Data Dictionary Attributes & Codelists

The DDATTR subroutine provides access to Data Dictionary element attributes and 
Data Dictionary codelist values.

The DDATTR syntax is:

        STAT = DDATTR([DIM,]ATTR,FIELD,ATTR_VAL[,ATTR_VAL2...]

STAT/I Status of the operation attempted. 
1 indicates a successful operation
-1 indicates the operation was unsuccessful

VALUE/__ Field of any type required for syntax purposes only.

OFFSET/I Required for syntax purposes only.

STAT/I Status Code
1  OK
-1  Too few arguments in call
-2  ATTR not an Alpha field or constant
-3  No Codelist File Active
-4  Too few arguments to receive all values
-5  Invalid attribute code
-6  Field has no DDID, or ADM$DD not assigned
-7  ATTR_VAL (return) field has wrong type for 
item, not an A60 field, or field to receive 
CLT_UAC value is not an A16 field
-8  1st argument is not INTEGER or ALPHA
-9  Field list is not alphanumeric
-10  Field list contains field name not in ADD
-502  Field does not ref. Codelist Table
-503  No Codelist Value found for this field
-504  External codelist does not have requested 
field (Description or UAC)
-505  Can't open external codelist
ADMINS User Guide  H - 67



Record and Field Access Subroutines
                      

DIM/I If present, i.e. if the first argument is not an alpha 
field, then FIELD is the name of an array whose 
elements contain the names of the fields whose 
attributes are to be retrieved, and ATTR_VAL, 
ATTR_VAL2etc. are the names of arrays whose
 elements are to receive the attribute values for the 
entries in the FIELD array.  If DIM is not present, the 
requested attributes for the hard-coded field name
FIELD are loaded into fields ATTR_VAL, 
ATTR_VAL2 etc. DIM controls how many fields are 
retrieved, i.e. if the arrays are sized 20 elements each 
and DIM has a value of 5, attributes for the first five 
elements only are retrieved.

ATTR/An Contains mnemonics for the attributes to get 
(must be alpha field or alpha constant).

Mnemonic Meaning

CLT_DESCR Get description value from Codelist Table 
for code value in FIELD (A60).

CLT_UAC Get User Action Code from Codelist Table 
for code value in FIELD (A16).

EL_FORMAT Format of dictionary element FIELD (A20).

EL_WIDTH Output width of element (integer value).

EL_JUST Justification (L or R) for element (A2).

EL_DESCR Description for element (A60).

EL_LABEL Line Label for element (A20).

EL_HEAD1 Column Header 1 for element (A20).

EL_HEAD2 Column Header 2 for element (A20).

EL_MISC Miscellaneous notes/action attribute for 
element (A80).

FIELD If DIM is present as the first argument, FIELD is the 
name of an array whose elements contain a list of 
the fields whose attributes are to be retrieved. If 
DIM is absent, FIELD is the (hard-coded) field name 
for which you want to get attributes.

ATTR_VAL If DIM is present as the first argument, 
ATTR_VALn is the name of an array whose 
elements receive the n-th attribute values for the 
corrsponding fields in the FIELD array. If DIM is 
absent, ATTR_VALn is a field name to receive the n-
th attribute value for FIELD. 

 The data types must correspond to the data types of 
the attributes being obtained(e.g. A60 for 
CLT_DESCR, I for EL_WIDTH).
H - 68   ADMINS User Guide



Record and Field Access Subroutines
Put the mnemonics for the codelist attribute values into the ATTR field (use a plus 
sign to specify multiple values), e.g.:

    ATTR/A40 'CLT_DESCR'         (to obtain codelist description)
              or
    ATTR/A40 'CLT_DESCR+CLT_UAC' (to obtain codelist description
                                  and user action code)

The number of ATTR_VAL fields or arrays specified must correspond to the number 
of attributes named in ATTR.

In the following example four attributes are retrieved for each of the six fields in the 
FLDARR array:

     *
     LOCAL
     FLDARR/A20(6) 'B_NAME' 'B_ORG' 'B_ADDR1' 
                   'B_ADDR2' 'B_PHONE' 'B_FAX'                              
     1ATAR/A50(6)
     2ATAR/A50(6)
     3ATAR/A50(6)
     4ATAR/A50(6)
     ATTR/40 'EL_LABEL+EL_HEAD1+EL_HEAD2+EL_MISC'
     STAT/I
     DIM/I 6
     *
     PROGRAM
     *
     STAT = DDATTR(DIM,ATTR,FLDARR,1ATAR,2ATAR,3ATAR,4ATAR)

H.11.2  RECOPN and RECIDX - Access Records in any File

Use the RECOPN and RECIDX subroutines to access records in one or more files in 
many different ways: to find records by key, to read, write, insert, delete or transfer 
records, and once a position in the file has been established, to move to the next or 
previous record from the current record.

H.11.2.1  RECOPN - Open Files for RECIDX
The RECOPN subroutine is used to open a file for access by RECIDX. RECOPN 
establishes which fields are to be used as key fields, which fields are to be used to 
transfer values between the virtual record and the record buffer of the file being 
opened, and which fields contain the new key values for record transfers.

RECOPN syntax:
    STAT = RECOPN(OP,FNO,FLAGS,FILNAM,KFLDS,RFLDS,VFLDS,TKEYS)

The arguments are:

OP/I (field or constant)
Operation to perform.

1 = Open the file named in FILNAM. If open is 
successful, a file number is returned in FNO.

 2 = New fields being used for KFLDS, RFLDS, 
VFLDS, or TKEYS for already-open file.

FNO/I If OP = 1, returned with file number to use in 
subsequent calls to RECIDX and RECOPN if open 
was successful. If OP = 2, file number of already 
opened file to modify. (Must be a field.)
ADMINS User Guide  H - 69



Record and Field Access Subroutines
FLAGS/I (field or constant) Argument must be present.
4096=Open for Write
(overrides e.g. ADM$READONLY)

FILNAM/An (field or constant)
Name of file to be opened.

KFLDS/
An(dim)

An alphanumeric array containing the names of the 
fields in the virtual record that contain the key 
values to be used in a record operation. Those fields 
must match the type and length of the key fields in 
the file being opened. Must be terminated by a 
blank element.

RFLDS/
An(dim)

An alphanumeric array containing the names
of the fields in the file being opened which are to be 
read from or written to. Must be terminated by a 
blank element.

VFLDS/
An(dim)

An alphanumeric array containing the names of the 
fields in the virtual record which hold the values 
which are to be read from or written to the fields 
specified in the RFLDS array. Must be terminated 
by a blank element.
Read operations load values from the RFLDS fields 
into the VFLDS fields. Write operations load values 
from the VFLD into the RFLDS fields before the 
record is written.

TKEYS/
An(dim)

An alphanumeric array containing the names of the 
fields in the virtual record which contain the new 
key values to be used in a transfer operation. Those 
fields must match the type and length of the 
corresponding key fields in the file, and the fields 
named in KFLDS. Must be terminated by a blank 
element.

STAT/I 1 = OK
-1 = Invalid OP code
 -2 = Invalid file number for OP = 2 (This file is 
not open).
 -3 = Too many open files (Max 10)
 -4 = Unable to open the file
 -5 = FILNAM is not an An field
-6 = Unable to access KFLDS array
-7 = KFLDS is not alphanumeric
-8 = Unable to access RFLDS array
 -9 = RFLDS is not alphanumeric
 -10 = Unable to access VFLDS array
-11 = VFLDS is not alphanumeric
 -12 = unable to access TKEYS array
 -13 = TKEYS is not alphanumeric
-100n = KFLDS field n not found
 -200n = KFLDS field n not correct type or length
 -300n = RFLDS field n not found
-400n = VFLDS field n not found
-500n = RFLDS/VFLDS field n not 
correct type or length
-600n = TKEYS field n not found
-700n = TKEYS field n not correct type or length
H - 70   ADMINS User Guide



Record and Field Access Subroutines
H.11.2.2  RECIDX Syntax
Once a file is opened by RECOPN, RECIDX is used to find, read, write, delete, insert, 
and transfer records in that file.

RECIDX syntax:
    STAT = RECIDX(OP,FNO,FLAGS)

The arguments are:

OP/I (field or constant)
Operation to perform.

0 = Find a record by key values.
1 = Find the next record.
-1 = Find the previous record.
2 = Update (write) the record.
3 = Insert a record.
4 = Delete the record.
5 = Transfer the record, i.e. change the
keys of the record with the key values
of the fields in KFLDS to the values of
the fields in TKEYS.
9 = Close file number FNO.
10 = Close all files opened by RECOPN.

FNO/I File number for file returned by RECOPN. (Must be 
a field.)

FLAGS/I (field or constant) Argument must be present.
0 = No optional behavior specified.

1 = With operations 4 (delete) and 5 
(transfer),delete/transfer) the current record 
position. Do not do a find using the KFLD value 
prior  to the delete/transfer. A record postion must 
be established (if none is established RECIDX will 
return -5 in STAT.  Use this flag for deletes/
transfers when file has non-unique keys.

2 = Do not load  values from the "closest match" 
record actually found if the key value searched for 
is not found (with OP=0). 

4 = When reading the data file, if the key value being 
sought is found, do not transfer values from that 
record to the virtual record fields. 

+8  = When reading the data file, if the record with 
the key value being sought is locked, return -8 and 
do not read the record. If the record is available, lock 
the record and read it(transfer its values into the 
virtual record).

4096=Write (overrides e.g. ADM$READONLY)
when FLAG=4096 used in RECOPN
ADMINS User Guide  H - 71



Record and Field Access Subroutines
A find by key operation (OP = 0) must be performed before the previous and next 
operations (OP = -1 or 1) are allowed. A record must be read (OP = 0, -1 or 1) before 
a record can be written (OP = 2). For find, next, and previous operations (OP = -1, 0 
and 1), values from the RFLDS fields in the record being read are transferred to the 
VFLDS fields. For write operations (OP = 2), values from the VFLDS fields are moved 
into the RFLDS fields in the record before it is written to the disk.

If no record exists with the keys specified in a read operation (OP = 0); or if a previous 
operation (OP = -1) is attempted from a position at the top of file; or if a next operation 
(OP = 1) is attempted from a position at the end of file; RECIDX returns STAT = 0, 
and the KFLDS fields are set to reflect the keys of the record actually found (unless 
FLAG=2).

Unless FLAGS is set to 1, record deletion operations (OP = 4) use the key values in 
the KFLDS fields to locate a record and delete it. If a record with that key is not found, 
nothing is done, and STAT = -5 is returned.

Unless FLAGS is set to 1, record transfer operations, (OP = 5) use the key values in 
the KFLDS fields to locate a record, then transfer that record to the key values found 
in the TKEYS fields. If no record with the KFLDS keys is found, nothing is done, and 
STAT = -5 is returned.

(If FLAGS is set to 1 the current record position is deleted or transferred.)

Update, insert, delete, and transfer operations (OP = 2, 3, 4, 5) do not change the 
VFLDS or the KFLDS fields.

RECIDX can signal back when the record it is trying to read is locked by another user.  
This is done by adding 8 to the value in the FLAGS argument,  where OP = -1, 0 or 1 
(Previous record, Find record by key or Next record)

Also for OP = 4 (delete a record) and OP = 5 (transfer a record)  you can use FLAGS=8 
when you are supplying  a key value, to check whether the designated record is 
locked (RECIDX will return -8 if the record is locked). There is no need to check the 
lock status if you are deleting/transferring the record currently in memory (FLAG 
=1) as it is already locked.

FLAGS = 8 will be ignored if the file is not opened -M.

When FLAGS=8,  if the record is found and not locked by another user the record is 
read (or deleted or transferred) and STAT = 1 is returned.

If the record is found but locked by another user STAT = -8 is returned.  The field 
values are not loaded into VFLDS.

STAT/I 1 = OK
0 = Record not found, or End of file/Top of file.
-1 = Invalid OP code
-2 = Invalid file number.
-3 = Cannot write before read
-4 = Cannot write readonly file
-5 = Record not found for delete or transfer.
-6 = TKEYS field does not match KFLDS field
-7= Insert/transfer not allowed when using 
alternate index-
-8=(When FLAGS include ‘+8’) Record is found 
but already locked by another user, values from 
record are not read into VFLDS.
H - 72   ADMINS User Guide



Record and Field Access Subroutines
No record position in the file is established after insert, delete, and transfer 
operations (OP = 3, 4, 5). No record position in the file is established if the record 
being sought is locked, when lock status checking is in effect (e.g. when FLAGS has 
8 added to its value). To establish a record position, a new RECIDX find call (OP = 0) 
must be made.

By default, all files are opened read only. You must use the explicit "-M", "-S", etc. file 
access options to open a file for writing (see Section 19.1 “Modes of File Access”).

For operations that are not record transfers (not OP = 5), a single, blank, 
alphanumeric field may be used as TKEYS argument.

H.11.2.3  RECOPN, RECIDX Examples
The two examples that follow demonstrate various capabilities of RECIDX.

Example 1: Alternate Index Simulation

One possible application for the RECOPN and RECIDX subroutines is to simulate 
alternative index access to a file. The instruction files that follow demonstrate an 
application where a menu bar is used to choose between accessing records by master 
ID (MASID, the primary key of the main file) or by NAME (the simulated alternative 
index).

DEF for the main screen file:

    CITY    A20
    STATE   A2
    ZIP     X99999
    ...    MASTER.DEF
    ----------
    MAS 100
    *
    MASID   D   KEY1
    NAME    A24
    ADDR    A32

DEF for the index file:

    NAMEIDX.DEF
    -----------
    IDX 1000
    *
    NAME    A24  KEY1
    MASID   D

The TRS:

RECIDX.TRS 
    -----------
    RECIDX1 MASTER.MAS 1 RECIDX1.RMO NOMSG INSERT DELETE
    INDEX NAMEIDX.IDX
    NAME
    MASID
    END
    ER  MASID
    ER  WNAME/A24
    ER  ADDR
    ER  CITY
    ER STATE
    ER  ZIP
    DR NEWID/D
    DR STAT/I [10,7,5]
    BAR 1 OPTTIONS=VISUAL
      NAMEIDX EXECUTE NI
      Access by name
      MASID   EXECUTE MI
      Access by Master ID
ADMINS User Guide  H - 73



Record and Field Access Subroutines
    BOX 2 1 3 80
H - 74   ADMINS User Guide



Record and Field Access Subroutines
    SCREEN
    BL
    BL
                            MASTER FILE UPDATE/BROWSE
    BL
    BL
    Master ID: MASID---   Name: WNAME-------------------
                          Addr: ADDR----------------------------
                          City: CITY---------------- State: ST- 
ZIP: ZIP--
    BL
    STAT:        NEWID: NEWID---
    BRANCHES
    0 RECIDX1 NEWID
    &&Selfbranch
 END

The RMS:

RECIDX.RMS
    ----------
    FILE MASTER.MAS
    LOCAL
    M$M/A2
    S$S/A6
    B$B/A2
    F$UNCKEY/A4
    NEWID/D
    WNAME/A24
    IDX/I 0
    *
    FNO/I 
    FLAGS/I
    OPNOPR/I 1
    RECOP/I 
    FILENAME/A20
    KFLDS/A18(4)
    VFLDS/A18(4)
    RFLDS/A18(4)
    TKEYS/A1
    STAT/I
    C$C/A6

    PROGRAM
    IF (S$S EQ 'BEGREC') AND (M$M EQ 'UP' OR 'IN') THEN ;
       WNAME = NAME ;           ! Load NAME into Work Name Field
       IF IDX EQ 1 THEN C$C = 'WNAME' END
       END
    IF M$M EQ 'NI' THEN ;              ! Requesting Access by Name Index
       FILENAME = 'NAMEIDX.IDX-RM' ;
       KFLDS(1) = 'WNAME' ;             ! Use Work Name field as key
       KFLDS(2) = ' ' ;         ! Space terminate
       RFLDS(1) = 'MASID' ;             ! Load from MASID field
       RFLDS(2) = ' ' ;         ! Space terminate
       VFLDS(1) = 'NEWID' ;     ! Load into NEWID field
    *
       IDX = 1 ;                ! Tell Alternate Index in use
       IF FNO EQ 0 THEN ;
  STAT = RECOPN(OPNOPR,FNO,FLAGS,FILENAME,KFLDS,RFLDS,VFLDS,TKEYS) 
;
        END
       RECOP = 0 ; GOSUB LOCATE ;
       STOP ;
       END
ADMINS User Guide  H - 75



Record and Field Access Subroutines
    *************************************************************
    * Reset to main key on MI or Insert Mode
    *------------------------------------------------------------
    IF M$M EQ 'IN' THEN IDX = 0 ; 
       IF S$S EQ 'WNAME' THEN ;
         NAME = WNAME ; END ; STOP ; END
    *
    IF M$M EQ 'MI' THEN ;       
       IDX = 0 ; 
       C$C = 'MASID' ; B$B = 0 ; STOP ; END
    
*****************************************************************
    * Processing NEXT and PREV keystroke for Alternate Index:
    *------------------------------------------------------------
    IF M$M EQ 'FX' AND IDX NE 0 THEN ;
       IF F$UNCKEY EQ 'next' THEN ;
          F$UNCKEY = 'RET' ;
          RECOP = 1 ;           ! Ask for Next Record
          GOSUB LOCATE ;
          GOTO EOP ;
          END ;
       IF F$UNCKEY EQ 'prev' THEN ;
          F$UNCKEY = 'RET' ;
          RECOP = -1 ;          ! Ask for Previous Record
          GOSUB LOCATE ;
          GOTO EOP ;
          END ;
       END    
*****************************************************************
    * Typing in the Work Name field:
*----------------------------------------------------------------
    IF (M$M EQ 'UP') AND (S$S EQ 'WNAME') THEN ;
       IF IDX EQ 1 THEN ;               ! If alternate Index, go find it
          RECOP = 0 ;
          GOSUB LOCATE ;
          GOTO EOP ;
          END ;
       NAME = WNAME ;           ! Change of Name field
       END
    EOP: STOP
    
*****************************************************************
    * LOCATE subroutine:
    *-------------------------------------------------------------
    LOCATE: ;
    STAT = RECIDX(RECOP,FNO,FLAGS)
    B$B = '0'
    RET

If access by name is requested (you type into the WNAME field after selecting 
NAMEIDX in the menu bar) RECIDX is used to retrieve the master ID (MASID) for 
that name from the name index file, NAMEIDX.IDX, and places it in the local field 
NEWID, then the screen self-branches to the main file record with key NEWID.8

Example 2: Bulk record transfer using MAINT with key value.

This demonstration uses MAINT's key value feature in combination with RECIDX to 
accomplish a bulk transfer of records from one (partial) key value to another.

Given a file with these keys:

      ITEM   A20 KEY1
      SIZE   A10 KEY2
      FINISH A10 KEY3

8.    A more elaborate version of this application might use the EDFLDS subroutine 
(see Appendix H.14.5 “EDFLDS - Modify List of Editable Fields in TRANS”) to 
modify the cursor order and determine which fields are editable or display-only 
when using different access indices.
H - 76   ADMINS User Guide



Record and Field Access Subroutines
Use this RMS with MAINT to change all the records with the specified ITEM name 
to the new item name.

*
* CHANGENAME.RMO used with MAINT 
* specific KEY VALUE syntax
* "MAINT CHANGENAME KEY" 
* 
FILE PARTS.MAS-RX
* 
STAT/I
ASTAT/I
AFNO/I
PROMPT/A16  'Enter new name: '
NEW_NAME/A20
*
KFLDS/A10(4) 'ITEM' 'SIZE' 'FINISH' ' '
TFLDS/A10(4) 'NEW_NAME' 'SIZE' 'FINISH' ' '
FFLDS/A20(1) ' '
VFLDS/A20(1) ' '
*
LITEM/A20
FLAGS/I 0
*
FILENAME/A20 'PARTS.MAS-M'
* 
W$W/I 0           ! Stops maint from over-writing RECIDX changes 
PROGRAM
*
IF ITEM NE LITEM THEN ;       ! Reprompt if new key
*
  ASTAT = ASKSCR(2,6,PROMPT,NEW_NAME,8) END
*
*                             
IF AFNO EQ 0 THEN ;           ! Open once 
 STAT = RECOPN(1,AFNO,FLAGS,FILENAME,KFLDS,FFLDS,VFLDS,TFLDS) END
STAT = RECIDX(5,AFNO,FLAGS)   ! transfer to new key value
*
LITEM = ITEM                  ! reset for testing on next call
*
STOP

Here's what the MAINT looks like when it is run:

    $ maint changename key
    Operating on GAMMA$DKA0:[BD.TEST.RECIDX]PARTS.MAS;1
    OK to continue? Y
    15:48:48.85
    Key value: LFLANGE
    15:48:54.65
    Enter new name: CORNERPIECE
    15:49:14.50 12 records processed
    Key value: 
    15:49:16.34 12 records processed
ADMINS User Guide  H - 77



Record and Field Access Subroutines
H.11.3  FNDTAB - Set Up Data for LODTAB

FNDTAB and LODTAB are companion subroutines designed to load data from one 
or more fields in a file into arrays. The files referenced by FNDTAB/LODTAB do not 
have to be identified as LINK files in the TRS, although they may be.9 The beginning 
(and alternatively the end) of the run of records from which data is loaded are 
specified by key value. Each time a section of the file is to be loaded into one or more 
array(s), FNDTAB and LODTAB must both be called. Each FNDTAB call is effective 
for only one LODTAB call.

H.11.3.1  FNDTAB Syntax 
The syntax of the FNDTAB subroutine is:

STAT = FNDTAB(LODFIL,NKEYS,BRKEY,BEGKEY1,BEGKEY2,..,
                              
[ENDKEY1,ENDKEY2,..][,SELECT][,CLOSE][,POSITION])

9.     The SHORT keyword (see Section 5.3.1.19 “SHORT: Conserve MD Array Space”) 
may not be used if FNDTAB/LODTAB refer to a file that is also a LINK file in the 
screen.

STAT/I Returns the status of the FNDTAB subroutine.
1 means call was successful
0 successful call, no exact key match 
(if NKEYS negative)
-1 means load file was not found
-2 means NKEYS is not between 1 and 9
-3 means BRKEY is not between 1 and NKEYS
-5 means no record had BEGKEYs 
(start key values) listed 
-6: Error parsing SELECT statement
-7: Error adding ~FIELD in SELECT statement
-8: Error compiling SELECT statement
-(10+N) means the Nth key field
doesn’t match in field type

LODFIL/An The name of the file from which data is to be read.

NKEYS/I The number of key fields being used to find the first 
record to be loaded. If a file has four key fields, the 
value of NKEYS (positive or negative) can be 4 or 
fewer. If the value of NKEYS (positive or negative) 
is less than the actual number of key fields in the 
table file, the selection will be made on a partial key. 
NKEYS cannot be larger than (plus or minus) 9.
IF NKEYS is negative, FNDTAB will load the next 
record after the indicated key values, if there is not 
an exact match. Otherwise, FNDTAB returns an 
error status if no record is found with the indicated 
key values.
H - 78   ADMINS User Guide



Record and Field Access Subroutines
BRKEY/I Indicates the key field which contains the break key. 
Successive records will be loaded until the value of 
the key fields up to the BRKEY position changes. If 
BRKEY is 1, then the first key field is the break key, 
if BRKEY is 2, then the second key field is the break 
key, etc. If BRKEY is 0 (zero), then there is no break 
on key change and the number of records loaded 
will equal NVALS in the subsequent LODTAB call 
(see below).
If BRKEY is negative, then FNDTAB will load a 
range of keys, using the magnitude of BRKEY to 
determine the number of ENDKEYs (finish key 
values) to use. If "-BRKEY"( i.e. the magnitude of 
BRKEY if negative) is less than the number of keys 
in the table file then the end of the key range is 
determined by a partial key.

BEGKEYs The key values specifying the beginning of the 
range of records to be loaded. The number of 
BEGKEYs must equal NKEYS. The field types of the 
fields specified by BEGKEYs must match the field 
types of the key fields in the table file specified by 
LODFIL.

ENDKEYs Optional. Used when BRKEYs has a negative value 
to specify the key values of the end of the range of 
records to be loaded. The number of ENDKEYs 
must equal the magnitude of BRKEYS. The field 
types of the fields specified by ENDKEYs must 
match the field types of the key fields in the table file 
specified by LODFIL.

SELECT/An(d) Optional. Alphanumeric field or array containing a 
SELECT expression.  If the select statement spans 
fields a ':'(colon) must be used as a continuation 
indicator (similar to SELECT statements spanning 
lines in DEFINE or REPORT). 
If the expression references a field in the virtual 
record a '~' (tilde) must prefix the field name (e.g.

 TRANSDATE GT ~STARTDATE
where TRANSDATE would be in the LODFIL file, 
and STARTDATE would be in the RMOs virtual 
record.
If SELECT is not used it can simply be omitted (if 
the argument in this position is alphanumric it is 
assumed to be a SELECT expression, otherwise it is 
assumed to be the CLOSE argument).

CLOSE/I Optional. Enables the RMO to control when a 
FNDTAB file is closed. If present, CLOSE must be 
the last argument in the FNDTAB call, or 
immediately precede the POSITION argument. If 
CLOSE is set to 1, then the file opened by FNDTAB 
is closed by the next LODTAB call. If CLOSE is set 
to 2, the next LODTAB call does not close the file: 
instead, the next time FNDTAB is called, if it needs 
to open a new file, it closes the previous file before 
opening the new one. If CLOSE has any other value, 
or is absent, then the file is not closed until the next 
branch.
ADMINS User Guide  H - 79



Record and Field Access Subroutines
H.11.4  LODTAB - Load Data Into An Array Based On FNDTAB

LODTAB should be called immediately after a successful return from FNDTAB. 
FNDTAB and LODTAB must be invoked in the same RMO call. LODTAB can be 
called only once for each successful FNDTAB call.

H.11.4.1  LODTAB Syntax
The syntax of the LODTAB subroutine is:

     STAT = LODTAB(FLDNAMES,NVALS,[AR1,AR2,...]|[,ADM$LODTAB])

POSITION/I Optional. Can be set to a negative or positive 
number of records. If POSITION is set, the next 
LODTAB call uses its magnitude and moves up 
(negative, toward top of file) or down (positive, 
toward end of file) that number of records before 
returning values. POSITION can be used, for 
example, to return a set of values surrounding some 
key value: to obtain values from the record where 
KEY = 100 and the 5 records on either side of it, the 
FNDTAB call would use POSITION = (-5) and the 
LODTAB call would use NVALS = 11. POSITION 
must be an integer (I) field, not a constant. If used, 
POSITION must be the last argument, and the 
CLOSE argument must be present (if CLOSE isn't 
needed, set it to zero).

STAT/I Returns the status of the LODTAB subroutine.
N means successful LODTAB call, N records 
loaded
-1 means previous FNDTAB call was 
unsuccessful
 -2 means no previous FNDTAB call
 -3 means number of fields does not match umber 
of arguments
 -7 means two consecutive LODTAB calls
 -(10+N) means Nth field not in LODFIL
-(30+N) means field type mismatch in Nth field 
between argument field and LODFIL
-(100+N) means Nth field in ADM$LODTAB not 
found
-(200+N) means field type mismatch for Nth field 
in ADM$LODTAB

FLDNAMES/
An(n)

An array of the field names to be loaded. The last 
element in FLDNAMES must contain a blank 
character, i.e. ' '. Each field named must be present 
in the table file.

NVALS/I Up to NVALS values will be loaded into the arrays. 
Loading stops when the key range has been 
satisfied or when the number of records loaded 
equals NVALS, whichever comes first.
H - 80   ADMINS User Guide



Record and Field Access Subroutines
H.11.4.2  FNDTAB And LODTAB Example
If the definition (DEF) of the table file contains:

     * PAYRATE.DEF
     TAB 500
     DEPT     A10  KEY1
     RANK     XA99 KEY2
     YRS_RANK I
     SALARY   D2

and the transaction screen (TRO) contains:

     LINK PAYRATE.TAB-R
     K DEPT                         
     KC RANK                        
     L YRS_RANK                     
     END
     (etc.)

The record maintenance procedure (RMO) contains:

     LOCAL
     S$S/A6
     M$M/A2
     STAT/I
     LODFIL/A20 'PAYRATE.TAB'
     NKEYS/I   1
     BRKEY/I   1
     DEPTX/A10 'CHEM'
     FLDNAMES/A20(4) 'RANK' 'YRS_RANK' 'SALARY' ' '
     NVALS/I   5
     ADM$LODTAB/A18(4) 'RANKS' 'YEARSRNK' 'SALARY' ' '
     RANKS/X99(5)
     YEARSRNK/I(5)
     SALARY/D(5)
     .
     .

AR1,... The array(s) into which the data contained in the 
specified fields from the selected records is loaded. 
The arrays must match the field types of the fields 
specified in FLDNAMES. (They may have different 
names.) The field in the first element of FLDNAMES 
will be loaded into the first array, the field in the 
second element of FLDNAMES will be loaded into 
the second array, etc. Each array must have at least 
NVALS elements.

ADM$LODTAB/
An(n)

Alternatively, the arrays that are to receive values 
may be specified via an array with the reserved field 
name (or prefix)a ADM$LODTAB. This syntax 
allows more fields to be loaded in a single 
FNDTAB/LODTAB call. The number of local array 
field names in ADM$LODTAB must exactly match 
the number of field names in FLDNAMES. The data 
types and lengths of the corresponding fields in the 
two arrays must match. ADM$LODTAB array(s) 
must be terminated by a blank element.

a.     Any field name that begins with the string "ADM$LODTAB" 
(e.g. ADM$LODTABXYZ, ADM$LODTAB4) can be used to 
specify the list of local arrays that are to be loaded by 
LODTAB (which allows you to specify any number of 
FNDTAB/LODTAB calls by this method.)
ADMINS User Guide  H - 81



Record and Field Access Subroutines
     .
     (etc.)
     PROGRAM
     IF M$M NE 'UP' THEN STOP END
     STAT = FNDTAB(LODFIL,NKEYS,BRKEY,DEPTX)
     IF STAT NE 1 THEN GOTO ERROR END
     *
     STAT = LODTAB(FLDNAMES,NVALS,ADM$LODTAB)
     IF STAT LT 0 THEN GOTO ERROR END
     (etc.)

Note that the field named SALARY does not have to be specifically linked in, e.g. 'L 
SALARY', to be loaded into an array by LODTAB. The array which holds the data 
from the field RANK must have a field name other than RANK; RANK is a key to the 
link file and is used to make the link, and therefore must be renamed. The array 
holding the data from the field YRS_RANK is also renamed to avoid confusion 
between the array and the linked in field in the screen. SALARY is not linked into the 
screen and therefore the array can have the same name.

In this example the ADM$LODTAB reserved field name is used to specify the local 
arrays to be loaded by LODTAB. The LODTAB call could also have been specified as 
follows:

     STAT = LODTAB(FLDNAMES,NVALS,RANKS,YEARSRNK,SALARY)

If PAYRATE.TAB contained data such as:

     DEPT     RANK      YRS_RANK     SALARY
     ----     ----      --------     ------
     .
     .
     .
     ADMIN     35          5         39,775
     CHEM      10          4         68,955
     CHEM      15          8         61,340
     CHEM      20          6         55,240
     CHEM      20          4         49,995
     ENG       10          9         78,335
     .
     .
     .
     (etc.)

After the RMO call above had been executed, there would then be the following 
values in the three arrays listed below:

     RANKS/X99(5)      10        15        20        20

     YEARSRANK/I(5)     4         8         6         4

     SALARY/D(5)     68,955    61,340    55,240    49,995

The result of the FNDTAB and LODTAB calls is to load data into three arrays: 
RANKS, YEARSRNK, and SALARY. Each array has 4 values. The array in the field 
RANKS contains the data from the field RANK from the first five (or fewer) records 
with a primary key of 'CHEM' in the field DEPT. The array YEARSRNK contains data 
from the YRS_RANK field in the same records, and the array SALARY contains data 
from the SALARY field in those records.

Note that only 4 records are actually loaded. This is because only 4 records were 
found before the value in the field specified by BRKEY changed. The STAT return 
from LODTAB indicates the actual number of records loaded, in this example STAT 
is 4.

Note that if the following
H - 82   ADMINS User Guide



Record and Field Access Subroutines
H.11.5  GETFLD: Read Field Identified in Data Field

The GETFLD subroutine reads a field name from a data field, retrieves the value from 
the designated field, and writes that value to another specified field. If the two fields 
are not the same type, GETFLD will convert10 the designated field’s contents into the 
field type of the output. This subroutine enables the developer to specify an 
operation transferring information to a pre-determined field from a field to be 
determined at run time.

STAT = GETFLD([VALUE,]FLDNAM)

10.   Conversion is done internally via a call to NCAT (see Appendix H.3.1 “NCAT - 
Concatenating fields”).

STAT/I A status code returned when the subroutine is 
called.

  0: If called with only one argument, the field 
named in FLDNAM contains a null value
>0: The operation was performed. 
  1:  If called with only one argument, the field 
named in FLDNAM contains a non-null value 
-1: The field named in FLDNAM was not found.
-2: The contents of the field named in FLDNAM 
are not compatiblea with the field type of 
VALUE. 

a.    For example, an integer field cannot receive a value 
containing non-numeric characters.

VALUE/ A field of any  type. VALUE will receive the 
contents of the field designated in the FLDNAM 
argument.

FLDNAM/An Contains a valid field name in the file being 
operated upon. The contents of the field named in 
FLDNAM are written to VALUE. (The named field 
may be an actual field in the file, a virtual field in the 
screen, or a local field in the RMO). FLDNAM 
cannot be a constant.

If this is the only argument present, GETFLD checks 
if the field name passed in the argument contains a 
NULL value or not. 
Syntax: 

STAT/I 
FIELD/A18 
... 
FIELD = 'DISCOUNT' 
STAT = GETFLD(FIELD) 

If the field DISCOUNT contains a null value (either 
zero or blank, depending on data type) STAT is 
returned as 0 (zero). STAT is set to 1 (one) if 
DISCOUNT contains a non-NULL value.
ADMINS User Guide  H - 83



Record and Field Access Subroutines
H.11.6  PUTFLD: Write Field Identified in Data Field

The PUTFLD subroutine provides the complementary function to GETFLD. PUTFLD 
reads a field name from a data field, and writes a value from a predetermined field 
into that designated field.

PUTFLD has a similar syntax to GETFLD, except that PUTFLD reads from the 
predetermined field (VALUE) and writes to a field specified at run time (the value in 
FLDNAM is the name of the field to be written). 

H.11.6.1  GETFLD and PUTFLD Example
Given the following file definition, screen instruction file, and record maintenance 
procedure:

     BUDGET.DEF             BUDGET.RMS
     ----------            -----------
      MAS 100             FILE BUDGET.MAS
      DEPT X999 KEY1      LOCAL
      JAN D               STAT/I
      FEB D               MONTH/A10
      MAR D               AMOUNT/D
      APR D               M$M/A2
      MAY D               S$S/A6
      JUN D               PROGRAM
      JUL D               IF M$M NE 'UP' THEN GOTO OUT END
      AUG D               IF S$S EQ 'BEGREC' 
      SEP D                  THEN MONTH = ' ' ; AMOUNT = 0 ; 
      OCT D                  GOTO OUT END
      NOV D               IF S$S EQ 'MONTH' 
      DEC D                  THEN STAT = GETFLD(AMOUNT,MONTH) ; 
                             GOTO OUT END
                          IF S$S EQ 'AMOUNT' 
                             THEN STAT = PUTFLD(AMOUNT,MONTH) END 
                          OUT: STOP

                        BUDGET.TRS
                        ----------
              BUDGET BUDGET.MAS 1 BUDGET.RMO 
              E DEPT
              ER MONTH/A10
              ER AMOUNT/D
              SCREEN
              Department Monthly Budget Updates
              BL
              Enter Department: DE-
                                ---
              Budget for Month of MO- : $ -----AMO
                                  ---     --------
              END

When a field name (i.e. JAN, FEB etc.) is typed into the virtual field MONTH, 
GETFLD is used in the RMO running behind the screen to place the value for that 
field in the virtual field AMOUNT. If a value is entered in AMOUNT (to update the 
budget record) PUTFLD is used to write to the new value to the field specified in the 
MONTH field.

For example, if a user enters "106" in DEPT, then enters "FEB" in the MONTH field, 
the screen will display in the AMOUNT field the budget value stored in the FEB field 
for the record with a key of "106". Should the user update the value in AMOUNT the 
change will be made in the FEB field of the "106" record.
H - 84   ADMINS User Guide



Record and Field Access Subroutines
H.11.7  OUTPUT - Append Records to Data File

The OUTPUT subroutine appends records to a data file, using data in RMO fields 
(usually arrays) which have the same names and types as fields in the output file. 
OUTPUT is similar to the OUTFILE feature in MAINT (see Section 10.12 “Writing 
Other Files: OUTFILE/OUTRECS”).

The OUTPUT syntax is:

       STAT = OUTPUT(FILENAME,NRECS)    

OUTPUT exits with a message and fatal error status if (1) the output file in 
FILENAME cannot be opened; or (2) there are no fields in the output file which have 
the same names and types as fields in the RMO.

When OUTPUT is asked to append more than one record, the fields to be transferred 
must be in arrays; and the arrays must have at least as many elements as the number 
of records to be appended. In the example below, data in the AVG array is transferred 
to the AVG field in the output file. 5 records are appended, and the AVG array is 
dimensioned with 5 elements. When OUTPUT is appending only one record, the 
data to be transferred can be in any field (need not be an array).

By default, OUTPUT opens and closes the output file each time it is called. Therefore, 
different OUTPUT calls can append records to different files. If the NRECS argument 
is negative, OUTPUT leaves the file open11 after records are appended, which saves 
the work of closing the file and re-opening it if more records are to be appended with 
subsequent calls to OUTPUT.

OUTPUT does not append records when the RMO is run in test mode.

If the output file has alternate indexes, they wil be maintained. That is, the record is 
inserted instead of being appended.

By default, OUTPUT opens the output file in EXCLUSIVE mode.

An example of an RMS which calls OUTPUT:

STAT/I Status Code
1  OK, records appended
-1  FILENAME blank, nothing done
-3  Records appended, but there was a field
type mismatch between one or more pairs of 
fields with the same names. This may or may not 
be an error.
-4 Cannot open output file using alternate index, 
nothing done

FILENAME/
An

Output File Name, must be a field

NRECS/I Number of records to append, can be a field or a 
constant. If NRECS is less than zero, OUTPUT 
appends (-NRECS) records to the file, and leaves the 
file open*. If NRECS is equal to zero, OUTPUT just 
closes the file.

11.   OUTPUT can only have one file open at a time. If OUTPUT is asked to open a 
new file while a file remains open from a previous OUTPUT call, the previously 
opened file is closed before the new file is opened.
ADMINS User Guide  H - 85



Record and Field Access Subroutines
When OUTPUT is called, it matches fields in the RMO with fields in the output file 
AVG.MAS. The AVG field exists in both, and has the same field type. OUTPUT is 
asked to append 5 records to AVG.MAS, so it puts the value of AVG(1) in the AVG 
field of the first output record, AVG(2) in the second record, etc. The field 'N' in 
AVG.MAS does not exist as an RMO local field or as a field in MAIN.MAS, so 'N' is 
set to zero in the output records. 

* AVG.RMS
 * -------
 FILE MAIN.MAS
 LOCAL
 STAT/I
 FILENAME/A30 'AVG.MAS'
 AVG/D2(5)
 NUM/D2(5) 100 200 300 400 500
 I/I
 PROGRAM
 I = 0
 LOOP:  I = I + 1 ;
        AVG(I) = NUM(I) / 2 ;
        IF I LT 5 THEN GOTO LOOP END
 STAT = OUTPUT(FILENAME,5)

 * AVG.DEF
 * -------
 MAS 100
 *
 N   I   KEY1
 AVG D2

In this example, AVG is the only field which exists in both the RMO and the output 
file, so only the AVG data is transferred. However, OUTPUT can transfer any 
number of fields: for example, if NUM/D2 was in AVG.MAS, both AVG and NUM 
would be transferred into AVG.MAS.

H.11.8  EDITMASK

The EDITMASK subroutine allows you to change Edit Masks within the Data 
Dictionary should the need arise. The syntax for this subroutine is as follows:

STAT = EDITMASK(FIELD,OPER,MASK)

where:

STAT/I  1 OK
-1: FIELD has wrong data type
-2: OPER has invalid value
-3: MASK has invalid data type
-4 - -8: Invalid edit mask

FIELD If OPER is 1 thru 5 this argument is the field for 
which we want to change/add an edit mask. The 
data type of this field must be A or X.
If OPER is 11 thru 15 this field contains the name of 
the field that is to have its edit mask changed (and 
thus it must be of field type A, and the field it 
identifies must be field type A or X)
H - 86   ADMINS User Guide



Record and Field Access Subroutines
Example:

If the field ACCOUNT has an edit mask, and the field MASK contains the edit mask, 
the two calls below will have the same result:

STAT = EDITMASK(ACCOUNT,1,MASK)

and

FNAME = 'ACCOUNT'    ! FNAME/A18
STAT = EDITMASK(FNAME,11,MASK)

H.11.9  SUBFIELD: Obtain information about a field’s sub-fields 

The SUBFIELD subroutine obtains information about the sub-fields of a field. The 
general syntax is:

   STAT = SUBFIELD(OP,ARG2,ARG3 [,ARG4 ...])

where:

OPER/I 1 or 11= Change (or add) an edit mask
2 or 12= Restore the default edit mask
3 or 13= Remove edit mask
4 or 14= Edit edit mask
5 or 15= Edit edit mask, and apply it

MASK/AN An An field containing a valid edit mask if OPER = 
1. Its content does not matter if OPER = 2 or 3. If 
OPER = 4 or 5, it is used as the starting edit mask if 
not blank, and contains the edited edit mask on 
return.

OP/I Operation to perform. The following operation 
codes are defined:

0:  Get list of sub-field names
1:  Copy an account and replace sub-fields
2: Check if a subfield is  NULL (blank or zero)
3: Build parent value from subfields
4: Populate subfield values from parent field

ARG2 etc. Depends on which operation to perform.

STAT/I Return status.
>= 0: See specific operation
0:  No sub-fields found for this field
-1:  Invalid operation (OP not = 0)
-2:  Invalid number of arguments
ADMINS User Guide  H - 87



Record and Field Access Subroutines
H.11.9.1  SUBFIELD - Operation 0: Get a list of Sub-field names
Syntax:

   STAT = SUBFIELD(0,PARENT,SUBFLDS)

where:

H.11.9.2  SUBFIELD - Operation 1: Copy a Parent field and 
replace Sub-fields
Syntax:

   STAT = SUBFIELD(1,SRCPARENT,TGTPARENT,SUBNAMES,SUBVALUES)

where:

PARENT The field for which you want to obtain sub-field 
information.

SUBFIELDS/
An (dim)

An array of alphanumeric (An) fields to receive the 
field names of the sub-fields.

STAT/I Return status.
 > 0: Number of sub-field names returned
0:  No sub-fields found for this field
-3:  The SUBFLDS argument is not a An array
-4:  The SUBFLDS array does not contain enough 
elements to receive all the sub-field names.
-5:  Unable to get name of sub-field. Most likely a 
dictionary error, e.g. pointing to the wrong 
dictionary.

SRCPARENT The field source for the copy operation.

TGTPARENT The target field for the copy operation. 
SRCPARENT is copied to TGTPARENT.

SUBNAMES/
An(dim)

An array of alphanumeric (An) fields containing the 
name(s) of the sub-fields in TGTPARENT being 
replaced.

SUBVALES/
An(dim)

An array of alphanumeric (An) fields containing the 
name(s) of the array(s), which contain the values of 
the sub-fields being replaced in TGTPARENT. 

STAT/I Return status.
1:  OK
0:  TGTPARENT has no subfields.
-3: SUBNAMES array is not of type Alpha
-4: SUBVALUES array is not of type Alpha
-5: SUBNAMES array has more elements than 
SUBVALUES array.
-6: The result has invalid data type for 
TGTPARENT
-10n: Subfield n not found in TGTPARENT
-20n: Value field n not found
-30n: Error converting data for value field n
H - 88   ADMINS User Guide



Record and Field Access Subroutines
H.11.9.3  SUBFIELD - Operation 2: Check if a Sub-field is NULL 
(blank or zero)
There are three possible syntax formats for this check.

Syntax 1:

   STAT = SUBFIELD(2,SUBFIELD)

where:

Syntax 2:

   STAT = SUBFIELD(2,PARENT,CHILD)

where:

Syntax 3:

   STAT = SUBFIELD(2,PARENT,SUBF#)

where:

In all cases, STAT is returned with one of the following codes: 

H.11.9.4  SUBFIELD - Operation 3: Create a parent field value 
from subfield values
Syntax 1:

   STAT = SUBFIELD(3,PARENT)

SUBFIELD/
An

An alpha field containing the name of the subfield 
to check in the form ‘PARENT.SUBFIELD’.

PARENT/An An alpha field containing the name of the parent 
field.

CHILD/An An alpha field containing the name of the sub-field 
to check.

PARENT/An An alpha field containing the name of the parent 
field.

SUBF# An integer field containing the sub-field number to 
check.

STAT/I 1: The sub-field contains a non-null value.
0: The subfield contains all null values (zeros or 
blanks).
-2: Wrong number of arguments
-3: The second argument is not of type An.
-4: The subfield was not found.
-5: Third argument has invalid data type.
-6:  The PARENT field has less subfields than the 
number specified in the SUBF# field.
ADMINS User Guide  H - 89



Record and Field Access Subroutines
Syntax 2:

   STAT = SUBFIELD(3,PARENT,CHILDREN)

where:

STAT is returned with one of the following codes:

PARENT/* The name of the parent field for which to assemble 
a value.

CHILDREN/
An (dim)

An alpha array containing the names of the 
subfields to use. These may be real subfields of the 
parent field (e.g. ACCNT.FUND) or fields with the 
same data type as the corresponding subfields.
If the CHILDREN array is not present, the actual 
subfields of the parent field are used.

STAT/I 1: OK
-2: Wrong number of arguments
-3: The subfield argument is not an An array
-5: No subfields found for the parent field
-6:  The concatenated result is not a valid value 
for the parent field
-(10+n): Subfield n not found in parent field
H - 90   ADMINS User Guide



Record and Field Access Subroutines
H.11.9.5  SUBFIELD - Operation 4: Populate subfield values 
from parent value
Syntax 1:

   STAT = SUBFIELD(4,PARENT)

Syntax 2:

   STAT = SUBFIELD(4,PARENT,SOURCE)

where:

STAT is returned with one of the following codes:

PARENT/* The name of the parent field.

SOURCE/* Optionally, a field name which value is to be copied 
to the PARENT field before populating the 
subfields. Using this syntax would be equivalent to:
PARENT = SOURCE; STAT = SUBFIELD (4, 
PARENT)

STAT/I 1: OK
-2: Wrong number of arguments
-3: SOURCE field not same type or length as 
PARENT field 
-5: No subfields found for the parent field
-(10+n): Subfield n not found in parent field
ADMINS User Guide  H - 91



Array Processing Subroutines
H.12  Array Processing Subroutines

This group of subroutines facilitate manipulation of the data elements of arrays.12

H.12.1  BINSRC - Binary Search in RMO Tables and Arrays

The Binary Search subroutine, BINSRC, performs an efficient lookup function on 
Record Maintenance (RMO) tables and/or arrays. Rather than having to program 
table or array searches for lookup values, you can conveniently achieve the same 
result with BINSRC.

TABLE Statements in an RMO (see Section 9.8 “TABLE Statement”) allow you to 
address table file field names (or their synonyms) with an array subscript value 
corresponding to the record number in the table file. If there are NELE records in the 
file and, for example, 10 fields, the RMS can address 10 arrays by field name, where 
each array contains NELE elements.

You may also create and address local arrays as described in  Section 9.5.1 “Creating 
Local Fields”.

BINSRC requires the table arrays or local arrays be in sort on one or more search 
fields. Thus the table file must have been defined with one or more KEY or ASC 
fields, which become the search arrays, and have been sorted before the RMS is 
compiled. Local arrays used as search arrays must be preset or generated with data 
in proper increasing sort order.

Table search arrays or local search arrays for a given element number must have 
unique search data value combinations. For example, for tables defined with one or 
more key fields, each record in the table file must have a unique set of key values.

Should unique search array values not be present, BINSRC will find the specified 
search value combination, but which of the two or more corresponding sets of data 
values will be chosen is not determinate.

H.12.1.1  BINSRC Syntax
The syntax for performing a binary search of a sorted table is:

N = BINSRC(SARRAY1,...,SARRAYn,SVAL1,...SVALn,NELE)

12.   Local arrays; RMO TABLE files (which are stored as local arrays in the RMO); 
and real fields that are referenced using array notation file can be manipulated 
using these subroutines.

SARRAYs/__ Up to five arrays are used as search arrays in order 
(SARRAY1, SARRAY2, etc.). Each of these arrays 
may have any data type.

SVALs/__ Up to five fields are used as search values. These 
values must be in the same order as the search 
arrays and must have the same field types as the 
corresponding search arrays.
H - 92   ADMINS User Guide



Array Processing Subroutines
H.12.1.2  BINSRC Example
The table, LOOKUP.TAB holds 1000 code combinations each with a dollar value. The 
Binary Search Method and a Program Method are shown here.

     *   LOOKUP.TAB
     *
     MAS 1000
     CODE1 A2 KEY1 
     CODE2 A2 KEY2
     CODE3 A2 KEY3
     DOLLARS D2

     *   CODELOOK.RMS
     *
     *   Given Codes AA, BB & CC from DATA.MAS,
     *   lookup AMOUNT in LOOKUP.TAB.
     *   If no lookup record is found then set AMOUNT = 0.
     FILE DATA.MAS
     TABLE LOOKUP.TAB
     LOCAL
     NELE/I 1000
     I/I
     PROGRAM
     *   Binary Search Method
     *
     I = BINSRC(CODE1,CODE2,CODE3,AA,BB,CC,NELE)
     IF I GT 0 THEN AMOUNT = DOLLARS(I) ELSE AMOUNT = 0 END
     *
     .
     .
     *   Program Method
     I = 0
     LOOP: I = I + 1 ;
           IF AA EQ CODE1 AND BB EQ CODE2 AND CC EQ CODE3 
              THEN AMOUNT = DOLLARS(I) ; GOTO DONE END ;
           IF I LT NELE THEN GOTO LOOP ELSE AMOUNT = 0 END
     DONE: STOP

H.12.2  The SORT Subroutine

The SORT subroutine enables the rearrangement of several arrays in specified 
ascending or descending sort orders based on the values in one or more of the arrays.

NELE/I Number of elements in the arrays furnished by the 
user. For table arrays NELE is the number of 
records in the table file. The user is responsible for 
supplying the correct value of NELE. If NELE is 
too small, only the first NELE array elements will 
be searched. If NELE is too large, BINSRC will 
search in some random place.

N/I The subscript is the array or element number where 
BINSRC found the specified search value(s). A 
zero result means the search combination was not 
found. This may mean that the search arrays were 
not in sort. A -1 result indicates either a field type 
mismatch between SARRAY and SVAL fields or 
that NELE is not an integer (I) field. Since there 
must be an odd number of arguments for the 
subroutine, twice the number of search fields plus 
NELE, a -1 result could also indicate an erroneous 
even number of arguments.
ADMINS User Guide  H - 93



Array Processing Subroutines
In effect, SORT creates pseudo-records across several arrays. Record 1 consists of the 
first value of each array, record 2 consists of the second value of each array, record 3 
the third, etc. These "records" are then sorted on the values in the arrays. SORT can 
sort each array in either ascending or descending order on an array by array basis.

H.12.2.1  SORT Syntax
The syntax of the SORT subroutine is:

     STAT = SORT(DIREC,NVALS,AR1,AR2,...)

The internal limit of SORT is: (NVALS * 2) plus the total size (in words) of the data in 
the array with the largest sized values must not exceed 12000. E.g. If NVALS equals 
100 and the arrays being sorted have field types X9999 and A70, then the A70 array 
has the largest size value (35 words). Since (100 * 2) + (100 * 35) equals 3700 the SORT 
will not exceed the limit of 12000 words.

H.12.2.2  SORT Example
To illustrate:

     .
     .
     .
     ARRAY1/A1(6)  'C' 'B' 'A' 'B' 'A' 'C' 
     ARRAY2/I(8)    1   2   3   4   5   6   7   8   
     ARRAY3/I(10)   4   2   3   2   4   2   3   2   4   2

STAT/I Returns the status of the SORT instruction.
1 means the call was successful
-1 means that NVALS is larger than 6000
 -2 means that DIREC contains over 10 A's and/
or D's
 -3 means that DIREC contains other than A,D, or 
space
 -(10+N) means that there is too much data in Nth 
array

DIREC/An An alphanumeric field containing the letters A and 
D, indicating ascending and descending, for each of 
the arrays on which the sort is based. The sequence 
of A's and D's in this field must be upper case and 
must be followed by a blank; for example, DIREC/
A5 = 'AAAA '. The number of arrays on which the 
sort is based is determined by the number of A's 
and/or D's in DIREC. The maximum number of sort 
arrays is 10.

NVALS/I Indicates the number of values in each array to be 
sorted. If any of the arrays has more than NVALS 
values, those values will not be sorted. If any of the 
arrays contain fewer than NVALS values the sort 
may fail, and the resulting arrays may be incorrect.

AR1,... The field-names of the arrays to be sorted. Arrays of 
any field type occupy the third argument position 
on. The first array(s) named are used to form the 
sort key. For example, if DIREC contains four A's, 
the first four arrays are the basis for the sort. Any 
additional arrays are reorganized based on the sort 
sequence.
H - 94   ADMINS User Guide



Array Processing Subroutines
     DIREC/A2 'AA '
     NVALS/I   6
     STAT/I
     .
     .
     .
     STAT=SORT(DIREC,NVALS,ARRAY1,ARRAY2,ARRAY3)

After SORT has been invoked the arrays will contain:

     ARRAY1/A1(6)  'A' 'A' 'B' 'B' 'C' 'C' 
     ARRAY2/I(8)    3   5   2   4   1   6   7   8  
     ARRAY3/I(10)   3   4   2   2   4   2   3   2   4   2

Note that the elements in the arrays beyond the sixth element remain intact.

H.12.3  ARSZ Subroutine

The ARSZ subroutine returns the size of an array (i.e. the number of elements it is 
dimensioned for, or the number of records in the TABLE file it was loaded from).13

       SIZE = ARSZ(ARRAY)

       SIZE/I    Size of array
       ARRAY     Name of array

If ARRAY is a field that is not a local array, ARSZ will return a SIZE of 1.

H.12.4  ARINI Subroutine

The ARINI subroutine initializes an array by setting every element to the same value. 
If no VALUE argument is given, each element of the array is set to the null value 
(blank for An fields; zero for other fields). Unless there is an error, ARINI returns the 
size of the array.

       SIZE = ARINI(ARRAY [,VALUE])

       SIZE/I    Size of array
                 -1: VALUE has different type than ARRAY
                 -2: ARRAY is a TI or TX field
                 -3: Incorrect number of arguments
       ARRAY     Name of array
       VALUE     Optional initial value (field or constant)

If ARRAY is a field that is not a local array, ARINI will initialize it and return a SIZE 
of 1.

13.   RMO TABLE statements create local arrays at compilation, one for each field in 
the TABLE file. The dimension of these local arrays is the number of records in 
the TABLE file. The ARSZ subroutine is especially useful for determining the 
number of records loaded by a TABLE statement. See Section 9.8 “TABLE 
Statement” for a description of the RMO TABLE statement.
ADMINS User Guide  H - 95



Array Processing Subroutines
H.12.5  ARFND Subroutine

ARFND finds a value in an array by making a linear search of the array elements.14 
If VALUE is present more than once in ARRAY, ARFND returns the subscript of the 
first occurrence.

If ARFND is called with two arguments, the entire array is searched. With three 
arguments, ARFND begins searching at element START of ARRAY and continues to 
the end of the array. With four arguments, the search begins at element START and 
continues for NELE elements. If both START and NELE are given, and START is 
within the array but START + NELE - 1 is past the end of the array, ARFND stops 
searching at the end of the array: an out-of-bounds NELE value is not treated as an 
error.

       N = ARFND(ARRAY,VALUE [,START [,NELE]]) 

14.  Because ARFND makes a linear search of the array the array elements do not 
have to be in any order. However, as a linear search through a large array could 
be time consuming, ARFND is intended for searching fairly small arrays. See the 
BINSRC subroutine, described in Appendix H.12.1 “BINSRC - Binary Search in 
RMO Tables and Arrays” for an efficient method of searching large arrays.

N/I >0: Subscript where VALUE was found in ARRAY
 0: VALUE not found in ARRAY
-1: VALUE has different type than ARRAY
-2: ARRAY is a TI, TX or BLOB field 
-3: START or NELE is not an I field or an I constant, 
or its value is LE 0
-4: START is larger than size of ARRAY
-5: Incorrect number of arguments

ARRAY Name of array, or (if a scalar alpha local RMO field) the 
name of a field that contains the name of the array.
The array (or array name) may also be the first field of 
a number of consecutive fields of the same data type in 
the virtual record’s main file. The size (or dimension)of 
the array in this case is the number of consecutive fields 
of the same type (and length) that are specified in the 
DEF (the number of elements to consider can always be 
controlled using the START and NELE arguments). 

VALUE Value to find (field or constant)

START/I Optional subscript at which to start searching (field or 
constant).  If NELE is not given, the search continues to 
the end of the array.

NELE/I Optional number of elements to search (field or 
constant).  If NELE is used, START is required.
H - 96   ADMINS User Guide



Array Processing Subroutines
H.12.6  ARNONL Subroutine - Locate Non-Zero/Non-Blank Element

Use ARNONL to locate non-zero or non-blank elements in an array. E.g. in a financial 
application, you could use ARNONL to check if an account has any value other than 
zero in any of the twelve monthly accounting periods.

ARNONL syntax:15

STAT = ARNONL(ARRAY|AR_NAME,FIRST,LAST[,FLAG])

where

After a non-zero element is found, the next non-zero element may be located by 
setting FIRST to STAT + 1, and calling ARNONL again.

If both the FROM and TO fields have a value of zero (0), FROM will be assigned the 
value 1, and TO will be assigned to the size (dimension) of the array. 

Example:

    FILE N.MAS
    LOCAL
    STAT/I      
    FIRST/I
    LAST/I 12
       * Array has activity for last twelve months 

15.  Array element numbers used and returned by ARNONL start with one (1). When 
the array is a reference to a base field in the main file, the value returned must be 
referenced as ARRAY(STAT - 1) as the base of a field array is element 0 (see 
Section 8.7 “Arrays”).

STAT/I Returned with 0 if no non-zero (or non-blank) 
element was found, or subscript where a non-zero 
element was found, or:

-1: Invalid data type (text or blob)
-2: FIRST is < 1 or > LAST
-3: LAST is > array size
-4: Invalid number of arguments

ARRAY/x(n)
or
AR_NAME/An

Array of any data type, except TI, TXor BLOB.
or
Local scalar RMO field that contains the name of an 
array

FIRST/I First element of array to check, starting
with 1.

LAST/I Last element of array to check.

FLAG/I (Optional)Controls the direction of the search, and 
what to search for.  
If FLAG contains the value '1' the search will be 
conducted backwards (i.e. start with the last 
element and move towards element 1). 
If FLAGS contains the value '2' it will search for a 
NULL value instead of a non-NULL value. The First 
NULL value will be reported. 
These options can be combined by adding the FLAG 
values.  FLAG = 3 will search for a NULL value 
from the end of the array towards the front. 
ADMINS User Guide  H - 97



ASCII I/O Subroutines
    WAR/D2(12) 0  0  0  20.00  0  0  123.00  0  0  0  0  0
    D2/D2
    PROGRAM
    *
    * Find most recent (last) non-zero value
    *
    FIRST = 1 ;
    LOOP: STAT = ARNONL(WAR,FIRST,LAST) ;
       IF STAT NE 0 THEN ;
          D2 = WAR(STAT) ;
          FIRST = STAT + 1 ;
          IF FIRST LE LAST THEN GOTO LOOP END ;
          END
    STOP

H.13  ASCII I/O Subroutines

The subroutines in this group provide access to ASCII "text" files.

H.13.1  ASCOPEN - Open ASCII File

ASCOPEN opens (read), creates (write), or opens for appending records (append) an 
ASCII file for further processing by the other ASCII I/O subroutines. Only one file 
may be open at a time.

    STAT = ASCOPEN(WHICH,FILENAME)

where

.

H.13.2  ASCREAD - Read ASCII File

ASCREAD reads one line of text from the ASCII file opened by ASCOPEN and places 
the line the specified field or array.

    STAT = ASCREAD(FNO,BUF,LEN)

STAT/I >0: FNO for opened file
 -1: Could not open file
-2: Invalid operation (WHICH not 'RD', 'WR', or 
'AP')
-3: FILENAME not An field

WHICH/A2 (field or constant)
'RD' to open file for reading
'WR' to create file for writing
'AP' to open or create file for appending records

FILENAME/
An

(field or constant)
Name of file to be opened.
H - 98   ADMINS User Guide



ASCII I/O Subroutines
where     

H.13.3  ASCWRITE - Write ASCII File

ASCWRITE writes the contents of the specified field or array into the ASCII file 
created/opened by ASCOPEN. The syntax is

STAT = ASCWRITE(FNO,BUF,LEN [,OPT]

where:

STAT/I >=0: Number of characters read
 -1: EOF
-2: No file open for read
-3: BUF not An field
-4: LEN >254

FNO/I File number to read.

BUF/An (field) Buffer to receive one line of text to be read. 
BUF may be an array of alpha fields (e.g. BUF/
A80(4)), or a number of adjacent G$ fields. If more
than one field is to be used, LEN must state the total 
length of the buffer to use.

LEN/I The length of BUF in bytes. If BUF is only one field, 
LEN may be given as zero, and the actual length of 
the BUF field will be used. If BUF is an array, or a 
series of G$ fields, LEN must state the total length
of the buffer.

STAT/I 1: OK
-2: File not open for write
-3: BUF not An field
-4: LEN > 254
-5: Wrong number of arguments; should be 3 or 
4.

FNO/I  File number to write.

BUF/An (field) Buffer with text to write. May be an array of 
alpha fields (e.g. BUF/A80(4)), or a number of 
adjacent G$fields. If more than one field is to be 
used, LEN must state the total length of the buffer to 
use.

LEN/I The length of BUF in bytes. If BUF is only
one field, LEN may be given as zero, and
the actual length of the BUF field will be
used. If BUF is an array, or a series of
G$ fields, LEN must state the total length
of the buffer.
ADMINS User Guide  H - 99



ASCII I/O Subroutines
To combine options, add the values for the options together (for example, if you want 
both option 1 and 2, set OPT = 3.)

 ASCWRITE  translates characters using a DMAP translation table from the 
TRANS_ENV file when OPT is set to 2. If OPT is set to 4, ASCWRITE will  load and 
use a DMAP translation table that only affects ASCWRITE operations, specifically 
loaded for that purpose by a special ASCOPEN call16. 

There is no need to reset the table if you do not want ASCWRITE() to perform any 
translations. Just ensure that ‘4’ is not in OPTION.

OPT/I Optional. (Field or constant.)
1: Retain trailing blanks
2: Translate characters using TRANS_ENV 
DMAP
4: Translate characters using loaded translation 
map.
8: Allow more than 254 characters in output.

16.When ASCOPEN()  is called with open mode set to ‘LT’ (Load Translation table) 
and a file name is included that is the path to a file containing DMAP syntax, the 
system loads that file as the translation table for ASCWRITE() only. Subsequent 
calls to ASCWRITE() with OPTION 4 use this table. Once loaded, the table stays 
in effect for the whole TRANS session or until another ‘LT’ ASCOPEN() call 
replaces it.

The ASCOPEN() ‘LT’ call only processes lines starting with “dmap:”. So the file you 
give it can be a regular TRANS$ENV file with DMAP entries, or a file with only 
DMAP entries made specifically for this purpose. There is no error checking with 
the exception of a ‘file not found’ error.

NOTE
H - 100   ADMINS User Guide



Subroutines that Modify or Control TRANS
H.13.4  ASCCLOSE - Close ASCII File

Use ASCCLOSE to close the file created/opened by ASCOPEN.

STAT = ASCCLOSE(FNO)

where

H.13.5  DELFILE - Delete File

DELFILE deletes the specified file.

STAT = DELFILE(FILENAME)

where 

H.14  Subroutines that Modify or Control TRANS

The subroutines in this group are used to modify or control TRANS behavior "on the 
fly".

H.14.1  AUTOBR: Automatic Branch Control

The AUTOBR subroutine can be used to dynamically control access to screens, 
identified by their branch codes, based on logic in the RMO. Manual branching17 to 
a screen or set of screens can be activated or deactivated at any time with AUTOBR. 
AUTOBR can set branch codes as manual or automatic-only, whether or not those 
branch codes appear in the screen where AUTOBR is called. The setting of a 
particular branch code remains in effect as long as the user is in TRANS, unless 
another call to AUTOBR changes it. Therefore, AUTOBR can be used in a login screen 
or a menu screen to set branch choices in other screens which the user may visit.

STAT/I 1: OK
-1: File not open

FNO/I File number to close.

STAT/I 1: OK
-1: File not deleted

FILENAME/
An

(field or constant)
Name of file to be deleted.

17.   AUTOBR only controls branches which are designated in the TRS as automatic-
only (with '%%' preceding the branch message text). Normally, these branches 
are hidden from the TRANS user and are not available for manual branching.
ADMINS User Guide  H - 101



Subroutines that Modify or Control TRANS
When AUTOBR is called with ACTION = 0 and an array of branch codes, then, when 
the branch codes in the array are encountered, they are treated as manual branches 
(the '%%' is removed from the displayed branch message).

When AUTOBR is called with ACTION = 1 and an array of branch codes, then, when 
these branch codes are encountered with the '%%' designation in the TRS, they are 
treated as automatic-only branches, as they normally would be.

If AUTOBR is called with ACTION = 2, then all '%%' branches are treated as 
automatic only (that is, ACTION = 2 restores the normal branching action for all 
subsequent '%%' branches).

AUTOBR branch settings take effect immediately (next time TAB is pressed). The 
branch settings remain in effect as long as the user is in TRANS, unless they are 
changed by another AUTOBR call. The setting of one or more branch codes can be 
changed at any time, in any order. For example, a menu screen might set branches A, 
C, and E as manual; then a subsequent screen might change C and E to automatic 
only; later C could be set back to manual and A to automatic only; etc. AUTOBR can 
be used more than once in the same screen: for example, a screen could set branch 
code C to manual and then later set it back to automatic only. When TAB is pressed, 
TRANS treats branch C as manual or automatic only, according to the setting 
established by the last call to AUTOBR which set the action for branch code C.

Since the branch codes supplied to AUTOBR do not need to appear in the screen 
where AUTOBR is called, TRANS cannot verify that they are branch codes for '%%' 
branches. A branch code supplied to AUTOBR has no effect until the user enters a 
screen where the branch code is used for a '%%' branch.

At any given time, a maximum of 100 '%%' branch codes can be designated as manual 
branches using AUTOBR (AUTOBR returns an error status, and does not change the 
branch settings, after this limit is reached). This limit is of no concern unless the 
application contains over 100 different branch codes. AUTOBR prevents duplication: 
for example, if branch code A is set to manual twice in a row, it only counts once 
against the limit of 100 branch codes set to manual.
H - 102   ADMINS User Guide



Subroutines that Modify or Control TRANS
Syntax:

 STAT = AUTOBR(ACTION,BRANCHES)

H.14.2  Button - Creating and Modifying Buttons in TRANS

The BUTTON subroutine creates new buttons or modifies the appearance and 
behavior of buttons in TRANS. The syntax of the BUTTON subroutine is:

   STAT = BUTTON(BTNNAME,OP,VALUE[,OP2,VALUE2...])

STAT/I Execution Status

1: OK: Branch actions were set as requested.
-1: Value of ACTION is not valid.
-2: AUTOBR cannot set any more branch codes as
manual branches.  Currently, 100 different
branch codes are set to manual; AUTOBR
has been asked to set more and it cannot.
 -3: The BRANCHES array contains over 100 
branch codes, or it is not terminated with a blank.
This is an error in the RMS which must be fixed.
Future branches and calls to AUTOBR may not
function as expected.

ACTION/I Action Code (field or constant)

0: Make the branches in the BRANCHES array 
manual.
1: Make the branches in the BRANCHES array 
automatic-only.
2: Make all branches function as designated in
the TRS (manual if no '%%', automatic-only
if '%%').

BRANCHES/
A2(n)

Branch Code Array (field)
This array must be of type A2 and must not contain
more than 100 branch codes.  Branch codes can be
in any order and must be uppercase.  The end of
the BRANCHES array is indicated by a blank array
element, which must be present.  For example,
BR/A2(3) 'A' 'CD' ' '.  If ACTION = 2, this
argument can be any An field: it must be present,
but its contents are not used.
ADMINS User Guide  H - 103



Subroutines that Modify or Control TRANS
where:

STAT/I   1: OK
 -1: BTNNAME is not type An (alphanumeric)
-2: BTNNAME button not found
-3: Invalid OP code
-4: Invalid state code
-5: Cannot press a grayed button
-6: Invalid number of arguments
-10n: Argument n has wrong type
-20n: Invalid action code in argument n
-30n: Invalid video code in argument n

BTNNAME/
An

Field or constant containing the name of the button 
to modify.

OP/I Operation to perform:
1: Change button label
2: Change action codes
3: Change video attributes
4: Change Down video attributes
5: Change Grey video attributes
6: Set state
99: Delete button

A negative OP code restores the original value (e.g. 
OP = -1 restores the original button label).  (There is 
no -99 OP code).
The following codes may be used to create new 
buttons (must be 1st code in list):

258: Create a new Pushbutton
259: Create a new Labelbutton

VAL/* Value field type and content depend on the 
preceding OP code:

OP = 1: An with new label
OP = 2: An with new action code(s).  See Section 
5.5.17 “Button Objects in TRANS” for rules on 
how to specify action codes.
OP = 3, 4 and 5: An with video codes. See Section 
5.5.17 “Button Objects in TRANS” for rules on 
how to specify action video codes.
OP = 6: Integer.  Allowed values are:

0: Normal state
1: Simulate button press
2: Greyed state (no action is taken while in 

this state).
OP = 99: Any field (dummy).
OP = 258 and 259: An integer array, where:

I(1) = X value (column number)
I(2) = Y value (line number)
I(3) = Number of columns
I(4) = Number of lines
H - 104   ADMINS User Guide



Subroutines that Modify or Control TRANS
All OP codes require a VAL argument, although the negative OP codes and OP code 
99 does not care about its type or value.  A good practice is to specify those value 
arguments as 0 (zero). For example:

STAT = BUTTON('EXIT',-1,0)

restores the original label for the button named EXIT.

All arguments to the BUTTON subroutine may be given as fields or constants.  The 
VAL arguments must be include the field type if they are given as alphanumeric 
constants, e.g.

STAT = BUTTON(BTNNAME,2,'%brnc 1/A7')

H.14.3  CTRLP - Print All or Part of a Screen in TRANS

The CTRL/P function key in TRANS (see Section 6.7 “Control Functions”) is used to 
print the contents of the video display screen. The printout of the screen contents is 
directed to the spooling device assigned to ADM$SPOOLn, where "n" is set on the 
screen header line of a screen description via the SPn or TTn keyword (see Section 
5.3.1.9 “SPn or TTn: Print Device Specification”).

The P$P local field in the RMO behind the screen (see Section 16.6 “Printing 
Messages: P$P”) is used to direct line by line output to a physical printing device. 
Each line is printed on the device assigned to ADM$PRTn, where "n" is set on the 
screen header line of a screen description via the SPn or TTn keyword.

The CTRLP subroutine is designed to provide a mixture of these facilities for 
producing "screen prints" in TRANS.

CTRLP is called from the RMO behind the screen when some or all of the screen 
contents are to be printed.

H.14.3.1  CTRLP Syntax
           NULL = CTRLP(SPOOL,FORM,DIM)

NULL/I Required for syntax purposes only.

SPOOL/A2 Print is directed to ADM$SPOOLn or ADM$PRTn 
where "n" is set on the screen header line of the 
screen description via the SPn or TTn keyword. If 
SPOOL is 'SP' then the printout from the entire 
TRANS session (one file) is queued to 
ADM$SPOOLn when the user exits from TRANS. If 
SPOOL is 'SC' then the printout of the current screen 
is queued to ADM$SPOOLn immediately. If 
SPOOL is blank then the printout is not queued, but 
is immediately directed to the device assigned to 
ADM$PRT0 (to send the printout to the terminal’s 
printer port use the TRANS$ENV command 
“ctrlp_nospool=PP” and assign “SYS$OUTPUT” to 
ADM$PRT0).

FORM/A2 If FORM contains 'FF' then the printout will be 
preceded with a form-feed. If FORM is blank then 
no form-feed is placed before the printout.
ADMINS User Guide  H - 105



Subroutines that Modify or Control TRANS
H.14.3.2  CTRLP Example
For example, the requirement is to print starting at the 10th line from the top of the 
screen at the leftmost character, printing 6 lines that are 40 characters wide. Also, start 
the print immediately on the device assigned to ADM$SPOOL3 and the print should 
be preceded by a form-feed.

The screen header line would contain the keyword "SP3".

The fields for the subroutine call would be set as follows:

     NULL/I
     SPOOL/A2 'SC'
     FORM/A2 'FF'
     DIM/I(4) 10 1 6 40

H.14.4  DISPFLDS: Modify Field Display List in TRANS

Use the DISPFLDS subroutine in RMOs running with TRANS to modify the list of 
fields which are displayed in a screen. DISPFLDS can be called at any time from the 
RMO.

DISPFLDS processes a list of field names in an local RMO array, and modifies the list 
of fields to be displayed in one of the following two ways:

1. the fields on the list should be the only fields displayed, or
2. the fields on the list should not be displayed.

If a field is displayed, DISPFLDS has no effect on whether it is editable. (to change the 
edit status of fields, use the EDFLDS subroutine, described in Appendix H.14.5 
“EDFLDS - Modify List of Editable Fields in TRANS”). Of course, if a field is not 
displayed, it is not editable either. Therefore, when DISPFLDS blocks the display of 
a field which is declared in the TRS as editable, it also prevents the cursor from going 
to the field.

The syntax:

      STAT = DISPFLDS(ACTION,FIELDS)

DIM/I(4) If DIM(1) is zero then the entire screen is printed. 
Otherwise DIM(1) contains the starting line, 
DIM(2) contains the starting column and must be 
an odd number, DIM(3) contains the number of 
lines, and DIM(4) contains the width of each line 
and must be an even number.

STAT/I 1: Successful
 0: Nothing done, DISPFLDS was called after first 
pair of BEGREC calls in screen.
-N: The Nth element of FIELDS does not match 
any field in the screen.  If N is larger than
the number of elements in FIELDS, the problem
is that the last element of fields is not a blank 
element.
-1000: Over 1000 elements in FIELDS, or more 
elements than there are fields in the screen.
H - 106   ADMINS User Guide



Subroutines that Modify or Control TRANS
H.14.4.1  DISPFLDS - Example
In the following example, the field G$USER_ACC is checked to determine whether 
the current user should be able to view the SALARY field. If the user is not 
authorized, DISPFLDS is called to block display of SALARY.

     FILE PAYROLL:EMP.MAS
     *
     S$S/A6
     M$M/A2
     G$USER_ACC/A1
     STAT/I
     DFACT/I
     DFLIST/A10(2) 'SALARY' ' '
     XCALL/I 0
     *
     PROGRAM
     *
     IF XCALL EQ 1 THEN GOTO ALLCALLS END
     FIRSTCALL: XCALL = 1
     IF G$USER_ACC EQ 'S' THEN GOTO ALLCALLS ELSE ;
         DFACT = -1 ; STAT = DISPFLDS(DFACT,DFLIST) ;
         END    
     ALLCALLS: ;
     ...

H.14.5  EDFLDS - Modify List of Editable Fields in TRANS

Use the EDFLDS subroutine in RMOs running with TRANS to modify the cursor 
order of the screen (the list of editable fields).

EDFLDS gives developers a straightforward way to restrict cursor movement in 
TRANS applications. Some of the situations where you might use EDFLDS are:

1. Field level security, where, based on logic in the RMO, the user is not allowed to 
change certain fields;

2. "Sub-screens", where one screen contains several logical sections, and you want 
to restrict the cursor to one subscreen at a time.

EDFLDS lets you specify a list of field names that should be the only editable fields; 
or specify a list of field names that should not be editable. EDFLDS can also restore 
the list of editable fields to that specified in the TRS.

ACTION/I (Field or constant)
2: Allows a subset of fields, that have been turned 
off by a previous call of -1, to be selectively 
turned back on.
1: Display only the fields named in FIELDS
-1: Do not display the fields named in FIELDS
0: Display all fields as specified in TRS
2: Redisplay the fields named in FIELDS
(useful after -1 used to prevent display of a group 
of fields)

FIELDS/An(n) (Array)
Contains a list of field names, which can be 
abbreviated.  These fields should be specified in the 
fields section of the TRS.
The last element in the array MUST BE A BLANK. 
When ACTION is zero, the contents of this array
are not used, but the argument must be present.
ADMINS User Guide  H - 107



Subroutines that Modify or Control TRANS
EDFLDS can be used at any RMO call, and the new cursor order takes effect 
immediately. All the field names used with EDFLDS must be specified as editable 
fields in the TRS; otherwise EDFLDS will have no effect on them (EDFLDS can 
change a normally editable field to display only, but not the reverse).

Here, "editable" means that the cursor goes to a field. EDFLDS does not block changes 
to fields by the RMO; it just restricts where the cursor can go. EDFLDS overrides 
ALLOW and C$C*. If a field is ALLOWed or is specified in C$C, but EDFLDS has set 
that field as display only, then the cursor won't go to it. EDFLDS does NOT override 
ADM$READONLY.18

After EDFLDS has modified the normal cursor order, "query" field selection mode in 
TRANS19 displays and goes to only those fields specified by EDFLDS as editable.

EDFLDS can make key fields display only. If KEY1 is made display-only by EDFLDS, 
then the HOME key puts the cursor at the first non-key field which can be edited. If 
KEY2 and/or KEY3 are display only, then the subkey keystrokes [ (the KEY2 
keystroke) and ] (the KEY3 keystroke) go either to KEY1, if it is editable, or to the first 
editable non-key field if KEY1 is not editable.

Normally, all key fields should be editable, or none should be. If some key fields are 
editable and others are not, the user can reach the highest editable key using the 
HOME key or a subkey key (KEY2 or KEY3). If a value is entered for that key, then 
the cursor will go to all lower keys, regardless of the EDFLDS setting.

Syntax:

STAT = EDFLDS(ACTION,FIELDS)

18.  See Section 5.5.15 “ALLOW statement” for details on ALLOW, see Section 16.3 
“Cursor Control: C$C and C$MULREC” for details on C$C, and see Section 6.3 
“Entering or Changing Fields” for details on ADM$READONLY.

19.  see Section 5.3.1.4 “TABBING or QUERY: Field Selection Mode”

STAT/I 1: Successful
-N: The Nth element of FIELDS does not match 
any field in the screen.  If N is larger than
the number of elements in FIELDS, the problem
is that you neglected to end FIELDS with a blank 
element.
-1000: Over 1000 elements in FIELDS, or more 
elements than there are fields in the screen.

ACTION/I (Field or constant)
1: Make fields in FIELDS array the only editable 
fields
-1: Make fields in FIELDS display only
0: Return to normal editable field list specified in 
TRS.
-2:  Make fields in FIELDS display only and 
blocks the cursor from going to text and display 
fields with Lookup. 
H - 108   ADMINS User Guide



Subroutines that Modify or Control TRANS
H.14.5.1  EDFLDS - Example
In the following example, the field Z_DATE is set to be display only via the EDFLDS 
subroutine (at every RMO call). When M$M has a certain specific value, EDFLDS is 
used again to reset Z_DATE back to editable.

     FILE IS_DATA:ISC100.MAS
     *
     S$S/A6
     M$M/A2
     C$C/A6
     .
     .
     .
     STAT/I
     EDFACT/I
     EDFLIST/A10(2) 'Z_DATE' ' '
     .
     .
     .
     PROGRAM
     *
     * Use EDFLDS to set the Z_DATE field 
     * display only because its only intended 
     * for use in specific circumstances
     *
     EDFACT = -1 ; STAT = EDFLDS(EDFACT,EDFLIST)
     .
     .
     .
     * When M$M has the value 'HS' set the Z_DATE 
     * field editable, and send the cursor there.
     *
     HS: ; 
     IF M$M NE 'HS' THEN GOTO UX END ;
      EDFACT = 0 ; STAT = EDFLDS(EDFACT,EDFLIST) ;
      C$C = 'Z_DATE' ; 
     .
     .
     .

H.14.6  GBLSTORE - Access TRANS Global Area on Disk

The GBLSTORE subroutine allows an RMO running with TRANS to write the 
TRANS global area (the "G$" fields) to a disk file and later read it back into TRANS.

GBLSTORE is useful, for example, in an application where a user performs some 
operations in TRANS, then leaves TRANS and executes some other images, and then 
returns to TRANS. GBLSTORE can write out the user's global fields before leaving 
TRANS, and read them back in when the user returns to TRANS.

The GBLSTORE syntax is as follows:

FIELDS/An(n) (Array)
Contains a list of field names, which can be 
abbreviated, provided they uniquely identify the 
fields in question.  These fields should be specified 
as editable in the TRS (this is not checked).
The last element in the array MUST BE A BLANK. 
When ACTION is zero, the contents of this array
are not used, but the argument must be present.
ADMINS User Guide  H - 109



Subroutines that Modify or Control TRANS
    STAT = GBLSTORE(OP,USERID)          

GBLSTORE stores global data for each user in a small non-ADMINS binary file. The 
names of these files have the form ADM$GBL:TRANS_<USERID>.GBL. The logical 
name ADM$GBL must be defined in order to use GBLSTORE. ADM$GBL points to 
the directory where GBLSTORE will look for global data files. Users must be able to 
read and write to the ADM$GBL directory. GBLSTORE opens (or creates) the global 
data file only when necessary; and, once it has been opened, file remains open until 
the user leaves TRANS or one of the delete options (OP = 'D' or OP = 'RD') is used.

The user's global file can be written and read at any time by application screens. 
Normally, it should only be written immediately before exiting from TRANS, and 
read immediately after coming back into TRANS.

OP = 'RD' deletes the user's global file immediately after reading it. The purpose of 
this option is to avoid the proliferation of user global files. If the application does not 
have user ID's of its own, GBLSTORE uses ADM$TERM for the user id in the global 
file name. But, depending on how ADM$TERM is assigned, it may have 
unpredictable values (e.g., if it is based on an LTAxxx terminal number, which 
increments whenever anyone logs in). Alternatively, the 'D' option can be used to 
delete the global file when the user leaves an application; or the user's global file can 
be deleted in a DCL procedure when the user logs off.

H.14.7  NOEK - Set TRANS to Read Next Field With No Echo

It is possible to instruct TRANS to read a field with no echo, which may be used to 
input a password on a logon screen. This is done by letting the RMO behind the 
screen call the subroutine NOEK, which instructs TRANS not to echo the next field 
typed in. (Be aware of the fact that if the noecho field is defined as an ER field, the 
refresh mechanism will re-display the contents of the field after it is typed in. The 
RMO should therefore move the information into a local field right after it is typed, 
and blank out the noecho field.)

H.14.6.1NOEK Syntax
           NULL = NOEK(NULL)

OP/A2 (field or constant)
‘W’  to write global area to file
‘R’   to read global area from file
‘RD’  same as ‘R’, but delete file after reading
‘D’   just delete the file

USERID/An (field or constant)
Unique user ID string.  If blank, the translation of 
ADM$TERM is used.

STAT/I Status:
1:  OK
-1:  OP code is not valid
-2:  File cannot be opened
-3:  ADM$TERM not defined

NULL/I Required for syntax purposes only.
H - 110   ADMINS User Guide



Subroutines that Modify or Control TRANS
H.14.7.1  NOEK Example
NOEK would typically be used to input a user password which should only be 
known to the user and therefore should not be displayed on the screen. Given the 
following lines in a screen instruction file,

...
ER USER/X9999
ER PWD/A6
...

then an RMO behind the screen might contain the following:

     ...
     S$S/A6
     USER/X9999
     PWD/A6
     PASS/A6
     NULL/I
     PROGRAM
     IF S$S EQ 'USER' THEN NULL = NOEK(NULL) END
     IF S$S EQ 'PWD' THEN PASS = PWD ; PWD = ' ' END
     ...

When the field "USER" is entered TRANS will not echo the next field entered which 
would be "PWD". In addition, when the field "PWD" is entered it is saved and then 
"blanked out" so it will not be refreshed on the screen.
ADMINS User Guide  H - 111



Subroutines that Modify or Control TRANS
H.14.8  PAUSE - Create a Pause in TRANS

It might be useful to have TRANS pause at times before continuing to perform its 
current activity. For example, re-displaying the records in a multi-record screen 
every thirty seconds. One could make TRANS pause by executing a loop in the RMO 
behind the screen or by sending TRANS through a set of automatic branches. Either 
method consumes significant CPU or I/O resources, and would seriously degrade 
response on the other terminals.

There is a PAUSE subroutine, callable from an RMO running behind the screen, to 
allow TRANS to pause with no overhead.

H.14.8.1  PAUSE Syntax
           NULL = PAUSE(NTICKS,UNITS)

H.14.8.2  PAUSE Example
Given the following fields and values,

     NULL/I
     NTICKS/I 2
     UNITS/I 3

then

     NULL = PAUSE(NTICKS,UNITS)

included in an RMO behind a screen would cause TRANS to "pause" for two minutes.

H.14.9  READBR Subroutine: Read-Only Branch Access

The READBR subroutine can be used to turn read-only access20 on and off for 
screens, identified by their branch-codes, prior to branching into them. Read-only 
access can be turned on or off at any time before a screen is branched to.

The branch codes acted on by READBR need not exist in the TRO that calls it. Thus, 
READBR can be called once, for example in a menu screen, to set up branch codes for 
a whole family of other screens. The setting of a particular branch code as read-only 
remains in effect as long as the user is in TRANS, unless another call to READBR 
changes it.

NULL/I Required for syntax purposes only.

NTICKS/I Number of UNITS to pause.

UNITS/I Unit of time measurement. 
1 signifies ticks (hundreths of seconds)
2 signifies seconds
3 signifies minutes
4 signifies hours

20.  as if ADM$READONLY were set (see Section 6.3 “Entering or Changing Fields”).
H - 112   ADMINS User Guide



Subroutines that Modify or Control TRANS
By calling READBR with an action code and an array of branch codes, branch codes 
can be added to or removed from the list of read-only branches at any time, in any 
order.

To set certain branch codes as read-only, call READBR with ACTION = 0 and an 
array containing the branch codes. When the user branches using these branch codes, 
the target screen will be in read-only mode. To restore one or more branch codes to 
"normal" (read/write) mode, call READBR with ACTION = 1 and an array 
containing the branch codes to be restored. Calling READBR with ACTION = 2 
restores all branches to read-write mode without naming the branch codes.

READBR settings take effect at the next branch. The TRANS return branching 
features (CTRL/R and R$R) "remember" screens which were read-only when 
entered; if you return-branch to these screens, they remain read-only.21

Since the branch codes supplied to READBR do not need to appear in the 
BRANCHES paragraph of the screen where READBR is called, READBR cannot 
verify that the branch codes it is given exist. Nonexistent branch codes have no effect.

At any time, a maximum of 100 branch codes can be designated as read-only 
branches using READBR (READBR returns an error status, and does not change the 
branch settings, after this limit is reached). This limit is of no concern unless the 
application contains over 100 different branch codes. READBR prevents duplication: 
for example, if branch code A is set to read-only twice in a row, it only counts once 
against the limit of 100 branch codes.

If 'Y' is assigned to the logical name ADM$READONLY, all screens are read-only. 
READBR cannot override ADM$READONLY.

READBR Syntax:

          STAT = READBR(ACTION,BRANCHES)

21.  If you branch to them normally (i.e. not via CTRL/R or R$R) they will be in 
whatever access mode is currently in effect for that screen's branch code.

STAT/I Execution Status
1: OK: Branch actions were set as requested.
-1: Value of ACTION is not valid.
-2: READBR cannot set any more branch codes as
read-only branches.  100 different branch
codes have already been set.
-3: The BRANCHES array contains over 100 
branch codes, or it is not terminated with a blank.
This is an error in the RMS which must be fixed.

ACTION/I Action Code (field or constant)
0: Make the branches in the BRANCHES array
read-only.
1: Make the branches in the BRANCHES array
normal
2: Make all branches function normally
ADMINS User Guide  H - 113



Subroutines that Modify or Control TRANS
                   

H.14.10  SETKEY - Simulate Keystrokes in TRANS

The SETKEY subroutine provides a way for the RMO running with TRANS to 
simulate a specified series of keystrokes being typed at the keyboard.

SETKEY can "pause" during the simulated series of keystrokes. This capability is 
useful to simulate "human speed" data entry, or simulate the user pausing to read 
from the display in the development of benchmark screens.

BRANCHES/
A2(n)

Branch Code Array (field)
This array must be of type A2 and must not contain
more than 100 branch codes.  Branch codes can be
in any order and must be uppercase.  The end of
the BRANCHES array is indicated by a blank array
element, which must be present.  For example,
BR/A2(3) 'A' 'CD' ' '.  If ACTION = 2, this argument 
can be any An field: it must be present, but its 
contents are not used.
H - 114   ADMINS User Guide



Subroutines that Modify or Control TRANS
H.14.10.1  SETKEY Syntax
SETKEY's sole argument is the specification of the sequence of keystrokes to be 
simulated by TRANS. This sequence is usually specified as a character string 
contained in an alphanumeric field or constant. However if the TRANS environment 
file contains the line "setkey=physical" then the sequence can be specified as an 
integer array (see Section 6.15.7 “SETKEY=PHYSICAL, Simulate VT-type Function 
Keys”).

           NULL = SETKEY(AR)

If the statement "setkey=physical" is present in the TRANS environment file (see 
Section 6.15 “The TRANS Environment File”), TRANS checks the array to see if 
escape sequences sent by any VT function keys are present (one element of the array 
for each character of the escape sequence). If so TRANS will simulate the VT function 
keys corresponding to that escape sequence.

If an element of SETKEY's array is a negative integer (range 1 to 127), TRANS will 
pause that number of hundredths of a second at that point in the sequence of 
keystrokes.22

NULL/I Required for syntax purposes only.

AR/An An Alpha string that describes a series of 
keystrokes, where:

A single character (separated by blanks) represents 
that character. A string of more than one character 
represents a standard function key name from the 
.tkb file (see Appendix G: “TKB File: Keystroke 
Table”). A string that begins with "%" is a TRANS 
keystroke function. A string that begins with "-" 
followed by number will cause TRANS to pause 
that number of hundredths of a second.

AR/I(n) (Used when "setkey=physical" is present in 
TRANS$ENV, to specify keystrokes by the 
physical "escape sequences" sent when they are 
pressed). Each element of the array is the integer 
decimal code of an ASCII character (see table in 
Appendix H.2). The integer array is read until a 
element that contains zero (0) is encountered.

22.  UNIX systems can pause only in full second increments of time. On UNIX 
systems the time paused is rounded up to the next highest full second.
ADMINS User Guide  H - 115



Subroutines that Modify or Control TRANS
H.14.10.2  SETKEY Example
For example:

     LOCAL
     AR/A60 '%exit D A T A CR 2 5 CR'
     NULL/I
     PROGRAM
     NULL = SETKEY(AR)

When SETKEY is called TRANS will simulate the keystrokes "EXIT", "D", "A", "T", 
"A", "RETURN", "2", "5", and "RETURN" being typed the next time it reads the 
keyboard. EXIT will cause TRANS to clear the screen and prompt for a new screen 
name. "D A T A RETURN" will be the answer to the prompt, which will cause TRANS 
to load DATA.TRO and display the top-of-file record. "2 5 RETURN" will cause 
TRANS to display the record with key value 25 in the new screen loaded from 
DATA.TRO.

H.14.11  MOVFLD - Move Fields Among Files Accessed via TRO

The MOVFLD subroutine moves the contents of fields between external files in a 
TRS, and/or between an external file and the active file. This subroutine is useful for 
moving large numbers of fields from one file to another, eliminating lengthy LINK 
and/or APPEND paragraphs.

The data is moved from the "from" file to the "to" file. MOVFLD moves a series of 
fields to the "to" file, based on field name matches with fields in the "from" file. Some 
or all of the "from" file fields may be local field names from the screen definition 
(TRS). The fields in the "to" file must have the actual names of the "to" file definition. 
The "from" fields must have identical names and types to the "to" fields. The 
movement of field values from the "from" file record buffer to the "to" file record 
buffer is initiated by the RMO behind the screen.

MOVFLD forces the write-back at end of record processing to "to" LINK files even if 
no explicit LINK field is changed. Explicitly stated LINK fields ("L" fields in the LINK 
paragraph) may also be changed by regular LINK functionality. LINK key field(s) 
must be in a LINK Paragraph.

If an APPEND file is the "to" file, the APPEND condition letter must be set to write 
the record back to the APPEND file. The key field(s) in the APPEND file must be in 
the APPEND paragraph.

Use MOVFLD cautiously! Fields in a "to" file may be changed even though they are 
not mentioned in the TRS or RMS.

H.14.11.1  MOVFLD Syntax
           STAT = MOVFLD(FROMFILE,TOFILE,FIRSTFLD,LASTFLD,DUMMY)

STAT/I Status of the operation requested.

1 the operation was successful

-1 the “from” file was not found

-2 the “to” file was not found

-3 the first field was not found in the “to” file
H - 116   ADMINS User Guide



Subroutines that Modify or Control TRANS
H.14.11.2  MOVFLD Example
Consider the following file definitions:

     *     PO.MAS
     MAS 1000
     PO#      X999999 KEY1
     FUND     X9 
     PROG     X99
     OBJ      XA99
     ITEM#    A20
     QUANTITY I
     AMT      D2
     ...

     *     LOG.MAS
     MAS 100
     PO#      X999999 KEY1
     OLDFUND  X9 
     OLDPROG  X99
     OLDOBJ   XA99
     FUND     X9
     PROG     X99
     OBJ      XA99
     ITEM#    A20
     QUANTITY I
     AMT      D2

-4 the last field was not found in the “to” file

-5 the first field does not precede the last field

-6 overflow of the internal move table; MOVFLD can 
manage about 300 fields

-7 the “to” file does not contain a particular field, or 
the fields do not match in type

-8 a text field (TI or TX) is included in the list of fields 
to be moved, MOVFLD does not support 
movement of text fields.

-11 -12... If the absolute value of STAT is 11 or greater, then 
MOVFLD is unable to move a particular field. 
Instead MOVFLD returns diagnostic information 
on the error-causing field. The “problem” field in 
nth field being moved into the “to” file where n is 
the absolute value of STAT-10. For example, if STAT 
returns -17, then the field in question is the 7th field, 
or if the STAT returns -21, then the 11th field is 
causing the error condition.

FROMFILE/An File the data is being moved from.

TOFILE/An File the data is being moved to.

FIRSTFLD/An The first field in the "to" file to be moved. 
FIRSTFLD must be an actual field in the "to" file.

LASTFLD/An The last field in the "to" file to be moved. 
LASTFLD must be an actual field in the "to" file.

DUMMY/I Required by syntax. Not used.

STAT/I Status of the operation requested.
ADMINS User Guide  H - 117



Subroutines that Modify or Control TRANS
If the purchase order file changes such that the original FUND, PROGram, or OBJect 
billed for item is changed, then an APPEND paragraph may be used to log the 
changes. By using the MOVFLD subroutine in the RMO to move actual and local 
fields from the active file to the APPEND file, the user writes a simple APPEND 
paragraph to log all of the fields in LOG.MAS.

     *   POCHG.TRS
     P PO.MAS 1 POCHG.RMO 
     APPEND LOG.MAS ACTION A
     PO#
     END
     ...

     *   POCHG.RMS
     * 
     FILE PO.MAS
     LOCAL
     M$M/A2
     S$S/A6
     OLDFUND/X9
     OLDPROG/X99
     OLDOBJ/XA99
     STAT/I
     FROMFILE/A20 'PO.MAS'
     TOFILE/A20   'LOG.MAS'
     FIRSTFLD/A10 'OLDFUND'
     LASTFLD/A10  'AMT'
     DUMMY/I 0
     ACTION/A1
     PROGRAM
     IF M$M NE 'UP' THEN STOP ; END 
     *
     * record original values
     *
     IF S$S EQ 'BEGREC' THEN 
        OLDFUND = FUND ; OLDPROG = PROG ; OLDOBJ = OBJ ; STOP ; END
     *
     * IF VALUES CHANGE, APPEND A NEW RECORD WITH ALL LOG.MAS FIELDS 
     *
     IF (S$S EQ 'FUND' OR 'PROG' OR 'OBJ') AND
        ((FUND NE OLDFUND) OR (PROG NE OLDPROG) OR (OBJ NE OLDOBJ))
        THEN STAT = MOVFLD(FROMFILE,TOFILE,FIRSTFLD,LASTFLD,DUMMY) 
        ACTION = 'A' END

If the value for the FUND, PROG or OBJ is changed by the user, MOVFLD moves the 
values from the PO.MAS fields and from the local fields into the APPEND file, 
LOG.MAS. The key field, PO#, is included in the APPEND Paragraph. The condition 
field, ACTION is set to A to perform the append to LOG.MAS after the RMO returns 
to TRANS.

H.14.12  FLDINFO - Retrieving Information About Fields in TRANS

The FLDINFO subroutine retrieves information about fields that are present in the 
virtual record on which a screen operates. The general syntax is:

STAT = FLDINFO(WHAT,SEQ,FLDNAM,TYPE,Y,X,FLAGS)
H - 118   ADMINS User Guide



Subroutines that Modify or Control TRANS
where:

The FLDINFO subroutine can also be used to convert a line/column position in the 
current window to screen pixel coordinates. By setting WHAT = 1024 and Y = line 
number and X = column number, screen coordinates are returned in FLAGS(1) (Y 
coordinates) and FLAGS(2) (X coordinates).

WHAT/I Mask to indicate which field types we want 
information about.  The following flags are defined:

0: All field types
1: Key fields
2: Editable fields
4: Display fields
8: Virtual fields
256: Information about fields on a multi-record 
line only
1024: Return pixel values for Y and X in 
FLAGS(1) and FLAGS(2)
-1: Get information about field in FLDNAM.

These flags can be combined by adding them 
together.

SEQ/I To start, set SEQ = 0. The call is returned with the 
relative sequence  number of the field  in the 
internal list of file. On the next call to get the next 
field that qualifies,leave it unchanged.

FLDNAM/An Field to return the name of the field. Normally A18.

TYPE/An Field to receive the base type of the field. If TYPE is 
A20 (or larger) the full data type will be returned 
(e.g. A32, D2, X9999), while if TYPE is shorter, e.g. 
A4, only the base data type is returned (i.e. 'A' for 
An fields, 'X' for picture fields etc.).

Y/I Line number where field is displayed, or zero.

X/I Column number where field is displayed, or zero.

FLAGS/I(n) An integer array to receive further information 
about the field.

FLAGS(1)   1 if field has lookup
FLAGS (2)  1 if field is tied to combo box

STAT/I Returned with 1 if a field is found, else 0 (end of list). 
If WHAT = -1 (get information about a specific 
field) STAT is set to 1-8 to indicate what type of 
field it is (1 = Key, 2 = editable...). Observe that 3 
means editable key field, 5 means display only key 
field, etc.)
ADMINS User Guide  H - 119



Miscellaneous Subroutines
H.15  Miscellaneous Subroutines

This "catchall" category of subroutines includes many different capabilities 
applicable in a variety of situations and useful across all ADMINS commands.

H.15.1  ATTACH Subroutine: Attach to Another Process

On OpenVMS systems, the ATTACH subroutine switches control from the current 
process to another process in the current job.

A typical application of ATTACH would be a TRANS screen where text editing is 
required using a specific text editor. A TRANS RMO (see Chapter 15: “Basic RMO 
Functions with TRANS”) would call the SPAWN subroutine (see Appendix H.15.11 
“SPAWN - Create Subprocess from ADMINS Command”) once, to create a 
subprocess running, for example, the EVE editor. EVE's ATTACH command would 
return the user to TRANS. In TRANS, the RMO would call the ATTACH subroutine 
to return to EVE.

Once the subprocess has been SPAWNed initially, process context switching via 
ATTACH is instantaneous. Only one process is active at a time; but dormant 
processes remain exactly where they were when ATTACH was called, and can be 
returned to at any time.
H - 120   ADMINS User Guide



Miscellaneous Subroutines
The SPAWN-ed subprocess may of course run something other than EVE; but it 
should provide some mechanism for returning to the process which created it. If the 
sub-process provides access to DCL, the DCL ATTACH command can be used to 
return.23 Or it may run a TRANS screen with an RMO which calls the ATTACH 
subroutine to return to its parent process.

The syntax for the ATTACH subroutine is:

    
     STAT = ATTACH(PID)           

The ATTACH and SPAWN subroutines provide facilities for managing several 
subprocesses; but they are especially easy to use in the typical case where there are 
only two processes: the original ("parent") process and one subprocess ("child") 
which the parent created with the SPAWN subroutine. In these cases, there is only 
one subprocess in the job, and the special PID values of 1 and -1 can be used.

If it is necessary to manage several SPAWNed subprocesses, or to ATTACH to a 
subprocess which was not created by the SPAWN subroutine, the PID argument 
must contain an actual process ID number.

To support the use of ATTACH, the SPAWN subroutine optionally returns the 
process ID of the subprocess it creates. See Appendix H.15.11 “SPAWN - Create 
Subprocess from ADMINS Command” for details.

H.15.2  ASKSCR: Prompt directly from RMO

The ASKSCR subroutine displays a prompt or message on the screen. Optionally, 
ASKSCR accepts a response from the user, with or without echoing the response, 
without leaving the RMO. Either the prompt or the response can be displayed in 
reverse video, and the response can be automatically converted to all uppercase.

The subroutine has a lot of uses, e.g., displaying various messages on the screen, 
prompting for passwords, verification routines, etc.

23.  To make DCL ATTACH easier to use in a subprocess, a symbol can be created in 
the parent process: for example: RET :== ATTACH 'F$PROCESS(). This symbol, 
containing the name of the parent process obtained by F$PROCESS, is inherited 
by any subprocesses when they are spawned. Thus, in a subprocess, a user can 
simply type "RET" at DCL to return to the parent process without having to know 
its process name.

PID/D Decimal (D) field containing the VMS process ID of 
the process to ATTACH to.  PID has two special 
values:

1: ATTACH to subprocess created by last 
SPAWN call.
-1: ATTACH to parent process

PID must be a field (cannot be a constant).

STAT/I Return status:
1: ATTACH succeeded
-1: PID was 1 but there was no previous SPAWN 
call; or PID was -1 but this is not a subprocess; or 
PID was zero.
Other: Error (VMS return status). 

Usually indicates that PID does not exist.
ADMINS User Guide  H - 121



Miscellaneous Subroutines
The syntax is:

STAT = ASKSCR(Y,X,PROMPT[,ANSWER][,OPTIONS],[COLS]]])

where24

STAT/I -1: Invalid number of arguments
-2: PROMPT and/or ANSWER not ALPHA fields
-3: Invalid Y value
-4: Invalid X value
-5: ANSWER must be a field
-6: OPTIONS and COLS must be integers
-7: Box option invalid. TRANS only & COLS 
required.
>=0: Length, in bytes, of ANSWER

Y/I (field or constant) Line number to prompt at.

X/I (field or constant) Column number to prompt at.

PROMPT/An (field, subscripted field, or constant) 
Prompt string
If one of the prompt fields starts with ‘%%’, the rest 
of this field is used as caption text in the dialog box, 
e.g:

PROMPT/A60 (3)  ‘This is prompt line’
                              ‘And this is prompt line 2’
                              ‘%% Caption Text’

ASKSCR retrieves messages from the 
ADM$MESSAGEFILE file. If PROMPT arguments 
are passed in the form: #nn#, i.e. the message 
number preceded and followed by the “#” 
character, ASKSCR will get the message for that 
number and use it for that prompt.

ANSWER/An (must be a field) If the 4th parameter given
is an alpha field, ASKSCR waits for a response 
which is loaded into this field. If the 4th argument 
given is not an alpha field, ASKSCR does not wait 
for a response, and the argument is treated as 
OPTIONS (described below).

OPTIONS/I (field or constant) Any desired combination (sum)
of these flag values:
1  Do not echo ANSWER
2  Display PROMPT in reverse video
4  Highlight ANSWER area in reverse video
8  Convert ANSWER to uppercase
16  (TRANS only.) Draw box around prompt and 
answer.
 Y and X locate upper left corner of box.
COLS must be used to specify width of box.

COLS/I (field or constant) Number of screen columns to 
use for PROMPT and ANSWER (if any). If COLS is 
used, OPTIONS must also be present as a 
placeholder (OPTIONS can be zero). COLS required 
with box option.

24.  When the PROMPT argument references an alpha array using a constant 
subscript, the constant must be explicitly typed: e.g., PROMPT('2/I') rather than 
PROMPT(2).
H - 122   ADMINS User Guide



Miscellaneous Subroutines
H.15.3  BATCHJOB: Submit Batch Job 

The BATCHJOB subroutine is used on OpenVMS systems to submit ADMINS 
command files to a batch queue without exiting the ADMINS image currently being 
run. This feature is especially useful for submitting jobs to batch from an RMO 
running with TRANS.

The syntax is:

STAT = BATCHJOB(COMFILE,[PARAM,PARAMNBR])

The BATCHJOB subroutine submits a generalized batch command file, 
ADM$DIST:BATCHJOB.COM to the batch queue, which will execute the command 
file specified in COMFILE.

The following will be the default characteristics for the batch job submitted:

The job name will be the same as the ADMINS command file. If the command file 
specification includes a logical name, only the file name part is used. E.g.: job name 
CANCEL for ADMINS command file PGM:CANCEL.

The log file will not be printed (it is kept in the SYS$LOGIN directory). The name of 
the log file will be the same as the name of the ADMINS command file. E.g.: 
SYS$LOGIN:CANCEL.LOG.

The job will run on the batch queue SYS$BATCH, or wherever the logical name 
SYS$BATCH may point.

If you have RESTART in the ADMINS command file, and the job fails, a holding 
batch job will be created. This job will (when you release it):

1. Start at the breakdown step
2. Run on the same batch queue
3. Have the same job name, and create a log file of the same name
4. Start in the directory where the failing job broke down

COMFILE/An: Complete file specification of the ADMINS 
command file, may include logical name, but DO 
NOT include ".COM".

PARAM/An(N): Optional. Array of parameters, to be given to the 
ADMINS command file (responses to its <xxx> 
prompts, if any)

PARAMNBR/I: Required if PARAM argument is given. Number of 
parameters in the parameter array. There is no limit 
in the number of parameters.

STAT/I: 1 means OK. 
-1 means not OK, a VMS error message will be 
displayed on the screen.
ADMINS User Guide  H - 123



Miscellaneous Subroutines
There are a several optional parameters. They are all activated by use of logical 
names. These logical names are:

A$BA_QUEUE: Tells BATCHJOB to use the queue assigned to 
A$BA_QUEUE instead of SYS$BATCH. 
(A$BA_QUEUE will be deassigned during the call 
to BATCHJOB).

 A$BA_PRIOR Tells BATCHJOB to use the priority assigned to 
A$BA_PRIOR instead of the VMS default. The VMS 
default priority comes from the SYSGEN parameter 
DEFQUEPRI. The maximum priority you are 
allowed to use without OPER privilege is defined 
by the SYSGEN parameter MAXQUEPRI. 
(A$BA_PRIOR will be deassigned during the call to 
BATCHJOB.)

A$BA_AFTER: Tells BATCHJOB to hold execution of the job 
submitted until the time assigned to A$BA_AFTER. 
The time (date and/or time fields) must be in 
OpenVMS format. E.g.: "12-DEC-1987 12:30". 
(A$BA_AFTER will be deassigned during the call to 
BATCHJOB.)

A$BA_SETUP: Tells the batch job submitted to activate the 
command file which A$BA_SETUP is assigned to, 
before activating the ADMINS command file. 
A$BA_SETUP must be assigned to the complete 
filename, e.g. PGM:TESTSETUP.COM. It is 
especially useful when you are testing a production 
application, and want to override some of the 
production defaults, i.e. to print out on your own 
printer by overriding ADM$SPOOLn. 
(A$BA_SETUP will not be deassigned during the 
call to BATCHJOB).

A$BA_LOGFILE: Tells BATCHJOB to use the string assigned to 
A$BA_LOGFILE to name the log file for the job 
being submitted, i.e. if the name "MYJOB" is 
assigned to A$BA_LOGFILE the log file will be 
named MYJOB.LOG. If A$BA_LOGFILE is not 
assigned, BATCHJOB gives the log file the same 
name as the job name (the name of the ADMINS 
command file being submitted). (A$BA_LOGFILE 
will be deassigned during the call to BATCHJOB.)

A$BA_LOGDIR: Tells BATCHJOB to use the string assigned to 
A$BA_LOGDIR to identify the directory in which 
the log file for the job being submitted is to be 
placed, i.e. if the name "ACCOUNT$3:[HISTORY]" 
is assigned to A$BA_LOGDIR the log file will be 
placed in that directory. If A$BA_LOGDIR is not 
assigned, BATCHJOB puts the log file in 
theSYS$LOGIN: directory. (A$BA_LOGDIR 
will be deassigned during the call to 
BATCHJOB.)
H - 124   ADMINS User Guide



Miscellaneous Subroutines
Another option activates console-logging. This is done by setting up the global 
symbol A$BA_OPER to the desired operator number (between 1 and 9). This setting 
of A$BA_OPER must be done in batch mode.25

The console will then log every time a batch job terminates abnormally, and the 
message be as follows:

      CANCEL.COM: STEP S2 - LOGFILE: _DRA0:[SJ]CANCEL.LOG
      RESTART JOBNR. 437 ON QUEUE: SYS$BATCH

If a batchjob fails to compile the ADMINS command file (substitute the parameter 
prompts <xxx>), a message like the following will be sent to the operator:

      ERROR COMPILING CANCEL.COM - LOGFILE: _DRA0:[SJ]CANCEL.LOG

A$BA_MSG: Tells if and to whom message is to be sent at 
abnormal termination of the ADMINS 
command file. The message function works 
only if RESTART is in the command file. 
A$BA_MSG can be assigned as follows:

T Terminal
O Owner (processes with same UIC)
G Group 
W World (means every terminal logged in)
A All (means all terminals connected)
N No message (only used to override 
A$BA_ANYMSG - described below).

The message at abnormal termination will be "JOB jobname 
TERMINATED ABNORMALLY". You can override this message by 
placing a text string into the global symbol A$BA_ERRTXT, either in 
LOGIN.COM, in A$BA_SETUP, or in the actual ADMINS command 
file. This allows each ADMINS command file to set up its own error 
message.

Besides the error message, you can specify a message at successful 
completion. (This message goes to the same terminal(s) as described 
above). To do this put a text string into the global symbol 
A$BA_OKTXT (e.g. in the command file). If A$BA_MSG is assigned, 
the desired terminals will receive a message if the batch job fails to 
compile the ADMINS command file (substitute the prompts <xxx>). 
The message will be "ERROR COMPILING command_file_name". If 
A$BA_MSG is not assigned, the system will check for the logical name 
A$BA_ANYMSG. (A$BA_MSG will be deassigned during the call to 
BATCHJOB).

 A$BA_ANYMSG: Is assigned just like A$BA_MSG, but is not 
deassigned during the call to BATCHJOB. 
A$BA_ANYMSG is only checked if 
A$BA_MSG doesn't exist, and can be used as a 
default.

A$BA_JOBNR: This is an output logical name. BATCHJOB 
will always assign it to the job number, for the 
job it submits.

25.   A$BA_OPER is used in a VMS REQUEST to OPER'A$BA_OPER'. (see the 
OpenVMS documentation)
ADMINS User Guide  H - 125



Miscellaneous Subroutines
If a job terminates abnormally because of "external" reasons (e.g. power failure or 
CPU failure), it is not possible for this system to create a new holding job - the process 
just dies. In these circumstances use @ADM$DIST:BATCHJOB_RESTART. This 
command file will prompt you for all the required information and then submit a job, 
starting at the correct step and in the correct directory. You can read most of the 
information you would have to provide to BATCHJOB_RESTART.COM in the 
beginning of the log file for the job that was running at the time of the failure.

H.15.3.1  BATCHJOB - Example
The command file TRANSACT.COM is used to SORT a transaction file, and then run 
a REPORT to list the transactions for a given department.

      *   TRANSACT.COM
      *
      RESTART
      SORT
        DATA$DIR:TRANSACT.MAS
        CR
        Y
      REP
        REP$DIR:TRANSLIST
        <SELECT DEPARTMENT>
H - 126   ADMINS User Guide



Miscellaneous Subroutines
The requirement is that the department is selected via a TRANS screen.

      *   TRALIST.TRS
      *
      TRALISTS1 DATA$DIR:DEPT.TAB 1 OBJ$DIR:TRALISTS1.RMO
      *   DEPT is a X9999-field
      E DEPT
      D DEPTTXT
      ER CHOICE/A1 [11,44,1]
      DR ERROR/I
      C ERROR EQ 1
      TYPE T OR R
      C ERROR EQ 2
      DEPARTMENT NOT FOUND OR NOT ENTERED
      SCREEN
      *
      *...headings...
      *
      DEPARTMENT: -DEPT      DEPTTXT--------------
      BL
      BL
      TYPE T FOR TRANSACTION LIST, R FOR RETURN:
      BRANCHES
      R SYS$LOGIN:MENU/S1
      RETURN TO MENU
      END

The RMO code that follows calls BATCHJOB to submit the command file to the batch 
queue.

      *   TRALISTS1.RMS
      *
      FILE DATA$DIR:DEPT.TAB
      LOCAL
      S$S/A6
      M$M/A2
      B$B/A2
      CHOICE/A1
      ERROR/I
      WORK/A4
      *  Fields for BATCHJOB subroutine
      STAT/I
      COMFILE/A16 'PROC$DIR:TRANSACT'
      PARAM/A4(1)
      PARAMNBR/I 1
      *
      PROGRAM
      ERROR = 0
      IF M$M EQ 'UP' AND S$S EQ 'CHOICE' THEN ;
        IF CHOICE EQ 'R' THEN B$B = 'R' ; GOTO OUT END ;
        IF CHOICE EQ 'T' THEN ;
          IF DEPT EQ 0 THEN ERROR = 2 ; GOTO OUT END ;
      * NCAT called to convert DEPT to Alpha field
          WORK = NCAT(WORK,DEPT) ;
          PARAM(1) = WORK ;
          STAT = BATCHJOB(COMFILE,PARAM,PARAMNBR) ;
          GOTO OUT END ;
        ERROR = 1 END
      OUT: STOP
ADMINS User Guide  H - 127



Miscellaneous Subroutines
H.15.4  CHECKFILE - Check Whether File Exists

Use CHECKFILE to determine whether or not a file exists. The syntax is:

      STAT = CHECKFILE(FILENAME)

H.15.5  DCS: Date to Year/Week/Day; Check Digit Conversion

The DCS subroutine performs several different functions:

1. Converts an ADMINS Date to Year, Week and Day, etc.
2. Determines if a given day has been defined as a holiday
3. Determines the occurrence of a weekday within the month for a date
4. Finds the date of the specified occurrence of the specified weekday in a specified 

month/year.
5. Computes a date a specified number  of business days after a specified date 
6. Computes a Base 10 Check Digit
7. Verifies a Base 10 Check Digit
8. Tests Check Digit for Norwegian Social Security Number

STAT/I 0: File not found
1: File exists

FILENAME/An (Field, array,  or constant)
File specification (may use full array to specify file).
If this argument begins with two question marks, 
e.g.:

??MY_LISFILES:*_JOHN.LIS

 then CHECKFILE will search using the wildcarded 
string that follows the “??”, returning 1 into STAT if 
any files match and 0 otherwise. 
If this wildcard syntax is used, and this argument is 
an array rather than a simple field, CHECKFILE 
will load the array (until all elements are used)  with 
all the wildcard matches found, and STAT will be 
set to the number of array elements that have been 
loaded. 
Note that the number of possible matches may 
exceed the number of array elements reserved to 
hold them.
H - 128   ADMINS User Guide



Miscellaneous Subroutines
H.15.5.1  DCS Syntax: Convert Date to Year, Week, Day
           STAT = DCS(OP,DATE,RES,OCCUR)

The routine has two year fields, because the first days of a year may belong to the last 
week of the previous year.

H.15.5.1.1  Date Conversion Example

Given an ADMINS Date, find the number of the day in the year and the name of the 
day:

     * Convert DATE to Day of Year and Name of Day
     FILE DATA.MAS
     LOCAL
     NULL/I
     STATUS/I
     RESULT/I(7)
     ADAY/A10(7) 'Monday' 'Tuesday' 'Wednesday' 'Thursday' 
       'Friday' 'Saturday' 'Sunday'
     PROGRAM
     *
     * First argument is 1 for conversion of DA field
     STATUS = DCS(1,DATE,RESULT,NULL)
     *
     * If invalid get out
     IF STATUS EQ -1 THEN GOTO DONE END
     *
     * Get DAYNUMber and determine the NAME  of the Day 
     DAYNUM = RESULT(5) ; NAME = ADAY(RESULT(3))
     *
     DONE: STOP
     *

OP/I
1
2
3
4

101

102

Operation
Convert DA field
Convert DT field
Convert DA with holiday status
Convert DT with holiday status
For DA field. Also load OCCUR field with 
occurrence of day-of week within month
For DT field. Load OCCUR as above

DATE/DA or DT Contains the ADMINS date to be converted.

RES/I(7), or
RES/I(8) for OP=3, 4

Will contain the result from the conversion:
RES(1) = Year for week number
RES(2) = Week number
RES(3) = Day of week, where 1=Monday, 
2=Tuesday, 3=Wednesday, 4=Thursday, 
5=Friday,6=Saturday, 7=Sunday
RES(4) = Year (of date)
RES(5) = Day number within year
RES(6) = Month
RES(7) = Day of month
RES(8)= Holiday? (1=Yes, 0=No) for OP=3, 4

OCCUR/I Occurrence of day-of-week within month 
(set by OP=101,102)

STAT/I will be returned as:
1 = OK
-1 = Invalid ADMINS date in the DA or DT field
-99 = Unknown operation
ADMINS User Guide  H - 129



Miscellaneous Subroutines
H.15.5.2  DCS Syntax: Get Date of Nth weekday in a month
To get the Nth occurrence of a weekday in a specified month, the syntax is:

STAT = DCS(OP,DATE,AR,NULL)

where OP = 201 for DA fields, and 202 for DT fields. The date of the Nth occurrence 
is returned in DATE. 

For example,  to find the date of Thanksgiving Day in the U.S.A. (the fourth Thursday 
in November) in 2008, use the following: 

AR(1) = 2008 ; AR(2) = 11 ; AR(3) = 4 ; AR(4) = 4
STAT = DCS(201,DATE,AR,NULL) 

DATE will be loaded with the value “27-NOV-08”.

H.15.5.3  DCS Syntax: Compute date some number of 
business days after another date.
To get the date that falls a given number of business days26 after a specified date, use 
this DCS subroutine syntax:

DCS(OP,STARTDATE,BIZDAYS,ENDDATE)

OP/i
201
202

Operation
put occurrence in DA field
put occurrence in DT field

DATE/DA or
DATE/DT

Returns the ADMINS date requested.

AR/I(4) AR(1): YEAR
AR(2): MONTH
AR(3): Day of week, where 1=Monday, 2=Tuesday, 
3=Wednesday, 4=Thursday, 5=Friday,6=Saturday, 
7=Sunday
AR(4): Requested Occurrence

NULL/I  

26.Business days are Monday through Friday, unless the day is specified to be a 
holiday.  To have holidays (moveable and fixed) also display in bold, make a list 
of holiday dates on the form 'yyyy-mm-dd' in a text editable file, and assign its 
pathname to the logical name ADM$CAL_HOLIDAYS. E.g.:

0000-01-01
0000-07-04
0000-12-25
2008-05-26
2008-09-01
2008-10-13
2008-11-27

To specify fixed holidays use year = 0000. In the example above January 1, July 4 and 
December 25 will display in bold in every year. For 2008, May 26 (Memorial day), 
September 1 (Labor Day), October 13 (Columbus Day), and November 27 
(Thanksgiving Day) will display in bold.

A maximum of 200 holidays may be present in the file. The file may contain any 
number of comment lines starting with '!' or '*' in column 1.

If the start day designated is not a business day, the date is calculated by first moving 
to the first business day after the specified start date, and then moving forward 
the specified number of business days.   
H - 130   ADMINS User Guide



Miscellaneous Subroutines
where: . 

For example,  to find the date 2 business days after “August 11, 2007” use the 
following: 

DTDATE/DT ‘11-AUG-2007’
DTBIZDAYS/I 2
THISDTDATE/DT

STAT = DCS(302,DTDATE,DTBIZDAYS,THISDTDATE)

THISDTDATE will be loaded with the value “15-AUG-2007”.

H.15.5.4  DCS Syntax to Compute Base 10 Check Digit
           STAT = DCS(9,INP,RES,LEN)

H.15.5.4.1  Compute Check Digit Example

Given a number compute the check digit and then combine the check digit with the 
number:

     * Compute check digit on NUMBER/X999999999
     * Create new number CHECKNO with check digit at end
     FILE DATA.MAS
     LOCAL
     LENGTH/I 9
     STATUS/I
     RESULT/X9
     CHECKNO/X9999999999
     PROGRAM
     * Get check digit, first argument is 9
     STATUS = DCS(9,NUMBER,RESULT,LENGTH)
     *
     * If error, get out else create full number with check digit
     IF STATUS LT 0 THEN GOTO DONE ELSE
        CHECKNO = CCAT(CHECKNO,NUMBER,RESULT) END
     *
     DONE: STOP

OP/i
301
302

Operation
calculate for  DA fields
calculate for DT field

STARTDATE/DA or DT Start date for calculation

BIZDAYS/I Number of Business days to be added

ENDDATE/DA or DT (Returned) 

INP/X9-9 Contains the value for which the DCS should 
compute the Check Digit.

RES/X9 Will contain the resulting Check Digit

LEN/I Number of digits in INP furnished by user.

STAT/I Will be returned as:
1 = OK
-1 = Error in INP format
-99 = Unknown operation
ADMINS User Guide  H - 131



Miscellaneous Subroutines
H.15.5.5  DCS Syntax to Verify Base 10 Check Digit
           STAT = DCS(10,INP,NULL,LEN)

H.15.5.5.1  Verify Check Digit Example
     * Verify check digit of CHECKNO/X9999999999 and extract NUMBER
     FILE DATA.MAS
     LOCAL
     NULL/I
     LENGTH/I 10
     STATUS/I
     PROGRAM
     *
     * Verify check digit, first argument is 10
     STATUS = DCS(10,CHECKNO,NULL,LENGTH)
     *
     * If error, get out else extract NUMBER
     IF STATUS LT 0 THEN GOTO DONE ELSE
        NUMBER = STR(NUMBER,CHECKNO,'1/I','9/I') END 
     *
     DONE: STOP

H.15.5.6  DCS Syntax: Test Check Digit, Norwegian SS#
           STAT = DCS(11,FNR,NULL,NULL)

FNR/X99999999999contains a Norwegian SS#

H.15.6  EVALUATE - Compile, Execute Expression at Runtime

The EVALUATE subroutine is used to compile and/or execute, at run time, an 
ADMINS expression stored in an alphanumeric data field or local array.

First, the expression (e.g. 'BAL GT 0' or 'A = B + C') is placed in an alphanumeric (An) 
field or local array, and EVALUATE is called to store the expression. Later on, 
EVALUATE is called to compile and/or execute the stored expression.

INP/X9-9 Contains the value for which the DCS should 
compute and verify the Check Digit. Last digit is 
Check Digit.

NULL/x Dummy argument for syntax reasons only.

LEN/I Number of digits in INP furnished by user.

STAT/I Will be returned as:
1 = OK
-1 = Check Digit incorrect
-99 = Unknown operation

STAT/I Will be returned as:
1 = FNR valid
-1 = FNR invalid
-99 = Unknown operation
H - 132   ADMINS User Guide



Miscellaneous Subroutines
The expression given to EVALUATE can use any existing fields and can be arbitrarily 
complex. It must be either a Boolean statement (one which could be used with 
SELECT in REPORT, for example), or else an assignment statement of the form 
"FIELD = expression" (the '=' in assignments must appear in the first line of the 
expression).

EVALUATE executes a single, self-contained expression, not multiple expressions: 
the pair of expressions 'A = 1 ; B = 2' can't be executed by EVALUATE. IF statements 
cannot be used because they involve at least two expressions (IF expression THEN 
expression END).

H.15.6.1  Using EVALUATE
Using EVALUATE is a two-step process: an initial EVALUATE call stores the 
expression, subsequent calls compile and/or execute the expression.

First, store the expression:

Place the text of the expression in an alphanumeric (An) field or local array. An 
expression can have more than one line if it is placed in an array and the ':' 
continuation syntax is used. For example, the expression 'X GT 0 AND X NE Y' could 
be supplied to EVALUATE as two lines in an array:27

              EXP(1) = 'X GT 0 :' 
                    and 
              EXP(2) = 'AND X NE Y'

Call EVALUATE with FUNCTION = 1 to store the expression text:

              STAT = EVALUATE(1,EXP).

Second, execute the stored expression (FUNCTION = 2).

              STAT = EVALUATE(2).

The first time EVALUATE is called with FUNCTION = 2, the stored expression is 
compiled;28 and, if it compiles successfully, it is executed. Subsequent calls with 
FUNCTION = 2, do not compile the expression again: it is just executed.

Alternatively, just compile the stored expression (FUNCTION = 3).

              STAT = EVALUATE(3).

This makes it possible to perform syntax checking without actually executing the 
expression, which might change data. If the expression compiles and you then use 
FUNCTION 2, the expression is not compiled again, it is just executed.

Whenever you call EVALUATE with FUNCTION = 1 to store a new expression, the 
next EVALUATE FUNCTION = 2 call compiles the stored expression before 
executing it. In TRANS, the stored expression is compiled at the first EVALUATE(2) 
call after each branch. Thus, in TRANS, you can have one screen where an expression 
is entered and stored, and can then branch and execute the expression in one or more 
other screens.

27.   If an array is used for the expression text, it must be a local array in an RMO.
28.   Compiling an expression at run time is not in general an efficient method of 

doing things; so don't use EVALUATE unless you really need it! Once the 
expression is compiled, however, any subsequent FUNCTION = 2 calls of 
EVALUATE execute almost as efficiently as if the expression had been coded in 
an RMS.
ADMINS User Guide  H - 133



Miscellaneous Subroutines
Syntax checking of the expression is not done until the expression is compiled.29 It is 
important to check the status return of EVALUATE(2) and EVALUATE(3) calls and 
take appropriate action if there is an error status (e.g., automatically branch back to 
the expression entry screen).

The expression text can be entered in lowercase or mixed case characters. 
EVALUATE internally converts everything in the expression to uppercase except 
constants which are surrounded by apostrophes.30

H.15.6.2  EVALUATE Syntax
      STAT = EVALUATE(FUNCTION[,EXPRESSION])

A call to EVALUATE with FUNCTION = 2 requires 300 words in the DA array. 
EVALUATE never requires more than 300 DA words, no matter how often it is 
called. At a branch in TRANS, any DA space used by EVALUATE is freed up.

29.   The expression given to EVALUATE should not call EVALUATE. Other 
ADMINS subroutines can be used freely in the expressions given to EVALUATE.

30.   This case insensitivity is intended to make it easier to enter valid expressions; but 
users should always enclose alphanumeric or picture constants in apostrophes: 
if not, these constants will be converted to uppercase, which may not be desired.

FUNCTION/I Function code (field or constant):
1: Store expression text
2: Compile and/or execute stored expression
3: Compile stored expression (do not execute).

EXPRESSION/An If FUNCTION is 1, alpha field or local alpha array 
containing text of expression to store.
EXPRESSION text need not be uppercase.
If FUNCTION is 2 or 3, this argument need not be 
present (if present, it is ignored).

STAT/I Normal status values:
1: If FUNCTION is 1, successful load.
If FUNCTION is 2: Boolean expression is TRUE; 
or non-Boolean expression was evaluated.
If FUNCTION is 3, expression compiled.
0: FUNCTION is 2 and Boolean expression is 
FALSE

Error status values:
-101: FUNCTION is not 1, 2 or 3
-102: FUNCTION is 1 and there are not two 
arguments
-103: EXPRESSION contains a blank line
-104: ':' continuation at end of 
EXPRESSION field
-105: FUNCTION is 2 and no expression 
was stored
-106: EVALUATE attempted to call 
itself
-107: EXPRESSION exceeds EVALUATE 
limits
other values LT 0: EXPRESSION line# (negated) 
with syntax error
H - 134   ADMINS User Guide



Miscellaneous Subroutines
H.15.7  EXTERNAL - Call External Language Routine

The EXTERNAL subroutine supports the ADMINS External Language Facility,31 
which makes it possible to call routines written in C, FORTRAN, MACRO, etc., 
directly from an ADMINS command.

H.15.7.1  EXTERNAL Syntax
The syntax for the EXTERNAL subroutine is:

The EXTERNAL subroutine can be called with up to 16 arguments (the arguments 
must be field names, not constants). The EXTERNAL arguments can have any data 
type.32       

STAT = EXTERNAL(FIELD_1[,FIELD_2,...,FIELD_16])

When EXTERNAL is called, ADMINS converts the EXTERNAL subroutine 
arguments to an ASCII representation in a buffer, and passes the buffer33 to the user-
written external routine.

The data buffer contains an ASCII representation of each EXTERNAL argument, in 
the same order in which the arguments appear in the EXTERNAL call in the RMS. 
The ASCII representation of each argument in the buffer has a fixed length, 

31.   The ADMINS External Language Facility is designed for use by experienced 3GL 
programmers in situations which require specialized data handling. 
Nevertheless, the ELF is a relatively straightforward interface which imposes 
few if any limitations on the nature of user written routines. The external, user-
written routines must be linked as a shareable image with ADMINS ELF module 
EXTERN.OBJ. Complete documentation for the ADMINS External Language 
Facility is on the distribution tape.

32.  Arrays are handled in a special way, see Appendix H.15.7.2 “Passing Arrays as 
Arguments”

STAT/I Return status code
 1  Success
2  Warning: 7-bit nonprinting character in data
4  Warning: 8-bit nonprinting character in data
6  Warning: 7-bit and 8-bit nonprinting characters
-1  Error: called with no arguments
-2  Error: unknown data type
-3  Error converting to ASCII format
-4  Error: null terminator was overwritten 
-5  Error converting from ASCII format
-6  Cannot create dump file
-7  Cannot allocate memory for buffer
-8  Error: number of elements in USER$ARRAY is
out of range.
-9  Error: USER$ARRAY not Integer field type

FIELD_1... Up to 16 fields with any data types.  Constants
cannot be used as arguments.  EXTERNAL requires 
at least one argument.

33.  Actually EXTERNAL passes the address of the buffer to the external routine.
ADMINS User Guide  H - 135



Miscellaneous Subroutines
determined by the ADMINS field type of its corresponding argument, and is also 
null (zero) terminated. There is an additional zero after the last argument's 
representation in the buffer.

When the external routine returns, ADMINS examines the buffer. If any values have 
been changed by the user written routine, they are converted back to the appropriate 
ADMINS field types and the field referenced by those arguments are updated.

The length and characteristics of the ASCII representation of each argument field-
type in the EXTERNAL buffer is summarized in the following table.

For example:

       APPLIC.RMS
       ----------
       ROUTINE/I 10
       AFLD/A8   'ABC'
       DFLD/D2   123.45
       IFLD/I    -10000

       STAT = EXTERNAL(ROUTINE,AFLD,DFLD,IFLD)

The EXTERNAL data buffer could be represented as follows:

   Position              1         2         3         4
  in buffer:   012345678901234567890123456789012345678901
               ------------------------------------------
       Data:   10    |ABC     |123.45           |-10000||

              ('|' represents binary zero)

EXTERNAL has a debugging facility which dumps the contents of its buffer to a file. 
If one of the arguments to EXTERNAL is an An field which contains the string 
'?LIST?', ADMINS dumps the buffer before and after calling the external routine. The 
dump file is called EXTERNAL.LIS and is placed in the user's default directory. Since 
this option creates a new version of EXTERNAL.LIS at each call, it should be used 
sparingly.

When TRANS returns after a call to the EXTERNAL subroutine, the screen 
automatically refreshes. This is by default. This automatic screen refreshing can be 
prevented by inserting: 

EXTERNAL=NOSCREEN

into the TRANS$ENV file. This feature is for OpenVMS only.

Argument Type Length (before null terminator)

I 6 characters, blank padded on right, no comma.

L 12 characters, blank padded on right, no commas.

Dn 17 characters, blank padded on right, no commas.

Fn 21 characters, blank padded on right, no commas.

DA 9 characters or maximum length for ADM$DATE 
format currently assigned, blank padded on right.

DT 11 characters or maximum length for ADM$DATE 
format currently assigned, blank padded on right

TM 11 characters.

An n characters. N is always an even number. Blank 
padded on right.

Xpic Size of picture.

NOTE
H - 136   ADMINS User Guide



Miscellaneous Subroutines
H.15.7.2  Passing Arrays as Arguments
Array names can be used as arguments to EXTERNAL, but EXTERNAL must be told 
how many elements to process in each array. The special array USER$ARRAY/I(n) 
passes array size information to EXTERNAL.

If one or more arrays are to be passed as arguments, the arguments that are arrays 
must be consecutive in the EXTERNAL argument list, and they must be preceded by 
the USER$ARRAY argument, which describes them. For example:

       APPLIC.RMS
       ----------
       STAT/I
       ROUTINE/I
       IFLD/I
       USER$ARRAY/I(3) 2 4 5
       DARRAY/D(4)
       XARRAY/X999(5)

       STAT = EXTERNAL(ROUTINE,IFLD,USER$ARRAY,DARRAY,XARRAY)

USER$ARRAY must be an array of field type integer. USER$ARRAY(1) always 
contains the number of arrays which follow (in the example above, 2 arrays follow). 
USER$ARRAY(2) gives the number of elements in the first array; USER$ARRAY(3) 
gives the number of elements in the second array; etc.

USER$ARRAY itself is not placed in the data buffer which is passed to the user-
written routine. The user written routine must either know the number of elements 
in array arguments, or else array sizes must be passed in separate arguments.

When arrays are passed, the EXTERNAL data buffer may become quite large. There 
is no fixed limit on its size: memory for the data buffer is dynamically allocated.

H.15.7.3  AdmExternal.c: Program Sample
The RMO subroutine EXTERNAL is implemented in ADMINS Win32 as a DLL 
(AdmExternal.dll), which must be present in the ADM_DIST directory. ADMINS, 
Inc. provides a model AdmExternal.dll that displays all the arguments to 
EXTERNAL in message boxes as an example of how to write your own EXTERNAL 
implementation (different implementation procedures may need to be used when 
installing this subroutine on your system).

The following is a sample AdmExternal.c program:

   #include <windows.h>

   BOOL APIENTRY DllMain(HANDLE hModule,

                         DWORD dwReasonForCall,

                         LPVOID lpReserved)

   {

       switch(dwReasonForCall)

          {

          case DLL_PROCESS_ATTACH:

                   break;

          case DLL_THREAD_ATTACH:

                   break;

          case DLL_THREAD_DETACH:

                   break;

          case DLL_PROCESS_DETACH:
ADMINS User Guide  H - 137



Miscellaneous Subroutines
                   break;

          }

       return TRUE;

   }

   void adm_external(unsigned char *pubBuf)

   {

      int              i;

      char             szCapt[40];

      unsigned char   *puc;

 

      for (i = 0, puc = pubBuf; *puc != '\0'; puc++, i++)

         {

         wsprintf(szCapt, "AdmExternal argumet %d", i + 1);

         MessageBox(NULL, puc, szCapt, MB_OK);

         puc += strlen(puc);

         }

      return;

   }

And the accompanying AdmExternal.def:

   LIBRARY         AdmExternal

   HEAPSIZE        1024

   EXPORTS

   adm_external    @1

You only have to modify the AdmExternal.c program to implement your own 
version of the EXTERNAL RMO subroutine, compile it, link it and replace the 
AdmExternal.dll in the ADM_DIST directory.

H.15.8         MBX - Read/Write Mailbox

Mailboxes are virtual devices that can be used for communication between processes. 
Mailboxes are either temporary or permanent. The user privilege TMPMBX is 
required to create temporary mailboxes; the user privilege PRMMBX is required to 
create permanent mailboxes. A temporary mailbox is deleted when no more 
processes have any channels assigned to it, while permanent mailboxes continue to 
exist until they are specifically marked for deletion. Consult the system 
documentation for a detailed explanation of mailboxes.

The ADMINS MBX subroutine can create, write to and read from a VMS Mailbox. 
The MBX (Mailbox) subroutine can be called from an RMO in TRANS, MAINT or 
PROD.
H - 138   ADMINS User Guide



Miscellaneous Subroutines
The syntax of the subroutine is:

STAT = MBX(OP,MBX_NAME,MBX_MSG,PARAM)

OP/A2 RD = Read from mailbox
WR = Write to mailbox
EF = Write End-of-file mark
DE = Delete mailbox and deassign channel
DA = Deassign channel to mailbox
WF = Write content of mailbox to file
RF = Read content of file into mailbox
SQ = Use PARAM field as number of bytes
of system dynamic memory to allocate
at the next call to MBX which creates
a mailbox.
OP = Open Mailbox. A separate 'OP' is needed
only if subsequent 'RD' or 'WR' calls use the 
PARAM argument to bypass the 80-character 
length limit of an ADMINS field.
MS = Modify maximum the maximum size of a 
message that can be held in a mailbox to exceed 
the VMS default (which is set by a SYSGEN 
parameter). MS sets the new maximum size to 
PARAM 16-bit words (or 2 * PARAM bytes). (Use 
blank "dummy"fields for arguments 2 and 3.)

MBX_NAME/An Mailbox name, e.g. ADM$MAILBOX

MBX_MSG/An Message to write to mailbox, or buffer to receive
input message, or file name if 'WF' or 'RF'.

PARAM/I 0 = Temporary mailbox (TMPMBX privilege 
needed)
1 = Permanent mailbox (PRMMBX privilege 
needed)
2 = Network mailbox (NETMBX privilege 
needed)
11 thru 255 = If Mailbox was opened by a special 
'OP' call, the length of the message field. This 
makes it possible to write, or read, messages that 
are longer than 80 characters by using 
two or more adjacent alphanumeric (An) fields
(e.g. two consecutive fields in the main file, two 
consecutive G$-fields, or a local array in an RMO, 
such as MSG/A80(4). It is the developer's 
responsibility to make sure that multiple fields 
used to store messages larger than 80 characters 
really are adjacent.

STAT/I -1: Invalid operation
-2: Could not create/associate the mailbox
-3: Unable to delete mailbox
-4: Unable to write to mailbox
-5: Unable to read from mailbox
-6: Unable to open sequential file (WF or RF).
0: No message to read/write
>0: Length of message read/written, or number 
of lines read or written if 'WF' or 'RF' operation.
1: OK for EF, DE or DA operation
ADMINS User Guide  H - 139



Miscellaneous Subroutines
           
See Appendix H.15.11.1 “Example of Using MBX and SPAWN Subroutines” for an 
example that uses the MBX subroutine.

H.15.9  GETJPI - Get Process Information

A GETJPI subroutine provides access to information about the current process.

The GETJPI syntax is:

STAT = GETJPI(ITEM,VALUE)

where

NOTE

ITEM/I Code to specify the process information to 
be retrieved. ITEM may be a field or a constant. 

Code    Item   
1    User name
2    Process name

VALUE/An Resulting value. VALUE must be an alpha field, 
large enough to store the requested data.

STAT/I -4: VALUE is shorter than 15 bytes when asking 
for Process name, or shorter than 12 bytes when
asking for User name.
-3: VALUE is not alphanumeric
-2: ITEM value is invalid (not 1 or 2)
-1: Invalid number of arguments
1: OK, requested value returned
Other: Error code returned by VMS
H - 140   ADMINS User Guide



Miscellaneous Subroutines
H.15.10  SNDX - Calculate a Sound Index for a Name

The function SNDX is used to produce a 5 character soundex code from a last and a 
first name where names that sound alike have the same or similar soundex codes.

H.15.10.1  SNDX Syntax
           INDEX = SNDX(LNAME,FNAME)

H.15.10.2  SNDX Example
Given the following fields and values,

     INDEX/A5
     LNAME/A10 'GRIFFEL'
     FNAME/A10 'DAVID'

then

     INDEX = SNDX(LNAME,FNAME)

would result in the value "G614D" in the field "INDEX".

H.15.11  SPAWN - Create Subprocess from ADMINS Command

The ADMINS SPAWN subroutine spawns a subprocess to execute a host system 
command passed as an argument to the SPAWN subroutine.

The syntax of the subroutine is:34

       STAT = SPAWN(COMMAND[,INPUT[,OUTPUT[,FLAGS[,PID]]]])

INDEX/A5 The first character is the first initial of the LNAME 
field, the next three digits are the numerical sound 
index of the LNAME field, and the last character is 
the first initial of the FNAME field.

LNAME/An Field containing a person's last name.

FNAME/An Field containing a person's first name.

34.  By default, TRANS refreshes the screen display upon return from a call to 
SPAWN. For compatibility with older applications, TRANS will ignore any 
simulated REF keystrokes that occur in the SETKEY buffer immediately after a 
call to SPAWN.

COMMAND/An Command to execute, e.g. 'CMP MYPROG'.

INPUT/An Equivalence name to be associated with the logical
name SYS$INPUT in the logical name table for the
sub-process. If omitted, the default is the caller's
SYS$INPUT.
ADMINS User Guide  H - 141



Miscellaneous Subroutines
OUTPUT/An Equivalence name to be associated with the logical
name SYS$OUTPUT and SYS$ERROR in the logical 
name table for the sub-process. If omitted, the 
default is the caller's SYS$OUTPUT (if OUTPUT 
argument is used, the INPUT argument must be 
given, although its value may be blank.

FLAGS/I Seven discrete values are used to designate optional 
behavior for the spawned process. These values can 
be summed to combine multiple attributes.

Value Meaning

1 If set, the calling process 
continues to execute in parallel 
with the subprocess.

2 (OpenVMS only) If set, the 
subprocess does not inherit 
OpenVMS symbols defined in 
the parent process.

4 (OpenVMS only) If set, the 
subprocess does not inherit 
process logical names from its 
caller.

8 (OpenVMS only) If set, the 
keypad symbols and state are 
passed to the subprocess.

16 (OpenVMS only) If set, a message 
is broadcast to SYS$OUTPUT 
when the subprocess completes 
or aborts. Should not be set 
unless combined with value 1 
(i.e. FLAGS = 17).

64 (OpenVMS only) If set, after 
executing the specified command 
display the message "Press any 
key to continue" and wait for any 
keystroke. This behavior may
also be implemented via the 
SPAWN=PAUSE statement in 
the TRANS environment file, 
as described in Section 6.15.10 
“SPAWN Statement: Alternative 
Behavior after SPAWN”. 
(TRANS ONLY*)

 128 (OpenVMS only) If set, it is 
assumed that the spawned 
command will have no effect on 
the screen display (i.e.
it generates no terminal I/O). 
TRANS will not generate a screen 
refresh after SPAWN completion.  
H - 142   ADMINS User Guide



Miscellaneous Subroutines
                         
  
                              

H.15.11.1  Example of Using MBX and SPAWN Subroutines
The following example shows how the MBX and SPAWN subroutines can be used to 
call EDT, a standard OpenVMS text editor (or any other editor) to edit the content of 
any number of An fields displayed on an ADMINS screen.

Assume the following .DEF and .TRS:

    ************************************************************
    * TEXT.DEF:  Text editing demo                             *
    *----------------------------------------------------------*
    MAS 100
    KFLD    I   KEY1
    ALFA0   A60
    ALFA1   A60
    ALFA2   A60
    ALFA3   A60
    ALFA4   A60
    ALFA5   A60
    ALFA6   A60
    ALFA7   A60
    ALFA8   A60
    ALFA9   A60

 ************************************************************
 * Demo screen to show how EDT may be spawned from TRANS to *
 * work on alphabetic fields from an ADMINS screen.     *
 *----------------------------------------------------------*
 S1 TEXT.MAS 1 TEXTS1.RMO NOMSG APPEND INSERT DELETE
 E KFLD
 ER OK/A2
 ER ALFA0/A60
 ER ALFA1/A60
 ER ALFA2/A60
 ER ALFA3/A60
 ER ALFA4/A60
 ER ALFA5/A60
 ER ALFA6/A60
 ER ALFA7/A60
 ER ALFA8/A60
 ER ALFA9/A60

 SCREEN
 CE TEXT EDITING DEMO
 BL
 Key: KFLD-           OK to edit (Y/N)? OK-
 BL
 ____________________________________________________________
 ALFA0-------------------------------------------------------
 ALFA1-------------------------------------------------------
 ALFA2-------------------------------------------------------
 ALFA3-------------------------------------------------------
 ALFA4-------------------------------------------------------
 ALFA5-------------------------------------------------------

PID/D (OpenVMS only) Process ID of created process 
(returned, must be a field, not a constant)

 To obtain the Process ID, there must be five 
arguments. If one or more of the first four 
arguments is not needed, it can have a blank or zero 
value; but all five arguments must be present for 
syntactical purposes when PID is used.

 STAT/I -1: Argument has invalid format
1: OK
Any other value: VMS error return status.
ADMINS User Guide  H - 143



Miscellaneous Subroutines
 ALFA6-------------------------------------------------------
 ALFA7-------------------------------------------------------
 ALFA8-------------------------------------------------------
 ALFA9-------------------------------------------------------
 END
H - 144   ADMINS User Guide



Miscellaneous Subroutines
Assume that we want all ten fields (ALFA0 - ALFA9) to be considered as one 
paragraph of text, and that we want to use EDT to edit it. Then the following RMO 
will do the trick:

 ************************************************************
 * TEXTS1.RMS: Control of text editing session              *
 *----------------------------------------------------------*
 FILE TEXT.MAS
 LOCAL
 M$M/A2
 S$S/A6
 C$C/A6
 *
 OK/A2
 I/I
 STAT/I
 WTXT/A60
 MBX/A20 'MAIL$TEST'
 TXT/A20 'MAIL.TEST'
 TMP/I   0
 *
 * MBX function codes:
 * -------------------
 READ/A2 'RD'
 WRIT/A2 'WR'
 WEOF/A2 'EF'
 WFIL/A2 'WF'
 RFIL/A2 'RF'
 COMMAND/A40 'EDT MAIL.TEST'
 PROGRAM
 IF M$M EQ 'UP' THEN ;
    IF S$S EQ 'OK' THEN ;
       IF OK EQ 'Y' OR 'y' THEN ;
 *        If OK = Y in UP mode, put ALFA0-ALFA9 into mailbox,
 *                              spawn EDT to edit the file,
 *                              and load the edited file back.
          GOSUB UNLOAD ;
          STAT = SPAWN(COMMAND);
          GOSUB LOAD ;
          C$C = 'OK' ;
          END ;
       END ;
    END
 EOP: STOP
 *
 * Unload text to file:
 * --------------------
 UNLOAD: I = 0
 UNL_1: WTXT = ALFA0(I) ;
        STAT = MBX(WRIT,MBX,WTXT,TMP) ;
        IF I LT 9 THEN I = I + 1 ; GOTO UNL_1 END
 * Write EOF mark:
 STAT = MBX(WEOF,MBX,WTXT,TMP)
 * Empty the mailbox to a file:
 STAT = MBX(WFIL,MBX,TXT,TMP)
 RET
 *
 * Load data back into trans:
 * --------------------------
 LOAD: I = 0 ; STAT = MBX(RFIL,MBX,TXT,TMP)
 IF STAT LE 0 THEN RET END
 *
 * Loop through to load all 10 fields:
 * -----------------------------------
 LOD_1: STAT = MBX(READ,MBX,WTXT,TMP)
 ALFA0(I) = ' '
 IF STAT GT 0 THEN ALFA0(I) = WTXT END
 IF I LT 9 THEN I = I + 1 ; GOTO LOD_1 END
 *
 * Loop to discard any excess lines:
 * ---------------------------------
 * (Code could be substituted here to cause new records
 *  to be inserted into the ADMINS file when more than
ADMINS User Guide  H - 145



Miscellaneous Subroutines
 *  10 lines are in the file being "re-loaded".
 *  This version of the RMO merely discards the excess
 *  lines) 
 *
 LOD_2: STAT = MBX(READ,MBX,WTXT,TMP)
 IF STAT GT 0 THEN GOTO LOD_2 END
 RET

H.15.12  STACK - Store and Retrieve Data in a Stack

The stack subroutine allows the user to store and retrieve data35 to and from a stack, 
in last-in first-out fashion.

STACK syntax:

STAT = STACK (OP,VALUE,CONTROL)

where:: 

35.   any ADMINS data type.

OP/I Operation: the type of operation to be performed.
(Field name or constant).

Value Meaning

1 Initialize the stack.

2 Move an element to the stack.

3 Retrieve an element from the 
stack.

4 Is the stack empty?

5 Is the stack full?

6 How many elements are 
currently on the stack?

7 Show the Nth element on the 
stack.

 VALUE/__ Field to operate on. (May be any data type)

CONTROL/I Control Values (must be a field): used as an input 
or output argument, depending on the operation 
being performed, e.g. when the stack is to be 
initialized, CONTROL is used to specify the sizeof 
the stack. CONTROL use is summarized below:

Operation Use

1 Input - Size of the stack

2 Output - 1 if full otherwise 0

3 Output - 1 if empty otherwise 0

4 Output - 1 if full otherwise 0
H - 146   ADMINS User Guide



Miscellaneous Subroutines
1. Initialize (Operation 1): To use a stack you first have to initialize (create) the 
stack. For initialize operations, VALUE tells STACK the data type to be used, 
and CONTROL tells STACK the size (maximum number of elements) stack to 
create.

2. Move (Operation 2): To move data to the stack, VALUE contains the data to be 
moved. If the stack is full after the operation CONTROL is set to 1, otherwise 
CONTROL will be set to 0.36

3. Retrieve (Operation 3): When data is retrieved from the stack, VALUE will 
contain the last element that has been moved to the stack, i.e. the "top of the 
stack". If the stack is empty CONTROL is set to 1 otherwise it is set to 0.37

4. Is the stack empty? (Operation 4): If the stack is empty CONTROL is set to 1 
otherwise it is set to 0.

5. Is the stack full? (Operation 5): If the stack is full CONTROL is set to 1 otherwise 
it is set to 0.

6. How many elements? (Operation 6): How many elements are currently on the 
stack? CONTROL is set to the number of elements in the stack.

7. Show Nth element (Operation 7): Show the Nth element on the stack. 
CONTROL tells STACK which element you want to look at.38 VALUE will be 
set to the value contained in the Nth element in the stack. If N elements are on 
the stack, and you ask STACK to show an element number greater than N, 
STACK returns an error status.

5 Output - 1 if empty otherwise 0

6 Output - Number of elements

7 Input - Element number

STAT/I Return Status:

Value Meaning

1 Successful operation

-1 Illegal operation

-2 Stack size is less than one

-3 Memory allocation for the stack 
failed

-4 Stack was not initialized

-5 Type mismatch

-6 Element requested is out of range

36.  If N elements are on the stack before the move operation, and the move operation 
was successful the stack will contain N + 1 elements after the operation.

37.  If N elements are on the stack before the retrieve operation, and the retrieve 
operation was successful the stack will contain N - 1 elements after the operation.

Operation Use
ADMINS User Guide  H - 147



Miscellaneous Subroutines
The data on the stack is not stored in the DA array and can be used globally across 
screens.

IMPORTANT! If the stack is not being used any more, i.e. before a branch to a screen 
that does not use the stack, it is good practice to "de-initialize" the stack, i.e. initialize 
the stack with CONTROL set to 0. This frees the memory allocated to the stack.

The following sample RMO statements use STACK to move repeated entries into the 
field ITEM onto a stack. The DUMPST subroutine loop is used to dump the entire 
stack into a local array.

     LOCAL
     .
     .
     .
     STAT/I 
     INIT/I 1
     PUSH/I 2
     POP/I 3
     SIZE/I 40
     OK/I
     INIFLG/A1 'Y'
     XARRAY/A10(40)
     ITEM/A10
     PROGRAM
     .
     .
     .
     * If stack hasn't been initialized, initialize it.
     *
     IF INIFLG EQ 'Y' THEN ;
       STAT = STACK(INIT,ITEM,SIZE) ; 
       IF STAT NE 1 THEN ERR = 201 ; STOP ; END ;
       INIFLG = 'N' END
     *
     * "Push" the contents of ITEM onto the stack.
     *
     STAT = STACK(PUSH,ITEM,OK) ;
       IF STAT NE 1 THEN ERR = 202 ; STOP ; END
     .
     .
     .
     * GOSUB routine to "pop" the entire stack into a
     * local array.
     *
     DUMPST: ;
     STAT = STACK(POP,TVAL,OK)
     IF OK EQ 1 THEN RET END 
     XARRAY(J) = TVAL ; J = J + 1 ;
     GOTO DUMPST

38.  You can think about the show operation as giving you the contents of the Nth 
element of an array consisting of all the elements in the stack. The show operation 
does not change the number of elements in the stack.
H - 148   ADMINS User Guide



Miscellaneous Subroutines
H.15.13  SUMMARY - REPORT TOTAL Style Summaries

The SUMMARY subroutine provides REPORT TOTAL style summaries on numeric 
data. The syntax is:

STAT = SUMMARY(FILE,KEYFLD,PERFLD,PERTYPE,
ACCFLDS,OPER,TARGET[,SELECT])

FILE/An File name on which to operate.

KEYFIELDS/An(d) An An array that contains the names of the fields containing the 
key values controlling the operation. E.g. if:

KEYFLD/A18(3) 'FY' 'ACCNT'  '  '
you receive accumulations for the FY Fiscal Year and ACCNT 
account.
You may also specify a range of key values. E.g.:

KEYFLDS/A18(5)  'FUND'  'DEP1'  '-'  'FUND' 
'DEP2'  '  '

would sum up all records with keys specified by the values in the 
fields FUND DEP1 and DEP2 (the presence of the single character 
'-' following DEP1 indicates that we are specifying the low and 
high values of a key range).

PERFLD/An Name of period field. Must be a Date field, or a X9999 of the form 
YYPP (Year/Period) or an I field with the actual period, or if 
PERTYPE EQ 0 any field type (not used).
If PERFLD is defined as an array, e.g.

PERFLD/An(3)  'TRANSDATE'  'FSTDATE' 
'LSTDATE'

TRANSDATE is the name of the field in FILE that contains the 
date or period. The RMO fields FSTDATE and LSTDATE contain 
the first and last date/period selected for accumulation.

If the value of PERTYPE is a year, at least a starting period is 
required to establish which year is year 1.

PERTYPE/I
0
1
2
3
4
5
6

How to calculate the accumulation periods:
No period (one sum for the whole range is provided)
Day (of month, 1-31)
Weekday
Week
Month
Quarter
Year

If the fiscal year does not start in January the starting month of the 
fiscal year can be signaled in the upper half of the PERTYPE field. 
This is done by taking the starting month, multiplying it by 256, 
and adding in the period type e.g.:

PERTYPE = (7 * 256) + 4
signals July as the start of the fiscal year, and to use month as the 
accumulation period (i.e. July is month one, June is month 12).

ACCFLDS/An(d) An array with the names of the fields to accumulate.
ADMINS User Guide  H - 149



Miscellaneous Subroutines
OPER/A4(d)

V
FI

LA
MIN

MAX
AVG

E

An array of operators corresponding to each field. Valid operators 
are:

Accumulative values (the default, may be blank)
First value
Last value
The minimum value the field had
The maximum value the field had
The average value the field had
Number of non-zero values found

TARGET/An(d) An array with the names of the target fields to accumulate into.  
Must be dimensioned for the maximum number of periods that 
can occur.  The target arrays must be defined with the same data 
type and number of decimals as the ACCFLDS fields, except for 
OPER = E where the data type may be any of L, D or F (with or 
without decimals).

SELECT/An(d) An optional An field or array containing an expression used to 
select records from FILE.  If the select statement spans fields a ':' 
(colon) must be used as a continuation indicator (similar to 
SELECT statements spanning lines in DEFINE or REPORT).  If the 
expression references a field in the virtual record (not in the FILE 
file) a '~' (tilde) must prefix the field name (like in TRANS 
Lookup), e.g.

TRANSDATE GT ~STARTDATE
where TRANSDATE would be in the FILENAME file, and 
STARTDATE would be in the RMOs virtual record.
H - 150   ADMINS User Guide



Miscellaneous Subroutines
STAT/I Return status.
 1:  OK
 0:  No records found for supplied key value
-1:  Invalid number of arguments
-2:  Cannot open/find the file
-3:  The period field supplied in PERFLD was not found
-4:  Invalid period flag
-5:  Period field has invalid type. Only I, DA, DT or X9999 
supported.
-6:  Number of fields to accumulate and number of target fields 
not the same.
-7:  Invalid start of fiscal year (must be 1-12)
-8:  Low/High period field not found
-9:  Low/High period field not same type/length as period 
field
-10:  Unable to establish starting year for period = year
-11: Error parsing select statement
-12: Error adding ~FIELD in select statement
-13: Error compiling select statement
-14: Too many accumulation fields (max:60)
-(100 + n): Key field n not found
-(200 + n):  Key n does not exist, or wrong type or length
-(300 + n): Accumulator field n not found
-(400 + n): Accumulator field n not numeric
-(500 + n): Unknown operator for field n
-(600 + n): Target field n not found
-(700 + n): Target and source field n not same type or number 
of decimals.
 -(800 + n): Period for field n greater than dimension of target 
field.
-(900 + n): Target field for operator E is not L, D or F.
ADMINS User Guide  H - 151



Miscellaneous Subroutines
H.15.14  SYNC - Synchronize Access to a File

Section 13.5 “SYNC - Synchronization Between ADMINS Commands” describes the 
SYNC command for synchronizing access to ADMINS data files or records, or other 
events, usually in command files. However, these ADMINS files can also be accessed 
via TRANS. The SYNC subroutine, callable from the RMO running behind the 
screen, provides this same capability in TRANS, so that events can be synchronized 
either with other TRANS users, or with command files.

As discussed in Section 13.5 “SYNC - Synchronization Between ADMINS 
Commands”, the logical name ADM$SYNC_HOLD must be assigned in the group or 
the system logical name table to point to the directory that contains the 
SYNCHOLD.EXE, e.g.

    $ ASSIGN/SYSTEM DUA0:[ADMDIST.V32] ADM$SYNC_HOLD

in order to use the SYNC facilities

H.15.14.1  SYNC Syntax
           STAT = SYNC(EF,ACTION,[LEVEL])

E.g.
STAT = 
SUMMARY(FILE,KEYFLDS,PERFLD,FLAG,ACCFLDS,
OPT,TARGET)

where:
FILE/A40 'ACCOUNTING:Transactions.mas'
KEYFLDS/A18(2) 'FY' 'ACCNT'
PERFLD/A18  'TRANSDATE'

FLAG/I   4
AFLDS/A18(3)  'DBAMT' 'CRAMT' 'DBAMT'
OPT/A4(4)     ' '     ' '     'MAX'
TARGET/A18(3) 'DBSUM ' 'CRSUM ' 'DBMAX '
DBSUM/D2(12)
CRSUM/D2(12)
DBMAX/D2(12)
FY/X9999 2001
ACCNT/A20 '01010051000'

Would open the file 'ACCOUNTING: Transactions.mas', use the 
values of the fields FY and ACCNT to access records in the file, 
use the field TRANSDATE to determine the month (FLAG=2), 
and accumulate the fields DBAMT and CRAMT into the arrays 
DBSUM and CRSUM, and the maximum debit amount per period 
in the DBMAX field.

 STAT/I Status indicator.
-1 means EF was not in the range of 50-59
0 means the flag (lock) referenced by an ‘X’ 
ACTION is not available.
2 means the flag (lock) referenced by an ‘X’ 
ACTION is available.

EF/I Number of the flag involved (50-59).

NOTE
H - 152   ADMINS User Guide



Miscellaneous Subroutines
H.15.14.2  SYNC Example
Given the following fields and values,

     STAT/I
     EF/I 57
     ACTION/A1 'W'

then

     STAT = SYNC(EF,ACTION)

included in an RMO behind a screen would cause TRANS to check flag 57. If the flag 
is unavailable, then wait until it is available. When flag 57 is available, take the event 
flag and continue.

H.15.15  TTCOM - Communication With Another Terminal

The TTCOM subroutine is used to communicate with any device connected to a 
terminal interface line, e.g. another terminal, a printer, a cash register printer, or a 
micro computer. TTCOM must be able to allocate the device to prevent other users 
from accessing the device at the same time. Since the default terminal protection 
prohibits terminals from being allocated by an existing process, you must change the 
default before using TTCOM. TTCOM can directly deallocate the device, to free it for 
use by other users.

TTCOM provides two basic commands; WRITE characters to the device, and READ 
characters from the device. You may specify time-out values which are the number 
of seconds the read should wait before it returns to the calling process. You may also 
specify termination characters.

ACTION/A1 Action to be taken.
‘W’ means to take flag EF and continue. The 
action of taking the flag makes the flag 
unavailable to another user. If flag EF is already 
unavailable (taken by another process), ‘W’ 
means wait until it is released, take it, and 
continue.
‘S’ means to release the flag EF thus making it 
available.
‘X’ returns the current setting of flag EF in STAT, 
2 for available, 0 for not available.

LEVEL/I Optional. Field or constant. If present and set to a 
value of 1, then the sync flag is in effect system-
wide. Otherwise the flag is in effect for the group.
ADMINS User Guide  H - 153



Miscellaneous Subroutines
H.15.15.1  TTCOM Syntax
           STAT = TTCOM(OP,DEVICE,STRING,PARM)

OP/I =21:  STRING/Ann contains character string to 
write to DEVICE.
=22:  STRING/I(n) contains integer values which 
should be printed as a character string to 
DEVICE.
=23:  Read DEVICE and return character string 
read in STRING/Ann
=24:  Read DEVICE and return character string 
read as integers in STRING/I
=25:  Deallocate DEVICE last used

DEVICE/A24 contains the name of the device to which you wish 
to communicate. It may be a logical name, but it 
must eventually translate to a physical device that is 
a terminal.

STRING/xx For OP equal 21 or 23, STRING is defined as 
STRING/Ann, and for OP equal 22 or 24 it is 
defined as STRING/I(n). If OP=21, STRING/Ann 
contains an ADMINS string to be written to 
DEVICE, and if OP=22, STRING/I(n) contains n 
integer values to be interpreted as characters and 
written to DEVICE. If OP=23 or 24, STRING is a 
buffer to receive the character string read from 
device. If OP=23 it is returned as an ADMINS 
character string, and if OP=24 it is returned as 
integer values. For OP=25 STRING is a dummy 
variable.

PARM/I(5) PARM contains parameters to the TTCOM 
subroutine.

PARM(1) Length of STRING in number of characters. If write, 
number of characters to write from STRING. If read, 
number of characters read from DEVICE. If 
STRING is defined as /Ann, PARM(1) is number of 
bytes, if STRING is defined as /I, PARM(1) is 
number of words.

PARM(2) If write specifies Carriage Control Character. 
FORTRAN Carriage control characters are used:
                     HEX DEC  Interpretation
                      20  32  Single-space
                      30  48  Double-space
                      31  49  Page eject
                      2B  43  Overprint
                      24  36  Prompt
All other values are interpreted as single space CC 
characters.
If read, specifies time-out value, i.e. the number of 
seconds the TTCOM read call should wait before it 
returns to the calling process.

PARM(3) Ignored if write. If read, PARM(3)=1 signals that 
PARM(4) and PARM(5) contains a bit map to 
indicate termination characters.
H - 154   ADMINS User Guide



Miscellaneous Subroutines
.

H.15.15.2  TTCOM Example
Assume a set of screens which uses a lot of Advanced Video functionality, and 
another set which uses other display techniques. When an option is chosen on a 
menu screen, the RMO behind the screen determines which family of screens to 
branch to. One call to TTCOM sends a request for device product identification code 
to the terminal, and a second call reads the answer from the terminal. The ANSI 
standard request for product identification code or request for device attributes is:

     ESC   [   c
      27  91  99

and the answer from a VT100 terminal should be:

     ESC   [   ?   1   ;      c
      27  91  63  49  59   ^  99
                           |
                           0 (48) = Base VT100, no options
                           1 (49) = Processor option (STP)
                           2 (50) = Advanced video option (AVO)
                           3 (51) = AVO and STP
                           4 (52) = Graphics option (GPO)
                           5 (53) = GPO and STP
                           6 (54) = GPO and AVO
                           7 (55) = GPO, STP and AVO

If the "option present" is 2, 3, 6 or 7 the terminal has Advanced Video.

Examine the following RMS:

     LOCAL
     .
     DEVICE/A24 'SYS$COMMAND'
     STAT/I
     ASK/I(3) 27 91 99
     ANSWER/I(20)
     PARM/I(5)
     .
     PROGRAM
     .
     *
     * Determine menu CHOICE
     IF S$S EQ 'CHOICE' THEN ;
        IF CHOICE EQ 'R' THEN ;

PARM(4) PARM(5) Bit map to indicate which characters should be 
interpreted as terminator characters for read 
(OP=23 or 24). The 16 bits in PARM(4) represents 
ASCII value 00 through 15, and PARM(5) 
represents ASCII value 16 through 31. If a bit is on, 
the corresponding character should be treated as a 
terminator.

STAT/I Return status code from TTCOM
1 = OK
2 = OK, timeout (Read only)
-1 = Device allocated to other user
-2 = No such device
-3 = Device mounted
-4 = Invalid device
-5 = Syntax or other error
other positive value = VMS error code (decimal)
ADMINS User Guide  H - 155



Miscellaneous Subroutines
     * Three integers to be sent to SYS$COMMAND
           PARM(1) = 3 ;
           STAT = TTCOM(22,DEVICE,ASK,PARM)
     * If error, get out
           IF STAT NE 1 THEN ;
              ERROR = STAT ; GOTO EOP END ;
     * Initialize parameters for answer, PARM(3) indicates 
termination
     * characters bit map for PARAM(4) and PARAM(5)
           PARM(2) = 0 ;
           PARM(3) = 1 ;
           PARM(4) = 0 ; PARM(5) = 0 ;
           STAT = TTCOM(24,DEVICE,ANSWER,PARM) ;
     * If error, get out
           IF STAT LT 1 THEN ;
              ERROR = STAT ; GOTO EOP END ;
     * If the sixth value includes AVO option then branch to 'R' 
screen
           IF ANSWER(6) EQ 50 OR 51 OR 54 OR 55 THEN ;
              B$B = 'R' ; GOTO EOP END ;
     * Otherwise branch to 'S' screen
           B$B = 'S' ; GOTO EOP END ;
     ...

H.15.15.3  TTCOM - New Operation Code
A new operation code added to TTCOM enables the setting and reading of 
communication parameters (baud rate, parity, etc.). The syntax is:

STAT = TTCOM (20,DEVICE,NULL,PARAM)

where:

• PARAM(1) is baudrate (e.g. 9600)
• PARAM(2) is Parity On or Off (1 is On, 0 is off)
• PARAM(3) is Parity setting.  0 = No parity, 1 = Odd parity, 2 = Even parity, 3 

= Mark parity, 4 = Space parity
• PARAM(4) is Byte Size in bits (4-8)
• PARAM(5) is Number of Stop Bits (0=One, 1=1.5, 2=Two)

Any of the PARAM(n) values can be set to -1 (minus one) to leave the current setting 
intact.

A return value of -3 indicates that there was an error while setting the values.

On a successful return (STAT = 1) the PARAM(n) fields are filled in with the current 
settings from the device.

H.15.16  BLOBIO - Access Binary Large Object (BLOB) Field

BLOBIO allows binary large objects to be stored in and retrieved using the ADMINS 
BLOB field type. BLOB fields store binary large objects in ADMINS internal text files 
(.TCF/.TSF) in the same way that internal text (TI) fields store text documents (see 
Appendix K: “Using Text Fields”). The BLOB field makes the binary large object a 
part of the ADMINS data record, a field that can be stored and retrieved by key value, 
and remains associated with the ADMINS record as it moves around in sorts, moves 
etc., in exactly the same way as text documents stored in TI fields.

Be aware that, unlike internal text fields, ADMINS does not know what to do with a 
BLOB.39 BLOBIO can only store or retrieve a BLOB, and put its content into a file or 
in memory. The developer must indicate in the RMO how the content is to be 
H - 156   ADMINS User Guide



Miscellaneous Subroutines
handled, through a call either to the EXTERNAL subroutine (see Appendix H.15.7 
“EXTERNAL - Call External Language Routine”) or the SPAWN subroutine (see 
Appendix H.15.11 “SPAWN - Create Subprocess from ADMINS Command”).

To incorporate a binary large object into an ADMINS data file include a field of data 
type BLOB in your .DEF file:

    * EMPLOYEE.DEF
    *      Employee File     *
    *
    MAS     1000
    EMPNO   X999   KEY1    ! employee number
    LNAME   A20            ! last
    FNAME   A20            ! first
    MIDDLE  A1             ! middle init.
    IDPHOTO BLOB           ! photo

When this file is defined, IDPHOTO is used to store a pointer to the location of the 
object BLOBIO associates with this record.

BLOB fields cannot be edited with TRANS, and developers must make sure BLOB 
fields are never touched by the RMO.

The syntax of the BLOBIO subroutine is:

    STAT = BLOBIO(FUNC,OPTION,BLOBFLD,WHERE,SIZE,FORMAT)

where:

39.  The BLOBIO subroutine updates the virtual record in memory when it loads the 
BLOBFLD, but it does not write that record back to disk. In TRANS, for example, 
use W$W to force writing to the disk. Otherwise, the record may never be written 
to disk, and the pointer to the binary large object might be lost.

FUNC/I (field or constant) Tells BLOBIO what to do:
101: Write the BLOB into the file identified by 
WHERE.
102: Put the BLOB into memory at the address in 
WHERE.
201: Get the BLOB from the file identified in
WHERE, and put it in the .tsf file.
202: Get the BLOB from the memory location in
WHERE, and put it in the .tsf file.
900: Free memory at address in WHERE (no
reading or writing).

OPTION/I Option settings to modify the behavior of BLOBIO:
1: Allocate memory for FUNC = 102, and 
deallocate memory for function 202.
2: Delete file after it is written to the .TSF file 
(with FUNC = 201).

 BLOBFLD/BLOB Contains the ID of the binary large object, a pointer 
to its location in the .TCF/.TSFfiles.  FUNC set to 
201 and 202 loads BLOBFLD the first time BLOBIO 
is called for the object. MAKE SURE the BLOBFLD 
is written to disk after BLOBIO is called with FUNC 
set to 201 or 202.

WHERE/An If you are reading or writing the BLOB from/to a 
file (FUNC = 101 or 201), this is an An field 
containing the name of the file.
ADMINS User Guide  H - 157



Miscellaneous Subroutines
WHERE/F If you are reading or writing the BLOB from/to a
                 memory location (FUNC = 102 or 202), this is 
                 the address where the BLOB is located. This 
                 address may be obtained in two ways:

 1) By calling EXTERNAL: have EXTERNAL 
allocate the memory, and return the address in 
the WHERE field.
2) For FUNC = 102, have BLOBIO allocate the 
memory by setting OPTION to 1.
 Normally, the function responsible for allocating
the WHERE memory, should be responsible for
freeing the memory.

SIZE/L The size of the BLOB being handled. Required if the 
BLOB is in memory. If BLOB is in a file, SIZE is 
informational only, and is always set by BLOBIO.

FORMAT/I (field or constant, must be greater than 256) A code 
to identify the format of the BLOB. (A BLOB might 
be a WORD or WordPerfect file, or a graphical 
image of some format, etc.) 

Stored with the BLOB when FUNC = 201 or 202,
and retreived with it when FUNC = 101 or 102. 
FORMAT can be used to indicate which program
is to be activated to handle the BLOB. We have left 
to developers how to define their own object 
handlers, thus making the object orientation of 
the BLOB data type open ended. 
Typically, BLOBIO would be called to get the binary 
large object, and then the RMO would activate the 
appropriate image to handle the BLOB depending 
on its FORMAT value.

STAT/I Return status from the BLOBIO subroutine:
2 = Loaded OK, but unable to delete file (with 
OPTION=2)
1 = OK
0 = Nothing read/written
-1 = Invalid function code
-2 = BLOBFLD is not of type BLOB
-3 = External file field not of type BLOB
-4 = WHERE is not alphanumeric (An) for FUNC 
= 101 or 201
-5 = WHERE is not type F for FUNC = 102 or 202
-6 = SIZE not of type L
-7 = Copy BLOBFLD to/from memory, and no 
size
-8 = Trying to read nonexistent BLOB
-9 = FORMAT not of type I
-10 = Invalid FORMAT. Must be > 256
-11 = Open error on output file
-12 = Open error on input file
H - 158   ADMINS User Guide



Miscellaneous Subroutines
The following RMS fragment shows the BLOBIO subroutine being used to access a 
word processor file stored in a BLOB.

    *
    *
    *******************************************************
    ** If it already exists write the document to disk,  **
    ** use WORD PROCESSOR to edit (or create) it; write  **
    ** it back into ADMINS (TSF) file.                   **
    ** Delete word processing file.                      **
    *******************************************************
    *
    IF M$M EQ 'UP' AND S$S EQ 'ILIN' AND ILIN EQ 'Y' THEN ;
       IF WPFILE GT 0 THEN ;          ! does BLOB exist?
          STAT = CRLOG(LOGNAM,FILE) ; ! write BLOB out to LOGNAM
          STAT = BLOBIO(101,OPTION,WPFILE,LOGNAM,SIZE,FORMAT) 
       END ;
       STAT = SPAWN(WORDPROC) ;       ! spawn word processor
       OPTION = 2 ;                   ! set delete option
    *                                 ! write back BLOB
       STAT = BLOBIO(201,OPTION,WPFILE,LOGNAM,SIZE,FORMAT) ;
    *                                 ! clean up and
       FILE = ' ' ; ILIN = ' ' ;      ! delete logical
       STAT = CRLOG(LOGNAM,FILE) END
    *
    * 
ADMINS User Guide  H - 159



Miscellaneous Subroutines
H - 160   ADMINS User Guide



Appendix I:ADD: The ADMINS Data 
Dictionary

This document describes the purpose, syntax, and functionality of the ADMINS Data 
Dictionary (ADD), and illustrates its use in the development of a simplified, yet 
complete and integrated demonstration application. The reader is assumed to have 
general familiarity with the ADMINS software product, including both application 
development issues (i.e. what the commands do, syntax, etc.) and with using the 
various ADMINS commands to perform a task (i.e. special keystrokes, etc.).

I.1  Introduction

The ADMINS Data Dictionary system is based on an Entity/Relationship model, 
where the entities and relationships are tailored to the specific needs of the ADMINS 
programming environment. ADD provides a repository for information about the 
various entities and relationships that comprise an ADMINS-based information 
system. ADD enhances your ability to develop, maintain and document ADMINS-
based applications in a consistent, organized, and integrated manner.

ADD is implemented via a family of TRANS screens that share a common layout and 
user interface. Figure I1-1 identifies the standard features of the ADD screen layout.

 
 MenuOpt1 MenuOpt2 MenuOpt3 MenuOpt4 MenuOpt5
 *Screen ID---------------------------------------------------------------------*
 | ADMINS/V32 Data Dictionary                                   Screen Title    |
 *------------------------------------------------------------------------------*

    Screen Body (literals and data)

Message Area
 

Figure I1-1 Generalized Screen Layout 

The major options that are available from any screen panel are offered in the menu bar 
at the top of the screen. (The same choices will also normally be available through 
regular TRANS branch menus). In general, HELP is available throughout ADD, both 
at the screen level, and field-by-field. When appropriate, LOOKUP windows are 
available for displaying and selecting from the list of valid alternative responses.
ADMINS User Guide I - 1



Introduction
I.1.1  Using the ADD Screens

All ADD activity begins with the Main Menu:

 

 EXIT     HELP
 *MENU--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                                   DICTIONARY MENU |
 *------------------------------------------------------------------------------*
  Dictionary..: D1                  DEVELOPMENT DICTIONARY
                                    Current User: GINNY

   EL: Data Element Overview              CL: Codelist Repository Overview
   EA: Data Element Attribute             CR: Codelist Repository Attribute

   PE: Prototype Element Overview         CT: Codelist Table Overview
   PA: Prototype Element Attribute        CA: Codelist Table Attribute

   FI: File Overview                      DV: Data View Overview
   FA: File Attribute                     DA: Data View Attribute

   DR: Data Dictionary Reports            US: User Overview
   WH: Where Used Screen                  UA: User Attribute

  Your Choice.:                  <Enter one of the listed 2 character codes>

 

Figure I1-2 The Main Menu 

The ADD main menu selection alternatives direct you to overview and attribute 
screens for the various entities and relationships that make up the data dictionary.

Choose the screen you want by entering the two character code indicated on the 
menu.

The entity overview screens are gateways to families of screens that support all the 
query and maintenance activities for the corresponding entity type. The screen 
family for each entity type includes a screen for entering and altering the properties, 
or attributes of that entity. Screens are also provided for the specification of 
relationships (i.e. "file contains field" or "data view contains file element"), for text 
documentation of those relationships; and for codelist maintenance. Each of these 
activities is described in detail in later sections of this document.

I.1.2  Deleting Entities

Entities can be deleted by branching to the main attribute screen for that entity, 
locating the particular record, and then using TRANS DEL (ctrl/d) keystroke. ADD 
will ignore the keystroke if any relationships for that entity to another entity 
remain at the time you attempt to delete it.

Some examples:

For a data element, no prototype or codelist may be referenced in a record to be 
deleted, remove the prototype element or codelist reference before deleting the data 
element. A data element may not be deleted if it is included in any file relationships, 
remove the data element from the file relationship before deleting the data element.
I - 2   ADMINS User Guide



Introduction
No codelist table can be deleted while a prototype element or data element 
references that codelist table, delete the references to the codelist table from all the 
prototype or data elements before deleting the codelist table. No codelist table can be 
deleted while the codelist table values still exist, remove all the codelist table values 
before deleting the codelist.

I.1.3  The Demonstration Application: DEMO

Each step in the process of developing an ADD-based application will be illustrated 
utilizing examples taken from a simplified demonstration application: an order entry 
system for the New Tradition Bottling Co., an imaginary company engaged in 
bottling soft drinks. The completed data dictionary specification of the order entry 
system, and the demonstration application, are included with the ADMINS Data 
Dictionary distribution kit, for reference.
ADMINS User Guide  I - 3



Data Elements
I.2  Data Elements

Data elements are what ADMINS developers and users have traditionally called data 
fields. They are the basic building blocks of any ADMINS information processing 
system. With the ADMINS Data Dictionary you can specify all the general properties 
of the application's data elements in one place.

I.2.1  Data Elements Overview Screen

The Data Elements Overview screen presents a listing of the data elements that have 
been entered1 in the data dictionary:

 

 ATTRIB   LOCATE   DEF      HELP     MENU
 *AT00--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                            ENTITY OVERVIEW SCREEN |
 *------------------------------------------------------------------------------*

  FIELD NAME               DESCRIPTION
  CUSTID                   Customer Identification Code
  CUSTOMER                 Customer Name
  DADDR1                   Delivery contact address line
  DADDR2                   Delivery contact address line
  DCITY                    Delivery contact address (City)
  DCONTACT                 Delivery contact name
  DELIVNOT                 Delivery Notes
  DPHONE                   Delivery contact telephone number
  ORDER#                   Order Number
  PAGE                     Page Number (Order)
  SADDR1                   Sales contact address line
  SADDR2                   Sales contact address line
  SALESREP                 Sales Representative
  SCITY                    Sales contact address (City)
  SCONTACT                 Sales contact name

 

Figure I2-1 Data Elements Overview 

If the entity you want is not displayed, search for it by selecting the LOCATE 
function. You will be prompted for the entity name to search for. Or you can browse 
through the list using the various TRANS keystrokes for moving from record to 
record (i.e. Prev Screen, Next Screen, Ctrl/n etc.).

To inspect or alter the attributes for one of the elements, move the cursor to that 
element, and branch to the attributes screen (via the menu bar is easiest!)

1.    If no elements have been previously entered in the Data Dictionary, the 
Dictionary's internal elements will display. Once a data element is entered these 
internal elements are not displayed.
I - 4   ADMINS User Guide



Data Elements
I.2.2  Data Elements Attributes Screen

Use the Data Elements Attributes screens to specify the data elements for your 
applications.

 

 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT11--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                        DATA ELEMENT ENTRY SCREEN  |
 *------------------------------------------------------------------------------*
 Field Name: SCONTACT           DD_User: GINNY            Data Element #: EL0109
                              Prototype: NAME             Prototype DDID: PE0101
 Data Format.......: A60
 Description.......: Sales contact name
 Def. display width: 60
 Justification(L/R): L
 Default Heading 1.: Contact                    Line Label: SContact
 Default Heading 2.: Name

 Codelist Table....:
      Error Message:

 Validation rules.1:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU): Inactive?

 Misc. Action/Notes:

 Added 15-JAN-03   by GINNY              Last changed 15-JAN-03   by GINNY
 

Figure I2-2 Data Elements Attributes Screen 
ADMINS User Guide  I - 5



Data Elements
For each element the following attributes are displayed (Help is available on a field 
by field basis.)

Field Name: Any valid ADMINS field name.

DD_User: User name of current DD_User (internally generated).

Data Element #: An internally generated and used Data Dictionary ID 
number for the field.

Prototype: The name of the prototype element this field is to be 
based on (see Appendix I.3 “Prototype Data Elements”). 
If a prototype element is specified for a data element 
ADD will immediately assign to that data element all the 
attributes of the prototype. You may then override any 
of these default attributes.

Prototype DDID: The Data Dictionary ID number of the prototype 
element (internally generated).

Data Format: A valid ADMINS data type.

Description Up to 60 characters available to describe the field.

Default display width: Default width for GENED and automatically formatted 
REPORTs. If not entered the maximum display width 
for the ADMINS data type will be used.

Justification: L(eft) or R(ight). If not entered alpha fields will be left 
justified and numeric fields right justifiedSection  ”*”.

Default Heading: Two lines of default heading (20 characters each). Will be 
used for multi-colum displays (e.g. GENED, 
automatically formatted REPORTs).

Line Label: Label to be used instead of field name, in single-record 
GENED screens.

Codelist Table: The name of the associated codelist table for verifying 
input values.

Error Message: Allows the developer to implement a specific error 
message to be displayed when an value entered into a 
field validated against a codelist table is not present in 
the codelist table. If this field is left blank the default 
message:

not present in Codelist Table
is displayed.

Validation Rule: Up to three lines of logic to verify entered values. Use same 
syntax as ADMINS SELECT, except that the data element 
name is implied at the start of the statement, e.g. "GT 0", "BET 
0 AND 1000".a

Error Message: Message to display if entry does not pass validation rule.

Options: CAPS, REQUIRE, etc.
I - 6   ADMINS User Guide



Data Elements
ADD maintains control information for each entity (displayed at the bottom of the 
screen):

Via the menu bar you may return to the main menu, or to the data element overview 
screen. Additional menu bar alternatives branch to screens for entering and updating 
the help text to be associated with this data element, for entering and updating the 
text attributes of this data element, and for entering and updating descriptive text 
(documentation) for this data element.

Inactive? You can enter "Y" in the Inactive field.  This has the effect 
that even if the field is present in screens it is faded into 
the background making it obvious that this is not an 
active field.
The main purpose of this feature is to leave fields that are 
not in use by a certain installation in the screen, but 
automatically disabling the field, thus cutting down on 
necessary customization of screens etc.

Misc. Action/Notes Field without pre-defined Data Dictionary purpose. 
Available to store information for any application-
specific purpose. This information can be accessed in 
applications using the EL_MISC attribute mnemonic.

Custom Fields 1, 2, 3 Fields without pre-defined purpose, can be used for any 
application-specific purpose.

a.A special syntax is provided to handle complex validation logic. For exam-
ple, to indicate that codes between 20 and 29 or 40 and 49 are valid, enter:
"BET 20 AND 29 OR (<VALUE> BET 40 and 49)" At compilation
(SCREEN and TRANS GENED) and at data entry the special constant
<VALUE> is replaced with the actual name of the field being validated. This
implementation allows the complex validation logic to be applied to a proto-
type element, where the name of the field that references the prototype ele-
ment, rather than the name of the prototype element, needs to be substituted
into the statement.

Added: The date when this entity was entered.

by: The user name when this entity was entered into the 
dictionary.

Last changed: The date when this entity was last altered.

by: The user name when this entity was last altered.
ADMINS User Guide  I - 7



Data Elements
I.2.3  Text Fields

If the Data Format attribute for a data element is specified as either TInn or TXnn, 
i.e. the internal or external text data types, you must specify the Text Field Attributes 
for that data element. Text field attributes are specified in the Text Element Default 
Attributes screen.

 

 ELEMENT  HELP     MENU
 *AT12--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                  TEXT ELEMENT DEFAULT ATTRIBUTES  |
 *------------------------------------------------------------------------------*
 Element Name: DELIVNOT            DD Id #: EL0140      DD_User: GINNY

 Data Format........: TI60
 Description........: Delivery Notes

 Default Ruler......:         2  L-------T--------T--------T-------T-------T-----
 Maximum Line Length:        60
 Initialization File:

 

Figure I2-3 Text Element Default Attributes Screen 

The Text Element Default Attributes screen first displays the Element Name, DD 
ID#, DD_User, Data Format, and Description from the Data Element attributes 
record for the text field.

The attributes that are specified in this screen are as follows:

Default Ruler Specifies the text ruler that will automatically be 
inserted at the beginning of this text field when it is first 
entered or loaded. Use FIND to look up the text rulers 
defined in the Dictionary, and SELECT the one you 
want. 

To define new rulers in the Data Dictionary, to remove 
rulers, or to alter existing rulers, you must use the 
Update Internal Codelist Tables screen, described in 
Appendix I.5.2.1 “Update Internal Codelist Tables ”, to 
alter codelist table ADM$DD_TEXT_RULERS (DD_ID 
CT0012).a

Maximum Line 
Length

Maximum length of a text ruler that can be used with 
this field.

Initialization File Specifies the initialization file that will be used for this 
text field when it is first entered or loaded. Use FIND to 
look up the initialization files that are defined in the 
Dictionary, and SELECT the one you want.

To define new initialization files in the Data Dictionary, 
or to remove or change initialization files, you must use 
the Update Internal Codelist Tables screen, described 
in Appendix I.5.2.1 “Update Internal Codelist Tables ”, 
to alter codelist table ADM$DD_TEXT_INITFILES 
(DD_ID CT0013).b 
I - 8   ADMINS User Guide



Data Elements
I.2.4  Help Text

Use the data element Help text screen to enter or view the information you want to 
be displayed when a user asks for "help" (e.g. presses the HELP key) for a field in a 
TRANS application.

If no "help" has been previously entered for the data element, ADD asks whether you 
wish to enter any:

     No Help Text available. Do you want to add Help Text?

If you respond "y" ADD will call a text editor for you to use to enter the help text. You 
may enter up to 30 lines of up to 76 characters each. When you are finished entering 
the help text, exit the editor, and your new entry will be shown in the text display 
window. (You may use the menu bar NEXT_PG and PREV_PG options to browse 
around in the text if it exceeds the size of the window.)

As a time-saving alternative to entering new help text from scratch, you may copy 
help or descriptive text from another entity. This allows you to re-use help or 
descriptive text already written for other entities, perhaps changing it slightly for this 
new use.

To use copy:

1. Reply "N" to

No Help Text available. Do you want to add Help Text?

a.    See Appendix J.2 “Rulers” for an explanation of the syntax for 
specifying rulers.

b.    See Appendix J.7 “The Text Initialization File” for an explanation of 
initialization files.
ADMINS User Guide  I - 9



Data Elements
2. Choose the COPY option on the menu bar. ADD will branch to the Descriptive/
Help Text Copy screen:

 

 RETURN   FIND     COPY     HELP     MENU
 *-CP00-------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY              FIELD NAME DESCRIPTIVE/HELP TEXT COPY|
 *------------------------------------------------------------------------------*

 Receiving Entity: DELIVNOT                 ( EL0140  )
 Copied Entity...:                          (         )

  *----------------------------------------------*------------------------------*
  |                                              |Type Name____________________ |
  |                                              |EL   7QTY                     |
  |                                              |EL   CUSTID                   |
  |                                              |EL   CUSTOMER                 |
  |                                              |EL   DADDR1                   |
  |                                              |EL   DADDR2                   |
  |                                              |EL   DCITY                    |
  |                                              |EL   DCONTACT                 |
  |                                              |EL   DELIVNOT                 |
  |                                              |EL   DPHONE                   |
  *----------------------------------------------|EL   ORDER#                   |
                                                 *------------------------------*
 

Figure I2-4 Descriptive/Help Text Copy Screen: 

3. Press the FIND key. ADD displays a list of the entities currently defined in the 
Data Dictionary. Use SELECT to indicate your candidate entity to provide the 
text to copied.

4. Use Menu Bar option FIND to indicate whether Help text or Descriptive text is 
to be reviewed. ADD will then display the indicated text.

5. If you decide to copy the displayed piece, use Menu Bar option COPY. 
Otherwise, you can either return to the help or descriptive text screen you came 
from, or you can use this screen to review help or descriptive text for other 
entities (items 3 and 4 above)

Menu Bar option COPY copies the selected text piece to the "receiving entity".

To alter the help text for a data element, choose the EDIT option on the menu bar. 
ADD will call a text editor to edit the current version of the help text. When you are 
finished editing the text, it will be shown in the text display window.

When the user asks for help, up to 18 lines of this text will be displayed at the bottom 
of their screen. If you provide more than 18 lines of help, the user will be able to 
browse back and forth in the text using the Prev Screen and Next Screen keys. This 
Data Dictionary HELP text will be displayed only if no HELP has been provided 
for the field otherwise via traditional ADMINS methods (e.g. in a specific HELP file 
for the screen).

I.2.5  Descriptive Text for Application Documentation

ADD provides an integrated documentation maintenance facility that is 
implemented in the same way as the User Help Text facility. Use the data element 
descriptive text screen to enter or view documentation for data elements.

If no documentation has been previously entered for the data element, ADD asks 
whether you wish to enter any:

 No description available.
I - 10   ADMINS User Guide



Data Elements
     Do you want to add descriptive text?

If you respond "y" ADD will call a text editor for you to use to enter the descriptive 
text. Up to 40 lines of up to 60 characters each may be entered. When you are finished 
exit the editor; your new entry will be shown in the text display window. (You may 
use the menu bar NEXT_PG and PREV_PG options to browse around in the text if it 
exceeds the size of the window.)

As a time-saving alternative to entering new descriptive text from scratch, you may 
copy help or descriptive text from another entity. This allows you to re-use help or 
descriptive text already written for other entities, perhaps changing it slightly for this 
new use. See the description in Appendix I.2.4 “Help Text” for how to utilize Menu 
Bar option COPY.

To alter the text description for a data element, choose the EDIT option on the menu 
bar. ADD will call a text editor to edit the current version of the text. When you are 
finished editing the new version will be shown in the text display window.

I.2.6  DEMO: Describing Data Elements

Two basic requirements of the NTB order entry system will be tracking information 
about customers, and information about their orders for NTB's products. To begin, 
we'll describe four data elements:

In the ADD main menu enter "EA" to branch to the Data Element Attribute Screen.

CUSTID the customer identification number

CUSTOMER the customer name

ORDER# the order number

DELIVNOT a text field that contains delivery information for the 
customer.
ADMINS User Guide  I - 11



Data Elements
In the attributes screen the four records, CUSTID, CUSTOMER, and ORDER# are 
inserted as follows:

 

 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT11--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                        DATA ELEMENT ENTRY SCREEN  |
 *------------------------------------------------------------------------------*
 Field Name: CUSTID             DD_User: GINNY            Data Element #: EL0101
                              Prototype:                  Prototype DDID:
 Data Format.......: XA9999
 Description.......: Customer Identification Code
 Def. display width:  5
 Justification(L/R): L
 Default Heading 1.: Cust                       Line Label: CustID
 Default Heading 2.: ID

 Codelist Table....:
      Error Message:

 Validation rules.1:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):

 Added 24-AUG-90   by GINNY              Last changed 06-JUN-91   by GINNY
 

Figure I2-5 Data Element CUSTID 

 

 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT11--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                        DATA ELEMENT ENTRY SCREEN  |
 *------------------------------------------------------------------------------*
 Field Name: CUSTOMER           DD_User: GINNY            Data Element #: EL0102
                              Prototype:                  Prototype DDID:
 Data Format.......: A60
 Description.......: Customer Name
 Def. display width: 60
 Justification(L/R): L
 Default Heading 1.: Customer                   Line Label: Customer
 Default Heading 2.: Name

 Codelist Table....:
      Error Message:

 Validation rules.1:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):

 Added 24-AUG-90   by GINNY              Last changed 24-AUG-90   by GINNY
 

Figure I2-6 Data Element CUSTOMER 
I - 12   ADMINS User Guide



Data Elements
ADMINS User Guide  I - 13



Data Elements
 

 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT11--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                        DATA ELEMENT ENTRY SCREEN  |
 *------------------------------------------------------------------------------*
 Field Name: ORDER#             DD_User: GINNY            Data Element #: EL0103
                              Prototype: NAME         Prototype DDID:  

 Data Format.......: X999999
 Description.......: Order Number
 Def. display width:  6
 Justification(L/R): L
 Default Heading 1.: Order                      Line Label: Order#
 Default Heading 2.: Number

 Codelist Table....:
      Error Message:

 Validation rules.1:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):

 Added 24-AUG-90   by GINNY              Last changed 13-JUN-91   by GINNY
 

Figure I2-7 Data Element ORDER# 

 

 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT11--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                        DATA ELEMENT ENTRY SCREEN  |
 *------------------------------------------------------------------------------*
 Field Name: DELIVNOT           DD_User: GINNY            Data Element #: EL0140
                              Prototype:                  Prototype DDID:
 Data Format.......: TI60
 Description.......: Delivery Notes
 Def. display width: 60
 Justification(L/R): L
 Default Heading 1.: Delivery                   Line Label: Deliv. Notes
 Default Heading 2.: Notes

 Codelist Table....:
      Error Message:

 Validation rules.1:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):

 Added 10-JUN-91   by GINNY              Last changed 10-JUN-91   by GINNY
 

Figure I2-8 Data Element DELIVNOT 
I - 14   ADMINS User Guide



Data Elements
DELIVNOT is a text field, so we now need to specify its text attributes.

Choose Menu option TEXTATTR to branch to the Text Element Default Attributes 
screen. The text attributes for DELIVNOT are inserted as follows:

 

 ELEMENT  HELP     MENU
 *AT12--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                  TEXT ELEMENT DEFAULT ATTRIBUTES  |
 *------------------------------------------------------------------------------*
 Element Name: DELIVNOT            DD Id #: EL0140      DD_User: GINNY

 Data Format........: TI60
 Description........: Delivery Notes

 Default Ruler......:         2  L-------T--------T--------T-------T-------T-----
 Maximum Line Length:        60
 Initialization File:

 

Figure I2-9 Default Text Attributes for DELIVNOT 

We'll need to track many different items for both customers and their orders. For 
customers, we'll need address, phone number, contact name, etc. For orders, we need 
to track who the customer is, who the salesperson is, how many units of which 
products are ordered, etc.

We could start right now to enter the names and addresses we'll need to keep track 
of for the customer. We could specify a sales contact name field. We could specify a 
delivery contact name field. We could specify fields for the phone numbers of these 
two people, and possibly for different addresses also. We would have to re-describe 
all the attributes of these sets of data elements that are really the same thing used in 
different ways. And worse, if we wanted to alter one of these common attributes, we 
would have to change that attribute in every instance.

Appendix I.3 “Prototype Data Elements” of this document will introduce prototype 
elements, which will save us most of the trouble of re-specifying these attributes for 
every data element in a group.

I.2.7  DEMO: Entering User Help

To enter default help text for the CUSTID element, go to the data element attributes 
screen for CUSTID, then choose menu bar option HELPTEXT.

Because no "help" has been entered for the CUSTID, ADD asks whether you wish to 
enter any:

     No Help Text available. Do you want to add Help Text?

Reply "Y" to enter User Help. Figure I2-10 below shows an in-progress editor session 
where User Help for CUSTID is being developed.
ADMINS User Guide  I - 15



Data Elements
 

 Customer Identification Code:

 Enter the Customer Identification Code (CustID).
 If you do not know the CustID press the "Find"
 key, which will display a Lookup window of all
 the valid Customers.  In the Lookup window press
 the "Select" key to enter the CustID of the
 highlighted entry.

 0   TRANS.TXT        Ln=1     Pg=1:3      Help=HELP    MAIN    WRAP TXT     INS
 

Figure I2-10 Entering User Help for Data Element CUSTID 

Figure I2-11 below shows the completed User Help entry for CUSTID.

 

 NEXT_PG  PREV_PG  EDIT     COPY     ELEMENT  OVERVIEW HELP     MENU
 *AT16--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                            DATA ELEMENT HELP TEXT |
 *------------------------------------------------------------------------------*

 EL0101  CUSTID              XA9999                           1
         Customer Identification Code
  *----------------------------------------------------------------------------*
  |Customer Identification Code:                                               |
  |                                                                            |
  |Enter the Customer Identification Code (CustID).                            |
  |If you do not know the CustID press the "Find"                              |
  |key, which will display a Lookup window of all                              |
  |the valid Customers.  In the Lookup window press                            |
  |the "Select" key to enter the CustID of the                                 |
  |highlighted entry.                                                          |
  |                                                                            |
  |                                                                            |
  |                                                                            |
  |                                                                            |
  *----------------------------------------------------------------------------*

 

Figure I2-11 User Help for Data Element CUSTID 

To re-edit the User Help text for a data element, choose the EDIT option on the menu 
bar of the Data Element Help Text screen.

I.2.8  DEMO: Documentation

While in the Data Elements Attributes screen, choose the DESCR. option in the menu 
bar to enter documentation for the CUSTID field. ADD will prompt:

 No description available.
 Do you want to add descriptive text?
I - 16   ADMINS User Guide



Prototype Data Elements
Reply "Y" to enter documentation for CUSTID (ADD starts an editor session).

Figure I2-12 below shows the completed Documentation entry for CUSTID.

          |                                                            |
          *------------------------------------------------------------*

  
  NEXT_PG  PREV_PG  EDIT     ELEMENT  OVERVIEW HELP     MENU
  *AT19--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                    DATA ELEMENT DESCRIPTIVE TEXT  |
  *------------------------------------------------------------------------------*

  EL0101  CUSTID              XA9999                           1
           Customer Identification Code
          *------------------------------------------------------------*
          |The Customer Identification Code is used                    |
          |thoughout the New Tradition Bottling Co.                    |
          |System.  All Customers will be referenced                   |
          |via their Customer Identification Codes.                    |
          |                                                            |
          |                                                            |
          |                                                            |
          |                                                            |
          |                                                            |
          |                                                            |
          |                                                            |

Figure I2-12 Documentation for Data Element CUSTID 

I.3  Prototype Data Elements

Prototype data elements describe a set of attributes that are shared by a group or class 
of data elements in an application. Defining a prototype saves the trouble of re-
specifying these attributes for every data element in the group. For example, you may 
need to specify telephone numbers in several different contexts in an application: 
home phone, business phone, telephone number of person to contact in an 
emergency, etc. Although used for entirely different purposes each instance shares 
some standard attributes. We can specify a prototype element, PHONE, that would 
allow us to set out these standard attributes, that we would expect to occur whenever 
a phone number is used in the application. We could expect all instances have 10 
digits: a three digit "area code", followed by a three digit local exchange, followed by 
four digits. We could decide that all phone numbers should be labeled "Phone#", 
have a column heading of "Telephone" and a display width of 10, etc.

Then, in the ADD data element entry screen, when we specify the data element for 
each specific use, e.g. "Home telephone number", we can reference the prototype 
element for phone numbers. ADD will immediately assign to that data element all 
the attributes of the prototype.
ADMINS User Guide  I - 17



Prototype Data Elements
I.3.1  Prototype Elements Screen Family

The Prototype Elements screen family is identical in structure to the Data Elements 
screen family described previously. The overview screen lists all the prototype 
elements that have been specified. The attributes screen allows you to enter and alter 
the attributes of the prototype elements. Screens are also provided for entering and 
updating help text,2 entering and updating descriptive text for documentation 
purposes, and for specifying the text attributes of text fields.

I.3.2  Relationship of Prototype Elements to Data Elements

As soon as you relate a data element to a prototype element in the data element 
attributes screen (see Appendix I.2 “Data Elements”), ADD "fills in" all the attributes 
of that data element with values taken from the prototype element. In fact, the entries 
for all the attributes of that data element are loaded with a pointer, or token, that tells 
ADD to refer to the prototype element for each attribute.

All the attributes of the prototype element, except the data format attribute,3 may be 
overridden for the data element. To override the "default" prototype value for an 
attribute of the data element, enter a new value for that attribute in the data element 
screen. What you type in will replace the pointer to the prototype value for that 
attribute, terminating the connection to the prototype for that attribute. All the other 
attributes remain tied to the prototype, unless and until they are also overridden. 
This is an important point because changing an attribute in a prototype element 
changes every data element attribute that remains tied to it.

Returning to the telephone number example used at the start of this section, if we 
specify "Telephone" as the column heading for the prototype element PHONE, and 
we relate the data element HOMEPHONE to the prototype element PHONE, 
"Telephone" becomes the column heading for HOMEPHONE. Later on, if we were to 
change the column heading attribute of the prototype element PHONE, to "Phone 
No." the column heading attribute of the data element HOMEPHONE would also 
change to "Phone No.".

On the other hand, if we had overridden the prototype attribute by entering "Home 
Phone" as the column heading for data element HOMEPHONE, then when the 
column heading attribute of the prototype PHONE is subsequently changed the 
column heading attribute for HOMEPHONE would not be changed, the connection 
to the prototype having been broken for the column heading attribute.

2.    Help text specified for prototype elements will be displayed only if no HELP has 
been otherwise provided for the field either via traditional ADMINS methods 
(e.g. in a specific HELP file for the screen), or via help text specified for the data 
element itself.

3.    The data format taken from a prototype element cannot be overridden. Any 
attempt to change the data format of an element that references a prototype 
element will result in an error message.
I - 18   ADMINS User Guide



Prototype Data Elements
I.3.3  DEMO: Describing Prototype Elements

We have already specified two of the data elements that we need to track for each of 
NTB's customers, CUSTID, the customer ID, and CUSTOMER, the customer name. 
We can now define four prototype elements that we will be able to refer to multiple 
times in describing customers for the NTB order entry system:

In the ADD main menu, enter "PA" to branch to the Prototype Element Attributes 
screen.

Records for these four prototype data elements are inserted as follows:

 

 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT01--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                    PROTOTYPE ELEMENT ENTRY SCREEN |
 *------------------------------------------------------------------------------*
 Prototype Field Name: NAME               DD_ID#: PE0101 DD_User: GINNY

 Data Format.......: A60
 Description.......: contact name
 Def. display width: 60
 Justification(L/R): L
 Default Heading 1.: Contact                     Line Label: Contact
 Default Heading 2.: Name

 Codelist Table....:
      Error Message:

 Validation rules..:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):

 Added 24-AUG-90   by GINNY              Last changed 24-AUG-90   by GINNY
 

Figure I3-1 Prototype Element NAME

NAME A person’s name

PHONE A telephone number.

ADDRESS One of the lines in an address.

CITY City in an address.
ADMINS User Guide  I - 19



Prototype Data Elements
 

 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT01--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                    PROTOTYPE ELEMENT ENTRY SCREEN |
 *------------------------------------------------------------------------------*
 Prototype Field Name: PHONE              DD_ID#: PE0104 DD_User: GINNY

 Data Format.......: A14
 Description.......: contact telephone number
 Def. display width: 14
 Justification(L/R): R
 Default Heading 1.: Telephone                   Line Label: Phone
 Default Heading 2.: Number

 Codelist Table....:
      Error Message:

 Validation rules..:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):

 Added 24-AUG-90   by GINNY              Last changed 24-AUG-90   by GINNY
 

Figure I3-2 Prototype Element PHONE 

 

 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT01--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                    PROTOTYPE ELEMENT ENTRY SCREEN |
 *------------------------------------------------------------------------------*
 Prototype Field Name: ADDRESS            DD_ID#: PE0102 DD_User: GINNY

 Data Format.......: A60
 Description.......: Contact address line
 Def. display width: 60
 Justification(L/R): L
 Default Heading 1.: Address                     Line Label: Address
 Default Heading 2.:

 Codelist Table....:
      Error Message:

 Validation rules..:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):

 Added 24-AUG-90   by GINNY              Last changed 24-AUG-90   by GINNY
 

Figure I3-3 Prototype Element ADDRESS 
I - 20   ADMINS User Guide



Prototype Data Elements
 
  TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
  *AT01--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                    PROTOTYPE ELEMENT ENTRY SCREEN |
  *------------------------------------------------------------------------------*
  Prototype Field Name: CITY               DD_ID#: PE0103 DD_User: GINNY

  Data Format.......: A40
  Description.......: contact address (City)
  Def. display width: 40
  Justification(L/R): L
  Default Heading 1.: City                        Line Label: City
  Default Heading 2.:

  Codelist Table....:

  Validation rules..:
              Line 2:
              Line 3:
  Error Message.....:
  Options(CAPS/REQU):

  Added 14-AUG-90   by GINNY              Last changed 14-AUG-90   by GINNY

Figure I3-4 Prototype Element CITY 

I.3.4  DEMO: Relating Elements to Prototypes

Using the prototypes we described in the previous subsection, our job of describing 
some of the data elements we need becomes much easier. By referring to the 
prototype elements indicated, we now can specify the following data elements:

        Data           Refer to
        Element        Prototype       Description
        -------        ---------       -----------
        DCONTACT       NAME            Delivery contact person
        DPHONE         PHONE           Delivery contact phone
        DADDR1         ADDRESS         Delivery address (line 1)
        DADDR2         ADDRESS         Delivery address (line 2)
        DCITY          CITY            Delivery address city
        SCONTACT       NAME            Sales contact person
        SPHONE         PHONE           Sales contact phone
        SADDR1         ADDRESS         Sales address (line 1)
        SADDR2         ADDRESS         Sales address (line 2)
         SCITY           CITY              Sales address city
ADMINS User Guide  I - 21



Prototype Data Elements
The two screens below illustrate the entries for DCONTACT and SCONTACT.

 

 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT11--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                        DATA ELEMENT ENTRY SCREEN  |
 *------------------------------------------------------------------------------*
 Field Name: DCONTACT           DD_User: GINNY            Data Element #: EL0104
                              Prototype: NAME             Prototype DDID: PE0101
 Data Format.......: A60
 Description.......: Delivery contact name
 Def. display width: 60
 Justification(L/R): L
 Default Heading 1.: Contact                    Line Label: DContact
 Default Heading 2.: Name

 Codelist Table....:
      Error Message:

 Validation rules.1:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):

 Added 24-AUG-90   by GINNY              Last changed 24-AUG-90   by GINNY
 

Figure I3-5 Data Element DCONTACT 

 

 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT11--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                        DATA ELEMENT ENTRY SCREEN  |
 *------------------------------------------------------------------------------*
 Field Name: SCONTACT           DD_User: GINNY            Data Element #: EL0109
                              Prototype: NAME             Prototype DDID: PE0101
 Data Format.......: A60
 Description.......: Sales contact name
 Def. display width: 60
 Justification(L/R): L
 Default Heading 1.: Contact                    Line Label: SContact
 Default Heading 2.: Name

 Codelist Table....:
      Error Message:

 Validation rules.1:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):

 Added 24-AUG-90   by GINNY              Last changed 24-AUG-90   by GINNY
 

Figure I3-6 Data Element SCONTACT 
I - 22   ADMINS User Guide



Files
I.4  Files

In ADMINS data elements (fields) are normally assembled into data files. Prior to the 
implementation of ADD, specification of the structure and other attributes of a file 
would be accomplished by creating a file definition instruction file (a "DEF") to be 
read by the ADMINS DEFINE command. With ADD, files are specified using the 
FILES screen family.

As with all ADD screen families, the File Overview screen is the entry screen for the 
family, and displays a list of all the files that have been identified. The file attributes 
screen is used to describe the major file attributes. The maintain file contains 
element relationship screen is used to specify which elements (fields) belong to a file, 
and how those elements are used, i.e. to enter the "DEF" of a file. The data file 
descriptive text screen is used to enter and update text documenting the purpose of 
the file.

I.4.1  File Attributes screen

For each file the following attributes are displayed: 

File Name Must be unique within the current dictionary. Must 
follow VAX/VMS rules for the first part of a file name 
(the second part of the file name, "File Type", is 
described below). Together File Name and File Type will 
become the name of an ADMINS data file when it is 
created on disk.

Description Up to 60 characters that describe the purpose of the file

Directory The physical directory, or a logical name that points to 
the physical directory, where the ADMINS data file will 
be located.

File Type The file type, or file extension, for the data file (e.g. MAS, 
IDX, DER, etc.)

# of Records The number of records the file should be defined for 
initially.

# of Log Records Number of records the field log file should be defined 
for initially (Optional). If not entered no field log file is 
created when the file itself is created.

Index Only File (Y) Provides option for DEFining a file /IXONLY (index-only). 
This option can only be used when all the fields are key fields. 
See Section 2.2.5 ”IXONLY qualifier: Create Index-only 
file” for a complete discussion of index-only files.
ADMINS User Guide  I - 23



Files
As in the attributes screens for other entity types, control information about entries 
and changes to file attributes are automatically maintained, and displayed at the 
bottom of the display screen.

From the file attributes screen, you may branch either to a screen used to specify the 
"file contains element" relationship, or to a screen for entering and updating text 
documenting the purpose of the file.

I.4.2  The File Contains Element Relationship

The "maintain file contains element" relationship screen is used to describe which 
data elements are contained in the file, and how the data elements are used (e.g. 
KEY/SORT order, derivation operators). In other words, this screen is where we give 
ADD the "DEF" for a file.

To enter, view, or update the relationship for a file, in the files overview screen place 
the cursor at the file you want, and then select the DEF option in the bar menu. You 
will branch to the "maintain file contains element" screen for the file.

I.4.2.1  File_contains_Element Relationship Screen
File attribute information for the file is displayed (File Type, # of records etc.). Up to 
15 fields will be displayed at a time, in a way that looks identical to a traditional 
ADMINS "DEF" file. To add a data element (field) to the file relationship, type in the 
element (field) name, or use FIND to look up data elements (field names) defined in 
the Dictionary, and SELECT the ones you want. Once a data element name is entered 
or selected, its data format will be displayed.

You may then describe how the field is used in the file. Fill in the key/sort (KEY/
SOR) order; if you do not want the whole field to be used for sorting, enter the 
number of significant bytes (SB). Fill in any aggregation operators where 
appropriate, and any secondary name used for the field.

Special keystrokes help make filling in this screen easier:

The REMOVE key deletes the field at the cursor, while the INSERT key opens a line 
to insert a field name. NEXT_SCREEN displays the next page of fields in the file, 
while PREV_SCREEN displays the previous page of fields.

Define Options (R I X) Specify options for AdmDefine when defining the file:  

   Blank    No change, DEFINE’s default behavior
   R            If the file exists, do a DEFINE /REDEF
   I             Do a DEFINE /INIT
   RI          Do a DEFINE /REDEF if the file exists, 
                  else do a DEFINE /INIT
   X            If the file exists, delete the file 
                  before defining it
   XI          Delete the file if it exists, then do
                 a DEFINE /INIT

Selection Up to three lines of selection logic for the file (line 2 and 
line 3 are continuation lines). SELECT statements follow 
regular ADMINS Boolean logic syntax.
I - 24   ADMINS User Guide



Files
I.4.2.2  File Contains Element Screen: The Menu Bar
The menu bar of the File Contains Element Screen contains the following options:

The following options branch out of the File Contains Element Screen. If you exit the 
File Contains Element Screen without COMMITting your changes to disk, they will 
be lost. If changes may have been made but not committed to disk, ADD will ask for 
confirmation before branching.

FLD_NO Goto Field Number (Prompts for field number). If you 
type a higher field number than the current number of 
fields in the file, you are positioned at the next available 
field number.

COPY Copy another file relationship Copy existing 
relationship to an empty one. This option is ignored if 
the DEF is not completely empty.

REMOVE Removes elements from file relationship. Used to 
remove multiple or all elements from the file 
relationship. REMOVE prompts for the range of element 
numbers to be eliminated:

Begin field remove at Field number 
(N to cancel)[1]:

Enter the field number of the beginning field in the range 
of fields to be removed. If nothing but RETURN is 
entered, the first field in the file will be the beginning of 
the range. To cancel the remove operation, enter "N". 
After the beginning field number is entered, ADD 
prompts for the last field number to be removed:

Stop field remove after Field 
number (N to cancel)[25]:

Enter the field number of the last field in the range to be 
removed. If nothing but RETURN is entered, the last 
field in the file will be the end of the range. To cancel the 
remove operation, enter "N".

COMMIT Commit Changes to Disk Write changes to disk. 
Changes are not saved (written to disk) until you 
COMMIT. If you attempt to exit the screen without 
saving changes, or you attempt to DEFINE a file without 
having saved the changes ADD will ask for confirmation 
that you wish to discard your changes.
ADD sends an informational prompt:

File DEF has been committed to 
disk. Press Return to continue.

to inform you when your changes have been 
successfully written to disk.

DEFINE Define Current File Definition. Create an ADMINS 
data file, and convert data if necessary. The current 
"committed" version of the DEF is used to create an 
ADMINS data file. If changes may have been made but 
not committed to disk, ADD will ask for confirmation 
before proceeding to define the file ignoring any 
uncommitted changes:

Changes not committed will not be 
defined. OK to continue? (Y/N)[N]

If a file exists with the same file specification, ADD will 
MOVE/CONVERT the contents of the old file into the 
newly defined file.
ADMINS User Guide  I - 25



Files
Changes not committed will be lost. OK to continue? (Y/N)[N]

I.4.3  Descriptive Text for Application Documentation

Use the data file descriptive text screen to enter and view documenting information 
for this file. To enter the screen use the DESCR. option on the menu bar of the file 
attributes screen Up to 40 lines of up to 60 characters each may be entered to describe 
the purpose of this file. This screen functions in an identical manner to the data 
elements descriptive text screen described in Appendix I.2.5 “Descriptive Text for 
Application Documentation”.

I.4.4  DEMO: File attributes

In the preceding sections of the demonstration application we have described several 
data elements. We will now describe the attributes of a file, the customer file for the 
NTB order entry system, and then describe the file contains date element 
relationship for that file.

From the ADD main menu, enter "FA" to branch to the File Attribute screen.

The file attribute record entry for the customer file, CUSTOMER.MAS, is displayed 
below: 

FIL_ATR File Attribute Screen

OVRVIEW Overview of Files

MENU Return to the main menu
I - 26   ADMINS User Guide



Files
Figure I4-1 The CUSTOMER file attributes 

I.4.5  DEMO: File contains data element

From the file attributes screen, select DEF on the menu bar to get into the maintain 
file contains element relationship screen.

The field names entered here must already have been identified as data elements. The 
following figure illustrates the use of Lookup to select a field.
ADMINS User Guide  I - 27



Files
 

 FLD_NO  COPY    COMMIT  DEFINE  FIL_ATR OVRVIEW HELP    MENU
 *RE02--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY       MAINTAIN FILE_contains_ELEMENT RELATIONSHIP |
 *------------------------------------------------------------------------------*
 File Name: CUSTOMER                 Information about Customers
 File Type: MAS        #Records: 100                           File ID: FI0101

  SEQ FIELD_NAME         FORMAT             KEY/SOR SB OPER    SECONDARY_NAME
   *----------------------------------------------------------------------------*
   |FIELD_NAME________ DATA_TYPE___________DESCRIPTION_________________________ |
   |7QTY               D                   Quantity Ordered                     |
   |CUSTID             XA9999              Customer Identification Code         |
   |CUSTOMER           A60                 Customer Name                        |
   |DADDR1             A60                 Delivery contact address line        |
   |DADDR2             A60                 Delivery contact address line        |
   |DCITY              A40                 Delivery contact address (City)      |
   |DCONTACT           A60                 Delivery contact name                |
   |DELIVNOT           TI60                Delivery Notes                       |
   |DPHONE             A14                 Delivery contact telephone number    |
   |ORDER#             X999999             Order Number                         |
   *----------------------------------------------------------------------------*
   14
   15

 

Figure I4-2 Using Lookup to select fields. 

The completed relationship appears below. Before we leave this screen we must be 
sure to commit our changes or else they will be lost.

 

 FLD_NO  COPY    COMMIT  DEFINE  FIL_ATR OVRVIEW HELP    MENU
 *RE02--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY       MAINTAIN FILE_contains_ELEMENT RELATIONSHIP |
 *------------------------------------------------------------------------------*
 File Name: CUSTOMER                 Information about Customers
 File Type: MAS        #Records: 100                           File ID: FI0101

  SEQ FIELD_NAME         FORMAT             KEY/SOR SB OPER    SECONDARY_NAME
    1 CUSTID             XA9999             KEY1
    2 CUSTOMER           A60
    3 DCONTACT           A60
    4 DADDR1             A60
    5 DADDR2             A60
    6 DCITY              A40
    7 DPHONE             A14
    8 SCONTACT           A60
    9 SADDR1             A60
   10 SADDR2             A60
   11 SCITY              A40
   12 SPHONE             A14
   13 DELIVNOT           TI60
   14
   15

 

Figure I4-3 The CUSTOMER file relationship. 
I - 28   ADMINS User Guide



Codelists
I.5  Codelists

In the ADMINS Data Dictionary, a codelist is a collection of code tables used for 
validation, e.g. all valid department codes, object of expenditure codes, product 
codes, etc. The ADD facility includes an "internal" codelist (ADM_DD_CLIST.ADD) 
that is used to validate entries in the ADD screens themselves, and can also be used 
to store simple code tables for your applications. This internal codelist can store up 
to 9,999 different codelist tables. "External" codelists are regular ADMINS data files 
that are used as "repositories" for code tables. External codelists are useful for more 
complex or larger codelists, and especially when the information in a file used for 
other application purposes can also be used to validate new data as it is being 
entered. Unlike the internal codelist, external codelist repositories may contain only 
one codelist table.

ADD provides screens for describing and maintaining the individual tables in the 
internal codelist, and for identifying and describing external codelist repositories, the 
files they are stored in, and how they are to be used as tables.

ADD internal codelist table maintenance begins with the codelist overview screen, 
which displays a list of the codelist tables that have been identified. Place the cursor 
at the codelist table you wish to view or update, and then branch (via menu bar 
option ATTRIB) to the codelist attributes detail screen.

If you want to enter a new codelist table, branch to the codelist table attributes detail 
screen for any existing codelist table, then enter the name of the new codelist table 
(you'll be prompted "Enter "I" to INSERT".

I.5.1  Codelist Table Attributes Screen

For each codelist table the following attributes are displayed

  

Codelist Table Name May be up to 24 characters, and must be unique within 
the current dictionary.

Description Up to 60 characters that describe the purpose of the 
codelist table.

Codelist Repository Data Dictionary ID of the codelist repository that contains this 
table. If an external repository is named, it must have already 
been described in the Codelist Repository attributes screen 
(see Appendix I.5.1.1 “Describing Codelist 
Repositories”). Press FIND to display a Lookup window that 
shows all the repositories (the internal codelist repository and 
all the external repositories you have entered) that are 
currently available in the data dictionary.

Codelist Data Format The data format of the code field (maximum size of code 
stored in internal codelist is 24 characters). If you specify 
that the table is an stored in an external repository this 
field will automatically be loaded with the field type of 
the key field of the external repository file.
ADMINS User Guide  I - 29



Codelists
The remainder of the screen is used only when the table being described is stored in 
an external repository.

As in the attributes screens for other entity types, control information about entries 
and changes to codelist attributes are automatically maintained, and displayed at the 
bottom of the display screen.

From the codelist attributes screen you may branch either to a screen that presents an 
overview of the values for the codelist table being displayed (internal codelists only, 
see Appendix I.5.2 “Overview of Internal Codelist Table Values ”), or to a screen for 
specification of the automatic lookup window for fields that validated against the 
codelist table (see Appendix I.5.3 “Automatic Lookup Windows ”).

The menu bar option DESCR branches to the Codelist Descriptive Text screen, 
which is used to enter and update text documenting the purpose of the codelist.

I.5.1.1  Describing Codelist Repositories
Codelist Repositories are stored in regular ADMINS data files. Before you can 
describe how a codelist table is to be used as a codelist table, i.e. which fields are to 
be used the description field or the User Action Code field, you must first specify the 
attributes of the repository, including identifying the file that is going to be used to 
store it.

The Codelist Repository Overview screen displays a list of the Codelists 
Repositories that have been identified. Place the cursor at the repository you wish to 
view or update, and then branch (via menu bar option ATTRIB) to the Codelist 
Repository Attributes screen.

If you want to enter a new Codelist Repository, enter the name of the new Repository 
Codelist (you'll be prompted "Enter "I" to INSERT".

The Codelist Repository Attributes screen is used to identify and describe the 
ADMINS data file that is to be the basis for a codelist table. For each codelist the 
following attributes are displayed and/or entered:

Codelist Key Field The key field in the external file is also the "code" i.e. the 
key to the codelist table. This field is filled in 
automatically when you name the external repository 
file for this table (above).

Description Field Enter the field in the external file that is to be used as the 
codelist table description.

UAC Field Enter the field in the external file that is to be used as the 
codelist table user action field (see Appendix I.5.2.1 
“Update Internal Codelist Tables ”)

Codelist Name May be up to 24 characters, and must be unique within 
the current dictionary. This field will appear throughout 
ADD (i.e. in Lookup windows, etc.) whenever this 
Codelist Repository is referenced. You should not enter 
the name of the data file that is to store the repository 
here.

Description Up to 60 characters that describe the purpose of this 
repository.
I - 30   ADMINS User Guide



Codelists
The menu bar option DESCR branches to the Codelist Repository Descriptive Text 
screen, which is used to enter and update text documenting the purpose of the 
Codelist Repository. 

Once the Codelist Repositories attributes have been described, you may specify how 
it is to be used in the Codelist Table Attributes screen, as described above in 
Appendix I.5.1 “Codelist Table Attributes Screen”. 

I.5.2  Overview of Internal Codelist Table Values 

The overview of codelist table values screen displays the entries for the tables that are 
included in the internal codelist. To create or remove entries, or update existing 
entries use the menu bar option UPDATE, which branches to the update codelist 
tables screen. 

I.5.2.1  Update Internal Codelist Tables 
Use the Update Codelist Table screen to enter and change the entries in internal 
codelist tables. The update codelist table screen displays the DD_ID#, the codelist 
name, and the codelist description and has three editable fields: 

The Description and user Action code fields are automatically available in several 
ADMINS application situations, using a special D%fieldname or U%fieldname 
syntax, which means "get the description (D%) or the user action code (U%) for the 
value contained in fieldname from the codelist table associated with fieldname in the 
data dictionary". For example, if entries into a TRANS screen's field DEPT are 
automatically validated against the department codelist table (i.e. if the table has 
been associated with the DEPT field in the Data Dictionary), then if the field 
D%DEPT is placed in the screen's layout it is automatically loaded with the contents 
of the description field from the department table entry for the code entered in 
DEPT. Similarly, in REPORT, if U%DEPT is included in a layout section it will be 
loaded automatically with the contents of the user action code field from the 
department table entry for that record's DEPT code. 

File Name Any keystroke while the cursor is at this field "pops" and 
automatic Lookup window that displays all the files 
current specified in ADD. Select the file you want to be 
used as a codelist. In order to be used as an Codelist 
Repository by ADD, the file's DEF must be specified 
using ADD, and it may have only one key field.

Code The code may be any data type, as defiend in the 
attributes screen for the codelist (but it is stored in the 
codelist file in character format).

Description Up to 60 characters may be entered.A grid is provided in 
case you want to divide the description into subfields.

Action Code Up to 16 characters may be entered. The user action code 
gives the application developer a way to store additional 
information to be associated with the code, which can be 
made available at “run time”.
ADMINS User Guide  I - 31



Codelists
The D%/U% syntax is also supported in DISPLAY and SELECT sub-statements of 
TRANS LOOKUP paragraphs (see Section 5.11 ”LOOKUP Window”), and in the /
FIELDS qualifier of the IE/CREATE command (see Section 17.8 ”IE: the ADMINS 
Import/Export Facility”). 

The two fields from the codelist table are also available to other ADMINS commands 
via the DDATTR subroutine (see Appendix H.11.1 “DDATTR: Get Data Dictionary 
Attributes & Codelists”). 

I.5.3  Automatic Lookup Windows 

Use the Codelist Table Lookup screen to create automatically-generated lookup 
windows for any field that is validated against the codelist table. This screen displays 
the table name, the DD_ID#, the description for the codelist table, the names of the 
display fields (CODE, DESCRIPTION, and User Action Code for "internal" tables), 
and the data format of CODE. 

To specify the automatic lookup window, enter a display width for each of the three 
fields (a zero display width will eliminate the field from the window), and enter the 
Title, Heading, and Footing you want for the window. ADD simulates a typical 
lookup window line at the bottom of the screen, using a series of C's to indicate the 
display width for code, D's for description, and U's for the action code. 

You may also specify Lookup options BOUND and Key Search CAPS. By default 
both options fields are set to "N", i.e. neither option is in effect. These options are 
enabled if you enter "Y" in the option field. 

Control information about entries and changes to lookup window specifications are 
automatically maintained, and displayed at the bottom of the display screen. 

I.5.4  DEMO: Codelists 

One of the relationships we must describe for the NTB order entry system is the file 
that corresponds to the order form itself. The ORDER file will include fields such as: 
ORDER#, CUSTID etc., plus several groups of fields to track the QUANTITY ordered 
of each ITEM in each PACKAGING style. These groups of fields, 1QTY 1ITEM 1PKG, 
2QTY 2ITEM 2PKG, etc. will be based on prototype elements, QUANTITY, ITEM, 
and PACKAGING. 

The prototype elements ITEM and PACKAGING are of particular interest because 
they (and consequently all the fields based on them) are to be validated against 
codelists. 

Validation against a codelist is specified in the prototype element attributes screen 
when we are describing the prototype elements ITEM and PACKAGING, but before 
we can do that, we must first describe the attributes and contents of the codelists we 
will be referencing. 

From the ADD main menu, select CODELIST on the menu bar, then select ATTRIB 
on the menu bar of the overview screen, to get into the codelist attributes screen. 
I - 32   ADMINS User Guide



Codelists
New Tradition Bottling markets several flavors, and packages its products in several 
ways, as indicated in the following table: 

                                Packaging
                     12   16    1    2   Can  6/   6/   6/
 Flavors             oz.  oz.  lit  lit  12   12   16   Can
                   -----------------------------------------
 Cola              |    |    |    |    |    |    |    |    |
 Diet Cola         |    |    |    |    |    |    |    |    |
 Cola Free         |    |    |    |    |    |    |    |    |
 Diet Cola Free    |    |    |    |    |    |    |    |    |
 Root Beer         |    |    | XX | XX |    |    |    |    |
 Diet Root Beer    |    |    | XX | XX |    |    |    |    |
 Club Soda         |    | XX |    |    | XX |    | XX | XX |
                   -----------------------------------------
 
         XX - Flavor not offered in this package style. 

 

Two codelist tables, for Flavor and Packaging, are created in the data dictionary, as 
follows: 

 
  T_VALUES LOOKUP   DESCR    OVERVIEW HELP     MENU
  *CL50--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY   User: GINNY                 CODELIST ATTRIBUTES |
  *------------------------------------------------------------------------------*
  Codelist Table Name: FLAVOR                     DD_ID#: CT0101    INTERNAL
 
  Description........: Product Identification List
  Codelist Repository: CL0001  Data Dictionary Internal Codelist
  Code Data Format...: X99
 
                       EXTERNAL CODELISTS ONLY
  Codelist Key Field.:
  Description Field..:
  UAC Field..........:
 
 
 
 
 
 
 
 
  Added 14-AUG-90   by GINNY            Last changed 14-AUG-90   by GINNY
 
  

 Figure I5-1 Codelist attributes for FLAVOR 
ADMINS User Guide  I - 33



Codelists
 
  T_VALUES LOOKUP   DESCR    OVERVIEW HELP     MENU
  *CL50--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY   User: GINNY                 CODELIST ATTRIBUTES |
  *------------------------------------------------------------------------------*
  Codelist Table Name: PACKAGING                  DD_ID#: CT0102    INTERNAL
 
  Description........: Packaging Styles
  Codelist Repository: CL0001  Data Dictionary Internal Codelist
  Code Data Format...: X999
 
                       EXTERNAL CODELISTS ONLY
  Codelist Key Field.:
  Description Field..:
  UAC Field..........:
 
 
 
 
 
 
 
 
  Added 14-AUG-90   by GINNY            Last changed 14-AUG-90   by GINNY
 
  

 Figure I5-2 Codelist attributes for PACKAGING 

 

In the codelist attributes screen select T_VALUES in the menu bar to branch to the 
update codelist table screen.  The codelists are built in this screen, entry by entry. 
Figure 5-3 below shows an entry for the FLAVOR table. 

 
  OVERVIEW ATTRIB   TABLES   HELP     MENU
  *CL12--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                           UPDATE CODELIST TABLES  |
  *------------------------------------------------------------------------------*
 
    Codelist: CT0101 FLAVOR
                     Product Identification List
 
                *------------------------*
           Code:|13                      |
                *---------1---------2----*    3         4         5         6
                 123456789012345678901234567890123456789012345678901234567890
                *------------------------------------------------------------*
    Description:|Diet Cola Free                                              |
                *----------------*-------------------------------------------*
    Action Code:|                |
                *----------------*
 
  

 Figure I5-3 Entering values for Codelist FLAVOR 

In some of the codelist entries for the PACKAGING table we utilize the user action 
code field to indicate which flavor/package combinations are not valid (see the 
Flavors/Packaging matrix above). 
I - 34   ADMINS User Guide



Codelists
Figure I5-4 below shows the entry for PACKAGING code 113 (1 liter bottle). The 
Action Code field contains "20 21", the codes for the flavors (root beer and diet root 
beer) that are not available in 1 liter bottles. 

  | ADMINS/V32 DATA DICTIONARY                           UPDATE CODELIST TABLES  |
  *------------------------------------------------------------------------------*
 
    Codelist: CT0102 PACKAGING
                     Packaging Styles
 
                *------------------------*
           Code:|113                     |
                *---------1---------2----*    3         4         5         6
                 123456789012345678901234567890123456789012345678901234567890
                *------------------------------------------------------------*
    Description:|1 liter bottle                                              |
                *----------------*-------------------------------------------*
    Action Code:|20 21           |
                *----------------*
 
 
 
 
 
 
 
   
  OVERVIEW ATTRIB   TABLES   HELP     MENU
  *CL12--------------------------------------------------------------------------*

 Figure I5-4 Entering a User Action Code 

The user action codes entered will be automatically available for any field that is 
validated against the PACKAGING codelist table. 

When the table entries are finished, select OVERVIEW in the menu bar to view the 
completed codelists. Figures I5-5 and PI5-6 show the completed codelists for 
FLAVOR and PACKAGING. 

 
  UPDATE   TABLES   OVERVIEW HELP     MENU
  *CL11--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                                  CODELIST TABLES  |
  *------------------------------------------------------------------------------*
    Codelist: CT0101  FLAVOR
                      Product Identification List
 
   TABLE_ID             DESCRIPTION
   10                   Cola
   11                   Diet Cola
   12                   Cola Free
   13                   Diet Cola Free
   20                   Root Beer
   21                   Diet Root Beer
   30                   Club Soda
 
 
 
 
 
 
 
 
 
  

 Figure I5-5 Codelist FLAVOR 
ADMINS User Guide  I - 35



Codelists
 
  UPDATE   TABLES   OVERVIEW HELP     MENU
  *CL11--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                                  CODELIST TABLES  |
  *------------------------------------------------------------------------------*
    Codelist: CT0102  PACKAGING
                      Packaging Styles
 
   TABLE_ID             DESCRIPTION
   111                  12 oz. bottle (individual)
   112                  16 oz. bottle (individual)
   113                  1 liter bottle
   114                  2 liter bottle
   121                  12 oz. can (individual)
   611                  12 oz. bottle (6-pack)
   612                  16 oz. bottle (6-pack)
   621                  12 oz. can (6-pack)
 
  

 Figure I5-6 Codelist PACKAGING 

I.5.5  DEMO: Automatic Lookup Windows 

To specify automatic lookup windows for fields that are validated against the 
PACKAGING and FLAVOR codelists, select LOOKUP in the menu bar of the 
codelist attributes screen. Automatic Lookup windows for PACKAGING and 
FLAVOR are specified in Figures P5-7 and P5-8. 

 
 
 ATTRIB   T_VALUES OVERVIEW HELP     MENU
 *CL52--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                              CODELIST TABLE LOOKUP|
 *------------------------------------------------------------------------------*
 Codelist Table Name: FLAVOR                     DD_ID#: CT0101
 Description........: Product Identification List
 
 Display Fields..: CODE  X99                   DESCRIPTION   User Action Code
 Display width...: 3                            20
 Title...........:
 Lookup Heading..:
  ID#      Flavor
 Simulated Display
  CCC DDDDDDDDDDDDDDDDDDDD
 Footing.........:
 
 Lookup Options
  Bound..........: N     (Y/N [N])
  Key Search CAPS: N     (Y/N [N])
 Added 24-AUG-90   by GINNY            Last changed 24-AUG-90   by GINNY
 
 
 
 
  

 Figure I5-7 Lookup for FLAVOR 
I - 36   ADMINS User Guide



Codelists
 
 
 ATTRIB   T_VALUES OVERVIEW HELP     MENU
 *CL52--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                              CODELIST TABLE LOOKUP|
 *------------------------------------------------------------------------------*
 Codelist Table Name: PACKAGING                  DD_ID#: CT0102
 Description........: Packaging Styles
 
 Display Fields..: CODE  X999                  DESCRIPTION   User Action Code
 Display width...: 4                            30
 Title...........:
 Lookup Heading..:
  Code       Packaging_Style
 Simulated Display
  CCCC DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
 Footing.........:
 
 Lookup Options
  Bound..........: N     (Y/N [N])
  Key Search CAPS: N     (Y/N [N])
 Added 24-AUG-90   by GINNY            Last changed 24-AUG-90   by GINNY
 
 
 
 
  

 Figure I5-8 Lookup for PACKAGING 

I.5.6  DEMO: Codelist Repositories 

In the DEMO portion of Appendix I.4 “Files” we showed how the Customer file 
relationship is specified. This file will be used to maintain information about NTB's 
customers, and as such, will be the main file in the NTB Customer screen, where 
records for new customers are entered, and the records for existing customer are kept 
up to date. 

But this file can also be used as a codelist table for validation and lookup, because it 
contains records for all NTB's customers and has a single key field, CUSTID. This will 
have great utility in developing and using any screen in the NTB system that requires 
entry of the Customer ID field, such as the NTB Order Entry screen, as will be shown 
in the DEMO portion of Appendix I.7 “Application Development using ADD ”. 

First we must specify that the Customer file is to be used as a Codelist Repository. 
From the Main Menu, branch to the Codelist Repository Attribute screen (Choice 
"CR"). The entry for the Customers Codelist Repository is created as follows (in the 
figure lookup is being used for entry into File Name): 
ADMINS User Guide  I - 37



Codelists
 
  OVERVIEW DESCR    HELP     MENU
  *CL40--------------------------------------------------------------------------*
  |ADMINS/V32 DATA DICTIONARY     User: GINNY               CODELIST REPOSITORY  |
  *------------------------------------------------------------------------------*
  Codelist Name......: CUSTOMERS                  DD_ID#: CL0101                  
  Description........: Customer Identification List                               
  Fi*----------------------------------------------------------------------------*
    |FILE_NAME_______________ DESCRIPTION_______________________________________ |
    |CUSTOMER                 Information about Customers                        |
    |ORDER                    Customer Order File                                |
    |                                                                            |
    |                                                                            |
    |                                                                            |
    |                                                                            |
    |                                                                            |
    |                                                                            |
  Ad|                                                                            |
    |                                                                            |
    *----------------------------------------------------------------------------*
 
 
 
  

 Figure I5-9 Specifying Codelist Repository Attributes 

We then branch via the Main Menu (Choice "CA") to the Codelist Table Attributes 
screen, and enter the attributes of the Codelist Table that is based the "Customers" 
repository. Enter a description for the codelist table, and then enter the Codelist 
Repository name. Lookup is available: 

 
  T_VALUES LOOKUP   DESCR    OVERVIEW HELP     MENU
  *CL50--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY   User: GINNY                 CODELIST ATTRIBUTES |
  *------------------------------------------------------------------------------*
  Codelist Table Name: CUSTOMERS                  DD_ID#: CT0104    EXTERNAL
 
  Description........: Customer Identification List
  Codelist Repository: CL0101  Customer Identification List
  Code Data Format...: XA9999
 
                       EXTERNAL CODELISTS ONLY
  Codelist Key Field.: EL0101   CUSTID
  Description Field..:
  UAC Field..........:
 
 
 
 
 
 
 
 
  Added 14-AUG-90   by GINNY            Last changed 23-AUG-90   by GINNY
 
  

 Figure I5-10 Codelist Tables Attributes - Specify Codelist Repository 
I - 38   ADMINS User Guide



Codelists
When a Codelist Repository is entered, ADD will automatically fill in the Code Data 
Format (with the field type of the key field of the file that stores the Repository). The 
Codelist key field is also filled in automatically. To complete the description of how 
the data in the external file is to be used in this codelist table, specify which fields in 
the repository file are to be used as the Description Field and the UAC field (as 
described above for internal codelists, these fields will be available throughout the 
application for any field validated against this codelist table): 

 
  T_VALUES LOOKUP   DESCR    OVERVIEW HELP     MENU
  *CL50--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY   User: GINNY                 CODELIST ATTRIBUTES |
  *------------------------------------------------------------------------------*
  Codelist Table Name: CUSTOMERS                  DD_ID#: CT0104    EXTERNAL
 
  Description........: Customer Identification List
  Codelist Repository: CL0101  Customer Identification List
  Code Data Format...: XA9999
 
                       EXTERNAL CODELISTS ONLY
  Codelist Key Field.: EL0101   CUSTID
  Description Field..: EL0102   CUSTOMER
  UAC Field..........: EL0108   DPHONE
 
 
 
 
 
 
 
 
  Added 14-AUG-90   by GINNY            Last changed 23-AUG-90   by GINNY
 
  

 Figure I5-11 Codelist Repository - The Customers Table 

Having completed our specification of the Customers Table, we can go ahead and set 
up a lookup window for the table by branching to the Lookup Specification screen. 
The lookup specification is completed as follows: 

 
 
 ATTRIB   T_VALUES OVERVIEW HELP     MENU
 *CL52--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                              CODELIST TABLE LOOKUP|
 *------------------------------------------------------------------------------*
 Codelist Table Name: CUSTOMERS                  DD_ID#: CT0104
 Description........: Customer Identification list
 
 Display Fields..: CODE  XA9999                DESCRIPTION   User Action Code
 Display width...: 5                            30
 Title...........:
 Lookup Heading..:
  Cust.      Customer_Name
 Simulated Display
  CCCCC DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
 Footing.........:
 
 Lookup Options
  Bound..........: N     (Y/N [N])
  Key Search CAPS: N     (Y/N [N])
 Added 24-AUG-90   by GINNY            Last changed 24-AUG-90   by GINNY
 

  

 Figure I5-12 Lookup specification for CUSTOMERS table. 
ADMINS User Guide  I - 39



Data Views 
I.6  Data Views 

Data Views link data elements from one or more files together for easy and secure 
access. From a traditional ADMINS perspective, think of a Data View as a pre-
packaged set of virtual records that can be accessed throughout ADMINS as if it 
was a single, read-only ADMINS data file.4 

As with all ADD screen families, the Overview screen presents a list of all the views 
currently defined. For Data Views, you can branch directly from the Overview screen 
to the Attributes screen (menu bar option ATTRIB), or to the View_contains_File/
Element relationship screens (menu bar option DEF). 

The Attributes screen is used to enter Data View attributes, and provides menu bar 
options to specify the view relationship, and to enter descriptive documentation for 
the view. 

The Data Views Descriptive Text screen is used to enter and update text 
documenting the purpose of the data view. 

View_contains_File/Element relationships are maintained using two related 
screens, the "FILES" screen (used to specify which physical files are used in the view, 
and how they are linked together) and the "FIELDS" screen (used to specify the fields 
from each file that are to be included in the view). 

I.6.1  Data View Attributes screen 

A Data View entity must be created, in this Data View attributes screen, before the 
Data View relationship can be laid out. For each Data View the following attributes 
are displayed: 

As in the attributes screens for other entity types, control information about entries 
and changes to file attributes are automatically maintained, and displayed at the 
bottom of the display screen. 

From the file attributes screen, you may branch either to a screen used to specify the 
"View contains File/Element" relationship, or to the description screen. 

4.    Data views are ALWAYS read-only, records cannot be appended, deleted, 
inserted, or updated. Data views cannot contain text fields, if text fields are 
contained in the files that make up the view, they are skipped when the view is 
built. (see Appendix I.6.2.3 “The View Relationship: FIELDS Screen ”).

View Name Up to 24 characters long. Must be unique within the 
current dictionary. View Name is used in place of a file 
name when ADMINS commands access a view.

Description Up to 60 characters that describe the purpose of the Data 
View.
I - 40   ADMINS User Guide



Data Views 
I.6.2  The View Contains File/Element Relationship 

Data Views are maintained using two interrelated screens called "FILES" and 
"FIELDS". The FILES screen is used to specify which physical files are accessed in the 
view, and how these files are linked together. The FIELDS screen is used to identify 
the particular fields in each file that are to be available in the view. 

I.6.2.1  The View Relationship: FILES Screen 
A Data View Relationship is made up of a "main" file (File #1) and may contain one 
to nine "link" files (Files #2 through #10). The key fields of the main file become the 
key fields for the view. 

The procedure for specifying a view is as follows: 

1. Enter the main file of the view (File #1). Use FIND to display a Lookup Window 
of all the files available in the Dictionary.5 
ADD will automatically load all the non-text fields in File #1 into the view. Then 
ADD prompts as follows: 

Enter/Update Fields from this file? (Y/N) [N]: 
to see if you want to remove any of the fields in File #1 from the view. If you 
reply "Y" ADD will branch to the FIELDS screen (described in the following 
section). 

2. Enter the names of the files you want linked into the Data View (use FIND to 
see the available files). As each link file is named ADD checks whether you want 
to load all the fields in that link file into the Data View: 

Add the fields from this file to the View? (Y/N) [N]: 
If you reply "Y" ADD will load all the non-text fields in the link file into the 
view. Then ADD prompts as follows: 

Enter/Update Fields from this file? (Y/N) [N]: 
to see if you want remove any of the link fields from the view (if all the fields 
were just added), or add link fields to the view (if you chose not to include them 
all). If you reply "Y" ADD will branch to the FIELDS screen. 

3. For each link file, you must specify the fields that are to be used to make the 
links. The key fields specified must already be part of the view, i.e. for the first 
link file (File #2), the key fields must be in found in the main file (File #1); for the 
second link file (File #3), the key fields must be found in either the main file (File 
#1) or the first link file (File #2); and so on. 
To enter the link keys, place the cursor at the file name that you want, and then 
press the RIGHT arrow key. 

5.     In order for a file to be used in a Data View it must have been defined using the 
Data Dictionary.
ADMINS User Guide  I - 41



Data Views 
I.6.2.2  FILES Screen: The Menu Bar 
The menu bar of the Maintain Data View Relationship screen contains the following 
options:   

The following options branch out of the Data View Relationship screens. If you exit 
the Data View Relationship screens without COMMITting your changes to disk, they 
will be lost. If changes may have been made in either the FILES screen or the FIELDS 
screen, but not committed to disk, ADD will ask for confirmation before branching. 

Changes not committed will be lost. OK to continue? (Y/N)[N] 

I.6.2.3  The View Relationship: FIELDS Screen 
You may enter the FIELDS screen for maintaining the Data View relationship either 
via an automatic branch after the 

Enter/Update Fields from this file? (Y/N) [N]: 

prompt, or via the FIELDS option on the menu bar of the FILES screen, or possibly 
after attempting to COMMIT a Data View relationship that has an error in its 
specification. 

Branches to the FIELDS screen by default display the fields from the main file of the 
View. However if the branch is made while the cursor is at the "file name" field or 
"key field name" field for one of the link files, the FIELDS screen will display the 
fields for that link file. Once in the FIELDS screen you can display the fields for 
another file within the same view by entering either its file number (within the view) 
or its file name. 

COMMIT Commit Changes to Disk Write changes to disk. 
Changes are not saved (written to disk) until you 
COMMIT. If you attempt to exit the two data view 
relationship screens without saving changes ADD will 
ask for confirmation that you wish to discard your 
changes. 
ADD sends an informational prompt: 

Data View has been committed to 
disk. Press RETURN to continue. 

to inform you when your changes have been 
successfully written to disk. 

FIELDS View Fields Screen Branch to the FIELDS Screen 
(described below).

VIEW View Attribute Screen

OVERVIEW Overview of Views

MENU Return to the main menu
I - 42   ADMINS User Guide



Data Views 
The following table describes the single-keystroke functions that may be used at any 
of the field-name fields. 

To rename a field when a duplicate field name occurs, type the new name directly 
over the old name. It is important to recognize the distinction between providing a 
local name for a duplicate field name, and substituting a one data element for 
another. Typing a new name for an existing field does not change the DDID, but 
just applies a "local" pseudonym for that data element within the view to distinguish 
it from the View's other occurrence of its actual name. (Whenever the cursor goes to 
a renamed field, an informational message appears at the bottom of the screen 
showing the local name and the actual Data Element name.) 

To substitute one field for another in a view, you must first remove the unwanted 
field, (use REMOVE), then open a space for a new entry (use INSERT HERE), and 
then type in the name of the field you want to substitute (or select it via the Lookup 
Window). 

I.6.3  DEMO: Create Data View 

An obvious Data View relationship for the NTB order entry system would be one that 
combines information about a specific order with information about the customer 
who made the order. This combination will probably be useful for many 
applications, but we'll need it specifically for a report we'll have to develop to 
generate order confirmations. 

FIND Display Lookup window of available fields.

DOWNARROW or 
ENTER

Go to next field.

UPARROW Go to previous field.

INSERT HERE Open up a line to insert a new field between two existing 
fields.

REMOVE Remove (delete) a field from the view.

PREV SCREEN View the previous 20 fields.

NEXT SCREEN View the next 20 fields.
ADMINS User Guide  I - 43



Data Views 
First, in the Data View Attributes screen, the new Data View name, CONFIRM, is 
entered, and the new entity is inserted. 

 
  VIEW_DEF DESCR.   OVERVIEW HELP     MENU
  *AT30--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                           DATA VIEW ATTRIBUTES    |
  *------------------------------------------------------------------------------*
  View Name: CONFIRM               View Id #: DV0101     DD_User: GINNY
 
  Description.......: NTB Customer Confirmation Order Form
  Authorization code: 100
 
 
 
 
 
 
 
 
 
 
  Added 23-AUG-90   by GINNY               Last changed 23-AUG-90   by GINNY
 

  

 Figure I6-1 Create Entity for Data View CONFIRM 

Menu bar option VIEW_DEF is then selected, to branch to the Maintain Data View 
Relationship screens. 

In the FILES screen, ORDER is declared to be the main file of Data View CONFIRM 
(ADD will automatically load all the fields in ORDER into the view). The 
CUSTOMER file is then named as the first linked file. In this case its easiest to tell 
ADD to go ahead and load all the fields in CUSTOMER also. Figure I6-2 shows ADD 
asking whether all the fields in the just-named link file should be loaded (we reply 
"Y") 

 
  COMMIT   FIELDS   VIEW     OVERVIEW HELP     MENU
  *RE30--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                   MAINTAIN DATA VIEW RELATIONSHIP |
  *------------------------------------------------------------------------------*
  View Name: CONFIRM                  NTB Customer Confirmation Order Form
 
   -------------------------Files Defined in the View----------------------------
   File #   DDID   FILE_NAME          DESCRIPTION
        1  FI0102  ORDER              Customer Order File
        2  FI0101  CUSTOMER           *------------------------------------*
                                      |                                    |
                                      |Key# File# Field Name          DDID |
                                      |---- ----- ------------------ ------|
                                      | 1:                                 |
                                      | 2:                                 |
                                      | 3:                                 |
                                      | 4:                                 |
                                      | 5:                                 |
                                      | 6:                                 |
                                      | 7:                                 |
                                      | 8:                                 |
                                      | 9:                                 |
                   Add the Fields from this file to the View? (Y/N) [N]: Y
 
  

 Figure I6-2 After naming CUSTOMER as a Link file. 
I - 44   ADMINS User Guide



Data Views 
After loading all the linked fields, ADD inquires whether we want to branch 
immediately to the FIELDS screen. We reply "N" as we want to specify the key fields 
for the link. 

The CUSTID field in the ORDER file will identify the record in the CUSTOMER file 
to be included in the CONFIRM Data View. 

 
  COMMIT   FIELDS   VIEW     OVERVIEW HELP     MENU
  *RE30--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                   MAINTAIN DATA VIEW RELATIONSHIP |
  *------------------------------------------------------------------------------*
  View Name: CONFIRM                  NTB Customer Confirmation Order Form
 
   -------------------------Files Defined in the View----------------------------
   File #   DDID   FILE_NAME          DESCRIPTION
        1  FI0102  ORDER              Information about Customers
        2  FI0101  CUSTOMER           *------------------------------------*
                                      |                                    |
                                      |Key# File# Field Name          DDID |
                                      |---- ----- ------------------ ------|
                                      | 1:     1  CUSTID             EL0101|
                                      | 2:                                 |
                                      | 3:                                 |
                                      | 4:                                 |
                                      | 5:                                 |
                                      | 6:                                 |
                                      | 7:                                 |
                                      | 8:                                 |
                                      | 9:                                 |
                                      *------------------------------------*
 
  

 Figure I6-3 Specifying the key field for the link. 

The FIELDS Option on the menu bar is then selected. Because the cursor was at the 
key fields for File #2, we are branched to the FIELDS screen with the fields for File #2 
(CUSTOMER) displayed. 

 
  FILES    HELP
  *RE30--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                   MAINTAIN DATA VIEW RELATIONSHIP |
  *------------------------------------------------------------------------------*
  View Name: CONFIRM                  NTB Customer Confirmation Order Form
    *-RE31----------------------------------------------------------------------*
    |File  2: CUSTOMER                 Information about Customers              |
    |--------------------------Fields Linked from File--------------------------|
    | Field   Field                          Field   Field                      |
    | Seq No   ID    Field Name              Seq No   ID     Field Name         |
    | ------  ------ ------------------      ------  ------  ------------------ |
    |      1  EL0102 CUSTOMER                    11  EL0113  SPHONE             |
    |      2  EL0104 DCONTACT                                                   |
    |      3  EL0105 DADDR1                                                     |
    |      4  EL0106 DADDR2                                                     |
    |      5  EL0107 DCITY                                                      |
    |      6  EL0108 DPHONE                                                     |
    |      7  EL0109 SCONTACT                                                   |
    |      8  EL0110 SADDR1                                                     |
    |      9  EL0111 SADDR2                                                     |
    |     10  EL0112 SCITY                                                      |
    |                                                                           |
    |                                                                           |
    *---------------------------------------------------------------------------*
  

 Figure I6-4 The FIELDS display for File #2 (CUSTOMER) 
ADMINS User Guide  I - 45



Application Development using ADD 
We could now use this screen to add or remove fields from the view. Lets assume we 
are happy with the view as it is, so we branch back to the FILES screen to COMMIT 
the specification to disk. Figure I6-5 below shows the result. 

 
  COMMIT   FIELDS   VIEW     OVERVIEW HELP     MENU
  *RE30--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                   MAINTAIN DATA VIEW RELATIONSHIP |
  *------------------------------------------------------------------------------*
  View Name: CONFIRM                  NTB Customer Confirmation Order Form
 
   -------------------------Files Defined in the View----------------------------
   File #   DDID   FILE_NAME          DESCRIPTION
        1  FI0102  ORDER
        2  FI0101  CUSTOMER           *------------------------------------*
                                      |                                    |
                                      |Key# File# Field Name          DDID |
                                      |---- ----- ------------------ ------|
                                      | 1:                                 |
                                      | 2:                                 |
                                      | 3:                                 |
                                      | 4:                                 |
                                      | 5:                                 |
                                      | 6:                                 |
                                      | 7:                                 |
                                      | 8:                                 |
 PRESS "\" TO CONTINUE                                                     |
 E-0370: Duplicate field name in use                                     --*
 
  

 Figure I6-5 COMMIT: Duplicate field name error 

The key field of file #2 has the same name as one of the fields in file #1. 

This kind of name conflict will occur quite often because the field being used to make 
the link in the "main" file is likely to be the same data element (the same DDID) as the 
key of the link file. In most of these cases the simplest solution is to remove the field 
from the linked fields list in the FIELDS screen (in traditional ADMINS terminology, 
there is ordinarily no reason to link in the key field of the link file). 

For the more general case, where the naming conflict does not involve the key field 
of the link file, the application developer has two options: 

1. Remove the field name from the list of fields for one of the files. 
2. Rename the field in the list of fields for one of the files (by typing over its name, 

as explained in Appendix I.6.2.2 “FILES Screen: The Menu Bar ”). 

Then return to the FILES screen and COMMIT the specification to disk. 

Note that the text field DELIVNOT in the customer file is not loaded because text 
fields are not supported in data views. 

I.7  Application Development using ADD 

The preceding sections of this document explain how the developer describes the 
various components of an application to the ADMINS Data Dictionary. There has 
been little mention of how these components will be arranged into a production 
system. In the demonstration application we have yet to specify a single screen or 
report for New Tradition Bottling's Order Entry system. 
I - 46   ADMINS User Guide



Application Development using ADD 
This underscores one very significant characteristic of ADD-based application 
development: out-front data base design in ADD-based applications is essential; 
while in conventional ADMINS applications it is a matter of choice. Out-front, 
rigorous data base design is a sound technique, even in the conventional ADMINS 
environment. But the ADMINS tools also provide a rich environment for (and 
consequently encourage) quick and easy prototyping, "use-one-time" files, ad hoc 
screens, procedures, and reports, etc. While this may help overloaded development 
staff keep their users happy, or at least at bay, it can also result at worst in a 
documentation and maintenance disaster, and at best in duplication, inefficiency, 
and management headaches. 

Using the ADMINS data dictionary is a choice in favor of documented, maintainable 
code, and more easily managed applications, while perhaps giving up some of the 
traditional ADMINS "quick-fix", ad hoc, and prototyping capability. 

In what follows we will specify the first screens of the production system, and in 
doing so, begin to realize the benefits of the thorough data base design methodology 
that the ADMINS data dictionary requires. 

I.7.1  DEMO: Wrapping up the Database Design 

As was discussed in Appendix I.5.4 “DEMO: Codelists ”, one of the relationships we 
must describe for the NTB order entry system corresponds to the order form itself, 
and includes groups of fields (1ITEM 1PKG 1QTY, 2ITEM 2PKG 2QTY, etc.) that are 
based on the prototype elements, FLAVOR, PACKAGING, and QUANTITY. The 
prototype elements FLAVOR and PACKAGING, in turn, are associated with internal 
codelists of the same name. Appendix I.5 “Codelists” we have shown how these two 
code lists are populated. 

To complete the data base design for the New Tradition Order Entry system we must 
perform the following: 

1. Enter the prototype elements FLAVOR, PACKAGING, and QUANTITY, 
associating FLAVOR and PACKAGING with the internal codelists of the same 
name. 
ADMINS User Guide  I - 47



Application Development using ADD 
 
 
 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT01--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                    PROTOTYPE ELEMENT ENTRY SCREEN |
 *------------------------------------------------------------------------------*
 Prototype Field Name: FLAVOR             DD_ID#: PE0105 DD_User: GINNY
 
 Data Format.......: X99
 Description.......: Product Identification
 Def. display width:  2
 Justification(L/R): L
 Default Heading 1.: Item                        Line Label: Item
 Default Heading 2.:
 
 Codelist Table....: FLAVOR
      Error Message:
             CT0101  Product Identification List
 Validation rules..:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):
 
 
 Added 24-AUG-90   by GINNY              Last changed 24-AUG-90   by GINNY
  

 Figure I7-1 Prototype Element FLAVOR 

2. Enter seven groups of data elements, 1ITEM 1PKG 1QTY through 7ITEM 7PKG 
7QTY based on the FLAVOR, PACKAGING and QUANTITY prototypes. 

 
 TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
 *AT11--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                        DATA ELEMENT ENTRY SCREEN  |
 *------------------------------------------------------------------------------*
 Field Name: 1ITEM              DD_User: GINNY            Data Element #: EL0116
                              Prototype: FLAVOR           Prototype DDID: PE0105
 Data Format.......: X99
 Description.......: Product Identification
 Def. display width:  2
 Justification(L/R): L
 Default Heading 1.: Item                       Line Label: 1Item
 Default Heading 2.:
 
 Codelist Table....: FLAVOR
      Error Message:
              CT0101 Product Identification List
 Validation rules.1:
             Line 2:
             Line 3:
 Error Message.....:
 Options(CAPS/REQU):
 
 
 Added 24-AUG-90   by GINNY              Last changed 24-AUG-90   by GINNY
  

Figure I7-2 Data Element 1ITEM 

3. Build an internal codelist table, SALESREP, with automatic lookup. Then enter a 
data element SALESREP to be validated against the SALESREP table.
I - 48   ADMINS User Guide



Application Development using ADD 
 
 
 UPDATE   TABLES   OVERVIEW HELP     MENU
 *CL11--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                                  CODELIST TABLES  |
 *------------------------------------------------------------------------------*
   Codelist: CT0103  SALESREP
                     Sales Representatives
 
  TABLE_ID             DESCRIPTION
  01                   Albert Allard
  02                   Beatrice Beston
  03                   Cosmo Carducci
  04                   Douglas Dillon
  05                   Eduardo Estavez
  06                   Filipe Fetisov
  07                   George Goodman
  08                   Harry Ho
  09                   Ida Ianello
  10                   Jan Johnson

 Figure I7-3 Codelist Table SALESREP 

4. Build the ORDER file relationship. 

 
 
 FLD_NO  COPY    COMMIT  DEFINE  FIL_ATR OVRVIEW HELP    MENU
 *RE02--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY       MAINTAIN FILE_contains_ELEMENT RELATIONSHIP |
 *------------------------------------------------------------------------------*
 File Name: ORDER                    Customer Order File
 File Type: MAS        #Records: 100                           File ID: FI0102
 
  SEQ FIELD_NAME         FORMAT             KEY/SOR SB OPER    SECONDARY_NAME
    1 ORDER#             X999999            KEY1
    2 PAGE               I                  KEY2
    3 CUSTID             XA9999
    4 1ITEM              X99
    5 1QTY               D
    6 1PKG               X999
    7 2ITEM              X99
    8 2QTY               D
    9 2PKG               X999
   10 3ITEM              X99
   11 3QTY               D
   12 3PKG               X999
   13 4ITEM              X99
   14 4QTY               D
   15 4PKG               X999
 
  

 Figure I7-4 The ORDER File 
ADMINS User Guide  I - 49



Application Development using ADD 
5. Define the ORDER and CUSTOMER files. 

 
 
 FLD_NO  COPY    COMMIT  DEFINE  FIL_ATR OVRVIEW HELP    MENU
 *RE02--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY       MAINTAIN FILE_contains_ELEMENT RELATIONSHIP |
 *------------------------------------------------------------------------------*
 File Name: CUSTOMER                 Information about Customers
 File Type: MAS        #Records: 100                           File ID: FI0101
 
  SEQ FIELD_NAME         FORMAT             KEY/SOR SB OPER    SECONDARY_NAME
    1 CUSTID             XA9999             KEY1
    2 CUSTOMER           A60
    3 DCONTACT           A60
    4 DADDR1             A60
    5 DADDR2             A60
    6 DCITY              A40
    7 DPHONE             A14
    8 SCONTACT           A60
    9 SADDR1             A60
   10 SADDR2             A60
   11 SCITY              A40
   12 SPHONE             A14
   13 DELIVNOT           TI60
   14
   15
 
  

 Figure 7-5 Defining the CUSTOMER file. 

I.7.2  DEMO: Screen Specification 

Figure I7-6 shows the order entry screen for New Tradition Bottling: 

 
 
 Query    Customer Exit
 
                             NEW TRADITION BOTTLING
                             O R D E R    E N T R Y
           Order: 000155  Customer ID: B0035           Sales Rep: 05
           Page: 1       Circle Variety Haverford     Eduardo Estavez
                *------------------------------------------------*
                |    Item             Packaging     Quantity     |
                *------------------------------------------------*
                | 1. 11                611                 4     |
                |    Diet Cola         12 oz. bottle (6-pack)    |
                | 2. 30                121                 2     |
                |    Club Soda         12 oz. can (individual)   |
                | 3. 21                621                 2     |
                |    Diet Root Beer    12 oz. can (6-pack)       |
                | 4.                                             |
                |                                                |
                | 5.                                             |
                |                                                |
                | 6.                                             |
                |                                                |
                | 7.                                             |
                |                                                |
                *------------------------------------------------*
  

 Figure I7-6 The order entry screen. 
I - 50   ADMINS User Guide



Application Development using ADD 
Figure I7-7 illustrates automatic validation against a codelist in the order entry 
screen. Figure I7-8 illustrates use of the automatic lookup window feature. 

 
  Query    Customer Exit
 
                             NEW TRADITION BOTTLING
                             O R D E R    E N T R Y
           Order: 000155  Customer ID: B0035           Sales Rep: 05
           Page: 1       Circle Variety Haverford     Eduardo Estavez
                 *------------------------------------------------*
                 |    Item             Packaging     Quantity     |
                 *------------------------------------------------*
                 | 1. 11                611                 4     |
                 |    Diet Cola         12 oz. bottle (6-pack)    |
                 | 2. 30                121                 2     |
                 |    Club Soda         12 oz. can (individual)   |
                 | 3. 21                621                 2     |
                 |    Diet Root Beer    12 oz. can (6-pack)       |
                 | 4.                                             |
                 |                                                |
                 | 5.                                             |
                 |                                                |
                 | 6.                                             |
                 |                                                |
 PRESS "\" TO CONTINUE                                            |
 ***   not present in Codelist Table: 4ITEM: 67                   |
                 *------------------------------------------------*
  

 Figure I7-7 Validation against a Codelist Table

 
 
 Query    Customer Exit
 
                             NEW TRADITION BOTTLING
                             O R D E R    E N T R Y
           Order: 000155  Customer ID: B0035           Sales Rep: 05
           Page: 1       Circle Variety Haverford     Eduardo Estavez
                *------------------------------------------------*
                |    Item             Packaging     Quantity     |
                *---------------------------*-----------------------------------*
                | 1. 11                611  |Code Packaging_Style_______________|
                |    Diet Cola         12 oz|111  12 oz. bottle (inidividual)   |
                | 2. 30                121  |112  16 oz. bottle (individual)    |
                |    Club Soda         12 oz|113  1 liter bottle                |
                | 3. 21                621  |114  2 liter bottle                |
                |    Diet Root Beer    12 oz|121  12 oz. can (individual)       |
                | 4. 10                     |611  12 oz. bottle (6-pack)        |
                |    Cola                   |612  16 oz. bottle (6-pack)        |
                | 5.                        |621  12 oz. can (6-pack)           |
                |                           |                                   |
                | 6.                        |                                   |
                |                           *-----------------------------------*
                | 7.                                             |
                |                                                |
                *------------------------------------------------*
  

 Figure I7-8 Automatic Lookup window 

Note in the following listing of ORDER.TRS, the source code for the order entry 
screen, that no specification need be made either for check statements to validate 
entries against the codelists, or for the automatic lookup windows. (The check 
statements that do appear test that fields are entered in the right order, and that the 
item/packaging combination entered is valid. This testing for valid combinations is 
performed in ORDER.RMS utilizing the "U%fieldname" User Action Codes from the 
ADMINS User Guide  I - 51



Application Development using ADD 
codelist entries, and is discussed below). Also note that the "D%fieldname" syntax is 
used to display the description for a "fieldname" when a field is associated with a 
codelist table (i.e. D%SALESREP will contain the description for the code value 
entered into SALESREP). 

*
* Order entry screen specification.
*
ORDER NTB_DATA:ORDER.MAS 1 ORDER.RMO INSERT DELETE NOMSG
*
* Display keys in reverse video,
* editable fields in bold
*
VIDEO KEYS REVERSE EDIT BOLD
*
* Screen Header
*
V HDR1/A23 %BOLD+REV 'NEW TRADITION BOTTLING'
V HDR2/A23 %BOLD     'O R D E R    E N T R Y'
*
* Keys are ORDER# and PAGE
* up to seven item/package combinations
* can be ordered on a page (mimics order forms
* filled out by sales rep in the field.)
*
E ORDER#
E PAGE
*
* Data values are customer id,
* and sales rep, then the order
* itself (Item/Package and Quantity)
*
E CUSTID
E SALESREP
*
E 1ITEM
E 1PKG
E 1QTY
*
E 2ITEM
E 2PKG
E 2QTY
*
E 3ITEM
E 3PKG
E 3QTY
*
E 4ITEM
E 4PKG
E 4QTY
*
E 5ITEM
E 5PKG
E 5QTY
*
E 6ITEM
E 6PKG
E 6QTY
*
E 7ITEM
E 7PKG
E 7QTY
*
DR ERR/I
*
C ERR EQ 100
This item is not available in the packaging style specified.
*
C ERR EQ 101
You must enter the item code before you enter the packaging code.
*
BOX DEFAULT
*

I - 52   ADMINS User Guide



Application Development using ADD 
* Menu Bar spec
*
BAR 1 OPTIONS=VISIBLE
   Query BRANCH Q
   Customer Query
   Customer BRANCH C
   Customer Entry
   Exit QUIT
   Back to your menu
*
SCREEN
BL
BL
DW HDR1------------------
DW HDR2------------------
Order: ORD---  Customer ID: CUST--    Sales Rep: SA-
 Page: PAGE-   D%CUST---------------------- D%SAL----------------
               +================================================+
               !    Item          Packaging            Quantity !
               +================================================+
               ! 1. 1I-               1P-           ---1QTY     !
               !    D%1ITEM---------- D%1PKG------------------- !
               ! 2. 2I-               2P-           ---2QTY     !
               !    D%2ITEM---------- D%2PKG------------------- !
               ! 3. 3I-               3P-           ---3QTY     !
               !    D%3ITEM---------- D%3PKG------------------- !
               ! 4. 4I-               4P-           ---4QTY     !
               !    D%4ITEM---------- D%4PKG------------------- !
               ! 5. 5I-               5P-           ---5QTY     !
               !    D%5ITEM---------- D%5PKG------------------- !
               ! 6. 6I-               6P-           ---6QTY     !
               !    D%6ITEM---------- D%6PKG------------------- !
               ! 7. 7I-               7P-           ---7QTY     !
               !    D%7ITEM---------- D%7PKG------------------- !
               +================================================+
*
* (Branch paragraph follows - not included)
* 
ADMINS User Guide  I - 53



Application Development using ADD 
I.7.3  DEMO: ORDER.RMS 

Figure I7-9 demonstrates the checking for valid item/packaging combinations that is 
done in ORDER.RMS, utilizing the user action code field from the PACKAGING 
codelist. 

 
 
 Query    Customer Exit
 
          NEW TRADITION BOTTLING
          O R D E R    E N T R Y
 Order: 000261  Customer ID: A0034           Sales Rep: 03
  Page: 1       Highland Ave. Superette      Cosmo Carducci
                *------------------------------------------------*
                |    Item             Packaging     Quantity     |
                *------------------------------------------------*
                | 1. 10                111                 6     |
                |    Cola              12 oz. bottle (inidividua |
                | 2. 20                121                 5     |
                |    Root Beer         12 oz. can (individual)   |
                | 3. 30                121                       |
                |    Club Soda                                   |
                | 4.                                             |
                |                                                |
                | 5.                                             |
                |                                                |
                | 6.                                             |
                |                                                |
 RESS "\" TO CONTINUE                                            |
 his item is not available in the packaging style specified.     |
                *------------------------------------------------*
  

 Figure I7-9 Check Statement for Item/Packaging Combination. 

Note in the following listing of ORDER.RMS, that the fields U%1PKG, U%2PKG etc. 
(the "user action codes" available from the codelist PACKAGING that has been 
associated with the fields 1PKG, 2PKG, etc.) are available automatically in the RMO. 
This RMO checks for valid item/packaging combinations by determining if the item 
code is found in the user action field of the packaging code, if it is the error condition 
is set. 

      FILE NTB_DATA:ORDER.MAS
      *
      S$S/A6
      M$M/A2
      *
      B$B/A2
      *
      ERR/I
      *
      *  OGRP,OFLD used to break down field name into
      *  components, i.e. for field "1PKG"
      *  OGRP will be "1", OFLD will be "PKG".
      *
      OGRP/A1
      OFLD/A10
      *
      * UPCT used to build action code field name,
      * i.e. for field "1PKG" action code field name
      * is "U%1PKG". UFLD holds resulting field name (for GETFLD)
      * UACT holds value obtained via GETFLD.
      *
      UPCT/A2 'U%'
      UFLD/A10
      UACT/A16
      *
      * ITEMEND used to build field name of item field.
I - 54   ADMINS User Guide



Application Development using ADD 
      * CITEM holds resulting name for GETFLD.
      * UITEM holds value from GETFLD.
      * UIALP holds value converted to alpha.
      * UCHK is where UIALP string is found in UACT
      * (if its found ERR is set to 100)
      *
      ITEMEND/A4 'ITEM'
      CITEM/A10
      UITEM/X99
      UIALP/A2
      UCHK/I
      GSTAT/I
      GOFS/I
      *
      PROGRAM
      *
      * Don't do anything pre-link.
      *
      IF (M$M EQ 'UX' OR 'IX') THEN STOP ; END
      *
      * Go directly to update mode after "I to Insert"
      *
      IF (M$M EQ 'IN') AND (S$S EQ 'BEGREC') THEN B$B = 'LF' ;
       STOP ; END
      *
      * Process in update mode only
      *
      IF (M$M NE 'UP') THEN STOP ; END
      *
      * Initialize error flag.
      * Use OFLD to check if a "Packaging" field has
      * been entered (Stop processing otherwise). Load OGRP
      * with which packaging field (number) has been entered.
      *
      ERR = 0
      *
      OFLD = STR(OFLD,S$S,2,4) ;
       IF OFLD NE 'PKG' THEN STOP ; END ;
       OGRP = STR(OGRP,S$S,1,1)
      *
      * Field name of item field corresponding
      * to packaging field just entered is put into CITEM.
      * If item field is empty exit with "Enter item first"
      * message. GETFLD loads value of CITEM into UITEM,
      * UIALP is UITEM converted to alpha.
      *
      CITEM = NCAT(CITEM,OGRP,ITEMEND) ;
       GSTAT = GETFLD(UITEM,CITEM,GOFS) ;
       IF UITEM EQ '00' THEN ERR = 101 ; STOP ELSE ERR = 0 END ;
       UIALP = NCAT(UIALP,UITEM)
      *
      * Field name of user action code
      * for field just entered is put into UFLD,
      * GETFLD loads value of UFLD into UACT
      *
      UFLD = NCAT(UFLD,UPCT,S$S) ;
       GSTAT = GETFLD(UACT,UFLD,GOFS) ;
      *
      * If item code is found in user action field
      * of package code, then set error condition
      * (Item not available in that package!).
      *
      UCHK = UACT INCL UIALP ;
       IF UCHK NE 0 THEN ERR = 100 ELSE ERR = 0 END
      *
      STOP 
ADMINS User Guide  I - 55



Data Dictionary Reports and Where Used Analysis 
I.8  Data Dictionary Reports and Where Used 
Analysis 

Two of the choices offered by the Data Dictionary main menu provide information 
about the entities and relationships contained in the Dictionary. Item DR "Data 
Dictionary Reports" allows you to select from a series of menus to produce brief or 
detailed "catalogues" of all the entries in your dictionary for a particular entity type, 
to produce listings of file and data view relationships and codelist table values, or to 
produce a listing of the relationships for each entity (a "Where Used" report). Item 
WH "Where Used Screen" displays all the relationships that each entity is involved 
in.

I.8.1  Data Dictionary Reports 

If you select main menu item DR the following menu is displayed: 

                Branch Menu
        1 : Prototype Element Reports
        2 : Data Element Reports
        3 : Data File Reports
        4 : Codelist and Codelist Table Reports
        5 : Data View Reports
         6 : Entity Where Used Analysis 

Enter the number of the option you want to select, or using the up and down arrow 
keys move the cursor to the option you want, then select it by pressing DO. Each of 
these options leads to a screen menu:6 

        Prototype Element Reports
 
        1: Catalog of Prototype Elements
        2: Catalog of Prototype Elements, Full Listing 

        Data Element Reports
 
        1: Catalog of Data Elements
        2: Catalog of Data Elements, Full Listing 

        Data File Reports
 
        1: Catalog of Data Files
        2: Catalog of Data Files, Full Listing
        3: File Definition (.DEF)
        4: File Definition (.DEF) For All Files, Sorted by File Name
        5: File Definition, Sorted by Field Name
        6: File Definition, for DEFINE processing 

6.     File definitions may be produced from the Data File Report Menu, or by directly 
calling the file definition report, e.g. "$ REPORT 
ADM$DD_DIST:ADM_DD_RDEF/RPO" at the DCL prompt or in a command 
procedure. Before ADM_DD_RDEF.RPO is run directly, two logical names it 
uses must be assigned: ADM$DD_FILE identifies the Data Dictionary file 
relationship that you want to produce a DEF for, e.g. "ORDER" or "CUSTOMER". 
ADM$DD_FILEDEF specifies what name (e.g. "NEWORDER.DEF" or 
"X$DISK:[SALES]XCUST.DEF") will be given to the DEF instruction file 
produced by the report.
I - 56   ADMINS User Guide



Data Dictionary Reports and Where Used Analysis 
        Codelist and Codelist Table Reports
 
        1: Catalog of Codelist Tables
        2: Catalog of Codelist Table Values
        3: Catalog of Codelist Table Values, Full Listing 

        Data View Reports
 
        1: Catalog of Data Views
        2: Catalog of Data Views, Full Listing
        3: Data View Definition 

        Entity Where Used Analysis
 
        1: Entity Where Used Analysis 

In any of these menus, select the report you want by entering its number at the "Your 
Choice" prompt. The report output is sent to ADM$SPOOL0. To exit back to the main 
menu, type M at the "Your Choice" prompt. 

I.8.2  Where Used Screen 

Main menu selection WH "Where Used Screen" provides the same information as the 
"Entity Where Used Analysis" report, but in an on-screen format that is more 
convenient for quickly checking the impact of a change to a single entity. 

   
 
 HELP     MENU
 *RI02--------------------------------------------------------------------------*
 | ADMINS/V32 DATA DICTIONARY                        ENTITY WHERE USED OVERVIEW |
 *------------------------------------------------------------------------------*
 
 Entity: EL0101 CUSTID                   Customer Identification Code
 
  DDID    SEQ   ENTITY_NAME              DESCRIPTION
 DV0101  1,003  CONFIRM                  NTB Customer Confirmation Order Form
 FI0101      1  CUSTOMER                 Information about Customers
 FI0102      3  ORDER                    Customer Order File
 
 
 
 
 
 
 
 
 
 
 
 

 Figure I8-1 Where Used Screen: Data Element CUSTID 

To view the relationships that utilize a given entity, press FIND to display a Lookup 
window that shows all the entities currently in the data dictionary, then SELECT the 
entity you want. 
ADMINS User Guide  I - 57



Setup for the ADMINS Data Dictionary 
I.9  Setup for the ADMINS Data Dictionary 

This section describes the logical names, symbols, and data files used by the 
ADMINS Data Dictionary. It also describes how to use command procedures 
provided by ADMINS to help you set up the ADMINS Data Dictionary application. 

I.9.1  Logical Names and Symbols 

In order to run the Dictionary commands, the following logical names must be 
assigned:  

The following symbol must exist: 

ADD :== 'TRA ADM$DD_DIST:ADM_DD_MENU 

ADD opens the ADMINS Data Dictionary main menu in TRANS. All dictionary 
functionality can be reached from the main menu. 

ADM$DD_DIST Points to the directory where the ADMINS Data 
Dictionary application itself (i.e. the .TROs, .RMOs, 
.HLP etc.) resides. New versions of this application will 
be released with new releases of ADMINS. The contents 
of this directory should not be modified.

ADM$DD  Points to the directory where the Data Dictionary data 
files (.ADD files) that describe your application are 
found. ADMINS supplies data files that are empty 
except for internal Data Dictionary entities. These 
"empty" .ADD files should not be altered; they should be 
kept as a "clean" template that can be copied to start new 
Data Dictionary applications. To create a new 
Dictionary, copy the clean template files to your 
working application directory, and then make sure 
ADM$DD points to that working application directory.

ADM$DD_LOAD  If you want to update a Data Dictionary by converting an 
existing application (See Appendix I.10 “Converting 
Applications to the ADD Environment ”), this logical 
name must be assigned. ADM$DD_LOAD is used to identify 
the directory that will hold the temporary files used in the 
conversion procedures.
I - 58   ADMINS User Guide



Setup for the ADMINS Data Dictionary 
I.9.2  The ADMINS Data Dictionary Files 

The ADMINS Data Dictionary automatically maintains six main files: 

The major key field that ties all the files together is the DDID field, which has a format 
of XAA9999, where the 'AA' portion identifies the entity type, e.g. 'EL' for Data 
Element, or field, 'FI' for File, 'DV' for Data View, etc., and the '9999' portion is a 
sequence number within the Entity type. DDID numbers are assigned automatically 
when a new entity is entered into the Dictionary. 

All entities within the same entity type must be assigned a unique name (e.g. a field 
and a file can have the same name, but every field must have a different name). This 
unique name, through the ADM_DD_NAME.ADD file, provides an access path to 
the Entity and all of its Relations. The ADM_DD_NAME.ADD file contains the DDID 
value for the Entity, which is the main key into the ADM_DD_ATTR.ADD and 
ADM_DD_RELA.ADD files. ADMINS data file headers will contain the DDID value 
for the fields, giving, for example, a screen (TRO) a direct access path into the 
ADM_DD_ATTR.ADD file to pick up any information required, e.g. validation rules, 
codelists, etc.; or giving reports access to default headings. 

ADM_DD_NAME.ADD The Name Index file. Allows access to all the Data 
Dictionary entities by entity type and name.

ADM_DD_ATTR.ADD The Attribute file. Contains all the attributes of the 
entities defined in the Dictionary. The Attribute File is 
keyed by the Data Dictionary Id Code for the Entity.

ADM_DD_RELA.ADD The Relation File. Describes all the relations defined in 
the Dictionary, e.g. "FILE_contains_ELEMENT", 
"VIEW_contains_FILE/ELEMENT".

ADM_DD_RELI.ADD Inverted Relation file. Gives all the WHERE_USED 
relations.

ADM_DD_CLIST.ADD Data Dictionary Codelist File. Contains all the internal 
codelist tables.

ADM_DD_CTRL.ADD Data Dictionary Control file.
ADMINS User Guide  I - 59



Setup for the ADMINS Data Dictionary 
I.9.3  Setup Procedures for the ADMINS Data Dictionary 

When the ADMINS release tape is loaded onto the system, you must specify the 
disk/directory where the Data Dictionary files are to be loaded.7 

That directory contains the DCL command procedure SETUP.COM, which can be 
used to set up the ADMINS Data Dictionary environment. SETUP.COM accepts the 
location of the Data Dictionary .ADD files8 and the Data Dictionary application as 
command line arguments, e.g.: 

$ @setup DUA0:[ADD] DUA0:[DD_DIST] 

would set DUA0:[ADD] as the location of the .ADD files, and DUA0:[DD_DIST] as 
the location of the Data Dictionary application. If the command line arguments are 
omitted SETUP.COM will prompt for them: 

      $ @setup
      Where are the .ADD files? dua0:[add]
      Where are the Data Dictionary TROs RMOs etc.? dua0:[dd_dist] 

SETUP.COM uses the responses to make the ADM$DD_DIST and ADM$DD logical 
name assignments and then sets the ADD symbol: 

ADD :== 'TRA ADM$DD_DIST:ADM_DD_MENU 

I.9.3.1  Setting up the ADD DEMO Application 
When the ADMINS release tape is loaded onto the system, you must specify the 
disk/directory where the Data Dictionary Demonstration Application files are to be 
loaded.9 

To set up the Demonstration application set the default directory to the location of 
the DEMO files and run DEMOSETUP.COM, e.g.: 

$ set default DUA0:[ADD_DEMO]     $ @DEMOSETUP 

    --------------------------------------------------------
 
        This procedure calls the command procedure
 
                 ADM$DD_DIST:SETUP.COM
 
        to define the environment for the
 
        ADMINS Data Dictionary Demonstration Application
 
        Answer the following prompts to specify:
 
        What disk/directory the ADMINS Data Dictionary
        (i.e. the Dictionary TROs and RMOs etc.)
        has been loaded into (the procedure will assign your
        response to the logical name ADM$DD_DIST).
 
        The procedure also assigns the current default disk
        and directory to the logical names NTB_DATA and ADM$DD
    --------------------------------------------------------
 
 Where is the ADMINS Data Dictionary: 

7.    See the ADMINS Distribution Guide that comes with your distribution kit.
8.    Please note: the location for the .ADD files that you give to SETUP.COM should 

be the location where copies of the original "template" ADD files have been 
placed. NOT the location of the original template files.

9.    See the ADMINS Distribution Guide that comes with your distribution kit.
I - 60   ADMINS User Guide



Converting Applications to the ADD Environment 
Respond with the location of the Data Dictionary Application: 

Where is the ADMINS Data Dictionary: DUA0:[DD_DIST] 

If the adm$dd_dist logical name already assigned when you run DEMOSETUP, it 
prompts as follows: 

 adm$dd_dist logical name is currently assigned as follows
 
    "ADM$DD_DIST" = "DUA0:[DD_DIST]" (LNM$PROCESS_TABLE)
 
 Enter Y[ES] if this assignment should be used, N[O] to reassign: 

DEMOSETUP then calls SETUP.COM (described above in Appendix I.9.3), assigning 
the current default directory to the logical name ADM$DD (the location of the .ADD 
files). It also assigns the DEMO application logical name NTB_DATA with the name 
of the current default disk and directory. 

If you want to experiment with the DEMO, perhaps changing the DEMO application, 
or altering entities and/or relationships in the Data Dictionary, we recommend that 
you make a copy of the demonstration directory and experiment with the copy. 

I.10  Converting Applications to the ADD 
Environment 

This section describes a set of procedures developed to facilitate the conversion of 
existing ADMINS applications to the ADMINS Data Dictionary (ADD) environment. 
You might consider converting an application to the ADD environment when 
substantial enhancement or expansion of the application is being contemplated, and 
the developer wishes to take advantage of the additional productivity, functionality, 
and maintainability of the ADD environment. On the other hand, for relatively static 
mature applications, where major revisions are not likely, conversion to ADD is not 
necessary, would not produce great benefits, and is therefore not recommended. 
ADMINS User Guide  I - 61



Converting Applications to the ADD Environment 
I.10.1  Converting Data Files 

The procedure to load existing datafiles into the Data Dictionary first acquires 
information from the DEFs for the datafiles, then lists discrepancies and/or 
ambiguities in that information, and provides a screen for resolving these problems. 
Then the "cleaned-up" information is loaded into the Data Dictionary files (the 
".ADD" files in your ADM$DD directory.) 

This procedure utilizes the following logical name assignments, all must be assigned 
when the procedure is called. 

I.10.1.1  Loading information from the DEFs 
To load information from the DEFs call ADM_DD_LDEF.COM 

                  $ @ADM$DD_DIST:ADM_DD_LDEF *.DEF 

The DEFs to be processed by ADM_DD_LDEF.COM MUST be specified using the 
"*" wildcard. Some examples: 

      $ @ADM$DD_DIST:ADM_DD_LDEF GL*.DEF              Correct!
 
      $ @ADM$DD_DIST:ADM_DD_LDEF VENDOR.DEF             Wrong!
 
      $ @ADM$DD_DIST:ADM_DD_LDEF LEDGER.DEF,VENDOR.DEF  Wrong! 

If your organization uses a standard purpose or description line in DEFs (i.e. they all 
have a line that starts with, for example, "* Purpose:", followed by descriptive text), 
you can indicate to the procedure that these lines should be used as the file 
description in the data dictionary. To do this assign the string of characters that your 
organization uses to mark the standard purpose or description line to the logical 
name ADM$DD_LOAD_SOURCE_DESCR. For example, the logical name 
assignment: 

      $ ASSIGN "* Purpose:" ADM$DD_LOAD_SOURCE_DESCR 

tells the procedure to capture the text "Log results of inspections" from the DEF listed 
below and use it as the file description in the data dictionary. 

ADM$DD_DIST Identifies the ADMINS Data Dictionary distribution 
directory. Used to locate the files that make up the data 
file conversion procedures.

ADM$DD_LOAD Identifies the directory where the conversion procedure 
will place the temporary files it creates and uses during 
the loading and correction phases.

ADM$DD Identifies the directory that contains the Data Dictionary 
to be updated with information about the files being 
converted, i.e. where the “.ADD” files are.
I - 62   ADMINS User Guide



Converting Applications to the ADD Environment 
     *************************************************
     * System.: Inspectional Services Information System
     * Program: RESULT.DEF
     * Purpose: Log results of inspections
     *************************************************
     IS_DATA MAS 1000
     *
     CLSQN       X99999  KEY1  "Complaint Sequence number"
     CLTYPE      X99     KEY2  "Complaint type (inspection type)
     INTYPE      I       DKEY3 "Inspection type"
     *
     INSPDAT     DA             "Date of inspection"
     *
        (etc.) 

ADM_DD_LDEF.COM parses the DEFs specified, then organizes the information 
from the DEFs to compare entries and determine when the same field name occurs in 
multiple DEFs. If attributes of each occurrence (field name, field type, description) 
match exactly, the procedure assumes all are occurrences of the same data element. 
If the field name and field type of multiple occurrences match, but the descriptions 
differ,10 these instances are identified in the procedure's final report 
(ADM_DD_XARP.REP), for you to resolve in the ADM_DD_XAT1 screen (described 
below). 

ADM_DD_XARP.REP also identifies instances where the field type differs in 
multiple occurrences of the same field name. In these cases you must change the 
DEFs involved so that the field names of the two occurrences are not the same, then 
run ADM_DD_LDEF.COM again. 

To correct duplicate entity names (i.e. if two instances have the same field name and 
data type but different descriptions) call the ADM$DD_DIST:ADM_DD_XAT1 
screen and assign the same element number (DD_ID) to both entities (use the DD_ID 
of either one, it doesn't matter). Note: whichever file description is listed first in this 
screen will be the one moved into the dictionary. 

 ADMINS DATA DICTIONARY              DUPLICATE                24-AUG-90
  (Report ADM_DD_XARP)              FIELD NAMES               Page 1
 
 FIELD_NAME FILE_NAME     DATA_TYPE   DESCRIPTION
 
 CCODE#_CIS RESULT.DEF    I           Complaint code # in ISC100.MAS
            INSPECT.DEF   I           Which (of 4) Prob code in COMPL.MAS
 
 CLSQN      INSPECT.DEF   X99999      Complaint Sequence number
            COMPLOCA.DEF  X99999      Sequential Complaint Number
 
 CLTYPE     INSPECT.DEF   X99         Complaint type (Problem code)
            RESULT.DEF    X99         Complaint type (inspection type)
 
 ISCODE     INSPECT.DEF   X99         Insp. category code
            RESULT.DEF    X99         Inspection Category
 
              Figure I10-1: Report ADM_DD_XARP output 

10.  If you want to exclude the field description from this checking, make the 
following logical name assignment before you run ADM_DD_LDEF.COM:           
*           

       $ ASSIGN N ADM$DD_CHECK_DESCR           
       *
ADMINS User Guide  I - 63



Converting Applications to the ADD Environment 
To access this screen type: 

               $ TRA ADM$DD_DIST:ADM_DD_XAT1 

The screen appears as follows: 

 
  *------------------------------------------------------------------------------*
  |ADMINS DATA DICTIONARY                CORRECTION OF DUPLICATE ENTITY NUMBERS  |
  *------------------------------------------------------------------------------*
 
 
  ENTITY_NAME         RECT  DATA_TYPE    DD_ID   DESCRIPTION
  CLTYPE              100   X99          EL0184  Complaint type (inspection type)
  CLTYPE              100   X99          EL0178  Complaint type (Problem code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Figure I10-2: Discrepancy - same name, type, different descriptions. 

 
  *------------------------------------------------------------------------------*
  |ADMINS DATA DICTIONARY                CORRECTION OF DUPLICATE ENTITY NUMBERS  |
  *------------------------------------------------------------------------------*
 
 
  ENTITY_NAME         RECT  DATA_TYPE    DD_ID   DESCRIPTION
  CLTYPE              100   X99          EL0178  Complaint type (Problem code)
  CLTYPE              100   X99          EL0178  Complaint type (Problem code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Figure I10-3: Eliminating the discrepancy. 

After any discrepancies have been resolved, you are ready to update the data 
dictionary files. Run ADM_DD_LDEF2.COM to load records describing the fields 
and files for your application into the data dictionary. 

               $ @ADM$DD_DIST:ADM_DD_LDEF2 
I - 64   ADMINS User Guide



Converting Applications to the ADD Environment 
I.10.1.2  Converting the files 
Once the DEFs have been loaded into the Data Dictionary, you'll need to define the 
files, and MOVE/CONVERT the data. DEFINE the files using the Data Dictionary 
FILE_contains_ELEMENT relationship screen: 

 
  NEXT_PG PREV_PG FLD_NO  COPY    COMMIT  DEFINE  FIL_ATR OVRVIEW HELP    MENU
                                          Define Current File Definition
  | ADMINS/V32 DATA DICTIONARY       MAINTAIN FILE_contains_ELEMENT RELATIONSHIP |
  *------------------------------------------------------------------------------*
  File Name: INSPECT
  File Type: MAS        #Records: 1000                          File ID: FI0103
 
   SEQ FIELD_NAME         FORMAT             KEY/SOR SB OPER    SECONDARY_NAME
     1 DATE_AIS           DA                 KEY1
     2 INSPECTOR_AIS      A4                 KEY2
     3 INSEQ              I                  KEY3
     4 CLSQN              X99999
     5 CCODE#_CIS         I
     6 CLTYPE             X99
     7 ISCODE             X99
     8 RESULTS            A1
     9 CITATION#          X999999
    10 INTYPE             I
    11
    12
    13
    14
    15
 
  

 Figure I10-4: Defining the file 

If the old version of the file is present in the directory where the new version is to be 
located, the records from the old file will be automatically MOVE/CONVERTed into 
the new file. If the old version of the file is not present, you'll have to do the MOVE/
CONVERT operation yourself. 

If a discrepancy was discovered in loading the DEFs into the Dictionary that 
resulted in changing the name of a field, you must use the Dictionary screens to 
assign a secondary name to that field. That secondary name will relate the new 
field name in the data dictionary environment to its corresponding (original) name 
in the old application environment, so that the MOVE/CONVERT operation will 
be able to find the correct field in the old file, and load its value into the new field 
name in the new file. 

NOTE
ADMINS User Guide  I - 65



Converting Applications to the ADD Environment 
I.10.2  Converting Table Files To Internal Codelists 

ADM_DD_CLCNV.COM is used to convert existing ADMINS data files into internal 
Codelist Tables for use with the ADMINS Data Dictionary. Keep in mind that 
internal codelist tables have only one key. ADM_DD_CLCNV.COM converts one 
file into the internal codelist table each time it is run. 

If your application uses certain files (most likely ".TAB files) exclusively for table 
lookup, validation checks, etc., these files are fairly static (i.e. not commonly updated 
by the user), and these files have only a single key, these files can be considered for 
conversion into internal codelist tables in the Data Dictionary. Also consider that the 
Data Dictionary allocates 24 bytes for the key, 60 bytes for the description, and 16 
bytes for the user action field. If the table file has large number of entries but very 
small code/description/action field sizes, putting the file in the internal codelist 
table may not be an efficient use of disk space. 

Once you have selected the table files to be converted to internal codelist tables, note 
the names and data types of the fields in those files that will be converted to the 
internal codelist's Code, Description, and User Action fields. You will need to 
provide this information during the procedure (Code will be required, you do not 
have to specify a field to be used for Description or User Action). 

Make entries in the Data Dictionary for each codelist that you wish to convert, using 
the Data Dictionary Codelist Table Attributes screen: 

 
  T_VALUES LOOKUP   DESCR    OVERVIEW HELP     MENU
  *CL50--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY   User: GINNY                 CODELIST ATTRIBUTES |
  *------------------------------------------------------------------------------*
  Codelist Table Name: EMP_INIT                   DD_ID#: CT0102    INTERNAL
 
  Description........:
  Codelist Repository: CL0001  Data Dictionary Internal Codelist
  Code Data Format...: A4
 
                       EXTERNAL CODELISTS ONLY
  Codelist Key Field.:
  Description Field..:
  UAC Field..........:
 
 
 
 
 
 
 
 
  Added 21-AUG-90   by GINNY            Last changed 24-AUG-90   by GINNY
 
  

 Figure I10-5: Creating the entry for the codelist table. 

As each entry is made be careful to note the DD_ID# the Dictionary assigns to that 
entry. You will have to provide the DD_ID# for each table during the procedure. 

After your entries in the Codelist Table Attributes Screen have been completed, call 
ADM_DD_CLCNV.COM (note: ADM_DD_CLCNV.COM is an ADMINS command 
file!): 

            $ COM ADM$DD_DIST:ADM_DD_CLCNV 

You will be prompted for the DD_ID# of the codelist table to be loaded, and the file 
you will be loading that table with: 
I - 66   ADMINS User Guide



Converting Applications to the ADD Environment 
               Enter DD_ID# from Codelist Table:
               Conversion Filename (i.e. LEDGER.MAS): 

Your responses are re-displayed and you must confirm that you want to continue. 

               DD_ID#:  CT0101
               Filename: EMP_INIT.TAB
 
               Do you want to continue conversion to Data Dictionary
               Codelist Table (Y OR N)
               ANS: Y 

Next the Data Dictionary Conversion Screen will appear: 

 
         D A T A   D I C T I O N A R Y   C O N V E R S I O N   S C R E E N
 
  DD_ID#: CT0102
  Codelist Data Format:
 
  ================================================================================
 
  Code:
  Convert using (NCAT/FCAT):
 
  Description:
  Convert using (NCAT/FCAT):
 
  User Action Code:
  Convert using (NCAT/FCAT):
 
  Are you finished with this entry?   (Y/N)
 
 
 
 
 
 
 
  

 Figure I10-6: The Data Dictionary Conversion Screen 

You enter the following information:  

Codelist Data Format: Field type from the Codelist Table Attributes Screen (the 
field type of the key of the file being converted)

Code: Data file’s key field. This field is required.

Description: Data file field to be used as the description in the internal 
codelist. This field is optional.

User Action Code: Data file field to be used as the user action field in the 
internal codelist. This field is optional.

Convert using (NCAT/
FCAT):

You must specify what method to use to convert the 
values in the file into the internal table (generally, use 
NCAT to convert alpha fields and FCAT for integer or 
decimal fields.)
ADMINS User Guide  I - 67



Converting Applications to the ADD Environment 
The following figure shows a completed entry: 

 
         D A T A   D I C T I O N A R Y   C O N V E R S I O N   S C R E E N
 
  DD_ID#: CT0102
  Codelist Data Format: A4
 
  ================================================================================
 
  Code: ISEMP
  Convert using (NCAT/FCAT): NCAT
 
  Description: ISEMPN
  Convert using (NCAT/FCAT): NCAT
 
  User Action Code: ISCODE
  Convert using (NCAT/FCAT): NCAT
 
  Are you finished with this entry? Y (Y/N)
 
 
 
 
 
 
 
  

 Figure I10-7: A completed entry. 

When you indicate that you are finished with the entry, the procedure will 
automatically load the selected fields into the Data Dictionary as an internal codelist 
table. To specify that this codelist table should automatically generate a Lookup 
Window for any field that is validated against it, use the Data Dictionary Codelist 
Table Lookup screen: 

 
  ATTRIB   T_VALUES OVERVIEW HELP     MENU
  *CL52--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                              CODELIST TABLE LOOKUP|
  *------------------------------------------------------------------------------*
  Codelist Table Name: EMP_INIT                   DD_ID#: CT0102
  Description........: Customer Identification list
 
  Display Fields..: CODE  A4                    DESCRIPTION   User Action Code
  Display width...: 8                            20             9
  Title...........:
  Lookup Heading..:
   Initials    Employee_Name     Insp_Type
  Simulated Display
   CCCCCCCC DDDDDDDDDDDDDDDDDDDD UUUUUUUUU
  Footing.........:
 
  Lookup Options
   Bound..........: N     (Y/N [N])
   Key Search CAPS: N     (Y/N [N])
  Added 24-AUG-90   by GINNY            Last changed 24-AUG-90   by GINNY
 
 
 
 
  

 Figure I10-8: The Codelist Table Lookup screen 

Repeat this procedure for each entry you made in the Codelist Table Attributes 
screen. 
I - 68   ADMINS User Guide



Converting Applications to the ADD Environment 
I.10.3  Converting the Application 

After converting the data files to the Data Dictionary environment, and converting 
the table files to internal codelist tables, two steps remain to complete the conversion 
of the application. The first step is to use the Data Dictionary screens to associate files 
with codelist tables for validation and (if specified) automatic lookup windows. The 
second step is to change the application code (the TRS and RMS) to utilize the Data 
Dictionary environment. 

I.10.3.1  Associating fields to Codelist Tables 
In the Data Element Attributes screen, associate the field to the appropriate codelist 
table, as shown in the figure below. Note that a Lookup Window is available to view 
a list of all the codelist tables available in the Dictionary. 

 
  TEXTATTR HELPTEXT DESCR.   OVERVIEW HELP     MENU
  *AT11--------------------------------------------------------------------------*
  | ADMINS/V32 DATA DICTIONARY                        DATA ELEMENT ENTRY SCREEN  |
  *------------------------------------------------------------------------------*
  Field Name: CLTYPE             DD_User: GINNY            Data Element #: EL0171
                               Prototype:                  Prototype DDID:
  Data Format.......: X99
  Description.......: Complaint type (Problem code)
  Def. display width:
  Justification(L/R):
  Default Heading 1.:                            Line Label:
  Default Heading 2.:
 
  Codelist Table....: PROBCODE
               CT0105 Problem Code
  Validation rules.1:
              Line 2:
              Line 3:
  Error Message.....:
  Options(CAPS/REQU):
 
 
  Added 21-AUG-90   by ADDLOD             Last changed 24-AUG-90   by GINNY
 
  

 Figure I10-9: Associating a field to a codelist table. 

Once the field has been associated with a codelist table, validation and lookup 
against that table are automatically available in any screen that uses that field (you 
just have to recompile the TRS). 
ADMINS User Guide  I - 69



Converting Applications to the ADD Environment 
I.10.3.2  Changing the application code 
The listings that follow illustrate some of the ways applications change in the Data 
Dictionary environment. Note that the Data Dictionary version contains no LINK 
paragraphs to do validation or to get descriptions for codes; utilizes automatically 
generated lookup windows in most cases; and contains fewer CHECK statements to 
support validation of data entries. 

The application's maintainability should be improved also, because its validation 
and lookup functions are centralized, rather than having these functions re-specified 
for each screen in the application. 

   *********** BEFORE CONVERSION: RESULT.TRS ***********
  * System......: Inspectional Services Information System
  * Program.....: RESULT
  * Purpose.....: Main Entry for Inspectional Appointment results
  RESULT1 IS_DATA:RESULT.MAS 1 IS_PGM:RESULT.RMO NOMSG
  INDEX IS_DATA:INSPECT.MAS NO_NULL
  INSPDAT DATE_AIS
  (etc.)
  END
  *
  LINK IS_DATA:COMPL.MAS W
  K  CLSQN
  L  CL1DESC_CIS
  L  CL2DESC_CIS
  (etc.)
  END
  LINK IS_DATA:PROBCODE.TAB-R
  K  CLTYPE
  L  PRBDSC
  END
  LINK IS_DATA:INSP_CAT.TAB-R
  K ISCODE
  L ISDESC
  END
  LINK IS_DATA:INSP_TYPE.TAB
  K INTYPE
  L INTDESC
  END
  LINK IS_DATA:EMP_INIT.TAB
  KC INSPECTOR_AIS
  L ISEMP INSP_INIT
  L ISEMPN
  L ISCODE INISC
  END
  LINK IS_DATA:RESVAL.TAB
  KC RESULTS
  L RESULTS L_RESULTS
  L RESDESC
  END
  *
  * Append Para inserts inspection appointment
  * VINTYPE marks any record as next level (INTYPE + 1)
  APPEND IS_DATA:INSPECT.MAS COMMIT X
  REINSPDAT       DATE_AIS
  LINSPECTOR      INSPECTOR_AIS
  LINSEQ          INSEQ
  CLSQN
  (etc.)
  END 

                                          WINDOW   13 13 11 30
                                          DISPLAY  RESULTS RESDESC
                                          RETURN   RESULTS
  DR L_RESULTS
  DR RESDESC                  %BOLD
  DR FMTRES/A80               %BOLD+REV+FU
  ER CITATION#/X999999        %BOLD
  (etc.)
   
  * Append Para inserts RESULT record
I - 70   ADMINS User Guide



Converting Applications to the ADD Environment 
  * (One result record for each appointment record)
  APPEND IS_DATA:RESULT.MAS CREATRES X
  CLSQN
  CLTYPE
  (etc.)
  END
  *
  V 1HEADER/A21    %BOLD         'Inspectional Services'
  V 2HEADER/A30   [4,2,30] %BOLD 'Inspection Results: Complaint '
  *
  DR ISDESC/A20
  DR LINSEQ/I
  DR COMMIT/A1
  DR CREATRES/A1
  ER CLSQN                   %BOLD
  ER CLTYPE       [5,16,2]   %BOLD
  ER INTYPE       [5,34,2]   %BOLD
  *
  DR PRBDSC                  %BOLD
  DR ISCODE                  %BOLD
  DR INTDESC                 %BOLD
  ER INSPDAT                 %BOLD
  ER INSPECTOR_AIS/A4 [5,71,3] %BOLD %LOOKUP IS_DATA:EMP_INIT.TAB-R
                                          TITLE  Authorized Inspectors
                                          HEADING  Init.   Inspec._Name
                                          DISPLAY  ISEMP    ISEMPN
                                          SELECT   ISCODE EQ ~ISCODE
                                          RETURN   ISEMP
                                          IDENT  INSPECTORS
  (etc.)
  *
  DR INISC/X99
  DR INSP_INIT/A4
  DR ISEMPN                   %BOLD
  DR INSEQ/I
  (etc.)
  *
  ER RESULTS/A1    [15,11,1]  %BOLD %LOOKUP  IS_DATA:RESVAL.TAB-R
                                          TITLE  Results Table
                                          HEADING  Code  Description

 
  ER REINSPDAT/DA   [22,68,6] %BOLD+REV
  ER LINSPECTOR/A4  [23,76,4] %BOLD+REV %LOOKUP =INSPECTORS
  *
  (etc.)
  CAPS INSPECTOR_AIS  RESULTS LINSPECTOR
  REQUIRE INSPDAT INSPECTOR_AIS RESULTS
  *
  C INTYPE NE 1 AND RESULTS EQ 'N'
  Improper result code for reinspection: Enter C if problem has been corrected.
  C ERR EQ 101
  Please enter only in remarks fields when no cause for complaint.
  C ERR EQ 102
  Enter V(Violation) N(No cause) C(Corrected) or X(Insp. Cancelled)
  C ERR EQ 106
   The initials entered are not in the list. (Use FIND to see lookup table)
  C ERR EQ 107
   Invalid initials for this inspection type (Use FIND to see lookup table)
  *
  BAR 1 WIDTH=10 OPTIONS=VISIBLE
  (etc.)
  BOX DEFAULT
  SCREEN
  BL
  BL
  DW       1HEADER---------------
  DW                             CLSQ-
  !Problem Code:       !Insp.Type:          !Inspection  !Inspected by:          !
  !PRBDSC--------------!INTD----------------!Date: INSPD-!ISEMP-----------       !
  ! Location!Street Name=======+==+Number!Ext.!Apt/Unit+=========+===============+
  !         !CLSNAME_CIS--------- !CLHO- !CLE-!CLAPT-  !                         !
  +=========+=====================+======+====+========+                         !
  !Complaint!CL1DESC_CIS-------------------------------------------------        !
  !Descrip. !CL2DESC_CIS-------------------------------------------------        !
  !Owner    !OW_NAME--------------------------------------------------           !
  +=========+====================================================================+
  --------------------------------------------------------------------------FMTRES
ADMINS User Guide  I - 71



Converting Applications to the ADD Environment 
  !VRESUL--   RESDESC---------------------- RREG---------------------------------!
  !RCITATION------- CITAT-                               RREFCODE--------------  !
  +===RXDESC----------------==============================+======================+
  !1REPORT------------------------------------------------!R1SEC--- 1CITSECT-----!
  !2REPORT------------------------------------------------+======================+
  !3REPORT------------------------------------------------!R2SEC--- 2CITSECT-----!
  !4REPORT------------------------------------------------!R1RL--------------    !
  !VREMARK-!1REMARK---------------------------------------!------R2RL            !
  !        !2REMARK---------------------------------------!R3RL-------------     !
  !Referral to other agencies: REFAGENCY---------- Date: RAGDA-                  !
  BRANCHES
  *
  (etc.)
  END
  

 
  *********** AFTER CONVERSION: RESULT.TRS ***********
  * System......: Inspectional Services Information System
  * Program.....: RESULT
  * Purpose.....: Main Entry for Inspectional Appointment results
  RESULT1 IS_DATA:RESULT.MAS 1 IS_PGM:RESTEST.RMO NOMSG
  INDEX IS_DATA:INSPECT.MAS NO_NULL
  INSPDAT DATE_AIS
  (etc.)
  END
  LINK IS_DATA:COMPL.MAS W
  K  CLSQN
  L  CL1DESC_CIS
  L  CL2DESC_CIS
  (etc.)
  END
  APPEND IS_DATA:INSPECT.MAS COMMIT X
  REINSPDAT       DATE_AIS
  LINSPECTOR      INSPECTOR_AIS
  LINSEQ          INSEQ
  CLSQN
  (etc.)
  END
  APPEND IS_DATA:RESULT.MAS CREATRES X
  CLSQN
  CLTYPE
  (etc.)
  V 1HEADER/A21    %BOLD         'Inspectional Services'
  V 2HEADER/A30   [4,2,30] %BOLD 'Inspection Results: Complaint '
  DR LINSEQ/I
  DR COMMIT/A1
  DR CREATRES/A1
  ER CLSQN                   %BOLD
  ER CLTYPE       [5,16,2]   %BOLD
  ER INTYPE       [5,34,2]   %BOLD
  DR ISCODE                  %BOLD
  ER INSPDAT                 %BOLD
  V LEMPDD/XAA9999 'CT0101'
  V HEMPDD/XAA9999 'CT0101'
  V A16ISCODE/A16 NCAT(A16ISCODE,ISCODE)
  ER INSPECTOR_AIS/A4 [5,71,3] %BOLD %LOOKUP ADM$DD:ADM_DD_CLIST.ADD
                                          WINDOW 7 30 12 40
                                          TITLE  Authorized Inspectors
                                          HEADING  Init.   Inspec._Name
                                          KEY_RANGE LEMPDD HEMPDD
                                          DISPLAY  CL$CODE/10 CL$DESCR/24
                                          SELECT   CL$UAC EQ ~A16ISCODE
                                          RETURN   CL$CODE
                                          IDENT  INSPECTORS
  (etc.)
  ER RESULTS/A1    [15,11,1]  %BOLD
  DR FMTRES/A80               %BOLD+REV+FU
  ER CITATION#/X999999        %BOLD
  *
  (etc.)
  ER REINSPDAT/DA   [22,68,6] %BOLD+REV
  ER LINSPECTOR/A4  [23,76,4] %BOLD+REV %LOOKUP =INSPECTORS
  *
  (etc.)
  CAPS INSPECTOR_AIS  RESULTS LINSPECTOR
  REQUIRE INSPDAT INSPECTOR_AIS RESULTS
  *
I - 72   ADMINS User Guide



AdmDDM: Data Dictionary “Batch” Tool
  C INTYPE NE 1 AND RESULTS EQ 'N'
  Improper result code for reinspection: Enter C if problem has been 
corrected.
  C ERR EQ 101
  Please enter only in remarks fields when no cause for complaint.
  C ERR EQ 107
   Invalid initials for this inspection type (Use FIND to see lookup table)
  BAR 1 WIDTH=10 OPTIONS=VISIBLE
  *
  (etc.)
  BOX DEFAULT
  SCREEN
  BL
  BL
  DW       1HEADER---------------
  DW                             CLSQ-
  !Problem Code:       !Insp.Type:          !Inspection  !Inspected by:          !
  !D%CLTYP-------------!D%INTYP-------------!Date: INSPD-!D%INSPECT-------       !
  ! Location!Street Name=======+==+Number!Ext.!Apt/Unit+=========+===============+
  !         !CLSNAME_CIS--------- !CLHO- !CLE-!CLAPT-  !                         !
  +=========+=====================+======+====+========+                         !
  !Complaint!CL1DESC_CIS-------------------------------------------------        !
  !Descrip. !CL2DESC_CIS-------------------------------------------------        !
  !Owner    !OW_NAME--------------------------------------------------           !
  +=========+====================================================================+
  --------------------------------------------------------------------------FMTRES
  !VRESUL--   D%RESULTS-------------------- RREG---------------------------------!
  !RCITATION------- CITAT-                               RREFCODE--------------  !
  +===RXDESC----------------==============================+======================+
  !1REPORT------------------------------------------------!R1SEC--- 1CITSECT-----!
  !2REPORT------------------------------------------------+======================+
  !3REPORT------------------------------------------------!R2SEC--- 2CITSECT-----!
  !4REPORT------------------------------------------------!R1RL--------------    !
  !VREMARK-!1REMARK---------------------------------------!------R2RL            !
  !        !2REMARK---------------------------------------!R3RL-------------     !
  !Referral to other agencies: REFAGENCY---------- Date: RAGDA-                  !
  BRANCHES
  (etc.)
  END
  

I.11  AdmDDM: Data Dictionary “Batch” Tool

AdmDDM.EXE provides a “batch” environment to populate, update, exchange, and 
report on the contents of ADMINS Data Dictionaries.

Command line options are:

If no INPUT file name is given on the command line, DDM will prompt the user for 
input. The input can either be DDM instructions, or the name of a file with input 
instructions preceded with a '@', e.g.

   AdmDDM> @MY_DIR:addupd.txt

-ADD=Path Data Dictionary Path

-INPut=Path Input File

-OUTput=Path Output File

-OPTion File name that contains option specification

-HELP or -? On-line Help

-IGNORE Ignore errors and continue processing

-MU Open ADD files Multi User (default is Single User)
ADMINS User Guide  I - 73



AdmDDM: Data Dictionary “Batch” Tool
If a statement is typed at the AdmDDM> prompt, the user is prompted for more input 
until he types a command or a CR in column one. Usually, however, AdmDDM 
instructions to generate a new Data Dictionary, or to modify an existing Data 
Dictionary are provided via an -INPUT “batch” file, which is perhaps an edited 
version of a file generated as -OUTPUT from an EXPORT command in a previous 
run of AdmDDM.

The -OPTion command line switch

-OPTion=PATHNAME

allows certain options to be specified, where PATHNAME is the pathname of a text 
editable file that specifies the options.

The only options currently implemented are:

LIST EL <attribute> ALWAYS

which will cause the value of attribute to be listed when using the LIST or EXPORT 
functions even if the values are blank.

<attribute> can be any of the EL fields:

   DESCR FORMAT LABEL HEADER1 HEADER2 WIDTH JUST

I.11.1  AdmDDM Commands and Syntax

Many instructions to DDM are of the form

COMMAND  ENTITYTYPE=ENTITYNAME  [/ATTRIBUTE[=VALUE] ...]

where COMMAND is one of the commands described in the following sections,

ENTITYTYPE is one of the dictionary entity types: ELEMENT, PROTOTYPE, FILE, 
DATAVIEW, CODELIST, CODETABLE or USER

ENTITYNAME is the name of the field, file etc. we want COMMAND to act upon.  
It may also be a wildcard, e.g. GL* or *XYZ. 

/ATTRIBUTE is an attribute name relevant to the entity type.11

To exit from AdmDDM, type 'exit' or 'quit'.

I.11.2  ADD, MODIFY, UPDATE, COPY, REMOVE 

Use ADD to add a new entity to the dictionary.

Use MODify to update an existing entity.

Use UPDate to update an existing entity, or add it if it does not exist12. 

The COMMAND must start in column 1, while /ATTRIBUTE=VALUE may be given 
on the same line as the COMMAND, or on the next line indented at least one column.  
Additional attributes may be given on the same line, or on additional lines.  E.g.

ADD ELEMENT=NEWFIELD /Description="This is my new field" 
       /FORMAT=X99999
       /Label=NewField

11.See Section 1.1.2.1
12.The EXPORT command outputs UPDate commands.
I - 74   ADMINS User Guide



AdmDDM: Data Dictionary “Batch” Tool
COPY copies the attributes of an existing entity to a new entity (it does not copy “file 
contains field” relationships):

COPY ELEMENT=OLDFIELD /NAME=NEWFIELD /LABEL=NewLabel

Attributes of the copied element can be altered using the same syntax as ADD, 
MODIFY and UPDATE.

If an attribute value is to long to easily fit on a line, any line may be continued by 
typing a \ (backslash) as the last (non white-space) character on the line.  E.g.

MODIFY FILE=CUSTOMER /descr="This is the \
main customer file"

or

MODIFY FILE=CUSTOMER /descr = "This is the" \
                              "main customer file"

will result in the same value being posted to the DESCRIPTION field.

REMOVE deletes an existing entity:

REMOVE FI=TESTFILE

I.11.2.1  Entity Types and Attributes
These sections list the attributes for each of the entity types.

I.11.2.1.1  Element and Prototype attributes

   ELements and prototypes have the following attributes:

/DESCRiption=  Field description

   /FORMat=  ADMINS Data Format

   /WIDth=  Field default width

   /JUST=  L, R or nothing

   /HEADing1=  Heading Line 1

   /HEADing2=  Heading Line 2

   /LABel=  Field Label

   /PROTOtype=  Prototype element name (ELEMENTs only)a

   /EDITMASK=  Editmask

   /CUSTOM1=  Custom Field 1

   /CUSTOM2=  Custom Field 2

   /CUSTOM3=  Custom Field 3

   /CODElist=  Codelist Table Name

   /QUALifier=  Codelist Table Qualifier Statement

   /VALidate=  Validation logic

   /ERRormsg=  Error message on validation error

   /OPTions=  Field options (CAPS, REQU, CAP1)
ADMINS User Guide  I - 75



AdmDDM: Data Dictionary “Batch” Tool
   /HELP1=  Help text line 1

   /HELP2=  Help text line 2

   /HELP3=  Help text line 3

   /SUBFIELD   = (Fieldname /start=pos /length=pos)    to update 
subfields, or
/REMOVE  to remove all subfields

Although the text attributes listed below are valid, they are provided 
automatically when a TI or TX field is added/modified, and there is 
normally no need to change them manually:

 /INITFILE= # (Valid code from the ADM$DD_TEXT_INITFILE 
codetable)

 /RULER= # (Valid code from the ADM_DD_TEXT_RULERS 
codetable)

/TEXTFORMAT = 1 or TED if internal TED WP format
2 or RTF if internal WinTed (AdmTed) 
format (Win32 only)
 3 or WORD if Microsoft WinWord (Win32 only)
10 or TED if external TED WP format
11 or RTF if external WinTed format (Win32 only)
(TED WP format will automatically be changed to 
RTF format the first time the editor is called up in 
Win32)

/LANGUAGE   = # (Valid code from the 
ADM$DD_TEXT_LANGUAGES codetable)

/LINEWIDTH  = # (Maximum allowed line width in characters

/WORDFILE   = # (Valid code from the 
ADM$DD_TEXT_WORD_FILE codetable)

/STRUCTUREFILE= # (Valid code from the 
ADM$DD_TEXT_STRUCTURE codetable)

/OWNERACCESS= /Access code ("", R, W, RW)

/GROUPACCESS= Access code ("", R, W, RW)

/WORLDACCESS= Access code ("", R, W, RW)

a.When an element (field) is updated with a prototype, all fields are
defaulted to the prototype value. Thus any overrides must appear after
the prototype value. E.g. the following is incorrect: 

                                       update Element=FEBAMT
                                              /descr     = "February Amount"
                                              /prototype = AMOUNT
 
In this case the description will be wiped out by the prototype update.
The correct way to do it is: 

                                       update Element=FEBAMT
                                              /prototype = AMOUNT
                                              /descr     = "February Amount"
I - 76   ADMINS User Guide



AdmDDM: Data Dictionary “Batch” Tool
I.11.2.1.2  File attributes

FILE attributes are:

I.11.2.1.3  Dataview attributes

DATAVIEW attributes are:

   /DESCRiption= "File description"

   /DIRECtory=  Directory path (or logical name)

   /TYPE=  File type (e.g. MAS, IDX, etc.)

   /NRECords=  Number of records

   /LOGRecords=  Number of Log File records

   /IXONLY=  Yes or No

   /DEFOPT=
R
I
X

R RI I X XI or ' '
DEF/REDEF if file already exists
DEF/INIT  if file does not exist
Delete file if it exist before defining new

   /SELECT= "Selection statement for file"

   /FIELD=  FieldName [ /REMove || /DELete ] ||
      [ /KEYn || /DKEYn || /ASCn || /DESCn ||
       /POS=n || /AFTER=FieldName ||
       /REPLACE=FieldName ]
   /OPERator=[ AVG || MAX || MIN ]
   /SIGnificantbytes=n
   /SECondaryname=SecondaryFieldName

If more than the Field Name is given, all attributes
must be enclosed in paranthesis, e.g.

/field=(MYFIELD /key1 /secname=SECNAME)

If only a field name is given, e.g.

/field=MYFIELD

the field is added at the end of the relationship.

/FIELD=/REMOVE will remove all fields from the 
file. (NYI)

/INDEX= (Index# IndexName KeyFld1 [KeyFld2]...)
specifies alternate indexes, e.g.:

/index = (1 'Owner Name'  LNAME 
FNAME)
/index = (2 'byOrg'  ORGCODE)

   /DESCRiption=  "Data View description"
ADMINS User Guide  I - 77



AdmDDM: Data Dictionary “Batch” Tool
I.11.2.1.4  Codelist attributes

CODELIST attributes are:

I.11.2.1.5  Codetable attributes

CODETABLE attributes are:

   /DESCRiption=  "Codelist description"

   /FILE=  "File name where codelist recides"

  /DESCRiption= Codelist Table description

   /TYPE= INTERNAL (if Internal Codelist)

   /DEPOsitory= Codelist name (if External Codelist)

   /FORMat= ADMINS Data Format of code

  /UPDATE= (CODE, DESCRIPTION,UAC)
Provide values to update an existing entry in the 
codelist table, or add if it does not exist, e.g.:

   /update=("1001", "Accounting", " 
"
   /update=("2001", "Banking", " ")
   /update=("3001", "Clerical", " 
")
   /update=("4001", "Domestic", " 
")

    /ADD= (CODE, DESCRIPTION,UAC)
to add a new code,  generates an error if the code 
exists.

    /MODify= (CODE, DESCRIPTION,UAC)
to update an existing code,  generates an error if it 
does not exist.

    /REMove= CODE
to removee an existing code.

   /LK_TITLe = Lookup Title

   /LK_HEADing= Codetable Lookup Heading

   /LK_FOOTing= Codetable Lookup Footing

   /LK_CODELength= Display length of code

   /LK_DESCRLength= Display length of description

   /LK_UACLength= Display length of UAC

   /LK_OPTion= [ CAPS ] [ BOUND ]
I - 78   ADMINS User Guide



AdmDDM: Data Dictionary “Batch” Tool
I.11.3  LIST and EXPORT

LIST and EXPORT are similar, they list attributes for existing entities.  LIST reports 
the information while EXPORT creates AdmDDM commands suitable to UPDATE 
another dictionary.

For example:

LIST FILE=GL*

will list all files starting with GL, and

EXPORT FILE=GL*

will "export" all files.

LIST and EXPORT have a /SINCE modifier to limit the entities listed or output to 
those changed or added since a particular date, or TODAY

LIST FILE=GL* /SINCE=TODAY
EXPORT PE=* /SINCE=1-DEC

/SINCE must be preceded by at least one whitespace character.

The LIST and EXPORT commands also accept

/VALues[=ONLY]

to list/export all the CodeTable values for an internal codelist, e.g.

   EXPORT CT=mytable /values

If you use /values=only no other attributes will be listed.

I.11.4  VERIFY, WHEREUSED and DEFINE

Use VERify to confirm that the actual file in use reflects the relation described in the 
dictionary.

VERIFY FI=GL*

will verify all files starting with GL.

VERIFY FI=GL*/FULL

will verify all files starting with GL, and give a full listing of the differences.

WHEreused (or just USEd)  lists where an entity is used (no wildcards allowed). Use 
WHEREUSED/CSV to get the output in CSV format.

WHEREUSED EL=ORGCODE

or

USED/CSV EL=ORGCODE

Use DEFine to create a .DEF for a file:

DEF FI=GLTRANSACTIONS

will create a GLTRANSACTIONS.def for the GLTRANSACTIONS file.  If the logical 
names DDM_SYSTEM and DDM_SUBSYSTEM are assigned those values will be 
included as part of the documentation in the .DEF.
ADMINS User Guide  I - 79



AdmDDM: Data Dictionary “Batch” Tool
I.11.5  CSV and NOREF

The CSV command in AdmDDM  provides a flexible tool for producing Data 
Dictionary information in CSV format.  The general syntax is:

CSV ENTITY=wildcard [ /since=date ]
/fields=(field1 field2 field3 … )

E.g.

CSV EL=*
/fields=(ddid name format descr)

will list the Data Dictionary ID, Name, Format and Description for all elements 
(fields) in the Data Dictionary in the format:

“EL0105”,”ZIP”,”X99999”,”ZIP Code”

If a text file, e.g. FIELD_LIST.DDM, exists that contains the above CSV command:

then the  following command:

AdmDDM /inp=field_list.ddm /out=fields.csv

will create the file fields.csv with the information asked for.

Another example:

CSV FI=GL* /SINCE=1-DEC /FIELDS=(DDID NAME TYPE DESCR)

will produce a CSV output containing DDID, File Name, File Type and Description 
for all files starting with GL added since December 1.

The /FIELDS qualifier allows you to list attributes for all the fields in a given file 
relationship.

CSV FI=MYFILE/FIELDS
/HEADING=(Element Name,Description,Format,Codelist)
/FIELDS=(name descr format ct_name)

will create a CSV file with the NAME, DESCR, FORMAT and CT_NAME for every 
field in the file.

Use NOREF to list (in CSV format) entities which are not referenced anywhere (e.g. 
fields not being used in any files, files without fields etc).

NOREF EL=*

will list DDID, Name, Description, AddedBy and AddedDate of all data elements 
(fields) in the dictionary which are not being used anywhere.

The CSV and NOREF commands recognize the following field names:

ELEMENTS and PROTOTYPES (EL and PE):

DDID "Data Dictionary ID for entity"

NAME "Name of entity"

FORMAT "Data format (type)"

DESCR "Description of entity"

PE_ID "Dictionary ID of Prototype"

PE_NAME "Prototype name"
I - 80   ADMINS User Guide



AdmDDM: Data Dictionary “Batch” Tool
FILES (FI):

LABEL "Line label"

HEADING1 "1st line of heading"

HEADING2 "2nd line of heading"

WIDTH "Display width"

JUST "Display justification"

CT_ID "Dictionary ID of codelist Table"

CT_NAME "Name of Codelist table"

CT_ERRMSG "Error message if not in Codelist Table"

EDITMASK "Editmask"

SUBFIELDS "List of subfields"

ERRMSG "Error message if not passing validation logic"

OPTIONS "Options (CAPS etc.)"

MICS "Miscellaneous"

ADDEDBY "Entity added by"

ADDEDDATE "Date entity was added"

CHANGEDBY "Last change by"

CHANGEDDATE "Date of last change"

DDID "Data Dictionary ID for entity"

NAME "Name of entity"

TYPE "File type (e.g. MAS, TAB etc.)"

DESCR "Description of entity"

DIRECTORY "Directory (may be logical name) of file"

NRECS "Number of records"

LOGRECS "Number of log records"

IXONLY "Y if Index Only file"

DEFOPT "Define Options"

INDEX "List Alternate Indices"
ADMINS User Guide  I - 81



AdmDDM: Data Dictionary “Batch” Tool
CODELISTS (CL):

CODELIST TABLES (CT):

SELECT1 "1st line of selection"

SELECT2 "2nd line of selection"

SELECT3 "3rd line of selection"

ADDEDBY "Entity added by"

ADDEDDATE "Date entity was added"

CHANGEDBY "Last change by"

CHANGEDDATE "Date of last change"

DDID "Data Dictionary ID for entity"

NAME "Name of entity"

TYPE "Type (Internal or External)"

DESCR "Description of entity"

FI_ID "Dictionary id of repository"

FI_NAME "Name of repository"

ADDEDBY "Entity added by"

ADDEDDATE "Date entity was added"

CHANGEDBY "Last change by"

CHANGEDDATE "Date of last change"

DDID "Data Dictionary ID for entity"

NAME "Name of entity"

DESCR "Description of entity"

FORMAT "Data format (type) of code"

CL_ID "Data Dictionary id of codelist"

CL_NAME "Name of Codelist"

CODE_ID "Data Dictionary id of Code field"

CODE_NAME "Name of Code field"
I - 82   ADMINS User Guide



AdmDDM: Data Dictionary “Batch” Tool
DESC_ID "Data Dictionary id of Description field"

CDESC_NAME "Name of Description field"

UACT_ID "Data Dictionary id of UAC field"

UACT_NAME "Name of UAC field"

ADDEDBY "Entity added by"

ADDEDDATE "Date entity was added"

CHANGEDBY "Last change by"

CHANGEDDATE "Date of last change"
ADMINS User Guide  I - 83



AdmDDM: Data Dictionary “Batch” Tool
I - 84   ADMINS User Guide



Appendix J:The TED Text Editor

This Appendix describes the TED text editor, which is automatically called when a 
TRANS text window is opened for an ADMINS internal (TInn) or external (TXnn) text 
field.

J.1  TED Function Keys

TED has many function keys pre-defined to perform various text editing operations. 
All of these function keys are "generic" keys, i.e. the keys are defined as performing a 
specified function, but the actual keystroke necessary to perform that function may be 
designated by the user.1 A default keystroke (for VT and workstation console mode) 
is defined for each function.

The following table describes TED's function keys, grouped by general functional 
area.

GENERAL

1.   Redefinition of function keys is described in Appendix J.5 “The TED.ENV File”.

Function 
Key Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

GOLD PF1 F1 Used to invoke certain two keystroke 
functions, e.g. GOLD+CUT will paste the 
pastebuffer into your text at the 
cursor position.

When redefining TED keystrokes, any 
TED function keymay be defined by a 
combination of the TED GOLD key, and 
any other keystroke.
As a general rule, most functions may be 
performed n times by typing GOLD+nnn 
in front of the function keystroke, where 
nnn is a decimal number. E.g. the 
keystrokes
GOLD 12 *
cause twelve * characters to be inserted, 
and the keystrokes 

GOLD 5 ->
move the cursor right five columns. If the 
GOLD+nnn keystrokes are typed in front 
of a function that does not support 
multiple occurrences, the GOLD+nnn 
keystrokes are ignored.

HELP HELP F2 Invokes TED’s on-line HELP screens.
ADMINS User Guide J - 1



TED Function Keys
                                          
CURSOR MOVEMENT

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

UPARROW UPAR Same Moves the cursor to the line above the 
current line.

DOWNARROW DOWN Same Moves the cursor to the line below the 
current line.

RIGHTARROW RIGH Same Moves the cursor one column to the right.

LEFT ARROW LEFT Same Moves the cursor one column to the left.

PGUP PREV Same Moves one screen upwards in the file. The 
number of lines moved will depend on the 
length of your display window.

PGDOWN NEXT Same Moves one screen downwards in the file. 
The number of lines moved will depend 
on the length of your display window.

NEXT_WORD KP_1 Same Moves the cursor to the beginning of the 
next word. If pressed at end of line, the 
cursor will move to the beginning of the 
next line.

PREV_WORD KP_4 Same Moves the cursor to the front of the 
previous word. If pressed when the cursor 
is in column one, the cursor will move to 
the end of the previous line.

END_WORD KP_8 Same Moves the cursor to the end of the current, 
or next word.

BEG_LINE F9 Same Moves the cursor to the beginning of the 
line. If pressed in column one, the cursor 
will move to the beginning of the previous 
line.

END_LINE KP_2 Same Moves the cursor to the end of the line, or 
to the end of the next line if it already is at 
the end of the current line.

NEXT_LINE KP_0 Same Moves the cursor to the beginning of the 
next line.

HOME FIND HOME Brings the cursor to the frist printable 
character on the line. If pressed twice, it 
will bring the cursor to the beginning of 
the line if not already there.

TOP_SCREEN GOLD+UPAR Same Brings the cursor to the top of the 
displayed screen.

BOT_SCREEN GOLD 
+DOWN

Same Brings the cursor to the end of the 
displayed screen.

NEXT_PARA KP_7 Same Moves the cursor to the beginning of the 
next paragraph.

PREV_PARA GOLD+KP_7 Same Moves the cursor to the beginning of the 
previous paragraph.
J - 2   ADMINS User Guide



TED Function Keys
                                                 
CUT AND PASTE

  
LOCATE TEXT

SCROLL_RIGHT GOLD+RIGH Same Moves the viewing window over to the 
right.

SCROLL_LEFT GOLD+LEFT Same Moves the viewing window over to the 
left.

TOP_OF_FILE GOLD+T Same Moves the cursor to the top of the file.

END_OF_FILE GOLD+B Same Moves the cursor to the end of the file.

GOTO_LINE GOLD+L Same Prompts for a line number. When entered, 
puts the cursor at that line number.

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

SELECT SELECT KP_. Toggles select on and off. The word SEL 
will be displayed on the status line when 
SELECT is active. When you move about 
in the file with SELECT active, all text in 
the selected area will be displayed in 
reverse video.

CUT KP_6 Same Cuts the selected area from your text and 
puts it in the “paste buffer”.

COPY GOLD+K Same Copies the selected area in your text into 
the paste buffer, but leaves text where it 
was.

PASTE GOLD+KP_6 Same Pastes the contents of the paste buffer into 
your text at the current cursor position.

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

SEARCH PF3 F3 Searches for a specified text string.
ADMINS User Guide  J - 3



TED Function Keys
TEXT DELETION AND RESTORATION

ENTER_SEARCH GOLD+F3 GOLD+F3 Prompts for a text string to search for. If 
you end the search string with RETURN, 
TED will search for the specified text from 
the cursor though to the end of the file. If 
you end the search text with UPARROW, 
the search will be from the cursor position 
towards the top of the file.

If the search text is terminated by 
BEG_LINE, TED will only search for the 
specified string at the beginning of a line.

If the search text is terminated by SELECT, 
TED prompts for a substitute string, i.e. 
a string to replace the specified search text, 
if it is found.
  
Entering GOLD+nnn in front of the 
SELECT keystroke will cause the search 
text to be replaced by the substitute 
string nnn times.

Initially, SEARCH is case insensitive. 
Pressing CHANGE_CASE before 
terminating the search text tells TED that 
the search is going to be case sensitive, i.e. 
TED will look for an exact match for the 
search string you entered. 
(CHANGE_CASE toggles between
case sensitivity and case insensitivity).

REV_SEARCH KP_5 Same Reverses the direction of search.

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

DEL_CHAR KP_1 DELETE Deletes the character under the cursor.

ERASE_CHAR <x] BACKSPACE Deletes the character in front of the cursor.

If the ERASE_CHAR key is pressed when 
the cursor is in column one, the current 
line will be joined with the previous line, 
provided the joined line will not overflow 
the maximum line length in effect.

UNDEL_CHAR GOLD+KP_, GOLD+DELETE “Undeletes”, or restores, the last character 
deleted using the DEL_CHAR or 
ERASE_CHAR keystroke.

DEL_WORD KP_- Same Deletes from the cursor position up to the 
next word, including any white spaces 
between the words.
J - 4   ADMINS User Guide



TED Function Keys
SPECIAL EDITING KEYS

ERASE_WORD CT_J KP_/ Deletes the word to the immediate left of 
the cursor.

UNDEL_WORD GOLD+KP_- Same “Undeletes”, or restores, the last word 
deleted using the DEL_WORD keystroke.

DEL_LINE PF4 F4 Deletes the current line, regardless of 
where the cursor is on the line.

ERASE_LINE CT_U Same Deletes all characters on the line in front of 
the cursor.

UNDEL_LINE GOLD+PF4 GOLD+F4 “Undeletes”, or restores, the last line 
deleted using the DEL_LINE or 
ERASE_LINE keystroke.

DEL_ENDLINE GOLD+KP_2 Same Deletes all characters from the cursor 
position to the end of the line.

INSERT_LINE GOLD+KP_0 Same Inserts a new line at the position of the 
cursor.

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

INS_OVR INSERT Same Toggles insert and overwrite mode.

CHANGE_CASE GOLD+KP_1 Same Toggles the case of the character under the 
cursor or the characters  in the select range. 
In a search operation, the key is used to 
toggle case sensitivity within the search.

SWAP_CHAR GOLD+X Same Swaps, or reverses the order, of the 
character under the cursor, and the 
character next to it.

CENTER GOLD+C Same Centers the text of the current line.

INS_GRID GOLD+G Same Inserts a grid above the current line. The 
grid consists of two lines showing the 
column numbers, and looks like this:
        1         2       3    ...
                                 
123456789012345678901234567890123 
...

The grid is actually inserted in the text, so 
make sure you delete it if you only want it 
temporarily to measure up some text.
ADMINS User Guide  J - 5



TED Function Keys
MISCELLANEOUS KEYS

LINE_DRAW GOLD 
+INSERT

Same Toggles between normal text mode and 
line draw mode. Under line draw mode 
the arrow keys are used to draw boxes and 
lines.
In line draw mode, the left “<“ or right “>” 
angle bracket characters may be used to 
move the cursor left or right without 
drawing a line, and the L and SPACEBAR 
keys may be used to move the cursor up 
and down. The Delete key erases the 
character  under the cursor. Any other key 
exits from line drawing mode.

FRAME GOLD+F Same Toggles between normal text mode, and 
frame mode where the arrow keys may be 
used to draw a box using the frame 
character.

SPEC_INS GOLD+KP_3 Same Prompts for:
Special character to insert: _
Allows insertion of any special character 
into the text. Insert a special character by 
typing its decimal value, e.g. 27 for <ESC>. 
If the character is nonprintable, a 
mnemonic will be displayed instead of the 
character.

EXT_CHAR KP_3 Same Select external character from table. 
Displays the following small subset of the 
8 bit characters:
Æ æ Ø ø Å å Ä ä Ö ö Ü ü ½ ¼ ² ³ ± «  
» ¡ ¿ Ñ ñ

Use the arrow keys to move the cursor to 
the desired character, and then press Select 
to insert the character in your text. 8-bit 
characters not available from EXT_CHAR 
may be entered using SPEC_INS.

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

REFRESH CT_W Same Repaints the screen.

EXIT CT_Z Same Leaves screen editing mode and enters 
command mode.

REVEAL_CODE GOLD+F9 Same Displays hidden codes (i.e., underline, 
bold, fonts, etc.) on the current line.

EXPLAIN_KEY GOLD+? Same Prompts: “Keystroke to explain:” When 
keystroke is entered, displays TED 
function invoked by that keystroke.
J - 6   ADMINS User Guide



TED Function Keys
HIGHLIGHTING

TED can highlight (e.g. boldface) portions of the text by using special highlighting 
keystrokes. Highlighting may be specified by a select range terminated by a 
highlighting keystroke, or by a highlighting keystroke followed by the characters to 
be highlighted. In the latter case, a right-arrow keystroke may be used to bypass the
end of highlighting mark. The highlighting keystrokes are:

  

FONT CT_F Same Displays available fonts in a Font Selection 
Window. Fonts must be in ADM$STYLE 
table in order to be used.

DISCR_HYPHEN GOLD+- Same Inserts a discretionary hyphen (“hidden” 
hyphen) in text. Will hyphenate word at 
loctaion designated instead of wrapping 
whole word to the next line (e.g. if you are 
typing a long word and are near the end of 
a press GOLD+- where you want the word 
hyphenated).

ASCII_TABLE GOLD+A Same Displays all ASCII characters with decimal 
codes between 0 and 127 (7 bit characters) 
on one screen, and all characters with 
decimal values between 128 and 255 (8 bit 
characters) on a second screen. Decimal 
and hexadecimal values as well as printed 
symbols are shown. When in screen one, 
CT_Z or UPARROW will take you back to 
your editing session, any other character 
will display screen two. When in screen 
two, UPARROW will take you back to 
screen one, any other keystroke will take 
you back to your editing session.

COMMAND GOLD+HELP GOLD+F2 Leaves screen editing mode and enters 
command mode.

STATUS GOLD+S Same Displays statistics about the editing 
buffers currently in use.

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

BOLD CT_B Same Changes text to Boldface font.

UNDERLINE CT_L Same Underlines.

ITALIC CT_K Same Changes text to Italic font. Not all printers, 
or print fonts, support italic characters.
ADMINS User Guide  J - 7



TED Function Keys
SPECIAL WORD PROCESSING KEYS

Function Key 
Name

Default VT 
Keystroke

Default 
Workstation 
Keystroke

Description

ERASE 
_CONTROL 

GOLD+E Same Erases the control line (e.g. ruler, page 
break or heading indicator) on the line
above the cursor. Asks for confirmation 
before it erases the control line.

INS_HEADING GOLD+H Same Inserts a Heading. Two control lines 
delimiting the heading are inserted into
the text. Insert the heading text you want 
between these control lines. The heading 
text will be printed at the top of every 
page. See Appendix J.8 for more 
information on headings.

INS_FOOTING GOLD+J Same Inserts a Footing. Footings work like 
headings, but are inserted at the bottom of 
every page.

INDENT GOLD+I Same Forces automatic indentation to a given 
column. If automatic indentation is set 
using INDENT spaces are automatically 
inserted in the file to indent to the 
specified after each <C.R.>.

NORMALIZE GOLD+N Same “Normalizes” the text between rulers, 
provided the right ruler character is J or W.

PRINTER_CTRL GOLD+O Same Displays and allows you to alter the 
printer control fields, e.g. set the number 
of characters printed per inch, the page 
length, etc.

PAGE_MARKER GOLD+P Same Inserts a Page Marker above the cursor.

RULER GOLD+R Same Allows you to edit a new ruler.

SPELL_CHECKER GOLD+F12 Same Check spelling in text.

LANGUAGE GOLD+F11 Same Select language for checking spelling from 
menu of available languages.

DIALECT GOLD+F10 Same Select dialect for checking spelling from 
menu of dialects available for the active 
language.
J - 8   ADMINS User Guide



Rulers
J.2  Rulers

A ruler is a virtual line that contains margin, wrapping and tab stop information for 
the text lines that follow. Rulers look like this:

L------M-------------T-------------------------T-------W

To edit a ruler press the RULER key. The current ruler will be displayed at the 
message line. You may change the ruler (e.g. set new left and right margins, set tab 
positions etc.) by editing it using the following characters.

The following keys are used to edit the ruler:

- No special editing rules apply in this position. Any 
character is allowed.

L Left Margin. A Carriage Return at the end of a line 
will always create a new line starting at this 
position.

M Auto-wrap left margin. If a new line is created 
because of an automatic wrapping, the new line will 
start in this position. M may appear either left or 
right of L.

R Right Margin, no auto-wrap

W Right Margin, automatic word-wrapping

J Right margin, automatic word-wrapping with right 
justified lines printed.

T Tab stop, i.e. a TAB keystroke in front of this 
position on a line in the text will bring the cursor to 
this position. Any other character than the '-' on the 
ruler line is considered a tabular position.

> Right justify at tab stop. If there is room to the left, 
any text typed at this tab stop will be right justified.

. Decimal tab stop. Numbers typed at tab stop will 
have their decimal point at this position.

SPACE Acts the same as right arrow, but will also wipe out 
T characters under it.

TAB Move to next tabular position.

HOME Brings cursor to the left margin.

END_LINE Brings cursor to the right margin.

-> Move right one position.

<- Move left one position.

EXIT Cancel editing of ruler, and exit to text editing 
mode.

<CR> Store edited ruler. If no changes were made to the 
ruler, the old ruler is kept.
ADMINS User Guide  J - 9



Checking Spelling
When you are finished editing the new ruler, press <CR> to store it. The ruler is 
stored immediately above the line at the cursor when the RULER key was pressed. If 
there is a ruler present at this position, it will be replaced with the edited ruler. If no 
ruler is present at this position, the edited ruler will be inserted at this position.

If no changes have been made to the ruler (i.e. the edited ruler matches the current 
ruler), the old ruler is kept.

If, after making changes, you decide not to store the edited ruler, the EXIT key will 
cancel the changes and bring you back to text editing mode at the position where 
ruler editing mode was invoked.

J.3  Checking Spelling

TED can check your document for spelling errors.2 If you press the 
SPELL_CHECKER key, the "Check:" prompt will appear at the bottom of the display:

        Check: x=Exit 1=Word 2=Screen 3=Document 4=Reset skips [x]:

Reply "x" to exit the spelling checker immediately, without any spelling checking 
done. "x" is the default, so if you simply press RETURN you will exit the spelling 
checker. Reply "1" to check the word the cursor is currently on. Reply "2" to check the 
text currently displayed on the screen. Reply "3" to check the entire document. Reply 
"4" to eliminate the list of words you have told TED to ignore (see "Not found:" option 
2, "Skip", described below).

If a word in the area being checked is not found in the active dictionaries TED 
prompts "Not found:" to determine how you want to handle this word:

 Not found: 1=Skip once 2=Skip 3=Add 4=Edit 5=Exit:

Reply "1" if you want to leave the word as it is, but you want TED to let you know if 
the same spelling is found again. "1" is the default response, i.e. if you press RETURN 
TED acts as if you pressed 1. Reply "2" if you want to leave the word as it is, and you 
want TED to ignore this word if it is encountered again in this session.3 Reply "3" if 
you want to add this word to your Personal Dictionary (see Appendix J.3.2 “Spelling 
Checker Personal Dictionary”). Reply "4" if you want to edit the spelling of the word. 
Reply "5" if you want to exit the spelling checker.

2.    TED's spelling checking uses the Houghton Mifflin Company's International 
Correctspell product. On OpenVMS Systems TED expects the spelling checker 
image file (ICSPL.EXE) to be in the directory assigned to the logical name 
ADM$DIST. If ICSPL.EXE is not in the ADM$DIST directory you must tell TED 
where it is by assigning its file specification to the logical name TED$SPELL, e.g.: 
"assign mydisk:icspl.exe ted$spell"

3.    For TED in TRANS the word will be skipped for all TED sessions within the 
TRANS session. If you want TED to stop ignoring words you told it to ignore 
earlier in the same session, use "Check:" option 4, "Reset Skips".
J - 10   ADMINS User Guide



Checking Spelling
The spelling checker tries to provide suggested spellings for the word it cannot find. 
When it has suggestions, TED displays them in a list, each suggestion preceded by a 
letter. The following example shows a list TED might display if the word "tipe" 
appeared in your document"

          a: tie
          b: tip
          c: type

To select one of the suggestions, enter the letter that precedes it (in the above example 
you would enter "c" to replace "tipe" with "type".

J.3.1  Language Support

Spelling checking is done in "American English" by default.4 Checking can be done 
in any of the following languages and dialects:

        Language     Dialects
        --------     -------
        Danish
        Dutch
        English*     american*, ise_english, ize_english, australian
        Finnish
        French
        German
        Italian
        Norwegian    bokmal*, nynorsk
        Portuguese   iberian*, brazilian
        Spanish
        Swedish

In the above list the default language and default dialects for each language are 
indicated by asterisks (*).

To use another language assign the name of the language to the logical name 
ADM$ICS_LANG. For languages with more than one dialect the default dialect is 
used unless the name of another dialect is assigned to the logical name 
ADM$ICS_DIALECT. For example, to specify Brazilian Portuguese make the 
following logical name assignments:

     Open VMS:
         $ assign portuguese adm$ics_lang
         $ assign brazilian adm$ics_dialect

     UNIX:
         $ lcr adm_ics_lang portuguese 
         $ lcr adm_ics_dialect brazilian

4.    ADMINS is normally shipped with the English dictionary only. To instead 
receive up to three languages (e.g. English and two others) send us a written 
request identifying which languages you would like to have shipped with your 
distribution tape.
ADMINS User Guide  J - 11



Checking Spelling
During the TED session, you can change the language by picking from a menu of the 
languages available5 by pressing the LANGUAGE keystroke. In the menu move the 
cursor to the language you want and press SELECT. To leave the menu without 
making a choice press EXIT.

Similarly, for multi-dialect languages, you can change the dialect by picking from a 
menu of the dialects available by pressing the DIALECT keystroke.

The language and dialect can also be changed at the "Command:" prompt or in the 
TED environment file via the language and dialect keywords. The following lines 
specify Brazilian Portuguese using keywords:

     language=portuguese
     dialect=brazilian

The dictionary language database files have names in the form admxxx##.ics (xxx 
indicates the language and ## the dialect, i.e. admeng01.ics, admnor01.ics, etc.) and 
reside in the ADM$DIST directory by default. To tell TED to use language database 
files in another directory assign the path specification to the logical name 
ADM$ICS_PATH.

J.3.2  Spelling Checker Personal Dictionary

Professions, organizations, and topic areas have unique nomenclature, jargon 
acronyms, etc., that occur normally in documents but would not be found in any 
generalized dictionary. To accommodate these special situations TED allows you to 
customize spelling checking by adding words to a "personal dictionary". Before 
TED's spelling checking presents a word as possibly misspelled it will check to see if 
it is in your personal dictionary.

To use a personal dictionary, you must first create a file to hold it, and assign its full 
path specification to the logical name ADM$ICS_PERS_DICT.

Create the file with any text editor. You can leave the file empty and build your 
personal dictionary by adding words to it via the spelling checker "Add" option, or 
you can enter a list of words, one per line, to start your personal dictionary, as in the 
following example:

           |note leading spaces
           || | |
           |V V V
     column|123456789...
     ------+--------------- 
           | 0 0 ADMINS
           | 0 0 TRANS
           | 0 0 ADBS
           | 0 0 TED
           |
           | (etc.)

5.    The languages available and displayed in the menu are determined by the the 
setting of the "languages" keyword in the TED$ENV file. For example, if you 
have the English, French, and German dictionaries put the line 
"languages=english, french, german" in your TED environment file to have all 
three languages displayed in the languages menu.
J - 12   ADMINS User Guide



Command Mode (Screen)
Each word begins in column 6 and is preceded by the sequence6 "space/zero/space/
zero/space", which begins in column 1.

Assign the full path name of the file you create to the logical name 
ADM$ICS_PERS_DICT, e.g.:

    $ ASSIGN DISK:[MYDIR]MY.DICT ADM$ICS_PERS_DICT  !OpenVMS

    $ lcr ADM_ICS_PERS_DICT /home/mydir/my.dict     #UNIX

Whenever the spelling checker finds a word that cannot be verified against an active 
dictionary, you can choose "Add" to include the word in your personal dictionary. 
Once a word is added it will be found for the remainder of the TED session, and in 
any subsequent session when that same personal dictionary file is active.

You may have two personal dictionary files active at a time. This allows 
organizations to have a company-wide personal dictionary for terms commonly used 
throughout the organization, while also maintaining individual personal dictionaries 
for individual users. To enable a second personal dictionary create a personal 
dictionary file as above, or copy a personal dictionary file to a new name, or combine 
several personal dictionary files into a new file; and then assign the name of that file 
to the logical name ADM$ICS_PERS_DICT_1, e.g.:

    $ ASSIGN DISK:[CENTRAL]ORG.DICT ADM$ICS_PERS_DICT_1   !OpenVMS

    $ lcr ADM_ICS_PERS_DICT_1 /home/central/org.dict      #UNIX

When two personal dictionary files are active, both are checked before a word is 
presented as possibly misspelled; but new "Add" words are always added to the 
"individual" file (the one identified by the logical name ADM$ICS_PERS_DICT).

J.4  Command Mode (Screen)

Exiting from Screen Edit Mode (via EXIT or COMMAND) puts TED in Command 
Mode. In command mode TED prompts on the bottom line of the display:

Command:

The following commands are available in Command Mode:

6.    The two zeros that precede the entries are internal codes used by the spelling 
checker.

EXit Save the buffers and exit. The CURRENT buffer will 
always be written to disk, and TED will ask you if 
you want to save any other buffers that have been 
changed.

Quit Exit from TED without saving the buffers to the 
disk. If you have made changes to any of the text 
buffers, TED will ask you if you want to save them.

QP Exits from TED without saving the buffers to the 
disk and saves position in file.
ADMINS User Guide  J - 13



Command Mode (Screen)
SAve 
[filename]

Write the current buffer to the disk, but do not exit 
from TED. All your text buffers will be available for 
continued editing after a save. When a buffer other 
than the main buffer is active, you can use

SAVE file_name
to write the contents of that buffer as a text file with 
that file_name.

WRite 
[filename]

Write the current buffer to the disk, and empty the 
buffer. (the main buffer is not written or emptied). 
Use this command to free a text buffer you are 
finished editing, and you either want to free up the 
memory occupied by the buffer, or you want to 
make the buffer available for another text file to 
edit. Use

WRite file_name
to write the buffer under a different name, or to 
write the main buffer as a text file with that 
file_name.

INclude 
file_name 
[=buf_name]

Loads text file file_name into your current text 
buffer, at the cursor location. If the optional 
"=buf_name" is used, TED loads text file file_name 
into buffer buf_name, and enters Screen Edit mode 
for that buffer. If the file is not found, TED will ask 
you if you want to create the new buffer buf_name.

INcludeRO 
file_name 
[=buf_name]

(can be abbreviated to INRO) Includes text into a 
buffer limited to "read-only" access. Read-only 
buffers cannot be altered or written to disk. If you 
use INRO to include a file into a buffer that already 
includes text the entire buffer is made read-only. 
Any changes made to the text not saved previously 
will be lost.
If you use INRO to include a file into a buffer that is 
not already read-only TED prompts for 
confirmation:
This will make buffer 'MAIN' Read Only. OK to 
continue?

LOCK Write-locks the text above the current cursor 
position. Locked text is displayed but cannot be 
altered. TED prompts for confirmation whenever 
you use LOCK.
Lock text above line 327?
Reply "Y" to confirm that the text above the current 
cursor position should be locked. This feature is 
especially useful to prevent alteration of the existing 
portions of a document stored in TInn fields, while 
permitting additions.
Note that once text is locked it cannot be unlocked. 
Locks cannot be removed or relocated closer to the 
beginning of the file. You may, however, use LOCK 
to relocate a lock toward the end of the file.

= Lists the names of all your text buffers currently in 
use.

=buf_name Changes the active text buffer to a buffer named 
buf_name. If a buffer with that name does not exist, 
TED creates it.

$ Goto spawned process prompt.
J - 14   ADMINS User Guide



Command Mode (Screen)
$ command Execute command at spawned process. Returns to 
TED when command is complete.

W132 Set VTa terminal to 132 column width.

W80 Set VT terminal to 80 column width.

STatus Displays status information on all the text buffers in 
use.

<HELP> The HELP key will display help information on all 
the commands available.

a.   VT terminals only.

STatus Displays status information on all the text buffers in 
use.

<HELP> The HELP key will display help information on all 
the commands available.

PRINTHELP Prints out list of current help screens for TED. The 
text file is called TEDHLP.LIS and will be put into 
the directory the user is currently in.

I STRING Insert a new line consisting of STRING after the 
current line. The editor displays this line.

N Next line (If at EOF, goes to TOF).

R STRING Replace the current line with STRING.

T Top of text.

TCR Shows current Text Catalog Record.

U Up one line (stops at TOF).

AM Invokes the ADMINS MANUAL command.

Bo Bottom (End) of text.

CA Toggle case sensitivity.

DE [N] Deletes N lines. The editor displays the line 
following the last deleted line. If N is absent it is 
assumed to be 1. If the last line of the file is deleted, 
the editor beeps as a warning.

A STRING Append STRING to the current line.

A /STRING/
N

Append STRING to N lines starting at the current 
line; N is required.

F STRING Find STRING at beginning of a line.

FN /
STRING/ N

Find STRING at beginning of a line N times.

L STRING Locate STRING anywhere in a line.

LN /
STRING/ N

Locate STRING anywhere N times.
ADMINS User Guide  J - 15



The TED.ENV File
J.4.1  Command Line Mode

TED -CLM Command line mode. TED does not go into screen editing mode when 
this option is used on the command line, and will only accept command line editing 
commands. See Appendix J.4 “Command Mode (Screen)”

J.5  The TED.ENV File

To change any of the redefinable values used by TED, use the TED.ENV file. TED 
translates the logical name TED$ENV to determine the actual file to use as the 
TED.ENV file.7 If the logical name TED$ENV is not assigned TED looks for a file 
named TED.ENV in your SYS$LOGIN directory.

Each line in the TED.ENV file redefines one value, using the format:

keyword=[value]

Keywords can be the generic names of function keys,8 or some other TED default 
value such as default line length. The default values that may be redefined are 
described below:

C /OLD/
NEW/ [G] 
[N]

Change OLD into NEW. If G is present, change all 
occurrences on the line. If N is present, change N 
lines.

### (number) A number alone will move to that line 
number.

7.   See Appendix J.5.2 “Alternate TED.ENV files”.
8.   See Appendix J.1 “TED Function Keys”.

page_overlap=n Overlap pages by n lines, i.e. scroll the page when 
the cursor is n lines from the top or the bottom.

side_scroll=n Number of columns to scroll sideways for each 
sideways scroll movement. The default is 20 
columns.

max_line=n Absolute maximum line length allowed. (Limits the 
size of  any  ruler.) Cannot be altered during an 
editing session

line_length Sets initial line length. Can be altered during editing 
session by using or changing a ruler.
J - 16   ADMINS User Guide



The TED.ENV File
linesLimit Limits the size of the file that can be created or 
updated to the number of lines specified. For 
example:

linesLimit=8
will limit the size of the file or internal text field 
being edited to 8 lines.
When an action is initiated that would extend the 
file beyond the specified limit TED will display this 
message
Exceeded max number of lines allowed (8)
and sound a warning bell , then ignore any 
keystokes until "Enter" is typed to acknowledge the 
message.
If a file already exceeds the limit when opened by 
TED, TED will not allow additional characters to be 
entered into the file.

init_sequence= 
<sequence>

Send the following escape sequence to the terminal 
before entering screen mode. A non- printable 
character may be specified as $nn$, where 'nn' is the 
ASCII decimal code for the character (i.e. the <ESC> 
character may be specified as $27$, the SPACE 
character as $32$, and because of the syntax, the '$' 
character must be specified as $36$). For example, to 
make sure all highlighting is off, put the following 
in TED.ENV:
init_sequence=$27$[0m

exit_sequence= 
<sequence>

Send the following escape sequence to the terminal 
before exiting TED. Use the same syntax as 
init_sequence.

display_xpos Display the current cursor position on the status 
line, together with the actual character count. The 
cursor position and character count are displayed in 
the form Pos=xxx:ccc, where xxx is the cursor's 
current column position (the leftmost column 
position is position 0) and ccc is the character count 
between the leftmost column and the current cursor 
position. TAB characters, control sequences etc. can 
cause the character count and cursor position to be 
different.

decimal_point=, Tells TED to use , (comma) as decimal point (in 
rulers etc.). (The expression 'decimal_point=.' is also 
legal, but has no effect, as it is the default).

save_changes=nn Tells TED to automatically save the main buffer file 
when the specified number of changes (i.e. 
keystrokes that change the file) are made in the 
main buffer. ('nn' must be between '20' and '4000').
This technique minimizes the chance of losing large 
amounts of work via system or user error. 
However, giving save_changes a low value can be 
inefficient, degrading system performance by 
causing too-frequent re-writes of large files to disk.

no_write Disables WRite filename function on the command 
line.

no_include Disables INcl filename and INRO filename 
functions on the command line.
ADMINS User Guide  J - 17



The TED.ENV File
linesLimit Limits the size of the file that can be created or 
updated to the number of lines specified. For 
example:

linesLimit=8
will limit the size of the file or internal text field 
being edited to 8 lines.
When an action is initiated that would extend the 
file beyond the specified limit TED will display this 
message
Exceeded max number of lines allowed (8)
and sound a warning bell , then ignore any 
keystokes until "Enter" is typed to acknowledge the 
message.
If a file already exceeds the limit when opened by 
TED, TED will not allow additional characters to be 
entered into the file.

init_sequence= 
<sequence>

Send the following escape sequence to the terminal 
before entering screen mode. A non- printable 
character may be specified as $nn$, where 'nn' is the 
ASCII decimal code for the character (i.e. the <ESC> 
character may be specified as $27$, the SPACE 
character as $32$, and because of the syntax, the '$' 
character must be specified as $36$). For example, to 
make sure all highlighting is off, put the following 
in TED.ENV:
init_sequence=$27$[0m

exit_sequence= 
<sequence>

Send the following escape sequence to the terminal 
before exiting TED. Use the same syntax as 
init_sequence.

display_xpos Display the current cursor position on the status 
line, together with the actual character count. The 
cursor position and character count are displayed in 
the form Pos=xxx:ccc, where xxx is the cursor's 
current column position (the leftmost column 
position is position 0) and ccc is the character count 
between the leftmost column and the current cursor 
position. TAB characters, control sequences etc. can 
cause the character count and cursor position to be 
different.

decimal_point=, Tells TED to use , (comma) as decimal point (in 
rulers etc.). (The expression 'decimal_point=.' is also 
legal, but has no effect, as it is the default).

save_changes=nn Tells TED to automatically save the main buffer file 
when the specified number of changes (i.e. 
keystrokes that change the file) are made in the 
main buffer. ('nn' must be between '20' and '4000').
This technique minimizes the chance of losing large 
amounts of work via system or user error. 
However, giving save_changes a low value can be 
inefficient, degrading system performance by 
causing too-frequent re-writes of large files to disk.

no_write Disables WRite filename function on the command 
line.

no_include Disables INcl filename and INRO filename 
functions on the command line.
J - 18   ADMINS User Guide



The TED.ENV File
If the keyword is a function key, it should have a
%(per cent) sign in front of it, e.g.:

%cut=F6     

%paste=GOLD+F6

which would redefine CUT from the default KP_6 key to the F6 key, and would 
redefine PASTE to GOLD+F6.

GOLD is used as a prefix to other keys to provide more function keys on the 
keyboard. If one such prefix key is not enough for the way you want to remap the 
keyboard, TED provides the ability to define up to three more such prefix keys, 
named GREEN, RED and BLUE.

These additional prefix keys are defined in the TED.ENV file by using the #set 
command, e.g.

#set BLUE=PF3

Once BLUE is defined in this manner, any TED function may be defined as 
BLUE+key, e.g.:

%status=BLUE+S

would redefine the STATUS function to be invoked by the BLUE key followed by 
the character S.

Use the #set command also to change the behavior of the TAB key.  The following 
options are implemented:

#set TAB=IGNORE

to ignore the TAB key. 

You can also assign named keystroke functions to the TAB key, where the named 
functions are a recognized string of characters, e.g. SPACE for a single space and 
RETURN for an “Enter” keystroke.  Single characters separated by spaces represent 
“typing” that character itself.  So use 

#set TAB=SPACE

to change the TAB key into a single space character, and 

#set TAB=SPACE SPACE SPACE

to change the TAB key into three spaces, or use

#set TAB=S i n c e r e l y RETURN

to change the TAB key into "Sincerely" followed by a carriage return.

Function keys that can be redefined in the TED.ENV file are:

no_execute Disables $(access to spawned process) and $ 
command (execute spawned process) functions on 
the command line.

no_squeeze Prevents TED from squeezing out trailing blanks 
when starting, exiting, or loading text.

%ascii_table= View ASCII table

%beg_line= Cursor to beginning of line

%bold= Boldface next character(s) 

%bot_screen= Cursor to bottom of screen
ADMINS User Guide  J - 19



The TED.ENV File
%center= Center text within line

%change_case= Change case of character(s)

%code_sens= Toggle code sensitivity

%code_doc= Document code line

%command= Enter command mode

%copy= Copy selected text into paste buffer

%cut= Cut selected text 

%del_char= Delete character under cursor

%del_endline= Delete to end of line

%del_line= Delete line under cursor

%del_word= Delete word under cursor

%downarrow= Move cursor down one line

%end_line= Cursor to end of line 

%end_of_file= Cursor to end of file

%end_word= Cursor to end of word

%enter_search= Enter search string

%erase_char= Erase character in front of cursor 

%erase_control= Erase control line above cursor

%erase_line= Erase characters on line in front of cursor

%erase_word= Erase word to the left of the cursor.

%exit= Exit

%ext_char= Extended character set

%file_doc= Insert file documentation

%font= Invoke font selection window

%frame Toggle Frame Drawing mode

%gold= The GOLD character

%goto_line= Goto line number

%help= Invoke HELP

%home= Cursor to first character on line

%indent= Automatic indent of new line

%insert_line= Insert line at cursor position

%ins_grid= Insert grid above cursor line 

%ins_heading= Insert heading above cursor line
J - 20   ADMINS User Guide



The TED.ENV File
%ins_ovr= Toggle insert/overlay mode

%italic= Print next character(s) in italic

%leftarrow= Move cursor left one position 

%line_draw= Toggle Line Drawing mode

%next_line= Cursor to beginning of next line

%next_para= Cursor to next paragraph

%next_word= Cursor to beginning of next word 

%normalize= Normalize text between rulers

%page_marker= Insert page marker/set page width

%paste= Past content of paste buffer

%pgdown= Move cursor down one screen

%pgup= Move cursor up one screen

%prev_para= Cursor to beginning of previous paragraph

%prev_word= Move cursor to beginning of previous word

%printer_ctrl= Enter printer control screen

%refresh= Refresh screen (repaint)

%rev_search= Reverse search order

%rightarrow= Move cursor right one position

%ruler= Edit ruler

%scroll_left= Scroll the text to the left

%scroll_right= Scroll the text to the right 

%search= Search for occurrence of search string

%select= Toggle select on/off

%spec_ins= Insert special character

%status= Display buffer status information

%swap_char= Swap characters under cursor

%top_of_file= Goto top of file

%top_screen= Cursor to top of screen

%undel_char= Insert last deleted character

%undel_line= Insert last deleted line

%undel_word= Insert last deleted word

%underline= Underline the next character(s)

%uparrow= Move cursor up one line
ADMINS User Guide  J - 21



The TED.ENV File
The keyword #define allows you to define macros in the TED.ENV environment file.

Macros allow you to simulate the typing of several keystrokes with one keystroke.

The syntax is:

#define func_name=KEYSTROKE sim_key_1 sim_key_2 ...

where:

%view_code= View text and hidden codes

func_name is a name for the function defined by the macro;

KEYSTROKE is the key that will invoke the macro function, e.g. 
F11, CT_B (for Ctrl_B), GOLD+N (for GOLD 
followed by N), etc.; and sim_key_1 sim_key_2 ...  
are the sequence of keystrokes that the macro will 
simulate typing.

sim_key_1 (etc.) In specifying the sequence, a single character 
represents that character, more than one character 
represents physical key names as described below, 
and any character sequence starting with % 
represents a function name, either of a TED function 
key or the function name of a macro previously 
defined in the TED environment.
To define GOLD M to mean go to the MAIN buffer 
(e.g. the EXIT keystroke, followed by "=MAIN" and 
a carriage return at the "Command:" prompt), place 
the following line in TED.ENV:
#define goto_main=GOLD+M
%exit = M A I N CR
Observe that each character that represents a single 
character, like all the characters in =MAIN must be 
separated by a space to be recognized as single 
characters.
J - 22   ADMINS User Guide



The TED.ENV File
The physical keys on the keyboard have been assigned unique names which have to 
be used when redefining the function keys. These special names are:

     

VT Keystroke Workstation Keystroke

PF1 - PF4 F1 - F4

F7 - F14 F5 - F12

HELP INSERT

DO HOME

F17 - F20 PREV

FIND DELETE

INSERT NEXT

REMOVE UPAR

SELECT DOWN

PREV LEFT

UPAR KP_0

DOWN |

LEFT V

RIGH KP_9

KP_0 KP_.

| KP_-

V KP_,

KP_9 KP_E

KP_. KP_/

KP_-

KP_,

KP_E
ADMINS User Guide  J - 23



Using Buffers
J.5.1  TED.ENV Example

Assuming we have a standard DEC VT terminal keyboard, we might want to create 
the following TED.ENV file (to emulate the OpenVMS EDT editor):

     %select=KP_.
     %next_word=KP_1
     %top_of_file=GOLD+KP_5
     %end_of_file=GOLD+KP_4
     %command=GOLD+KP_7
     line_length=72
     #define kpdent=KP_E CR
     #define goto_main=GOLD+M
     %exit = M A I N CR

J.5.2  Alternate TED.ENV files

By default, TED will look in the SYS$LOGIN directory for the TED.ENV file. You 
may override this by assigning the full directory and file specification of an TED 
environment file to the logical name TED$ENV. E.g.:

$ ASSIGN DISK4:[MYDIR]MYTED.ENV TED$ENV

would tell TED to use DISK4:[MYDIR]MYTED.ENV as its environment file instead 
of the standard SYS$LOGIN:TED.ENV.

J.6  Using Buffers

Provided sufficient memory is available, TED may have up to eight text buffers active 
at any time (plus the cut_and_paste buffer). Buffers may be created by using the 
command line command

include filename =bufname

or by

=bufname

to a non-existent buffer (in which case you will be asked to verify that you actually 
want to create the buffer).

The use of buffers can greatly enhance your productivity. Assume that you are 
making a change to text and need a piece of text from another document. You may 
then INclude the other document into a separate buffer, select the text you need, cut 
it, then go back to your main buffer and paste it in. When it exits, TED reminds you 
if you forgot to save any buffer where changes have been made.
J - 24   ADMINS User Guide



The Text Initialization File
J.7  The Text Initialization File

A common need when creating a new piece of text, i.e. when the TX or TI field being 
edited is empty, is to initialize the field with some predefined lines of text, possibly 
containing data from TRANS' virtual record at the point the TED editor opens the 
text field. What follows describes how this initialization can be achieved in TRANS.

TED initializes documents using files called text initialization files.9 Initialization 
files can be specified as an attribute of a text field in the data dictionary (see Appendix 
I.2.3 “Text Fields”), or can be controlled via the RMO (see Section 16.23 “TX$INITF: 
Automatic Initialization of Text Fields”). Literal text, substitutable parameters, and 
processing logic that will be used to initialize the document are stored in the text 
initialization file. All lines in the text initialization file will be included at the top of 
the new document, before the initial ruler of the document. (the text initialization 
file should contain its own rulers), according to the following rules and syntax:

1. Any characters except those characters enclosed in <> (angle brackets) will be 
inserted as part of the line. Angle brackets identify substitutable parameters, 
which prompt the user for input and provide information about how the 
response should be handled, e.g.:

<%16sPrompt..:>

will prompt

Prompt..: _
at the terminal, and accept a string up to 16 characters in length in response. The 
response is substituted for the string in angle brackets.
a. The general syntax for creating < > prompts and specifying how to handle 

the answers is:

     <%lSppppp>
      ³³³ÀÄÄÄÄÄÄÄÄ> Prompt
      ³³ÃÄÄÄÄÄÄÄÄÄ> S=Convert response to uppercase
      ³³ÀÄÄÄÄÄÄÄÄÄ> s=Accept as is. 
      ³ÀÄÄÄÄÄÄÄÄÄÄ> Max. length of answer to prompt
      ÀÄÄÄÄÄÄÄÄÄÄÄ> The '%' character must be present.
b. If the prompt text ("ppppp" in the above diagram) begins with the two 

character string "L$"10 TED will assume that the parameter prompt specifies 
a logical name, and will attempt to satisfy the parameter by translating that 
logical name, instead of prompting on the terminal. If the indicated L$ 
logical name is not assigned, then TED prompts the terminal as usual.

2. If the prompt is enclosed in << >> (double angle brackets), the response is 
optional. The whole line containing the double angle brackets will disappear if 
the response is CR.

3. If the < > (single angle brackets) are followed by the " (ditto) character the same 
prompt is repeated until a null response (CR) is given. A new line is inserted 
into the document for each non-null response.

9.   AdmIE uses an initialization file when bringing text into internal text fields that 
have been designated as RTF fields. For more information about this 
initialization file, refer to Section 17.5.1.1 “Initialization File for Acquiring 
Internal Text”

10.   Parameter behavior can be modified by placing the keyword NOL$PROMPT on 
a line by itself in the TRANS$ENV file. Refer to Section 6.15.11 “NOL$PROMPT 
- Don’t prompt for L$ parameters (text initialization)”for more information.
ADMINS User Guide  J - 25



The Text Initialization File
4. The following special parameters do not prompt at the terminal, but are 
automatically loaded by TED if present in the initialization file.

        <%FILENAME>  For TX fields only.
                     The name of the file. This includes
                     FILE_NAME.FILE_TYPE, where FILE_TYPE
                     cannot be more than three characters.
        
        <%FILE_NAME> For TX fields only.
                     File name without the file type, and without
                     any directory (path) names.
        
        <%FILE_TYPE> For TX fields only. File type
        
        <%TODAY>     Today's date

5. The initialization file may contain conditional statements, as follows:

6. The initialization file may have indirect file references similar to what is 
standard in ADMINS source programs, i.e. it must start in column 1 with "@@" 
followed by the file name, and be the only thing on the source line, e.g.

@@MYDIR:Text1.txt

As in any other part of the initialization file,  this indirect file reference may 
contain an ADMINS parameter:

@@MYDIR:Text<%L_TYPE>.txt

where L_TYPE would be a logical name. The value of the logical name is used  
to build the file specification for the indirect file reference.

A sample initialization file might look like this:

             Customer: <%40sL$CUSTNAME>
             Account.: <%12sL$ACCOUNT>
              Date....: <%TODAY>

This initialization file could be used with an RMO that would, for example, load the 
logical names L$CUSTNAME and L$ACCOUNT with the customer's name and 
account number from the current customer record. The result would be a file 
initialized with the following when TED first displays it:

             Customer: Ms. Jenny Lee
             Account.: X92080215588
              Date....: 12-Jan-1991

#ifnew True if file is empty

#ifold True if file is not empty

#iftrue < > True if the < > prompt is answered by Y.

#else True if #if is false.

#endif Terminates an #if range.
An #if range must always be terminated by an 
#endif statement. If/endifs can be nested up to 16 
levels deep.
J - 26   ADMINS User Guide



The Text Initialization File
J.7.1  TX$OPTION - Setting Various Options for Internal Text Editing

The reserved field TX$OPTION/I may be used to set various options for internal text 
editing.  The following options are defined:

1 Run "Initfile" always.  If the field already 
contains text, this text is replaced by the output 
from "Initfile".
ADMINS User Guide  J - 27



Special Heading and Footing Control Words
J.8  Special Heading and Footing Control Words

As explained in Appendix J.1 “TED Function Keys”, the INS_HEADING and 
INS_FOOTING keystrokes create two control lines that enclose, respectively, a 
Heading or a Footing. Whatever is entered between these two control lines will be 
printed at the top (Heading) or bottom (Footing) of every page. A sample of a 
Heading might look like this:

    -------------------- S t a r t   h e a d i n g ------------------
    EXAMPLE HEADING                                   Page %PG
    Section 1: Demo         Draft %DATE

    --------------------- E n d    h e a d i n g --------------------

Note that the Heading contains two strings that start with %.

The special keywords listed below, all beginning with %, indicate positions in the 
heading (or footing) into which TPR (see Appendix J.11 “Printing Text Fields: TPR”) 
will substitute the specified values at print time.

New headings and footings are saved at the point they are found in the text, and are 
used at the next page break, resulting either from a PageBreak control line, or 
because the page is full. The new footing is used immediately to determine when a 
page is filled (leaving room to print itself at the bottom). The new heading prints at 
the top of the next page begun after it is introduced. If you want to change heading 
information in the middle of your text, make sure you define the new heading before 
any text is written on the new page.

Note that %PG (the page number) will be right justified if the position to the 
immediate left of the %PG keyword is blank, otherwise it is left justified. Thus, page 
number 1 for

Page %PG

will print:

     Page   1

while

Page A-%PG

will print:

Page A-1

%PG Page number

%PG0 Page number initialized. Resets page counter to 1.

%DATE or Today’s date in the form.

%TODAY 12 - DEC - 1988

%DAY-DATE Today’s date in the form Mon 12 - DEC - 1988
J - 28   ADMINS User Guide



Including Font Codes with TED
J.9  Including Font Codes with TED

Text fields may include Text Font specification using the same ADM$STYLE 
mechanism as RNF and REPORT.

First, the TED.ENV file (see Appendix J.5 “The TED.ENV File”) must set mnemonics 
for the fonts that you want, using the "font=" keyword:

font=Courier_12

The mnemonics must correspond to names used on

    .CC MNEMONIC control_sequence

lines in the file assigned to the logical name ADM$STYLE at print time.

Up to 16 different "font=" lines can be present in the TED.ENV file.

In TED, to activate a new font press the font key11 (CT_F, by default). A pop-up 
window displays the available fonts. Move the cursor to the font you want and press 
SELECT.

(You cannot see the text in the selected fonts on the terminal, but it will appear in the 
printed output.) However, the name of the font in effect does appear on the message 
line.

When TPR (see Appendix J.11 “Printing Text Fields: TPR”) prints the text it inserts 
the actual control sequence for the fonts selected at the points you have specified. 
TPR finds the appropriate control sequence by looking up the mnemonic in the file 
assigned to the logical name ADM$STYLE.

If the mnemonic is not found by TPR in the "ADM$STYLE" file, the font currently in 
effect is used.

11.   This key may be redefined in the TED.ENV file by placing the 
%font=KEYNAME line in the TED.ENV file.)
ADMINS User Guide  J - 29



The Printer Control Screen
J.10  The Printer Control Screen

Printer setup characteristics can be set for the document using the Printer Control 
screen, invoked by the PRINTER_CTRL keystroke. The Printer Control screen 
contains the following information:

   *---------------------------------------------------------*
   |                ADM$TI_nnnnnnnn Printer Control          |
   |                                                         |
   | Characters per inch.....:  10                           |
   | Lines per inch..........:   6                           |
   | Print lines per page....:  60                           |
   | Page size in lines......:  66                           |
   | Automatic indent columns:   5                           |
   | Orientation (0, 1 or 2).:   0   1=Portrait, 2=Landscape |
   | Starting page number....:   0                           |
   |                                                         |
   | Printer initialization..: 00 00 00 00 00 00 00 00 00 00 |
   |                                                         |
   | Printer termination.....: 00 00 00 00 00 00 00 00 00 00 |
   | CT_Z  to return to text editing                                                                  

*---------------------------------------------------------*

When TPR is given the document to print, it outputs no control sequence for 
attributes that are set to zero. Printer initialization allows you to enter hexadecimal 
ASCII codes (e.g. the escape character is 1B) for up to 10 characters to send to the 
printer before the document is printed. This could be used to send setup control 
sequences if TPR does not have the proper setup for your printer built in. Printer 
termination can be used in a similar way to reset the printer after the document is 
completed.

If Orientation is 0, TPR sends no orientation control sequence to the printer. If 
Orientation is set to 2 (landscape), TPR will send the landscape control sequence 
command to the printer. After the document is finished printing TPR will reset the 
printer to portrait.
J - 30   ADMINS User Guide



Printing Text Fields: TPR
J.11  Printing Text Fields: TPR

Documents stored in ADMINS internal text fields can be printed using the TPR12 text 
printing utility. TPR's syntax for ADMINS internal text fields is:

$ TPR -INT -FIELD=fieldname -KEY1=value file.mas

If the file has more than one key, supply additional key values by adding the 
keywords:

-KEY2=value -KEY3=value ...

If all the arguments are not given on the command line TPR will prompt for them 
(assuming TPR special logical names are not assigned, as explained below):

    $ tpr -int      
    File name: journal.mas
    Enter value for key field MSG: 910822
    Enter Text Field Name to print: comments

TPR -INT will translate the following logical names to satisfy its arguments:

TPR$FILENAME 

TPR$FIELD    

TPR$KEY1 TPR$KEY2 ... TPR$KEYn

$ TPR -INT (with no other command line arguments) will first try to translate these 
logical names. It will only prompt for a value if the corresponding logical name for 
that value is not assigned. The following logical name assignments could replace the 
TPR -INT dialogue in the example above:

$ASSIGN JOURNAL.MAS TPR$FILENAME    

$ASSIGN 910822 TPR$KEY1    

$ASSIGN COMMENTS TPR$FIELD

One easy way to print internal text using TPR from an RMO running with a TRANS 
screen is to set up a symbol as follows:

TPRINT :== "$ADM$DIST:TPR -INT"

Then set the TPR arguments into the special logical names described above (use the 
CRLOG subroutine), and call the SPAWN subroutine to execute TPRINT.

When printing internal text with TPR, both the HEADING and PAGEBREAK 
functions of TED will work. To avoid having TPR put out a default heading if no 
heading is provided in the text, add the -NOP keyword on the command line, e.g.

TPRINT :== "$ADM$DIST:TPR -INT -NOP"

12.  TPR will print any text file, but it has the special capability to handle formatting 
information provided in TED documents.
ADMINS User Guide  J - 31



Printing Text Fields: TPR
TPR may also be instructed to print only selected pages of the document stored in the 
internal text field by using the keywords:

-FROM_page=m 

-TO_page=n

on the command line. These page number arguments may also be provided via 
special TPR logical names:

TPR$FROM_PAGE    

TPR$TO_PAGE

TPR command line options are:

-FORM=form_name  or FORM is either the queued printer form name or form

-FORM=form_number number. On OpenVMS systems, FORM is case insensitive.

-ID Display TPR version id, and exit

-3LPI Print double spaced, i.e. 3 lines per inch.

-4LPI 4 lines per inch.

-NOHeading Do not print automatic file heading. An automatic 
file heading is printed by default unless file has its 
own heading.

-NOPage Do not print automatic heading or page numbers.

-CONsole Print output to the console (terminal).

-MORe If output to -CON, display one screen at a time and 
wait for a keystroke to continue with the next 
screen.

-TPR Print at the printer attached to the terminal.

-LANDscape Print document in Landscape Mode.

-IBM_ 
Proprinter

Printer is IBM ProPrinter.

-LN03 Printer is DEC LN03.

-HP_Laserjet Printer is HP LaserJet.

-CI_3500 Printer is C.Itoh 3500

-XEROX Printer is Xerox.

-IBM Put HP LaserJet in IBM PC mode.

-FF Formfeed before first page.

-INDENT=n Indent n characters before printing text.

-CPI=n Print n characters per inch.

-PAGE_ 
LENGTH=n

Print n lines per page.

-COPIES=n Print n copies of text or document.

“=filename” Output to filename, do not spool the output.

? Invoke TPR Help.
J - 32   ADMINS User Guide



Printing Text Fields: TPR
J.11.1  The TPR.ENV Environment File

To change the default setups for TPR, create a TPR.ENV file. By default, TPR will 
look in the SYS$LOGIN directory for a file named TPR.ENV. You may use another 
file as the TPR environment file by assigning its full directory and file specification to 
the logical name TPR$ENV, e.g.:

$ ASSIGN DISK4:[MYDIR]MYTPR.ENV TPR$ENV

The TPR.ENV file may contain the following entries: 

%printer= Give the name of your printer if it is not an LN03 on 
OpenVMS, or an HP on UNIX. Allowable values 
are:
IBM_PROPRINTER 
DEC_LN03
HP_LASERJET
CI_3500 XEROX_4045
CONSole
If you do not have a printer attached to your PC, use

%printer=CONSOLE
to direct the output to your screen if you want to 
view your output using TPR.

%more=YES Console output will display one screen at a time and 
wait for a keystroke to continue with the next 
screen.

%page_length= number of lines to print per page. For continuous 
output (i.e. no page breaks), use

%page_length=0.

%indent= number of columns to indent on the page. By 
default, TPR will indent 5 columns.

%cpi= number of characters per inch. TPR defaults to 10 
cpi. If TPR changes the cpi setting it will reset the 
power-up settings after printing.

%ff Send a form feed before printing.

%end_ff Send a form feed after printing.

%init_sequence= Send the indicated sequence of characters to the 
printer before printing the document. Init_sequence 
is useful for sending printer setup control 
sequences. Use the character's ASCII decimal code 
surrounded by dollar signs for non-printing 
characters, spaces, and the dollar sign, e.g. $27$ for 
the escape character, $32$ for the space character, 
and $36$ for "$".

%exit_sequence= Send the indicated sequence of characters to the 
printer after printing the document.
ADMINS User Guide  J - 33



Printing Text Fields: TPR
The following keywords are used to re-define printer control sequences when output 
is destined for a printer for which TPR does not provide built-in support. The syntax 
described above for %init_sequence is used to give the decimal ASCII code to be 
substituted into the TPR output whenever the indicated control sequences appear in 
the document.

Any line in the TPR.ENV file not starting with the '%' character is treated as a 
comment line. 

%map:ttt=ppp Used to map internal TED 8-bit codes to 
corresponding codes for the current printer. (Note 
that if a %printer= statement appears in the 
TPR.ENV file, it must appear before any %map: 
statements.) ttt is the (decimal) three digit position 
in the ASCII table for the TED character code, and 
ppp is the corresponding three digit position of that 
character for the printer in use.

%font_file= Name of font file to be used. If %font_file is not 
present, the value assigned to the logical name 
ADM$STYLE is used.

%bold_on= Control sequence to turn bold on.

%bold_off= Control sequence to turn bold off.

%underline_on= Control sequence to turn underline on.

%underline_off= Control sequence to turn underline off.

%italic_on= Control sequence to turn italics on.

%italic_off= Control sequence to turn italics off.

%advance= Control sequence to perform a 1/2 line feed.

%nohead Suppresses the printing of an automatic heading.

%portrait= Control sequence to turn on portrait mode.

%landscape= Control sequence to turn on landscape mode.

%ascii Print only ASCII characters (throw away escape 
sequences like bold, underline etc.).

%reset= Control sequence to reset printer.

%ADM$SPOOLn= Send output to device assigned to logical name 
ADM$SPOOLn.
J - 34   ADMINS User Guide



Appendix K:Using Text Fields

Documents can be integrated directly into ADMINS data files by using the TInn and 
TXnn text field data types. Text data can be displayed, processed, and output using 
the same ADMINS tools and syntax as any other ADMINS data type, subject to the 
special conditions set out in what follows.

K.1  Special Considerations

Several special rules, syntax, limitations, conditions, and requirements apply when 
text field data types are used.

1. The ADMINS Data Dictionary (ADD) must be in use, and text fields must 
reference dictionary data elements, either directly (i.e. by defining the file via 
the ADD screens), or indirectly (via the "@" reference syntax in the ".DEF" file, as 
described in Section 2.4.2.2 “Referencing Data Dictionary Data Elements” ).

2. When a file that has text fields is defined three files are created:

          $ def txtest
          DEFSZ: 60 NF: 5  KEYLEN:3  RECSZ: 77  NRECS: 100
           # OF BLOCKS   DATA: 22  INDEX: 3  TOTAL: 25
          MU$DUA0:[BD.NEWMSG]TXTEST.MAS;1 CREATED
          INDEXED file. KEYS are: MSG 
          MU$DUA0:[BD.NEWMSG]TXTEST.TCF created
          Catalog record size: 148. Catalog header size: 888
          MU$DUA0:[BD.NEWMSG]TXTEST.TSF created
          Storage record size: 511. Storage header size: 511
The two additional files that are created support the text field data types:
•   TCF - The Text Catalog File stores information that relates the records in the 

ADMINS data file to the records in the Text Storage File.
•   TSF - The Text Storage File actually stores the text itself in the case of TInn 

("internal text") fields, or stores the name of a text file in the case of TXnn 
("external text") fields.
ADMINS User Guide K - 1



Special Considerations
These two files, together with the ADMINS data file, are treated as a single 
entity by ADMINS. But, because three different files exist as far as the file 
system is concerned, special care must be taken when  system operations 
(DCL, RMS, etc.) are used to handle ADMINS data files that contain text 
fields. For example, if any of the following DCL commands, or any 
commands that perform similar functions, are used to process an ADMINS 
data file that contains text fields, you must make sure that the ".TCF" and 
".TSF" file are also appropriately processed.

       RENAME       COPY       DELETE       PURGE       BACKUP
Take the following command:
$ COPY TXTEST.MAS NEWTX.MAS

The DCL COPY command would create a new data file, NEWTX.MAS. But 
an attempt to use NEWTX.MAS in ADMINS would fail because the file 
contains text fields and ADMINS would not find the TCF and TSF files.

$ tra newtx.mas
Open failure on MU$DUA0:[BD.NEWMSG]NEWTX.TCF
%NONAME-F-NOMSG, Message number 00000004

To correctly copy TXTEST.MAS to NEWTX.MAS use:

$ COPY TXTEST.MAS,.TCF,.TSF NEWTX.*

Users must have read/write access to TCF and TSF files. Any open of an ADMINS 
data file that contains text fields, even if it for read-only access, will fail unless the 
TCF and TSF files can be opened for writing.1

3. TCF and TSF files are needed to support text fields. Consequently, text fields 
must always be an actual field in an existing record of a data file. Some 
examples of situations where text fields cannot be used, because of the failure to 
meet this requirement:
"Pure" local RMO fields that do not map to, for example, linked fields in a TRO, 
cannot be text fields. (Reason: no actual field in data file.)
In Append Mode in TRANS you cannot view or edit the text fields of the main 
file. (Reason: the record is not appended to the file until you press NEXT, so 
there is no "existing record" that can be tied to the TCF and TSF files).2

A CREATE statement in REPORT or the ANALYZER, or a VIRTUAL statement 
in SCREEN cannot be used to create a text field. (Reason: no actual field in data 
file.)

4. Text fields should not be assigned a value in an expression. For example, the 
following expressions:

TX_FLD = ' '
TI_FLD1 = TI_FLD2
will not work, because the value is changed only in the ADMINS data file, not in 
the Text Storage File. To copy text from one text field to another, use the 
TEXTCOPY3 subroutine.

1.    TCF and TSF files can be dynamically expanded by multiple users. OpenVMS 
restricts access to files with this capability, such that only users with write access 
can share the file.

2.    In Insert Mode of TRANS you may view or edit text fields, because the record is 
created as soon as you "Enter I to Insert"

3.    See Appendix H.6.1 “TEXTCOPY: Move Information Between Text Fields”.
K - 2   ADMINS User Guide



Special Considerations
5. When external text fields (TXnn) are used, the logical name

ADM$TX_DIRECTORIES
must be assigned. ADM$TX_DIRECTORIES must point to a text file which 
contains a list,4 one entry per line, of logical names for all directories that are to 
be used for storing and searching external text files.
The logical names in the ADM$TX_DIRECTORIES list are all translated 
whenever ADMINS opens a data file that has external text fields. When an 
external text file is referenced, ADMINS will search for the completely 
expanded disk and directory specification (i.e. all logical names translated, all 
default values included) of that file among the translations of the 
ADM$TX_DIRECTORIES logicals. If a match is found, ADMINS will use the 
corresponding logical name for that disk/directory in building its internal file 
specification for the referenced file that will be stored in the text storage file. 
This is done so that changes in the physical location or organization of the text 
files will not affect their use with external text fields.
If no match is found for the expanded file specification, ADMINS displays the 
message:

<Directory> is not a valid Text Directory

To make the invalid directory valid, assign its specification to a logical name, 
and include that logical name in the ADM$TX_DIRECTORIES file.
For example, say the text files associated with our data file are stored in two 
directories on disk T1$DISK, [LETTERS] and [MEMOS]. If the following logical 
name assignments are made:

$ ASSIGN TI$DISK:[LETTERS] LET$DIR
$ ASSIGN TI$DISK:[MEMOS] MEM$DIR

We would then make the following entries in the file assigned to the logical 
name ADM$TX_DIRECTORIES:

LET$DIR 
MEM$DIR

Then, when TRANS is used to edit the (previously empty) external text field 
TX_TEST, it will prompt for the name of the external file to be associated with 
field TX_TEST. If we give the following file specification (assuming our current 
default disk/directory is TI$DISK:[WORK])

Enter file name: [MEMOS]91VAC.TXT

4.     If an asterisk appears in column one in the ADM$TX_DIRECTORIES file that line 
is treated as a comment line. Any text in the line after the logical name followed 
by at least one white space character is also treated as a comment.
ADMINS User Guide  K - 3



Special Considerations
ADMINS first fully expands the disk/directory portion of the file specification. 
In this case it would be expanded to:

TI$DISK:[MEMOS]
Then ADMINS searches for this disk/directory in its list of translations of the 
logical names in the ADM$TX_DIRECTORIES file. In our example, that list can 
be represented by the following table:

         ADM$TX_DIRECTORIES             
               Entry            Translation
         ------------------     -----------
             LET$DIR            TI$DISK:[LETTERS]
       ----> MEM$DIR      ----> TI$DISK:[MEMOS]
ADMINS would find a match for the specification given in the translation for 
the logical name MEM$DIR, so it would store the following as the complete file 
specification in the Text Storage File:

MEM$DIR:91VAC.TXT

This method allows movement of the text files associated with external text 
fields to different physical locations, while only having to account for the 
movement once, by changing the logical name assignment. Continuing the 
example, if it became necessary to change the location of the [MEMOS] directory 
to disk UT$DISK, the logical name assignment:

$ ASSIGN UT$DISK:[MEMOS] MEM$DIR
is the only change necessary.
The ADM$TX_DEFAULT logical name is optional. If assigned, and if present in 
the ADM$TX_DIRECTORIES file, ADMINS will use it as the default location 
where external text files are to be created or searched for. If 
ADM$TX_DEFAULT is not assigned, the current default directory will is used.

6. Whenever a text field is included in a file definition, ADMINS automatically 
creates an internal field (field type L) called TI$fieldname. For example, if the 
internal text field EXPLANATION/TI60 is included in a file's definition, when 
that file is defined it will actually have the following two fields included:

    EXPLANATION TI60
    TI$EXPLANATION L
These special internal fields relate the record in the ADMINS data file to the 
appropriate record in the text catalog file (TCF) (which in turn relates the data 
file record to the text storage file (TSF) record).
The TI$ fields are real fields in the file, and count against the ADMINS limits 
such as the maximum number of fields in a file or virtual record. But these fields 
are always handled internally by ADMINS and should never be manipulated 
in any way (i.e. edited, changed, linked, transferred etc.), and need never be 
referenced by application code or by the user.

7. Text fields cannot be key fields.
8. Text fields should not be used as arguments for ADMINS subroutines unless the 

documentation for the subroutine specifically states that text fields are 
supported (see Appendix H: “Subroutines”).
K - 4   ADMINS User Guide



Special Considerations
9. When the TED edit of the document associated with a text field is concluded, 
and the new or changed document is saved, the record that contains that text 
field is written back to disk immediately. This differs from standard TRANS 
functionality, and in certain circumstances the difference may be significant.
For example, if the text field is a LINKed field, the LINK record buffer is written 
back immediately and unconditionally. (Normally, LINKs are not written until 
end-of-record processing, or LINK writing can be controlled via the special 
RMO field W$W (refer to 16.1“Controlling Changes Written To Disk” ).
Application developers must take this immediate writing into account when a 
text field can be altered in a screen. Function and controls such as those listed 
below may be seriously affected by the use of text fields that can be altered in a 
screen.

W$W to control writing to main or link files, (refer to 
16.1“Controlling Changes Written To Disk” ).

NOWRITE inhibits field by field writing of main file (refer to 
16.1.1“High Volume Update: NOWRITE” ).

LFEXIT or LFBACK control of data entry (refer to 6.2.1.1“Update 
Mode Under LFEXIT Control” ).

REQUIRE statements to ensure field is non-null before it is written    
(refer to 5.5.5“REQUIRE Statement” ).

10. Text fields cannot be part of a Data View (Appendix I.6 “Data Views ”).
ADMINS User Guide  K - 5



Special Considerations
K - 6   ADMINS User Guide



Appendix L:Managing ADMINS

This Appendix describes ADMINS system management issues. Detailed knowledge 
of these items is not needed for ADMINS application development.

L.1  Distribution Kit

The ADMINS Distribution Kit consists of the distribution media and the hardcopy 
documentation packaged with it. For specific information regarding installing or 
updating ADMINS on your system, consult the ADMINS Distribution Guide that is 
included in the Distribution Kit.

L.2  Installing ADMINS Commands

OpenVMS ADMINS commands (".EXEs" - the executable images) should be 
"installed" using the DCL INSTALL utility.

Executable images are installed either to grant privileges beyond what the users of the 
image have, or to make the image run faster by pre-performing some of the work of 
loading the image into memory.

Granting privileges to an image rather than the user is preferred from a system 
security standpoint, allowing the system manager more precise control of how and 
when a privilege is available and utilized. ADMINS images that access ADMINS 
datafiles should be installed with SYSLCK privilege. The ADMINS magnetic tape 
handling commands should be installed with PHY_IO privilege. (Otherwise the 
process that calls the image must have the required privilege.)

Installation can speed up activation of images in three ways:

Installing an image "open" saves the work of searching the file system for the 
image file. Most commonly used ADMINS images should be installed as open.
Installing an image "header resident" saves the search as above, and also 
additional work of loading the image file header into memory.
Installing an image "shared" causes part or all of the image to be loaded into 
memory when it is activated. The portions loaded into memory can then be 
shared by other users of the image, rather than each user loading a separate 
copy of the image into memory from disk. In situations where multiple users 
run the same image simultaneously, this can save memory utilization. TRANS 
should be installed shared.

Installing an image bypasses the file system search by keeping the physical location 
(the "disk address") of the image in memory. If you load a new version of the image 
onto disk, for example a new release of ADMINS, VMS would still attempt to access 

NOTE
ADMINS User Guide L - 1



Version and Date Stamp of an ADMINS Command
the old version at the physical address stored in memory by the install operation. For 
this reason the old image must be removed from OpenVMS' list of open images and 
the new image must be installed in its place. The next section describes command 
procedures supplied with the distribution kit that handle installation and removal of 
ADMINS images.

L.2.1  Command Procedures for Installing/Removing Images

The following command procedures for installing and removing ADMINS images 
are included in the ADMINS distribution kit:

                    

L.3  Version and Date Stamp of an ADMINS 
Command

You can determine the version and date (i.e. the date the image was created) of any 
ADMINS command by typing "command -ID".  For example:

     $ analyzer -id
     AN         ADMINS V6.1.AXP OpenVMS 6.1  4-MAY-1995
     ADMINS File System
     LIBADMINS: ADMINS V6.1.AXP OpenVMS 6.1  4-MAY-1995
     LIBADMIO:  ADMINS V6.1.AXP OpenVMS 6.1  4-MAY-1995
     LIBSUBS:   ADMINS V6.1.AXP OpenVMS 6.1  4-MAY-1995
     LIBVTIO:   ADMINS V6.1.AXP OpenVMS 6.1  4-MAY-1995
     LIBLOG:    ADMINS V6.0.AXP OpenVMS 6.1 25-JAN-1995

Procedure Function

ADM4INS.COM Installs all the commonly used ADMINS commands 
in the recommended manner. This procedure 
should be called as part of the system startup 
procedure.

ADMINSREM.COM Removes all the commands installed by 
ADM4INS.COM. Used when a new distribution of 
ADMINS is being loaded on the system.

4INS.COM Installs a single image “open”. Used as follows (to 
install PROD):

@ADM$DIST:4INS ADM$DIST:PROD

4INSHARE.COM Installs a single image (usually TRANS) “shared”, 
as follows:

@ADM$DIST:4INSHARE 
ADM$DIST:TRANS

REM.COM Removes a single image, e.g. to remove PROD:
 @ADM$DIST:REM ADM$DIST:PROD
L - 2   ADMINS User Guide



Installation Control
Use the version and date stamp of an ADMINS command in conjunction with the 
ADMINS Release Notes Addenda that are sent out periodically to determine if the 
problems and fixes described apply to the images currently in use on your system.

When you contact ADMINS Technical Support with a question or problem related to 
an ADMINS command currently in use on your system, please provide the version 
and date information for the image.

L.4  Installation Control

ADMINS commands will run on a VAX computer or VAX cluster if either of the 
following conditions are true:

1. The "system ID"1 of the computer is registered at ADMINS, Inc. as a licensed 
VAX system and has been built into the ADMINS command being run.

2. there is a properly formatted control file (CTRL.FIL) in the directory assigned to 
the logical name ADM$NAT.

When an ADMINS command is run, it checks for a registered system ID on the VAX 
computer. If a registered system ID is found, the ADMINS command will then run. 
If a registered system ID is not found, the ADMINS command checks for a valid 
control file. If a valid control file is found, the command will then run.

There are several checks that may be performed in confirming the validity of the 
control file, some checks are performed only for processor-based licenses, others are 
performed only for usage based licenses. The most common reasons for having an 
invalid control file are:

1. The Control File has moved.
2. The Termination Date of the License has been reached.
3. The current system time is before the time of last use recorded in the control file 

(system time incorrectly reset).

L.4.1  VADM Command

The VADM command operates on the control file (CTRL.FIL). The creation and 
initialization of the control file is described in the ADMINS Distribution Guide, 
which comes with the Distribution Kit. The VADM command is run by logging on 
into any ADMINS user account and then executing the following:

     $ set default adm$dist
     $ run vadm
     VADM version 0700
     ADMINS license no XX for XX users, XX users active
     INIT TRM  DAT DISPLAY EXTEND: 

1.    Only certain VAX processor types (usually older models) have unique system 
IDs. Processors without unique system IDs and all usage based licenses must use 
the control file.
ADMINS User Guide  L - 3



Installation Control
Use the following checklist to ensure success running VADM:

1. The logical name ADM$DIST must point to the directory that contains the 
ADMINS executable images.

2. The logical name ADM$NAT must point to the directory that contains the 
CTRL.FIL.

3. The control file (CTRL.FIL) must be at least 10 blocks long and contiguous.
4. The password must be entered correctly (if required).

VADM first identifies itself by version number, then it displays license information 
and the current number of active users. VADM then prompts to perform one of its 
five functions: control file initialization (INIT), setting a new termination date (TRM), 
resetting the date of last usage (DAT), displaying the control file contents (DISPLAY), 
and extending the termination date by one month (EXTEND). The first three 
functions require a password which is obtained by calling the ADMINS Office of 
Technical Support at (617)494-5100.

For the INIT TRM and DAT functions enter the function name followed by a date (in 
numeric YY MM DD format), as instructed by the ADMINS support staffer handling 
your call.

     $ run vadm
     VADM version 0700
     ADMINS license no XX for XX users, XX users active
     INIT TRM  DAT DISPLAY EXTEND: INIT 98 1 6
     License number:

VADM prompts for the license number to be validated.  Enter your license number.

     License number:XX
     ADMINS license number XX, XX users, for Alpha OpenVMS
     11350211K?
L - 4   ADMINS User Guide



Installation Control
VADM displays a prompt string, terminated by a question mark.  Read the prompt 
string to the ADMINS staffer.  The ADMINS staffer will provide a response string to 
be entered at the question mark. 

     11350211K?ZZZZZZ
     License number XX, XX users.
      0 0  Last used: 1997-01-09 08:37:05  Expires: 1998-01-06 

Before calling ADMINS, run VADM using the DISPLAY function first to verify that 
the requirements of the above checklist are satisfied. If VADM finds a valid file the 
information in the control file is displayed. If the control file exists, but the content is 
not valid, VADM will display the message:

     INVALID CONTROL FILE. 

If the control file is moved it is invalidated. Operations such as using the VMS 
BACKUP utility to backup and restore the disk that contains the control file will 
probably move it. "Defragmentation" programs should not be used on the disk that 
contains CTRL.FIL (because they might cause it to be moved and invalidated), unless 
the CTRL.FIL can be excluded from the defragmentation process.

The INIT function is used when building ADMINS or when the control file has been 
moved. The TRM function is used to set a new termination date in the control file. 
The DAT function is used to reset the date of the last usage.2 

The DISPLAY function displays the current contents of  the control file:

     $ run vadm
     VADM version 0700
     ADMINS license no XX for XX users, XX users active
     INIT TRM  DAT DISPLAY EXTEND: DI
     License number XX, XX users.
      0 0  Last used: 1997-01-09 08:37:05  Expires: 1997-12-31

The display includes four elements:

a. EXTEND function status:  Zero (0) means EXTEND is still available to be 
used. One (1) means EXTEND has been used and is unavailable until the 
TRM or INIT function is used again.

b. License type (for ADMINS internal use).

c. The date and time the last ADMINS was run.

d. The termination date. After this date, an attempt to run an ADMINS 
command will receive the message "IMAGE TIMEOUT".

The EXTEND function extends the termination date by one month:

     $ run vadm
     VADM version 0700
     ADMINS license no XX for XX users, XX users active
     INIT TRM  DAT DISPLAY EXTEND: EXTEND       
     License number 2, 48 users.
      1 0  Last used: 1997-01-09 10:50:36  Expires: 1998-01-31

EXTEND may be used only once until the TRM or INIT functions are used to reset 
the control file.

2.    This function would be used if the system date and time was accidentally set 
ahead and then subsequently set backward to correct it.

NOTE
ADMINS User Guide  L - 5



Installation Control
L.4.1.1  License Expiration Reminder
ADMINS commands which open ADMINS data files send e-mail reminders when 
the license expiration date is less than a month away.  One reminder is mailed each 
week, starting four weeks before the expiration date.

By default, ADMINS commands mail the message in the file adm$dist:admtmo.msg 
to SYSTEM (on OpenVMS systems).  This default reminder message reads as follows:

Date: Thu, 9 Jan 1997 15:54:22 -0500
From: ADMINS User
To: root
Subject: ADMINS timeout on Fri Jan 31

ADMINS will time out on the date specified above.

To reset the timeout date contact ADMINS Inc. at (617)494-5100
during our normal business hours:

     Monday through Friday  9:00 AM to 5:30 PM (eastern time).

You can extend the period before timeout by one month one
time without calling ADMINS, by performing the following steps:

  Log on so that you have access to the ADMINS commands,
  and to the system prompt (for DCL or UNIX, usually the "dollar 
sign").

  At the system prompt:

  On OpenVMS systems type:    run adm$dist:vadm

  On UNIX systems type:       vadm

  Then type "EXTEND" at the following prompt:

  INIT TRM  DAT  BACK DISPLAY EXTEND:

The timeout date will be extended by one month.

NOTE: The above procedure can only be used once. Once the
extension has been used you must contact ADMINS to extend
the timeout date any further.

This message will be issued every seven days
if ADMINS is used within 4 weeks of the timeout date.

The mail subject heading shows the license expiration date, and the message includes 
instructions for extending the expiration date yourself (once, for a month, as 
described in the previous section) and for obtaining a password.

The optional system logical name ADM$TMO_WARNING can be used to send the 
message to users other than SYSTEM or root. The string assigned to this logical name 
must be a valid recipient name, list of names, or alias for the OpenVMS MAIL 
program. If an incorrect recipient name is assigned to ADM$TMO_WARNING, the 
mail utility displays an error message when the ADMINS command runs it.

The optional system logical name ADM$TMO_MESSAGE can be used to a send 
message other than the default message in adm$dist:admtmo.msg. To use this 
option, prepare a file containing the message, set the file permissions so that all 
ADMINS users can read it, put it in a directory to which all ADMINS users have 
access, and assign the file’s name to ADM$TMO_MESSAGE3.
L - 6   ADMINS User Guide



Implementing the Shared Memory Facility
If the message file cannot be found or cannot be read, no messages are mailed and no 
error messages appear. Therefore, if you do not want this email notification, you can 
disable it by setting ADM$TMO_MESSAGE to a string which is not likely to be file 
name. For example:

 assign /system _disabled_ ADM$TMO_MESSAGE

If either of the two optional logical names is used, it must be in the system logical 
name table. Assigning these logical names on the group or process level has no effect.

L.5  Implementing the Shared Memory Facility

A disk file must exist for each group using the shared memory facility described in 
Chapter 20: “Shared Memory Emulation”. The shared memory area is "mapped" onto 
this disk file. The name of the disk file is SHARED.FIL, and the location of the file 
must be assigned to the logical name ADM$GRPSHR in the group logical name table.

To create SHARED.FIL, log into a User Account in the group which is to use the 
shared memory facility. SHARED.FIL must be contiguous and at least 8/8 blocks in 
size. For example, assuming the group is 31 and the directory to hold SHARED.FIL 
is SYS$SYSDEVICE:[PAYROLL], create SHARED.FIL as follows:

     $ copy/contiguous
     $_FROM:         adm$dist:template.fil 
     $_TO:           shared.fil
     $ set protection=(s:rw,o:rw,g:rw,w:rw) shared.fil

Then, include the following assignment in the login command file for all users in 
group 31:

     $ ASSIGN/GROUP SYS$SYSDEVICE:[PAYROLL] ADM$GRPSHR

If the shared memory facility is required by multiple groups, repeat the procedure for 
each group.

3.    You could instead edit adm$dist:admtmo.msg; but next time you installed an 
ADMINS distribution kit, your changes would be superseded by the 
admtmo.msg file in the distribution kit.
ADMINS User Guide  L - 7



Managing ADMINS Usage Slots
L.6  Managing ADMINS Usage Slots

The ADMINS Usage Management File allows a system manager to reserve, or to 
limit, the number of slots available for a UIC group, for a user (that is, a VMS 
username),  for a specific batch queue, or for all batch queues. All of these options can 
be used together if desired.

The Usage Management File can be created with any text editor. An example 
showing syntax for the various options is shown below.

 ! ADMINS Usage Management File
 ! ================================
 ! Anything following exclamation point is a comment
 ! 
 ! Slots reserved for groups
 ! -------------------------
 uic_group=(31,6)                 ! 6 slots for Accounting (group 31)
 uic_group=(40,2,5)               ! 2 slots for Payroll (group 40)
 !           |  | |______________ maximum concurrent users in group
 !          |  |________________ number of usages reserved 
 !          |___________________UIC group
 !
 ! Slots reserved for users
 ! ------------------------
 user_name=(public,1)              ! 1 Slot reserved for user "public"
 !             |   | |___________ maximum concurrent logins for user
 !             |   |_____________ number of usages reserved for user
 !             |_________________ login name
 !
 ! Slots reserved for batch
 ! ------------------------
 batch_queue=(*,1,2)              ! Batch processing slots
 !               | | |________________ Limit of 2 batch jobs at a time
 !            | |__________________ Reserve 1 slot for batch jobs
 !            |____________________ Queue name (* = all queues)

In this configuration, up to six users in group 31, up to two users in group 40, one 
PUBLIC user, and one batch job in any queue are guaranteed access to ADMINS at 
all times. Other users compete for the remaining slots for which the system is 
licensed. However, the number of concurrent users in group 40 is limited to five; and 
the number of concurrent batch jobs is limited to two (a limit can also be specified for 
a username).

To enable the Usage Management File, first create the file with the desired options. It 
can be in any directory, but should be in a system directory such as ADM$NAT or 
ADM$DIST. The usage file may have any name. Protection on the usage file must be 
set so that the world can read it (WO:R). Then make the following system logical 
name assignment (this should be placed in SYSTARTUP.COM):

 $ ASSIGN /SYSTEM <Usage_File_Spec> ADM$USAGE_SLOT

When ADMINS runs, it tries to translate ADM$USAGE_SLOT. If the logical name 
exists, ADMINS tries to open the file it points to. If for any reason the file cannot be 
opened or cannot be read (no such file, privilege violation, etc.) ADMINS simply 
continues. Otherwise, the options in the file are read and used by the installation 
control system.
L - 8   ADMINS User Guide



Appendix M:

(This chapter’s content only appears in the Windows version of the Manual.)
ADMINS User Guide M - 1



M - 2   ADMINS User Guide



Appendix N:RNF: The Document Runoff 
Program

RNF is used to produce publication quality printed output from source text files. 
Source text files are prepared with a text editor.

N.1  Function of RNF

Text and control words are both typed together in the source text file(s). Text is 
printed ("run off") by RNF in left and right justified output format. However, literal 
sections of text (see LITERAL) are printed exactly as they are found in the source text.

Source lines are run together to allow flexibility in the preparation of the input text. 
The BREAK control word, or the insertion of at least one blank space at the beginning 
of a line, instructs RNF not to run a line together with the previous line.

Ordinarily, when lines are run together, a blank is inserted at the point where lines are 
joined, e.g.:

 .sk
     Now is the time
     for all good men
     to come to the aid of their party.
     .sk

is output as follows:
Now is the time for all good men to come to the aid of their party.

If however a line to be run together contains only a punctuation character (in column 
1) no space as inserted between it and the preceding line:

     .sk
     The parking restriction is in effect 
     in an area bounded by the 
     following streets
     : 
     Pine, Maple
     , 
     Elm, Chestnut.
     .sk

is output as follows:
The parking restriction is in effect in an area 
bounded by the following streets: Pine, Maple, 
Elm, Chestnut.

Control words (described below) all have a period (".") in column 1. (If a '.' in column 
1 is part of the actual text then place another '.' in column 2 and the line will be taken 
as source text with only one period being recognized.)
ADMINS User Guide N - 1



RNF Dialogue
When multi-file documents are prepared, the NEXT FILE control word (.NF) can be 
used to link the component source files that comprise the full document. Another 
technique for multi-file documents is the indirect file feature, that is, one text file can 
reference another text file, and RNF will act as if the referenced file were present in the 
first text file. This is done by placing the file name of the referenced file on its own line 
preceded by "@@", as in the following:

     @@PART2.TXT

There may be up to five levels of indirect referencing. That is, the indirectly referenced 
file may itself contain indirect references.

N.2  RNF Dialogue

The RNF command has a variety of options that modify the standard usage to simply 
produce an output printout on the printer. The user requests RNF by typing the 
following to the VAX/VMS "$" prompt.

     $ rnf text-file-name [kb|vt|la]

The "text-file-name" is the name of the file containing the RNF source text. If no file 
type is given RNF will assume a file type of “txt”, e.g. if the following command is 
entered:

     $ rnf status

RNF will attempt to read the file status.txt.

"KB/VT/LA" refer to the output device. "KB" means print the output text at the user's 
terminal (keyboard). VT means the output is to be displayed on a video terminal, so 
every 24 lines RNF will pause waiting for you to press the RETURN key to continue. 
LA means that the output is to be directed to the terminal's printer port1 and not 
echoed on the screen. If the "KB/VT/LA" is omitted then the output is directed to the 
device assigned to the logical name ADM$SPOOL0 or to the device referenced by the 
"SPn" parameter of the SP control word in the source.

1.    When using this feature the "/FORM characteristic should be set so that the printer 
will properly handle form feeds.
N - 2   ADMINS User Guide



RNF Control Words
N.3  RNF Control Words

BREAK
.BR

Do not run the preceding line together with the next line. 
Short lines created by implicit breaks (leading blank) or an 
explicit break (.BR) are not right justified. A break is also 
caused by a skip (.SK) or an eject (.EJ).

SKIP
.SK n

Break and skip n lines. If n is absent then one line is skipped.

EJECT
.EJ
.EJ n

Break and continue on a new page. If n is present only eject 
the page if the current line is within n lines of the bottom of 
the page.

INDENT
.IN n

At the next new line start indenting at the current active 
indentation plus n, and make this new indentation the active 
indentation until it is reset. .IN should be preceded by a break 
(e.g. .BR) to make explicit the start of indentation.

UNDENT
.UN

.UN n

Reduce the active indentation by n. If n is absent then reset 
the active indentation to 1. Here too .UN should be preceded 
by a break (e.g. .BR).

MARGIN

.MA [n]

Start the next source line at column n regardless of the active 
indentation. Fill out the next line with blanks up till the active 
indentation and then run subsequent lines together. This is 
used to place paragraph descriptions outside the indented 
paragraphs. N must be less than the current indentation. If n 
is absent it is assumed to be 1. .MA is preceded by a break.

OVERPRINT

.OV

Bold ("overprint") the next source line, i.e. print it darker than 
its surrounding text. .OV does not cause a break.
ADMINS User Guide  N - 3



RNF Control Words
UNDERLINE

.UL [0]

Underline the text on the next source line. UNDERLINE is 
abbreviated "UL" to distinguish it from UNDENT. ".UL" does 
not cause a break.
If ".UL 0" is used, no space is appended to the end of the input 
source line in the output document.
 As printers from different manufacturers use different 
control sequences to enable print attributes such as 
"underline", RNF uses the logical name ADM$PRINTERn 
(where "n" is the same as ADM$SPOOLn, e.g. 
ADM$PRINTER6 describes the type of printer for 
ADM$SPOOL6) to determine which printer's sequences 
should be used.
If ADM$PRINTERn is assigned for the document's 
destination ADM$SPOOLn, RNF checks to see if it is 
assigned one of the following values:a

Value                       Target Printer
-----                           --------------
DEC_LN03*            Digital LN03*    
CI_3500                   C. Itoh 3500
HP_Laserjet            HP Laserjet
HP_IBM-US            HP Laserjet in IBM PC mode
IBM_Proprinter      IBM Proprinter
Xerox_4045             Xerox 4045

ADM$PRINTERn is also needed if your document uses 8-bit 
characters, as different printers use different values for the 
same character.

CENTER

.CE

Center subsequent lines until a break.

TAB

.TA n1 n2 etc.

Set tabs to column n1, n2, etc. A tab character in the source 
text causes a "tab" to the next tab setting in the output text.

LITERAL
.LI on
.LI off

.LI 2

Print all source text contained between the .LI "on" and "off" 
exactly as it appears in the source file. .LI 2 is a variation of 
.LI on meaning to double space the literal text. .LI on should 
be preceded by a break and .LI off should be followed by a 
break.

In all instruction formats that use "on", the presence of "on" will be assumed if 
nothing follows the control word.

BOX
.BO n

.BO

Start printing source text in a "box" of width n centered on the 
page. .BO without a value following it acts to reset to regular 
indentation and page width.

FOOTNOTE
.FO on

.FO off

Treat all text between the .FO "on" and "off" as a footnote. 
Footnotes can use most other RNF features. Footnotes are 
printed at the bottom of each page under the footnote dashed 
line.

a.    Digital LN03 is the default if ADM$PRINTERn is not assigned or 
invalid.
N - 4   ADMINS User Guide



RNF Control Words
BOX
.BO n
.BO

Start printing source text in a "box" of width n centered on the 
page. .BO without a value following it acts to reset to regular 
indentation and page width.

FOOTNOTE
.FO on
.FO off

Treat all text between the .FO "on" and "off" as a footnote. 
Footnotes can use most other RNF features. Footnotes are 
printed at the bottom of each page under the footnote dashed 
line.

RAGGED
.RA on
.RA off

Print all source text contained between the .RA "on" and "off" 
with a ragged right margin.

AUTO INDENT
.AI n

RUNOFF output is automatically indented 15 spaces when 
the output device is a printer and 8 spaces when the output 
device is a terminal. The .AI control word allows you to set 
the auto indentation to any number, n. This indentation is not 
part of the indentation specified by the .IN control word. 
Auto indent is usually set at the top of the file.

DOUBLE
.DO

Double space the printout. By default, RNF uses single 
spacing.

SINGLE
.SI

Single space the printout.

WIDTH
.WI n

Print subsequent lines for a page width of n. By default, the 
page width is 60 characters.

LENGTH
.LE n

Print pages of length n. Page length is set to 58 by default, 
which is what is required for 8 1/2 by 11 inch paper, with 8 
lines for top and bottom margin.

PAGE
.PA n
.PA on
.PA off

If n is present set the page counter to n. "On" turns printing 
of page numbering on (as does .PA n), and "off" turns it off. 
By default, page numbering is on and the page numbering 
display beginning on the second page. However, the page 
numbering display begins on the first page when the heading 
instruction (.he) is also used. Even when page numbering is 
not printed, the internal page counter is maintained.

JUSTIFY PAGE 
NUMBER

.PJ 

Right justify the page number according to the current width 
setting.
ADMINS User Guide  N - 5



RNF Control Words
SECTION
.SE
.SE n

.SE xxx

Print section numbers when paginating, for example 3-1, 3-2, 
3-3, etc., where "3" is the section number and "1", "2", and "3" 
are the page numbers. If N is absent the current section 
number is incremented by one and the page is reset to "1". If 
N is present then N becomes the active section number.
The section string can also be a single letter. For example, ".SE 
C" produces page numbers C-1, C-2, C-3, etc. The word 
"Page" precedes the section number if the section string is one 
or two numbers long or a single letter.
The section string may also be longer than 1 letter which is 
useful for more complicated page and section numbering 
schemes. When the section string is longer than 1 letter, the 
word "Page" is suppressed and the page number is appended 
directly to the section string without any delimiter. The 
delimiter between the section string and the page number 
should be included in the section string. For example, ".SE 
1.2-" produces page numbers 1.2-1, 1.2-2, 1.2-3 etc. The 
section number displays in the upper right corner of the 
page, flush with the right margin setting. When using the 
longer section string, the word "Page" is printed only when it 
is included in the section string. For example, ".SE Page 1.2." 
produces page numbers Page 1.2.1, Page 1.2.2, Page 1.2.3 etc.

HEADING
.HE on
.HE off

.HE n

Take the next line as a heading to appear on every 
subsequent output page. "Off" turns off the print heading 
feature. "N" lines of heading can be created by ".HE n" 
followed by the number of lines of the heading as indicated.

NEXT FILE

.NF xxx

NEXT FILE is abbreviated NF. Continue processing source 
text from file xxx, which may itself contain another .NF. All 
source text contained after the .NF is not read by RNF.

PRINT CONTROL
.SP #copies SPn 
#overprints form

If the first line in the text is the .SP line, the output from RNF 
will be spooled. The .SP control word is similar to the LP 
statement in REPORT, see Section 7.17.7. For example, to 
print 1 copy on the queue assigned to ADM$SPOOL3 (with 
no overprinting), the .SP line would be .SP 1 3.

METACHARACT
ER 
.META [x]

Specifies "x" as a "meta character" that is read but not output 
by RNF. "x" remains a meta character until another ".meta" 
lines appears (either ".meta y" to declare "y" a meta character 
or ".meta" to declare no meta character). The meta character 
capability can be used to allow RNF to display strings that 
would otherwise be interpreted as RNF syntax.
                .meta %
                %@@name.txt
                .meta
would place the string @@name.txt in the output document. 
(Without a meta character "@@name.txt" starting in column 1 
of the source would be interpreted as a instruction to read 
source lines from the file "name.txt").
N - 6   ADMINS User Guide



Ejecting Before Printing Literal Paragraphs
N.4  Ejecting Before Printing Literal Paragraphs

RNF can be instructed to perform a page eject before a literal paragraph which cannot 
completely fit on the current page by assigning the letter Z to the logical name 
OPTION (see Appendix A). Hence, the literal paragraph is not split between pages. 
To assign Z to OPTION type:

     $ assign z option

The NO EJECT control word (.NJ) is used when OPTION Z is assigned, to suppress 
the page ejecting by OPTION Z as described below.

N.5  Control Code Facility

RNF provides an easy way to use printer control codes for various printers. A text-
editable file, maintained by the user, is used as a lookup table to find any desired 
control codes, and mnemonics for the codes.

In the source text the ".CC" control word is followed by a user defined mnemonic for 
a printer control code for example, ".CC HORIZ_12" to set pitch to 12 characters/inch.

If ".CC" is used, RNF reads the table of control codes in the text file whose name is 
assigned to the logical name ADM$STYLE. It searches the table for the mnemonic 
"HORIZ_12" and inserts its translation (the escape sequence) into the RNF output.

The ADM$STYLE file can contain any escape sequences and mnemonics desired, up 
to a limit of 200 escape sequences. The following sample lines show the format for this 
table.

  * ----------------------------------------
  * character set
  .cc   USA             $27$(A
  .cc   BRITAIN         $27$(B
  * ----------------------------------------
  * horizontal pitch
  .cc   HORIZ_10        $27$[1w
  .cc   HORIZ_12        $27$[2w

Lines in the ADM$STYLE file not starting with '.' are ignored, and are only for 
documentation. Each keyword definition must begin with ".CC" or ".LK" (described 
below) followed by a blank, a mnemonic, another blank, and a substitution string, all 
on the same line. In ".CC" definitions, nonprinting characters (control sequences) such 
as escape can be represented as decimal ASCII codes surrounded by dollar signs (e.g., 
escape is written as "$27$"). The value string $NULL$ in a control sequence table 
translates to nothing. This is for situations where some printers don't support a certain 
function. NULL must be all uppercase.

".CC" can also be used without a table, by placing the escape sequence on the ".CC" 
line as follows:

NO EJECT
.NJ
.NJ off

For literal paragraphs between .NJ and .NJ off, RNF will not 
perform a page eject before printing a literal paragraph 
which cannot completely fit on the current page. In other 
words, RNF should act as if OPTION Z is not assigned.
ADMINS User Guide  N - 7



Including Date and Time in Output Document
           .cc %$27$[0m

The percent sign tells RNF that an escape sequence, not a mnemonic, will follow 
(percent sign cannot be the first letter of a mnemonic in the table). The "$27$" 
represents the "escape" character using the same convention for denoting nonprinting 
characters as described above.

Another RNF control word, ".LK" for "lookup" is used similarly to .CC, but the 
translation of a .LK mnemonic is assumed to be a string of printing characters. Thus, 
unlike the translation of a ".CC" mnemonic, RNF includes the translation of a ".LK" in 
calculations of line length, justification, etc.

RNF is not sensitive to whether the RNF control word (.CC or .LK) or the mnemonic 
is given in upper or lower case. There are no particular limits on the length of the 
mnemonics or the substitution strings in RNF, except that the entire definition must 
fit on a text line of 255 characters or less. Multiple tabs and blanks are ignored in the 
table and on the RNF instruction line.

The following logical name assignment:

     $ assign la120.tbl adm$style

will cause RNF to use the file "LA120.TBL" as its lookup table for control codes.

If there is a separate table for each type of printer, then by assigning the proper table 
to ADM$STYLE, the same RNF instruction file can be used on printers with different 
control strings.

N.6  Including Date and Time in Output Document

Three control words allow the creation date2 and/or time of the output document to 
be included in the text.

2.     The date and time inserted is the date and time reported by the operating system 
when the RNF execution begins.

DATE
.date

Insert the current date (format DD-MMM-YYYY, e.g. "24-Jul-
1997") into the document at this point.

TIME

.time

Insert the current time (format HH:MM, e.g. "14:15") into the 
document at this point.

DATE and TIME

.date_time

Insert the current date and time (format DD-MMM-YYYY 
HH:MM, e.g. "24-Jul-1997 14:15") into the document at this 
point.
N - 8   ADMINS User Guide



Sample RNF Source Text
N.7  Sample RNF Source Text

We include the first part of the source text of this Appendix as an example of the use 
of the RNF control words.

      .ai 9
      .wi 66
      .se N
      .pa 1
      .he 2
      ADMINS Manual
      Appendix N: RNF - The Document Runoff Program
      .ce
      N. RNF: The Document Runoff Program
      .sk
      ADMINS contains tools for word processing and preparing
      text documentation. The "run off" (RNF) program provides the
      tool for printing the text for publication. RNF is designed
      to be used with terminals and printers that have upper/lower
      case facilities.
      .sk 2
      N.1 Function of RNF
      .sk
      RNF is used to produce publication quality printed output
      from source text files. Text files are prepared with a text
      editor.
      .sk
      Text and control words are both typed together in the source
      text file(s). Text is  printed ("run off") by RNF in left
      and right justified output format. However, literal sections
      of text (see LITERAL) are printed exactly as they are found
      in the source text.
      .sk
      Source lines are run together to allow flexibility in the
      preparation of the input text. The BREAK control word, or
      the insertion of at least one blank space at the beginning
      of a line, instructs RNF not to run a line together with
      the previous line. 
      .sk
      Control words all have a period (".") in column 1. (If a
      '.' in column 1 is part of the actual text then place
      another '.' in column 2 and the line will be taken as
      source text with only one period being recognized.) The 
      .cc bo
      first two letters
      of the control word are placed after the period. The
      control words are described below. 
      .sk
      When multi-file documents are prepared, the NEXT FILE
      control word (.NF) can be used to link the component source
      files that comprise the full document. Another technique
      for multi-file documents is the indirect file feature, that
      is, one text file can reference another text file, and RNF
      will act as if the referenced file were present in the
      first text file. This is done by placing the file name of
      the referenced file on its own line preceded by "@@", as in
      the following: 
      .sk
      .li
          @@PART2.TXT
      .li off
      .sk
      There may be up to five levels of indirect referencing. That
      is, the indirectly referenced file may itself contain
      indirect references.
      .sk 2
      N.2 RNF Dialogue
      .sk
      The RNF command has a variety of options that modify the
      standard usage to simply produce an output printout on the
ADMINS User Guide  N - 9



Sample RNF Source Text

   
      printer. The user requests RNF by typing the following to
      the VAX/VMS "$" prompt.
      .sk
      .li
          $ rnf text-file-name [kb|vt|la]
      .li off
      .sk
      The "text-file-name" is the name of the file containing the
      RNF source text. If no file type is given RNF will assume a file
      type of "txt, e.g. if the following command is entered:
      .sk
      .li on
          $ rnf status
      .li off
      .sk
      RNF will attempt to read the file status.txt.
      .sk
      "KB/VT/LA" refer to the output device. "KB" means print the
      output text at the user's terminal (keyboard). VT
      means the output is to be displayed on a video terminal, 
      so every 24 lines RNF will pause
      waiting for you to press the RETURN key to continue. 
      LA means that the output is to be directed to the terminal's
      printer port* 
      .fo
      *When using this feature the "/FORM characteristic should be   

  set
      so that the printer will properly handle form feeds.
      .fo off
      and not echoed on the screen.
      If the "KB/VT/LA" is omitted then the
      output is directed to the device assigned to the logical
      name ADM$SPOOL0 or to the device referenced by the "SPn"
      parameter of the SP control word in the source.
      .sk 2
      N.3 RNF Control Words
      .sk
      .ej 6
      .in 15
      .ma
      .cc bo
      BREAK
      .ma
      ..BR
      Do not run the preceding line together with the next line.
      Short lines created by implicit breaks (leading  blank) or an
      explicit break (.BR) are not right justified. A break is
      also caused by a skip (.SK) or an eject (.EJ).
      .sk
      .ej 3
      .ma
      .cc bo
      SKIP
      .ma
      ..SK n
      Break and skip n lines. If n is absent then one line is
      skipped.
      .sk
      .ej 5
      .ma
      .cc bo
      EJECT
      .ma
      ..EJ
      .ma
      ..EJ n
      Break and continue on a new page. If n is present only eject
      the page if the current line is within n lines of the bottom
      of the page.
N - 10   ADMINS User Guide



Appendix O:Obsolete Commands and 
Syntax

1 (option) Terminal is VT100 terminal. ADMINS now 
checks terminal type via a system service.

2 (option) Terminal is VT52 terminal (see above).

4 (option) Enabled TRANS to use color REGIS graphics on 
VT241 terminals.

A (option) Specified “automatic decimal point alignment” 
in arithmetic computations. This is now the default 
behaviour. “Manual” (i.e. application-controlled) 
decimal point alignment can be specified by including 
“.” in the string assigned to the logical name OPTION 
(see Appendix A: “Options”).

[ADDER] (directory) Directory that held multi-adder control files.

ADD (keyword) File in TRANS was to have “multi-adder” 
protection.

ADM$KBBOARD (logical name) Formerly used to designate the “soft 
keyboard” table file. This functionality has been 
superseded by the TRANS environment file (see Section 
6.15 “The TRANS Environment File”)

ADM$MENU_KEY (logical name) Formerly used to redefine the keystroke 
that activates the menu bar. Superseded by the TRANS 
environment file.

ADM$NO_FCC (logical name) Formerly used to cause ADMINS 
commands that produce ADMINSxx.LIS output files to 
produce Stream_LF files instead of FORTRAN carriage 
control files.

ADM$PAUSE (logical name) Formerly used to cause TRANS to pause 
the specified number of hundreths of a second before 
trying to read input when it has just output more than 
one character.

ADM$QUERY_ 
KEY

(logical name) Formerly used to redefine the keystroke 
that activates the QUERY by TRANS. QUERY by 
TRANS is no longer supported.

ADM$RNF (logical name) Formerly used to identify file containing 
lookup table of control sequences, etc. for use with RNF 
“.cc” or “.lk” syntax. Superseded by logical name 
ADM$STYLE, which is used by both RNF and REPORT.

ADM$SCR_KEY (logical name) Formerly used to redefine the keystroke 
that activates the subscreen menu. Superseded by the 
TRANS environment file.

B (option) or:
ADMINS User Guide O - 1



-B (appended to file-spec) Bypassed file protection.

-C (appended to file-spec) File access optimization 
technique. Superseded by ADM$PERM_OPEN list of 
files (See Section 6.17 “File Access Optimization: Files 
Left Open at Branch”).

CALC (ANALYZER statement) Superseded by CREATE.

CLR.EXE (command) ADMINS command that cleared the video 
screen and placed the cursor at the top left corner. 
Superseded by the DCL command file 
ADM$DIST:CLR.COM. (The symbol CLR in 
ADMSYMDEF.COM now points to @ADM$DIST:CLR.)

d (lowercase) (option) Early (pre-Version 3.0) versions of TRANS 
would dump the DA array at a EXIT TO MINIMIZE 
FILE DAMAGE event.

DIFFDA (subroutine) Returns the difference in days between two 
dates. Superseded by TMDIFF (see Appendix H.4.1 
“TMDIFF - Difference Between Dates and Times”). 
Syntax:

STAT =DIFFDA(DATE1,DATE2[,RESULT])
If RESULT is not present in the list of arguments the 
result of DATE2 - DATE1 is loaded into STAT.

DIFFTM (subroutine) Returns the difference in seconds between 
two times of day. Superseded by TMDIFF (see Appendix 
H.4.1 “TMDIFF - Difference Between Dates and Times”). 
Syntax:

STAT =DIFFTM(TIME1,TIME2[,RESULT])

FINDREC (subroutine) Find and read record specified in file 
specified. Superseded by RECOPN and RECIDX 
subroutines (see Appendix H.11.2 “RECOPN and 
RECIDX - Access Records in any File”).

group event flags ADMINS functionality that used group event flags is 
now implemented using the VMS distributed lock 
manager.

HR (subroutine) Used to assign a series of logical names at 
one time.

I (option) Block Overlap Protection (now implicit)

KEYSTROKE (keyword) Former Menu Bar paragraph optional 
keyword to redefine the keystroke that activates the 
menu bar. Superseded by the TRANS environment file.

M (option) Enabled “monitoring”: information for the 
major ADMINS processing command would be placed 
in the process name. Now ignored.

MOVLNK (subroutine) Automatically moves a series of fields in 
TRANS from one main file or link file record to another 
main file or link file record. The MOVFLD subroutine, 
described in Appendix H.14.11 “MOVFLD - Move Fields 
Among Files Accessed via TRO”, has superseded 
MOVLNK. 
Syntax:

STAT = 
MOVLNK(FROMFILE,TOFILE,FRMFLD,TOFL
D,#FLDS)
O - 2   ADMINS User Guide



MULTI (command) Managed multi-adder file, cleared files-left 
open, flags left on, etc.

O (option) Invoked “Character Display Optimization” in 
TRANS. Now ignored.

-O (appended to file-spec) File access optimization 
technique. Superseded by ADM$PERM_OPEN list of 
files (See Section 6.17 “File Access Optimization: Files 
Left Open at Branch”).

PRT and PKB (command) ADMINS print ASCII text file commands. 
Superseded by operating system printing functionality.

q (lowercase) (option) Formerly used to modify how TRANS 
displayed screens. TRANS screen i/o has been 
reimplemented and this option is ignored.

Query by TRANS Mode of TRANS in which user could enter selection 
criteria, then TRANS would only display records that 
meet selection criteria. Because this facility could 
perform only sequential searches its performance was 
unacceptably slow, and consquently it has been 
dropped.

REGIS Graphics interpreter available on certain DEC terminals. 
Supported by the now obsolete ADMINS Color Business 
Graphics subroutines: 
BAR, HBAR, BRAT, HBRAT, LINE, LRAT, PCHART, 
REGIS, GICLR, GITXT.

RLKOUT (keyword) Requested record-lockout protection for file 
(now implicit).

SEQ (command) Superseded by FILECONVERT (see Section 
13.4 “FILECONVERT - Convert ADMINS datafile 
attributes”), which has identical syntax for the 
sequentialize operation.

SCRED (command) Superseded by TED (see Appendix J: “The 
TED Text Editor”).

SPROD (command) Special version of PROD optimized for 
circumstance when detail file was in sort on link fields. 
Functionality now implicit in PROD if detail file is in sort 
on link fields.

SYS$DEVICE (logical name) Identified disk on which multi-adder 
directory ([ADDER]) is located.

U (option) Restricted (to SYSTEM only) ability to use 
MULTI command to clear files.

XC (subroutine) Formerly used to reverse the 16-bit words 
in D and F fields, in situations when ADMINS received 
the data with the words “switched”. This situation no 
longer rises, so XC is no longer needed. For 
compatibility, if XC is called it simply moves the data to 
a new location without changing it.

z (lowercase) (option) Changed RNF so that it output the same 
number of lines in the same area of the page on page 1 as 
it did on all subsequent pages. Now RNF always works 
this way.
ADMINS User Guide  O - 3



O - 4   ADMINS User Guide



Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Symbols
- arithmetic operator in expressions, subtract 8-2
# (conditional compilation syntax) 1-11
$ before print fields, REP 7-13
$TT$, translate logical name ADM$TERM, COM 14-12
% arithmetic operator in expressions, modulus 8-2
%% automatic-only branch, TRS 5-55
%GRAPHICS, display field in graphics mode, SCREEN 5-66
%LOOKUP windows, SCREEN 5-67
%LOOKUP_ARRAYS, LOOKUP on local arrays, SCREEN 5-77
%LOOKUP_MENU, SCREEN 5-76
%MESSAGE example, SCREEN 5-85
%MESSAGE substatements, SCREEN 5-85
%MESSAGE, SCREEN 5-83
%PUSHBUTTON, display field as pushbutton 5-47
%WINDOW qualifier, specify TED window size, SCREEN 5-92
(blank), insert into alpha string, FORMAT subroutine H-30
* arithmetic operator in expressions, multiply 8-2
+ arithmetic operator in expressions, add 8-2
, (comma) TRANS suppresses commas in numerics, option A-1
, logical parameters, REP 7-55
--, putting responses to command dialogue on the command line 1-14
. (decimal pt.) turns off auto decimal pt. alignment A-1
..., horizontal ellipsis 1-4
.cc control code facility, RNF N-7
.date, RNF control word N-8
.date_time, RNF control word N-8
.DEF file type 2-1
.DEF, create from data file (MKDEF utility) 2-25
.DER file type 2-5
.FLG file type 2-5
.IDX file type 2-5
.LIS file type 1-15
.MAS file type 2-5
.REP file type 7-2
.RMO file type 9-1
.RMS file type 9-1
.TAB file type 2-5
.TAP file type 17-2
.time, RNF control word N-8
ADMINS User Guide   Index-1



.TMP file type 1-16

.TRO file type 5-1

.TRS file type 5-1
/ (slash), insert into alpha string, FORMAT subroutine H-30
/ arithmetic operator in expressions, divide & round 8-2
// arithmetic operator in expressions, divide & truncate 8-2
/2 derivation operator, second value, REP 7-19
/3 derivation operator, third value, REP 7-19
/4 derivation operator, fourth value, REP 7-19
/AVG derivation operator, average value, DEF 2-16
/AVG derivation operator, average value, REP 7-19
/C derivation operator, number of records, DEF 2-16
/E derivation operator, number of existences, DEF 2-16
/E derivation operator, number of existences, REP 7-19
/FI derivation operator, first value, DEF 2-16
/FI derivation operator, first value, REP 7-19
/LA derivation operator, last value, DEF 2-16
/LA derivation operator, last value, REP 7-19
/MAX derivation operator, maximum value, DEF 2-16
/MAX derivation operator, maximum value, REP 7-19
/MIN derivation operator, minimum value, DEF 2-16
/MIN derivation operator, minimum value, REP 7-19
/SA derivation operator, value from same record, DEF 2-16
/V derivation operator, total value, DEF 2-16
/V derivation operator, total value, REP 7-19
/VIEW qualifier, ANALYZER 12-13
= automatic link rename, TRS 5-14
= operator, RMS 9-8
=9 partial field, REP 7-21
=A partial field, REP 7-21
=X partial field, REP 7-21
=YY partial field, REP 7-21
=YY-MMM partial field, REP 7-21
@, referencing dictionary elements in instruction files 1-10
@@, indirect references in instruction files 1-6
[ ], optional item 1-4
[PAGE] total, REP 7-21
[PR], records printed this page, REP 7-58
[TR], total records printed, REP 7-58
~ prefix signals field in virtual record, LOOKUP SELECT 5-70
~ signals repetitive parameterization 7-51
~(tilde), accelerator key designator, menu bar and submenus, SCREEN 5-82
’ (apostrophe), insert into alpha string, FORMAT subroutine H-30

Numerics
1024 19-6
1024 byte records, special treatment for multi-user files 19-6
Index-2   ADMINS User Guide



132, screen header line TRS 5-7
4INS.COM, install single image command procedure L-2
4INSHARE.COM, install single image (shared) procedure L-2
512 word records, special treatment for multi-user files 19-6
8-bit collating sequences, DEF 2-29

A
-A file open action code appended to file spec 19-4
A$, logical name, TRANS command line argument 6-27
A$AV_ERR, logical name 13-18
A$BA_AFTER, logical name, BATCHJOB subroutine H-124
A$BA_ANYMSG, logical name, BATCHJOB subroutine H-125
A$BA_JOBNR, logical name, BATCHJOB subroutine H-125
A$BA_LOGDIR H-124
A$BA_LOGFILE, logical name, BATCHJOB subroutine H-124
A$BA_MSG H-125
A$BA_PRIOR, logical name, BATCHJOB subroutine H-124
A$BA_QUEUE, logical name, BATCHJOB subroutine H-124
A$BA_SETUP, logical name, BATCHJOB subroutine H-124
A$fieldname, logical name 13-17
A$FL, logical name 13-17
A$KL, logical name 13-17
A$LV, logical name 13-17
A$NB, logical name 13-17
A$NR, logical name 13-17
A$OP, logical name 13-18
A$RA, logical name 13-17
A$RL, logical name 13-17
A$RP, logical name 13-18
abbreviations, ADMINS commands 1-2
accelerator keys, enhanced, SCREEN 5-82
access control, DEF 2-13
ACQUIR command, ADMINS for OpenVMS 17-6
acquire text files 17-12
action codes, menu bar, SCREEN 5-80
add a number of days to a date H-11
add file section, MOVE VIRTUAL instruction file 3-19
add, arithmetic operator in expressions 8-2
ADD, special RMO field, MOVE VIRTUAL 3-23
ADDA subroutine H-11
ADDREDEF, AdmDefine, redefine using DDID 2-3
ADDT subroutine H-11
ADDTM subroutine H-11
ADED command 18-1
ADED functions 18-1
ADED instructions 18-2
ADED, restricting use 18-8
ADMINS User Guide   Index-3



ADIFF, file differences utility 13-8
adjust paper (prompt), REPORT 7-61
ADM$CENTURY_CUTOFF_YEAR, logical name 2-11
ADM$CHKLCK, check record locked status in a TRANS screen 5-35
ADM$COLLATE, logical name 2-28
ADM$COLLDIR, logical name 2-28
ADM$COM_ABNORMALEXIT, logical name B-1
ADM$COM_NORMALEXIT, logical name B-1
ADM$COM_STARTUP, logical name B-1
ADM$CSVSEPARATOR, logical name, speciify CSV field separator, AdmReport 7-10
ADM$DATE, logical name, alternative date formats 2-9
ADM$DATE, re-translate at every display field, option A-7
ADM$DATEIN, interpreting entered dates 2-10
ADM$DD, logical name, Data Dictionary I-58
ADM$DD_CHECK_DESCR, logical name, Data Dictionary I-63
ADM$DD_DIST, logical name, Data Dictionary I-58
ADM$DD_FILE, logical name I-56
ADM$DD_FILEDEF, logical name I-56
ADM$DD_LOAD, logical name, Converting to Data Dictionary I-58
ADM$DD_LOAD_SOURCE_DESCR, logical name, Data Dictionary I-62
ADM$DIST, logical name 1-1
ADM$EMSG, logical name 1-20
ADM$ENTER, force TRANS field entry processing, RMO w/ TRANS 16-31
ADM$FILEOPTION, logical name 19-4
ADM$FORMAT, logical name, REPORT data description file 7-83
ADM$GBL logical name, GBLSTORE subroutine H-110
ADM$GRPSHR, logical name 20-3
ADM$HARD_CR, logical name, used with IE 17-27
ADM$HELPEDIT, logical name 6-27
ADM$HELPFILE, logical name 6-25
ADM$KB_TYPE, logical name 6-32
ADM$LEVEL, logical name 1-21
ADM$LNKMEM, logical name, ANALYZER 12-14
ADM$LODTAB, reserved fld name/prefix, LODTAB subroutine H-81
ADM$LOGFILE, logical name 1-13
ADM$MAGTAP, logical name 17-1
ADM$MAX_FIELDS, logical name F-2
ADM$MINUS, logical name 2-12
ADM$NAT, logical name L-3
ADM$NLREC, identify ignored record lock, RMO with TRANS 16-37
ADM$NODE  logical, DECNET concurrency control 19-10
ADM$NOLOCK, record lock ignored flag, RMO with TRANS 16-36
ADM$NOPHYSICAL special field, ignore PHYSICAL in TRANS$ENV 6-36
ADM$NOTIFYUSER, logical name B-4
ADM$NOTIFYUSER, logical name, display record lock message 19-6
ADM$OBJECT, logical name (with CMP) 9-1
ADM$OBJECT, logical name (with SCREEN) 5-1
Index-4   ADMINS User Guide



ADM$OBJECT, logical name, REPORT 7-86
ADM$OUTPUT_RFM, logical name, report produces alternate record format output 7-61
ADM$PATTERN, logical name to find PATTERNS.TBL, IE 17-27
ADM$PERM_OPEN, logical name 6-56
ADM$PRINTERn, logical name, printer type, RNF N-4
ADM$PRT0, logical name 21-3
ADM$READONLY, logical name, TRANS 6-7
ADM$RECNO, record number in multi-rec screen, RMO w/ TRANS 16-39
ADM$RECORDLOCK, MAINT command 10-2
ADM$RECORDLOCK, MOVE command 3-5
ADM$RECORDLOCK, reserved field name D-1
ADM$REPSRT, system table logical name, limit size of SORT in REPORT 7-30
ADM$SCR_VIDEO logical name, SCREEN 5-65
ADM$SCRIPT_OUTPUT logical name, TRANS Scripting Facility 6-57
ADM$SCRNAM field, TRS 5-35
ADM$SCRNAM, logical name 5-35
ADM$SPOOLn, including print job qualifiers in 21-2
ADM$SPOOLn, logical name 21-1
ADM$SRTMP, logical name, SORT 4-3
ADM$SRTOUT, logical name, SORT 4-3
ADM$STYLE, logical name, REPORT 7-71
ADM$SUBSCR, subscreen status and control, RMO with TRANS 16-30
ADM$SYNC$HOLDxx detached process, SYNC 13-12
ADM$SYNC_HOLD, logical name, SYNC implementation issues 13-12
ADM$SYNC_LEVEL, logical name 19-7
ADM$SYNC_SYSTEM, logical name 19-7
ADM$TERM, logical name C-2
ADM$TERM_INFO, logical name to locate tkb file G-2
ADM$TEST, logical name 15-10
ADM$TESTSW, test mode local field, RMO with TRANS 15-10
ADM$TEXTEDIT logical name, VIEWTEXT subroutine H-50
ADM$TRANS_MESSAGE, logical name, TRANS 6-23
ADM$TRANS_VIDEO logical name, SCREEN 5-66
ADM$TRONAM field, TRS 5-35
ADM$TX_DEFAULT logical name, using text fields K-4
ADM$TX_DIRECTORIES logical name, using text fields K-3
ADM$UDK, logical name, RMO with TRANS 16-29
ADM$USAGE_SLOT, logical name L-8
ADM$VTLEN, logical name 5-48
ADM_DD statement, AdmScreen (specify alternate Data Distionary) 5-13
ADM_TERM_INFO, environment variable to locate tkb file G-2
ADM4INS.COM, install command procedure L-2
AdmAv command 13-17
AdmAV command (in command files) 14-17
AdmDDM, ADMINS Data Dictionary batch command I-73
AdmEnlarg, enlarge ADMINS data file 2-24
AdmFu command 13-3
ADMINS User Guide   Index-5



AdmIE, import/export utility 17-23
ADMINS, managing L-1
ADMINSREM.COM, remove command procedure L-2
AdmJoin (JOIN) 13-1
AdmJoin utility 13-22
AdmMove command 3-1
AdmReport

HTML switch 7-89
XML Switch 7-99

admsv, lock manager server, Win32 C-5
ADMTERM.COM C-2
ADMTERM.COM, automatically assign a value to ADM$TERM C-2
AFU functions 13-3
AFU Help function 13-7
ALIAS example 9-7
ALIAS statement, RMO 9-5
ALL, OUTPUT command qualifier, ANALYZER 12-49
alphanumeric field type 2-11
alternate index, specify access via 2-23
alternate indexes, using 2-23
alternate indices 2-22
An field type 2-11
ANALYZER command 12-1
ANALYZER HELP COMMAND, location of 12-47
AND, logical operator in expressions 8-6
APND keystroke 6-16
apostrophe, inserting into alpha string, FORMAT subroutine H-30
Append Mode, TRANS 6-5
APPEND paragraph, TRS 5-18
APPEND, screen header line, TRS 5-5
application development using Data Dictionary I-46
ARFND subroutine H-96
ARINI subroutine H-95
arithmetic operators in expressions 8-2
arithmetic subroutines H-54
ARNONL subroutine H-97
array arithmetic on D fields, CARITH H-54
array arithmetic on F fields, FARITH H-57
array elements, naming with ALIAS 9-5
array processing subroutines H-92
array subscript checking for local arrays 9-4
array, file definition 8-8
array, local, RMS 9-3
array, table 9-11
arrays, load data into arrays, LODTAB H-78
arrays, rearrange order, SORT subroutine H-93
arrays, set up data to load into arrays, FNDTAB H-78
Index-6   ADMINS User Guide



ARSZ subroutine H-95
ASC[n], sort designator, DEF 2-14
ASCCLOSE subroutine H-101
ASCII character set 17-5
ASCII characters, integer decimal values for H-1
ASCII formatted external files, ACQUIR and DATAP 17-3
ASCII I/O subroutines H-98
ASCn/n, sort designator with significant bytes, DEF 2-15
ASCOPEN subroutine H-98
ASCREAD subroutine H-98
ASCWRITE subroutine H-99
ASCWRITE, loading and using a DMAP translation table H-100
ASCWRITE, translating characters using DMAP H-100
ASKSCR subroutine H-121
asterisks, processing progress 1-13
ATTACH command, ANALYZER (ADMINS for OpenVMS) 12-66
ATTACH subroutine, syntax H-121
AUTOBR subroutine H-101
AUTOCR, screen header line, TRS 5-5
automatic branch control, AUTOBR subroutine H-101
automatic branch without refreshing literals, graphics 16-12
automatic branch without screen refreshing, B$B = ’An’ 16-12
automatic branching, B$B, RMO with TRANS 16-6
automatic carriage return, TRS 5-6
automatic columnar format, aggregated values, REPORT 7-22
automatic exit from TRANS, B$B = ’CB’, RMO with TRANS 16-10
automatic field renaming, LINK and TABLE, REP 7-44
automatic formatting examples, DETAIL and subtotals 7-22
automatic formatting, data description file 7-84
automatic HELP, B$B = ’H’, RMO with TRANS 16-6
automatic insert, B$B = ’IN’, RMO with TRANS 16-11
automatic NEXT key, B$B = ’LF’, RMO with TRANS 16-10
automatic PREV keystroke, B$B = ’BS’, RMO with TRANS 16-10
automatic return from a branch, R$R, RMO with TRANS 16-6
available space E-7
Average, /AVG derivation operator, DEF 2-16
average, /AVG derivation operator, REP 7-19

B
B$B = 'Ad', auto branch w/o refresh literals, graphics

cs 16-12
B$B = 'H' invokes TRANS HELP, RMO with TRANS 16-6
B$B = ’Ad’, auto branch w/o refresh literals, graphics 16-12
B$B = ’An’, automatic branch without screen refreshing 16-11
B$B = ’BS’, automatic PREV keystroke, RMO w/ TRANS 16-10
B$B = ’CB’, automatic exit from TRANS, RMO with TRANS 16-10
B$B = ’IN’, automatic insert, RMO with TRANS 16-11
ADMINS User Guide   Index-7



B$B = ’LF’, automatic NEXT key, RMO with TRANS 16-10
B$B, automatic branching, RMO with TRANS 16-6
B$fieldname/XX, calculated branches, TRS 5-56
B$KEYFIELDS array, calculated branches, RMO with TRANS 16-35
B$OB, second EOFREC RMO call, RMO with TRANS 16-21
BACKSPACE, backspace records, MAINT 10-8
BAR paragraph syntax, menu bar 5-79
BATCHJOB options H-124
BATCHJOB Subroutine (ADMINS for OpenVMS) H-123
beginning of record processing, RMO with TRANS 15-6
beginning of record, RMO with TRANS 15-2
BEGREC RMO call, RMO with TRANS 15-2
BEGSCR, special subscreen RMO call 16-31
BET, comparison operator in expressions, between 8-4
between, comparison operator in expressions 8-4
binary fields, ACQUIR, FACQUIR, DATAP, FDATAP 17-3
binary large object field type, DEFINE 2-12
binary search in RMO tables and arrays, BINSRCH H-92
BINSRC subroutine H-92
BL fields, Label Buttons, SCREEN 5-46
BL, blank line, REP 7-5
BL, blank line, TRS 5-49
blank (leading), insert into alpha string, FORMAT subroutine H-30
blank, detect when typed in numeric field, TRANS with RMO 16-26
blanks, leading, in alpha fields, the "hat" character 2-11
BLDSTR subroutine H-22
blink, highlighting fields, RMO with TRANS 16-17
BLOB field type, DEFINE 2-12
BLOB field, accessing, BLOBIO subroutine H-156
BLOBIO subroutine H-156
BLUE meta key, TRANS environment file 6-34
bold, highlighting fields, RMO with TRANS 16-17
bookmarking an active screen 16-12
BOX statement, TRS 5-39
BOX, drawn in screen layout, TRS 5-40
BP (PushButton fields), SCREEN 5-44
BPI, bits per inch tape density, ACQUIR 17-6
BRANCH action code, menu bar, SCREEN 5-80
branch automatically only, %% in TRS 5-55
branch to another TRO, TRS 5-53
branch to the SAME record, TRS 5-53
branch, global (Trans Environment File) 6-38
BRANCH, special RMO field, MOVE VIRTUAL 3-23
branches menu, customizing, TRS 5-55
branching, automatic, B$B, RMO with TRANS 16-6
branching, file access optimization (OpenVMS) 6-56
branching, TRANS 6-19
Index-8   ADMINS User Guide



BREAK description, TRS 5-62
BREAK keyword, MOVE VIRTUAL 3-12
BREAK on a multi-record screen, TRS 5-7
BREAK, screen header line 5-7
BRIEF statement, COM 14-14
BRIEF, logical name 14-14
BRNC keystroke 6-19
buffers, TED J-24
build a string, BLDSTR H-22
BUTTON subroutine H-103
bypass queuing, REP 7-64

C
C check statement, TRS 5-29
C fields in a LINK paragraph, TRS 5-15
C$C, cursor control, RMO with TRANS 16-13
C$MULREC, cursor control in multi-record screens 16-13
calculated branch, variable branch key, RMO with TRANS 16-35
CAP1 statement, TRS 5-42
CAPS ON/OFF, convert param response to uppercase, COM 14-10
CAPS statement, TRS 5-41
CARITH ignores decimal point H-54
CARITH subroutine H-54
case sensitivity, in UNIX path specification, ADM_FILEOPTION

LEOPTION C-1
CASE subroutine H-17
CCAT subroutine H-2
CE, center, REP 7-5
CE, center, TRS 5-49
chain linking, TRS 5-16
CHANGE keyword, MOVE VIRTUAL 3-12
character replacements, SETRPL H-19
character sets, EBCDIC and ASCII 17-5
character string handling subroutine H-16
check statement syntax for table driven error messages 16-33
check statement syntax, table driven messages, no RMO 5-32
check whether file exists, CHECKFILE subroutine H-128
CHECKCHAR subroutine H-32
CHECKFILE subroutine H-128
CHKDATE subroutine H-13
choosing field types 2-10
CLEN subroutine H-22
CLF check statement, TRS 5-31
close ASCII file, ASCCLOSE subroutine H-101
CMP command 9-1
codelist repositories, Data Dictionary I-37
codelists, Data Dictionary I-29
ADMINS User Guide   Index-9



collating sequence conversion, FILECONVERT 13-10
collating sequences, alternative 1-19
collating sequences, alternative, DEF 2-28
COM calling another COM 14-14
COM command 14-1
comma (,) TRANS suppresses commas in numerics, option A-1
comma suppression, REP 7-16
COMMA, screen header line keyword 5-12
command file communication 14-17
command files 14-1
command files, operating system differences C-2
command line mode, TED J-16
command line, command dialogue on 1-14
command line, operating system differences C-2
command mode, TED J-13
Commands, obsolete O-1
commas in numeric fields 2-12
comment in instruction files 1-5
COMMENT ON/OFF keywords, command files 14-2
Comments, DEF 2-20
comments, in TAP forms 17-2
communcation with another terminal, TTCOM H-153
comparison of SORT statement and SORT command 7-30
comparison operators in expressions 8-4
COMPILE, REPORT command line argument 7-85
computing a base 10 check digit, DCS subroutine H-131
COMPxx.TMP, temporary file, CMP 1-16
comxx[.COM], translated ADMINS command file, COM 14-3
concatenating fields, NCAT H-3
Concatenation subroutines H-2
concurrency control 19-1
concurrency control across DECnet (OpenVMS only) 19-10
concurrency control, operation system differences C-5
conditional compilation 1-11
conditional compilation logic in TRANS$ENV 6-39
conditional hexadecimal constant, DATAP and FDATAP 17-16
conditional SORT statement, REP 7-31
conditional statements in expressions 8-6
conflicts, file access 19-4
conserve MD array space, TRS 5-13
constants, specification of 8-1
continuation lines in instruction files 1-5
continuation, PROD transfer fields 11-3
continuation, SELECT statement 2-21
control break, REP 7-19
control code facility, RNF N-7
control file, CTRL.FIL, installation control L-3
Index-10   ADMINS User Guide



control sequences, inserting in REPORT output 7-71
controlling appends to output file, PROD 11-12
controlling insertion, PROD 11-13
controlling write back, MAINT 10-5
controlling writeback, PROD 11-12
controlling writeback, RMO with TRANS 16-1
conventions, ADMINS instruction files 1-4
conventions, Procedures Manual 1-4
convert a keyed file to a sequential file, FILECONVERT 13-9
convert between upper and lower case letters, CASE H-17
CONVERT, MOVE VIRTUAL statement 3-14
converting applications to the Data Dictionary I-61
converting between field types, MOVE 3-6
converting between field types, NCAT H-4
converting date to year, week & day, DCS subroutine H-129
copies, REP 7-63
copy help/descriptive text, Data Dictionary I-11
COPY keystroke 6-7
copy notation for transfer fields, "=", PROD 11-4
copy tape to disk, TAPCOPY (ADMINS for OpenVMS) 17-20
Count, /C derivation operator, DEF 2-16
CR, carriage return 1-4
CR, interpreted as carriage return by COM 14-2
CR_EXIT, change LOOKUP behavior when no record selected 5-71
create a logical name, CRLOG H-61
create a symbolic name (OpenVMS), CRSYMBOL H-63
CREATE command, ANALYZER 12-47
CREATE statement, after TOTAL, REP 7-33
CREATE statement, REP 7-32
CRLOG subroutine H-61
CRLOG subroutine, special syntax to modify OPTION H-61
cross-tabulations in REPORT, RECODE statement 7-44
CRSYMBOL subroutine H-63
CSV output based on Totals, AdmReport 7-26
CSV Output in DETAIL statement, REP 7-9
CSV Switch 7-91
CSV, specify different field seperator, AdmReport 7-10
ctrl /‚ keystroke to terminate TRANS A-4
CTRL.FIL, control file for installation control L-3
CTRLP subroutine H-105
cursor control, C$C, RMO with TRANS 16-13
cursor control, multi-record screens,C$MULREC 16-13
CURSOR, OPTIONS keyword for menu bar, SCREEN 5-79

D
d (command line qual.) define name (cond. compilation) 1-12
D$AY subroutine H-14
ADMINS User Guide   Index-11



D$D, deleting records, MAINT 10-6
D$D, deleting records, PROD 11-13
D$IR, default directory, TRS 5-35
D%field, get description from codelist table I-31
-D, access file with alternate indexes disabled 2-23
DA array F-4
DA field type 2-9
data description file, ADM$FORMAT 7-83
Data Dictionary I-1
data dictionary elements, referencing in DEFINE 2-13
Data Dictionary Reports I-56
Data Dictionary, logical names I-62
data elements, Data Dictionary I-4
data file editor, ADED 18-1
data interchange, IE 17-23
data views, ANALYZER 12-13
data views, Data Dictionary I-40
DATAP command, ADMINS for OpenVMS 17-13
date and time report was run, admreport -xml 7-109
date difference H-9
date field type 2-9
date in RNF N-8
date, converting to year, week & day, DCS subroutine H-128
date_time in RNF N-8
dates custom formatted in alpha fields, FCAT H-5
DCS subroutine H-128
DDATTR subroutine H-67
deadlock resolution 19-8
debug mode, CMP 9-15
decimal field type 2-9
decimal fields, changing number of decimal places, MOVE 3-9
decimal operations 8-3
decimal point (.) turns off auto decimal point alignment A-1
decimal point in numeric fields 2-12
DECnet, concurrency control (OpenVMS only) 19-10
DEF statement, REP 7-56
default function key assignments, TRANS 6-3
DEFINE command 2-1
DEFINE INIT qualifier, init file with one blank record 2-4
DEFINE IXONLY qualifier, create index-only file 2-4
define macro function, TRANS environment file 6-33
DEFINE READONLY qualifier 2-3
define with 16-bit index pointers, option A-6
DEFINE, ADDREDEF qualifier, refine using DDID 2-3
defining files in other directories, command line, DEF 2-6
defining files in other directories, LOGNAM, DEF 2-6
de-itemization, PROD 11-14
Index-12   ADMINS User Guide



DEL keystroke 6-16
delete a logical name, CRLOG H-61
delete a symbolic name (OpenVMS), CRSYMBOL H-63
delete file, DELFILE subroutine H-101
delete in an APPEND paragraph, TRS 5-19
DELETE, screen header line, TRS 5-5
deleting entities I-2
deleting list files 21-3
deletion of records, MAINT 10-6
deletion of records, PROD 11-13
DELFILE subroutine H-101
DEMOSETUP.COM, set up procedure for ADD DEMO I-60
DER_OP, derivation operator, DEF 2-16
derivation operators 2-16
deriving aggregates 2-16
deriving aggregates, SORT 4-7
DESC[n], sort designator, DEF 2-14
DESCn/n, sort designator with significant bytes, DEF 2-15
describe an ADMINS file, AdmFu 13-4
despooling to tape, TAPSPL (ADMINS for OpenVMS) 17-20
detail file, PROD 11-2
DETAIL section, REP 7-12
DETAIL statement, REP 7-6
detailed description of an ADMINS file, AdmFu 13-5
detect blank typed into numeric field, TRANS with RMO 16-26
determination of enqueue quota, SYNC 13-14
device specification 2-6
DH, double height, TRS 5-50
DI$DI, controlling insertion, PROD 11-13
dialogue, ADED 18-1
dialogue, AdmFu 13-3
dialogue, CMP 9-1
dialogue, COM 14-4
dialogue, DEFINE 2-2
dialogue, ENLARG 2-24
dialogue, FACQUIR 17-8, 17-14
dialogue, FDATAP 17-15
dialogue, FILECONVERT convert structure level 13-10
dialogue, FILECONVERT sequentialize 13-9
dialogue, MAINT 10-1
dialogue, MERGE 7-88
dialogue, MOVE 3-2
dialogue, MRGFIL 3-32
dialogue, PROD 11-2
dialogue, REPORT 7-3
dialogue, RNF N-2
dialogue, SCREEN 5-3
ADMINS User Guide   Index-13



dialogue, SORT 4-2
dialogue, TAPCOPY 17-20
dialogue, TAPDMP 17-17
dialogue, TRANS 6-1
DIFFDA subroutine (obsolete) O-2
difference between two dates and/or times H-10
DIFFTM subroutine (obsolete) O-2
direct output to standard output (sys$output), REP 7-62
DIRECT statement, REPORT 7-67
disable Index n, AdmFu 13-6
disable line of asterisks (that show progress), option A-1
disable refreshing last three lines in TRANS, option A-6
disabling automatic file expansion 1-17
DISPFLDS subroutine H-106
DISPFLDS, syntax H-106
display fields, TRS 5-22
DISPLAY statement, COM 14-10
Distribution Kit, ADMINS L-1
divide and round, arithmetic operator in expressions 8-2
divide and truncate, arithmetic operator in expressions 8-2
DKEY[n], key designator, DEF 2-13
dmap (map character for display), REPORT environment file 7-87
DMAP, TRANS 6-35
Dn field type 2-9
document runoff program, RNF N-1
DPOWER subroutine H-57
DR field, display field, TRS 5-24
drop Index n, AdmFu 13-6
DT field type 2-9, 2-10
DW, double width, TRS 5-49
Dynamic data file expansion 1-17

E
E field, editable field, TRS 5-24
-E file open action code appended to file spec 19-4
E$NDSCR, check screen exit keystroke, TRANS with RMO 16-26
E$RR, KC field for linking to error message table, TRS 5-32
E$RRMSG, error message obtained via link, TRS 5-32
E$XIT, terminating a command file, MAINT 10-7
E$XIT, terminating a command file, PROD 11-13
EBCDIC character set 17-5
EBCDIC formatted external files, ACQUIR and DATAP 17-3
EDFLDS subroutine H-107
EDIT keystroke 6-8
EDIT subroutine H-35
editable fields, TRS 5-24
editing keys help screen, TRANS 6-8
Index-14   ADMINS User Guide



EDITMASK subroutine H-86
EJECT AFTER statement, REP 7-79
EJECT BEFORE statement, REP 7-78
EJECT n statement, REP 7-79
EJECT statement, REP 7-78
eliminating decimal places, SCALE NOP, REP 7-65
embed CSV syntax in "multi-pupose" report, REP 7-11
end of record processing, RMO with TRANS 15-7
end of record, RMO with TRANS 15-2
END statement 14-12
ENLARG command 2-24
ENLARG, file check list 2-24
enlarging ADMINS data files 2-24
enlarging files, dynamic data file expansion 1-17
ENn external file field format, ACQUIR and FACQUIR 17-10
entering fields, TRANS 6-7
entering TRANS, specific record 6-27
environment file, REP 7-86
environment file, TED J-22
environment file, TPR J-33
environment file, TRANS 6-32
EOF total, REP 7-20
EOFREC RMO call, multirecord screens w/LINK writeback 16-38
EOFREC RMO call, RMO with TRANS 15-2
EOFREC, second RMO call, B$OB, RMO with TRANS 16-21
EQ, comparison operator in expressions, equal to 8-4
equal to, comparison operator in expressions 8-4
ER field, editable field, TRS 5-24
ERR keystroke 6-18
Error Mode, TRANS 6-6
escape sequences, inserting in REPORT output 7-71
European character options 6-15
European numeric field representation options 2-12
EVALUATE subroutine H-132
EVALUATE subroutine, syntax H-134
EXAMINE command, ANALYZER 12-45
Excel output from AdmReport 7-91
Excel output from AdmReport, rename file type 7-87
exceloptions keyword, Report Environment File 7-87
exclusive file access 19-1
EXECUTE BREAK statement, MOVE VIRTUAL 3-25
EXECUTE statement, MOVE VIRTUAL 3-23
EXECUTE statement, REPORT 7-79
existences, /E derivation operator, DEF 2-16
existences, /E derivation operator, REP 7-19
EXIT keystroke 6-18
explicit format mode overview, REPORT 7-1
ADMINS User Guide   Index-15



explicit print field designator, REP 7-16
explicit print field width, REP 7-17
expressions 8-1
external data files 17-1
external field formats, ACQUIR FACQUIR DATAP FDATAP 17-3
external files, TRS 5-13
external language facility H-135
EXTERNAL subroutine H-135
external text field type 2-12
EXTERNAL, AdmExternal.c DLL H-137
EXTERNAL, automatically refreshing screen H-136
extracting the day from a date, D$AYH H-14
extracting the month from a date, M$ONTH H-14
extracting the year from a date, Y$EAR H-13

F
F$F, top of file control, RMO with TRANS 16-18
F$UNCKEY, RMO with TRANS 16-26
f$unckey=physical, TRANS environment file 6-36
FACQUIR command 17-8
FARITH ignores decimal point H-57
FARITH subroutine H-57
FCAT subroutine H-2
FCAT, converting a string to a date field H-8
FDATAP command 17-15
field by field processing, RMO with TRANS 15-6
field description lines, DEF 2-7
field description lines, TAP 17-3
field description options, ACQUIR and FACQUIR 17-10
field description options, DATAP and FDATAP 17-15
field designator, text blocks 5-49
field designators, screen layout 5-49
field formats, optional, ACQUIR and FACQUIR 17-10
field log example 6-11
field log file layout 2-26
field log operation 6-12
field log size, DEF 2-7
field logging, expanded facilities 6-12
field name list, TRS 5-22
field name, reserved 2-8
field names list, reserved D-1
field names, DEF 2-7
Field Selection Mode, TRS 5-6
FIELD subroutine H-51
field types, DEF 2-8
field width specification in DETAIL statement, REP 7-8
file access modes 19-1
Index-16   ADMINS User Guide



file access, default mode by command 19-2
file access, overriding default mode 19-3
file and device specification, differences C-1
FILE command, ANALYZER 12-9
file concepts E-1
File contains element relationship, Data Dictionary I-24
file definition 2-1
file description line, DEF 2-4
file description line, TAP 17-2
file description options, external file, ACQUIR,FACQUIR 17-9
file header information, FIELD H-51
file header information, FILE H-50
file information subroutines H-50
File Level 2, file layout E-2
File Level 3

Alternate Indices 2-22
Multiple Indices 2-22

file locks, reserving, FLOCK 19-14
file operations E-3
file specification 1-14
FILE statement, MOVE VIRTUAL 3-13
FILE statement, REP 7-4
FILE statement, RMS 9-2
file types used in ADMINS 1-15
FILE_TYPE, file description line, DEF 2-4
FILE32 subroutine H-50
FILECONVERT command 13-9
FILECONVERT, convert a list of files 13-11
FILE-NAME, screen header line, TRS 5-4
find string in text field, SEARCH subroutine H-40
FINDREC subroutine (obsolete) O-2
first, /FI derivation operator, DEF 2-16
first, /FI derivation operator, REP 7-19
FLAGS utility 13-16
FLDEQL subroutine H-26
FLDINFO subroutine H-118
FLGSIZ, file description line, DEF 2-7
floating fields, REP 7-56
FLOCK

changing the default action 19-16
OpenVMS implementation and system management notes 19-15

FLOCK, file lock reservation utility 19-14
Fn field type 2-9
FNDTAB subroutine H-78
font codes, TED J-29
footing control words, TED J-28
force re-read of link directly from disk, option A-7
ADMINS User Guide   Index-17



FORMAT statement, REP 7-66
FORMAT subroutine H-29
FORMAT subroutine, example H-30
fourth, /4 derivation operator, REP 7-19
four-word decimal field type 2-9
FPOWER subroutine H-58
FSEARCH subroutine H-28
FSM keystroke 6-19
full block records, special treatment 19-6
function key detection, RMO with TRANS 16-26
function keys help screen, TRANS 6-3
function keys, TED J-1
function keys, user-defined, detecting with F$UNCKEY 16-29

G
G$ fields, TRS 5-37
G$+nnn/I, TRS 5-37
G$RP, UIC group number, TRS 5-35
G$TMO, time-out in TRANS 5-43
GBLSTORE subroutine H-109
GE, comparison operator, greater than or equal to 8-4
GENED (General Editor Mode of TRANS) instruction file 6-31
General Editor Mode, restricting use 6-30
General Editor Mode, TRANS 6-28
get a value from the group shared area, GETGRP H-65
GETFLD subroutine H-83
GETGRP subroutine 20-1, H-65
GETJPI subroutine H-140
GETMSG subroutine H-46
global area in TRANS, read/write to disk H-109
global branch target (Trans Environment File) 6-38
global timeout statement (Trans Environment File) 6-37
GOLD meta key, TRANS environment file 6-34
GOSUB Statement, RMS 9-9
GOTO statement, RMS 9-7
GRAPH command, ANALYZER 12-34
greater than or equal to, comparison operator 8-4
greater than, comparison operator in expressions 8-4
group shared area description 20-1
group shared area fields, TRS 5-38
group shared area subroutine H-65
group shared area, setup 20-3
GROUP statement, MOVE VIRTUAL 3-25
GT, comparison operator in expressions, greater than 8-4
Index-18   ADMINS User Guide



H
H$CODE, highlighting fields, RMO with TRANS 16-17
H$NAME, highlighting fields, RMO with TRANS 16-17
hat character, leading blanks in alpha fields 2-11
heading control words, TED J-28
HEADING section, REP 7-4
HELP command, ANALYZER 12-47
HELP in TRANS 6-24
HELP in TRANS, development facility, editing HELP files 6-27
Help, AFU 13-7
hexadecimal contants, DATAP and FDATAP 17-15
high volume update, RMO with TRANS 16-3
highlight length of field being entered, TRANS, option A-5
highlighting fields, RMO with TRANS 16-17
highlighting fields, TRANS 5-64
HTML switch 7-89

I
I field type 2-8
-I record lockout action code appended to file spec 19-5
I$I, NOMATCH insertion to LOOKUP file, PROD 11-11
ID, version and date of ADMINS image L-2
IE, command, import/export facility 17-23
IF_THEN_ELSE_END, conditional statement in expressions 8-6
ignored record locks, managing 16-36
IMAGE TIMEOUT, error message L-5
imaginary decimal point, external field ACQUIR FACQUIR 17-10
implementing shared memory facility L-7
import/export facility, IE 17-23
INCL special operator in expressions, includes 8-4
include lookup window in ctrl/p printout, option A-6
includes, special operator in expressions 8-4
inclusive field names, REP 7-13
inclusive field names, TRS 5-51
INDENT statement, REP 7-60
index file, created by SORT 4-7
index paragraph, TRS 5-19
indirect command files 14-13
indirect reference, COM 14-13
indirect references (@@), passing parameters to 1-6
indirect references, local fields in, CMP 9-12
inhibit manual branching, TRS 5-10
inhibit manual TRANS entry, TRS 5-10
inhibit on-line messages, TRS 5-5
inhibit screen exit, TRS 5-10
initialization file, TED J-25
initialize file with one blank file record, DEFINE 2-4
ADMINS User Guide   Index-19



initialize file, AdmFu 13-4
initialize file, SORT 4-2
initialize output file, MOVE 3-2
initialize page, REPORT 7-74
INS keystroke 6-17
insert a string, INSTR H-24
insert in LOOKUP controlled with I$I, PROD 11-11
Insert Mode, TRANS 6-6
insert, PROD 11-7
INSERT, screen header line, TRS 5-5
INSIDE, OPTIONS keyword for menu bar, SCREEN 5-79
INSTALL (OpenVMS utility) L-1
installation control L-3
installing ADMINS commands (ADMINS for OpenVMS) L-1
installing images, command procedures L-2
INSTR subroutine H-24
instruction file 2-1
instruction file for GENED (General Editor Mode of TRANS)

RANS) 6-31
instruction file, REP 7-1
instruction file, RMS 9-1
instruction file, TAP 17-2
instruction file, TRS 5-1
instruction files 1-4
INTC subroutine H-25
integer decimal value of a character, INTC H-25
integer decimal values for ASCII characters H-1
integer field type 2-8
internal fields, MAINT 10-8
internal fields, MOVE 3-5
internal fields, PROD 11-10
internal fields, REP 7-58
internal fields, TRS 5-33
internal file layout, File Level 2 E-2
internal file layout, File Level 3 E-2
internal text field type 2-12
INVALID CONTROL FILE, error message L-5
itemization, PROD 11-14
IX, self-sort index only, SORT 4-3

J
JOIN (AdmJoin) 13-1
JOIN keyword, TAPSPL 17-22

K
K fields in a LINK paragraph, TRS 5-15
Index-20   ADMINS User Guide



KC fields in a LINK paragraph, TRS 5-16
KEEPTEXT, don’t reorganize TSF and TCF in self-sort 4-5
key index structure E-4
key range using logical names, MAINT 10-5
key range using logical names, MOVE 3-3
key range using logical names, PROD 11-4
key range, DATAP and FDATAP 17-16
key range, MAINT 10-5
key range, MOVE 3-3
key range, PROD 11-3
KEY statement, REPORT 7-35
key values, MAINT 10-4
KEY$..., logical name, REPORT 7-36
KEY, MOVE VIRTUAL statement 3-14
KEY, OUTPUT command qualifier, ANALYZER 12-50
key/sort designations 2-13
KEY[n], key designator 2-13
KEY_VIDEO statement, SCREEN 5-66
KEY2 keystroke 6-15
KEY3 keystroke 6-15
keyboard translation table G-1
keyed file 2-14
keystroke help screen, TRANS 6-3
keystroke table for TRANS 6-1
keystrokes, editing fields in TRANS 6-8
keystrokes, entering or changing fields in TRANS 6-7
keystrokes, TRANS standard functions 6-1

L
L fields in a LINK paragraph, TRS 5-15
L fields, loggable field, TRS 5-26
-L record lockout action code appended to file spec 19-5
L$, logical name, logical parameters 1-9
L$AV_ERR, logical name 13-18
L$fieldname, logical name 13-18
L$KL, logical name 13-18
L$LV, logical name 13-18
L$NB, logical name 13-18
L$NR, logical name 13-18
L$RA, logical name 13-18
L$RL, logical name 13-18
L%C line/column designation without floating, REP 7-5
L/C, line/column, REP 7-5
Label Buttons, SCREEN 5-46
label, RMS 9-8
language support, spelling checker, TED J-11
last, /LA derivation operator, DEF 2-16
ADMINS User Guide   Index-21



last, /LA derivation operator, REP 7-19
LE, comparison operator, less than or equal to 8-4
leading blanks in alpha fields, the "hat" character 2-11
leading blanks, ACQUIR 17-11
leading zeroes, DATAP and FDATAP 17-15
left justification of data, REP 7-13
left justification of data, TRS 5-49
length of a string, CLEN H-22
LENGTH statement, REP 7-59
less than or equal to, comparison operator, expressions 8-4
less than, comparison operator in expressions 8-4
Level 3 Files

Alternate Indices 2-22
indices

active 2-22
disabled 2-22
dropped 2-22

LFBACK, LFEXIT backout function key (PREV) 6-15
LFBACK, screen header line, TRS 5-11
LFEXIT control in Update Mode, TRANS 6-4
LFEXIT, screen header line, TRS 5-11
limitations, text fields K-1
limits F-1
line editing, ANALYZER 12-7
Line of asterisks display 1-13
line/column designation, REP 7-5
LINK command, ANALYZER 12-13
link fields, PROD 11-3
link file paragraph, MOVE VIRTUAL instruction file 3-15
LINK MULTIPLE, REP 7-39
LINK NOMEM, ANALYZER 12-14
LINK NULL, REP 7-39
LINK paragraph, alternative for LINK statement, REP 7-43
LINK paragraph, TRS 5-13
link renaming in TRS 5-14
LINK statement automatic field renaming, REP 7-43
LINK statement, REP 7-37
link without an exact match, REP 7-40
link without an exact match, TRS 5-16
LINKGE, link greater than or equal to, REP 7-40
LINKGE, MOVE VIRTUAL instruction file 3-16
LINKGT, link greater than, REP 7-40
LINKGT, MOVE VIRTUAL instruction file 3-16
LINKLE, link less than or equal to, REP 7-41
LINKLE, MOVE VIRTUAL instruction file 3-16
LINKLT, link less than, REP 7-41
LINKLT, MOVE VIRTUAL instruction file 3-16
Index-22   ADMINS User Guide



literal data, REP 7-4
literal data, TRS 5-49
literals, DATAP and FDATAP 17-15
Ln field type 2-8
local fields in indirect references, CMP 9-12
local fields in the RMO with TRANS 15-4
local fields, RMS 9-3
LOCAL section, RMS 9-3
locate a string within a string (any field type), LOCATE H-21
locate a string within a string, LOCSTR H-20
locate non-blank element in array, ARNONL subroutine H-97
locate non-zero element in array, ARNONL subroutine H-97
LOCATE subroutine H-21
lock mark, internal text (TInn) field, with TEXTCOPY H-37
lock server, UNIX C-5
locks, reserving file locks, FLOCK 19-14
LOCSTR subroutine H-20
LODTAB subroutine H-78
loggable fields, TRS 5-26
logging changes to fields, TRANS 6-9
logging fatal exit occurrences 1-21
logging interactive sessions 1-13
logical name subroutines H-61
logical names, special, used by ADMINS B-1
logical operators in expressions 8-6
logical parameters, AdmCmp 9-10
logical parameters, AdmDefine 2-27
logical parameters, AdmReport 7-51
logical parameters, COM 14-5
logical parameters, default values for, AdmCmp 9-10
logical parameters, default values for, AdmDefine 2-27
logical parameters, default values for, command files 14-5
logical queuing device number, REP 7-63
LOGNAM, file description line, DEF 2-6
LOG-NAME, screen header line, TRS 5-4
longword decimal field type 2-8
look ahead in TRANS, RMO with TRANS 16-22
LOOK keystroke 6-8
lookahead in MAINT 10-8
lookahead in MOVE 3-5
lookup file, PROD 11-4
LOOKUP menu, TRS 5-76
LOOKUP on Local Arrays 5-77
LOOKUP window, examples 5-74
LOOKUP window, syntax 5-67
LOOKUP window, TRS 5-67
LOOKUP window, TRS, sub-statements 5-68
ADMINS User Guide   Index-23



LOOKUP window, using 6-21
lookup windows specified in Data Dictionary I-32
LOOKUP without an exact match, PROD 11-18
LP statement, REP 7-63
LR fields, loggable fields, TRS 5-26
LT comparison operator in expressions, less than 8-4

M
-M multi-user file access (appended to file spec) 19-3
M$LOC, status line control, RMO with TRANS 16-25
M$M, mode of an RMO call from TRANS 15-3
M$M_nn, action code for button 5-46, 15-4
M$MSG, status line control, RMO with TRANS 16-25
M$ONTH subroutine H-14
magnetic tape reporting, TAPSPL with JOIN 17-21, 17-22
MAINT command 10-1
managing ADMINS L-1
managing usage-based ADMINS system L-8
MANUAL command, on-line Procedures Manual. 1-4
MAP, TRANS 6-35
MARGINAL command, ANALYZER 12-18
MATCH, screen header line, TRS 5-7
maximum, /MAX derivation operator, DEF 2-16
maximum, /MAX derivation operator, REP 7-19
MBX subroutine H-138
MD array F-4
MENU action code, menu bar, SCREEN 5-80
menu bar action codes, SCREEN 5-80
menu bar, TRS 5-78
MENU paragraph, menu bar 5-81
menu, subscreens, SCREEN 5-88
MERGE command 7-88
merge files 3-32
MERGE, keyword, REP 7-87
MESSAGE facility example, SCREEN 5-87
MESSAGE facility substatements, SCREEN 5-83
MESSAGE facility, SCREEN 5-83
MESSAGE facility, Tabular, keyword 5-86
message fields, TRS 5-33
messages, ADMINS Messages Facility 1-20
messages, expanded Message Facility 1-21
minimum, /MIN derivation operator, DEF 2-16
minimum, /MIN derivation operator, REP 7-19
MKDEF, create .DEF file from existing data file 2-25
MLOCK output text formatting facility 19-12
MLOCK, lock monitor utility 19-11
mode, M$M, RMO with TRANS 15-3
Index-24   ADMINS User Guide



modulus, arithmetic operator in expressions 8-2
monitoring information for ADMINS commands, option A-3
mouse support in TRANS 6-49
MOVE command 3-1
move fields among all files in a TRS, MOVFLD H-116
MOVE functions 3-1
MOVE MULTIPLE qualifier, multiple output files 3-3
MOVE OVERRIDE qualifier, ignore output file SELECT 3-7
MOVE SELECT qualifier, run time select criteria 3-6
MOVE VIRTUAL processing statements 3-14
MOVE VIRTUAL qualifier, MOVE with instruction file 3-10
MOVE VIRTUAL, add file section 3-19
MOVE VIRTUAL, link file paragraph 3-15
MOVE VIRTUAL, operation 3-11
MOVE, all records 3-2
MOVE, key range 3-3
MOVE, n record 3-2
MOVE, no list 3-2
MOVE, RMO with 3-4
MOVE, skip n records 3-2
MOVE/CONVERT, generalized field type conversion, MOVE 3-6
MOVFLD subroutine H-116
MOVLNK subroutine (obsolete) O-2
MRGFIL command 3-32
MSG keystroke 6-19
MULREC RMO call, RMO with TRANS 16-39
multi-column reports, REP 7-25
multi-index files, using 2-23
multi-line, multi-record screens, TRS 5-59
multiple lookup files, PROD 11-16
multiple output files 3-3
multiple output files, REPORT 7-67
MULTIPLE, REPORT, restart splitting process 7-69
multiply, arithmetic operator in expressions 8-2
multi-record RMO support with TRANS 16-38
multi-record screen, TRS 5-59
multi-user file access 19-1
multi-user file concepts 19-1

N
-N record lockout action code appended to file spec 19-5
NAME command, ANALYZER 12-44
naming print files, operating system differences C-2
naming temporary files, operating system differences C-2

 C-2
NBRK keystroke 6-15
NCAT subroutine H-2
ADMINS User Guide   Index-25



NE comparison operator in expressions, not equal to 8-4
negative fields, DATAP and FDATAP 17-15
nesting, conditional compilation 1-12
NEXT keystroke 6-15
NEXT, screen header line 5-9
NO *, suppress asterisk display 1-13
NO_NULL, INDEX paragraph, TRS 5-21
NOBR, screen header line, TRS 5-10
NOCOMMA, screen header line keyword 5-12
NOECHO keyword, content displaying as asterisks 5-42
NOEK subroutine H-110
NOEX, OPTIONS keyword for menu bar, SCREEN 5-79
NOEX, screen header line, TRS 5-10
NOFLUSH parameter, PROD 11-8
NOFLUSH qualifier, MAINT 10-6
NOHEAD keyword, DETAIL statement, REPORT 7-7
NOLOG, screen header line, TRS 5-9
NOMATCH, command line qualifier, PROD 11-11
NOMSG, screen header line, TRS 5-5
NOP, screen header line, TRS 5-8
not equal to, comparison operator in expressions 8-4
NOT, logical operator in expressions 8-6
NOTMO, screen header line keyword 5-12
NOTR, screen header line, TRS 5-10
NOW and TODAY, create test values B-5
NOW, current time, MAINT 10-8
NOW, current time, MOVE 3-5
NOW, current time, PROD 11-10
NOW, current time, REP 7-58
NOW, current time, TRS 5-34
NOWRITE, high volume update, RMO with TRANS 16-3
NOWRITE, screen header line, TRS 5-9
NREC keystroke 6-16
NRECS statement, REP 7-66
NRECS, file description line, DEF 2-6
NRECS, MOVE VIRTUAL statement 3-14
NULL keyword, LINK paragraph, TRS 5-14
number of copies specification 21-3
number of records, DEF 2-6
NX$EOF, end of file indicator, REPORT 7-58
NX$EOF, look ahead in TRANS, RMO with TRANS 16-22
NX$EOF, lookahead in MAINT 10-8
NX$EOF, lookahead in MOVE 3-5
NX$fieldname, look ahead in TRANS, RMO with TRANS 16-22
NX$fieldname, lookahead in MAINT 10-8
NX$fieldname, lookahead in MOVE 3-5
NX$fieldname, value of field from next record, REPORT 7-58
Index-26   ADMINS User Guide



O
Obsolete Commands O-1
Obsolete syntax O-1
occurrence of day in month, find specified , (returned as date), DCS subroutine H-130, H-131
open ASCII file, ASCOPEN subroutine H-98
OPEN, OPTIONS keyword for menu bar, SCREEN 5-79
operating system differences C-1
operation, SORT 4-5
OPTION command, ANALYZER 12-57
option keyword, Report Environment File 7-87
OPTION, logical name A-1
options A-1
OPTIONS keywords, menu bar, TRANS 5-79
options, recommended A-1
OR, logical operator in expressions 8-6
order of events in TRANS 15-5
ORSELECT statement, REP 7-34
OUPUT Statement, REP, Report Output 7-61
OUTFILE, writing other files, MAINT 10-9
outline, DEF 2-1
outline, REP 7-2
outline, RMS 9-2
outline, TAP 17-2
outline, TRS 5-1
OUTPUT command, ANALYZER 12-49
output file, PROD 11-5
output file, report, alternative name for queued file 7-64
output files, ANALYZER 12-49
OUTPUT KB, REP 7-61
OUTPUT LA, REP 7-62
OUTPUT LP, REP 7-61
OUTPUT SO, REP 7-62
OUTPUT statement, MOVE VIRTUAL 3-15
OUTPUT statement, REP 7-61
OUTPUT Statement, Report Output 7-61
OUTPUT subroutine H-85
output text formatting facility, MLOCK 19-12
OUTPUT TI, REP 7-61
output to the line printer, AdmFu 13-6
output to the terminal, AFU 13-6
OUTPUT TT0, REP 7-62
OUTPUT VT, REP 7-62
OUTPxx.TMP temporary file, SORT 4-3
OUTRECS, writing other files, MAINT 10-9
OUTSTR subroutine H-25
overprinting, REP 7-63
override output file SELECT, MOVE 3-7
ADMINS User Guide   Index-27



override screen exit keystroke, TRANS with RMO 16-26
OVERRIDE, MOVE VIRTUAL statement 3-14

P
P$P, printing on-line messages, MAINT 10-7
P$P, printing on-line messages, RMO with TRANS 16-17
packed decimal fields, ACQUIR, FACQUIR, DATAP, FDATAP 17-3
page numbers, REP 7-58
PAGE statement, REP 7-59
page totals, REP 7-21
PARAG subroutine H-47
paragraph editing of adjacent flds in TRANS, EDIT subroutine H-43
paragraph, RMS 9-8
parameter error checking, command files 14-8
parameterization, COM 14-3
parameterization, DEF 2-26
parameterization, general 1-9
parameterization, in the ADM$STYLE table 7-71
parameterization, REP 7-50
parameterization, repetitive, REP 7-51
parameterization, RMS 9-10
parameterization, SCREEN 5-92
PARAMETERS statement, indirectly referenced files 1-6
parameters, data dictionary, AdmScreen 5-93
parameters, logical 1-9
parameters, logical, AdmReport 7-51
parameters, logical, AdmScreen 5-93
parameters, logical, default value, SCREEN 5-93
parameters, logical, default values for, AdmReport 7-52
parantheses for minus representation, option 2-12
parentheses, precedence in expressions 8-7
partial field break, REP 7-21
partial field break, SCREEN 5-62
PASSW command 13-19
PASSW, screen header line, TRS 5-7
password protect a file, PASSW 13-19
password protect a screen, TRS 5-7
password, ADMINS control file L-4
pattern substitution, IE - ACQUIR for TI fields 17-27
pause in TRANS H-112
PAUSE statement, COM 14-10
PAUSE subroutine H-112
PBRK keystroke 6-16
PCLtoPDF, utility, create PDF from "LIS" file 7-88
PD fields, packed decimal, ACQUIR FACQUIR DATAP FDATAP 17-3
pdf, PCL to PDF Utility 7-88
period (.) turns off automatic decimal point alignment A-1
Index-28   ADMINS User Guide



Perl scripts, operating procedures differences C-3
personal dictionary, spelling checker, TED J-12
PGBRK RMO call, RMO with TRANS 16-25
PGNO, current page number, REP 7-58
pictured field type 2-11
placement coordinates, screen layout, TRS 5-48
play back recorded keystrokes, TRANS scripting facility

ity 6-57
PLUS keystroke 6-8
post-link RMO call, RMO with TRANS 15-3
power of a number, DPOWER and FPOWER subroutines H-57, H-58
precedence of operators in expressions 8-7
precise placement of fields using L/C designation, REP 7-5
precise placement of screen rectangle, TRS 5-48
precise placement of text blocks, TRS 5-51
precise placement, via Data Dictionary, screen 5-51
pre-compiled reports 7-85
pre-link RMO call, RMO with TRANS 15-3
preprocess ADMINS instruction file 13-1
preserve leading blanks (option T) 5-49
PREV keystroke 6-15
PREV, screen header line 5-9
prevent return to screen by browsing keys, TRS 5-10
PREVIEW section, REP 7-27
print all or part of a screen in TRANS, CTRLP H-105
print device specification, REP 7-63
print device specification, TRS 5-8
print field designator, REP 7-13
print internal text fields (TInn), TPR J-31
print job qualifiers in ADM$SPOOLn logical name 21-2
PRINT ODD or EVEN, REPORT 7-65
print queue specification 21-1
printer control screen, TED J-30
printer port, REP 7-62
printer queues 21-1
printing on-line messages, MAINT 10-7
printing on-line messages, P$P, RMO with TRANS 16-17
printing tapes, ADMINS for OpenVMS 17-17
privilege needed by ADMINS images, ADMINS for OpenVMS L-1
processing control statements, MOVE VIRTUAL 3-23
processing statements, REP 7-31
PROD command 11-1
PROD detail file 11-1
PROD KEY qualifier, key range select 11-3
PROD lookup file 11-4
PROD output file 11-5
PROD$LINK, special NOMATCH RMO field, PROD 11-11
ADMINS User Guide   Index-29



PROGRAM section, RMS 9-7
prompt directly from RMO, ASKSCR subroutine H-121
prototype data elements, Data Dictionary I-17
PRT keystroke 6-18
PushButton fields, SCREEN 5-44
PUSHBUTTON, display field as 5-47
PUTFLD subroutine H-84

Q
Q$Q, quitting before end of file, MAINT 10-6
Q$Q, quitting before end of file, PROD 11-13
Q$Q, quitting before the end of file, REPORT 7-47
query name, TRS 5-24
QUERY, screen header line, TRS 5-6
QUIT action code, menu bar, SCREEN 5-80
quitting before end of file, MAINT 10-6
quitting before end of file, PROD 11-13
quitting before the end of file, REPORT 7-47

R
-R read only file access (appended to file spec) 19-3
R$R, automatic return from a branch, RMO with TRANS 16-6
R$R, bookmarking a screen 16-11
raise a D field to a power, DPOWER H-57
raise a F field to a power, FPOWER H-58
RANDOM subroutine, random number generator H-58
RANGE qualifier, FILE command, ANALYZER 12-10
read ASCII file, ASCREAD subroutine H-98
read external disk file, FACQUIR 17-8
read next field with no echo, NOEK H-110
read tape, ADMINS for OpenVMS 17-6
read text files, TXTACQ 17-12
read-only file access 19-1
recall, ANALYZER 12-7
RECIDX subroutine H-69, H-71
RECODE statement, REP 7-44
RECOPN subroutine H-69
record deletion processing, RMO with TRANS 15-9
record keystrokes, TRANS scripting facility 6-57
record lock ignored flag, ADM$NOLOCK, RMO with TRANS 16-36
record lock ignored, identify, ADM$NLREC, RMO with TRANS 16-37
record lock, check status in a screen (ADM$CHKLCK) 5-35
Record locking 19-5
record logging 6-12
record maintenance compiler 9-1
record maintenance procedure 9-1
Index-30   ADMINS User Guide



record maintenance processor 10-1
record selection, DEF 2-20
record transfer processing, RMO with TRANS 15-9
RECPOS special field (obsolete) D-8
RED meta key, TRANS environment file 6-34
redefine file, REDEFINE qualifier, DEFINE 2-3
REF keystroke 6-18
ref_init, TRANS$ENV keyword, optional screen refresh behavior 6-39
referencing data dictionary data elements 2-13
REFGRP subroutine H-66
refresh shared memory emulation, REFGRP H-66
reject errors, RMO with TRANS 16-4
REM.COM, remove single image command procedure L-2
remap output characters, AdmReport 7-87
remove extra blanks, SQUEEZ H-18
removing installed images, command procedures L-2
rename field, NAME ANALYZER 12-44
rename standard function key, TRANS environment file 6-34
REP$SECLEN, RMO field, REP 7-82
REPEAT keyword, DETAIL statement, REPORT 7-7
repeating fields, PROD 11-14
repetitive parameterization, COM 14-4
repetitive parameterization, REP 7-51
repinfo_date, automatically generated attribute of AdmReport XML document 7-109
repinfo_time, automatically generated attribute of AdmReport XML document 7-109
repinfo_who, automatically generated attribute of AdmReport XML document 7-109
REPLAC subroutine H-19
replace characters, REPLAC H-19
REPORT command 7-1
REPORT environment file 7-86
report instruction file 7-2
REPORT options 7-58
report overlay 7-87
REPORT retry, option to enable A-7
REPORT statement, REP 7-3
REPORT$ENV, logical name 7-86
REQUIRE statement, TRS 5-27
required fields, TRS 5-27
rerunning parameterized reports, RETRY 7-54
reserved field names 2-8
reserved field names list D-1
reserving file locks, FLOCK 19-14
RESET PAGE statement, REP 7-79
RESTART statement, COM 14-15
restrict TRANS to key range, TRS 5-24
restricting use of ADED 18-8
restricting use of the General Editor Mode 6-30
ADMINS User Guide   Index-31



RET instruction, RMS 9-7
retaining punctuation, FCAT H-5
RETRY, rerunning parameterized reports 7-54
returning to a bookmarked screen 16-12
reverse video, highlighting fields, RMO with TRANS 16-17
right justification of data, REP 7-13
right justification of data, TRS 5-49
right justify line on page, REP 7-5
right justifying decimal values in alpha fields, FCAT H-7
RJ$RJ, reject errors, RMO with TRANS 16-4
-RM multi-user read file access (appended to file spec) 19-3
-RM multi-user read file access, limitations 19-4
RMO call, define keystroke to generate, TRANS 6-33
RMO communication with TRANS 15-2
RMO in REPORT 7-79
RMO keystroke, advanced RMO in TRANS 16-32
RMO with MOVE 3-4
RMO with PROD 11-8
RMO with SORT in REPORT 7-81
RMO with TRANS 15-1
RMO-NAME, screen header line, TRS 5-4
RNF command N-2
RNF control words N-3
RNF eject before printing literal paragraph, OPTION Z N-7
RNF functions N-1
roots, square, DPOWER and FPOWER subroutines H-57
RPO file type 7-86
RPO, REPORT command line argument 7-86
RPxx.TMP, temporary file, REPORT 1-16
rulers, TED J-9
-RX multi-user read w/locking file access 19-4

S
-S single user file access (appended to file spec) 19-3
S$S, local RMO field, with MOVE VIRTUAL 3-23
S$S, status of an RMO call from TRANS 15-2
S$SEL, select records in TRANS, RMO with TRANS 16-23
SAME branch-fields, TRS 5-53
SAME keystroke, TRANS 6-15
same, /SA derivation operator, DEF 2-16
SAV files, ANALYZER 12-9
SAVE, saving report parameters 7-52
saving report parameters, SAVE 7-52
SCALE n, screen header line, TRS 5-8
SCALE NOP, REP 7-65
SCALE statement, REP 7-65
scaling, REP 7-65
Index-32   ADMINS User Guide



scaling, TRS 5-8
screen all .TRS files in directory, SCREEN 5-3
SCREEN command 5-1
SCREEN compilation information F-2
screen description, TRS 5-1
screen header line keywords 5-5
screen header line, TRS 5-3
screen instruction file 5-1
screen layout, text blocks 5-49
screen layout, text blocks, using precise placement 5-51
screen layout, TRS 5-48
screen width, TRS 5-7
SCREEN-NAME, screen header line, TRS 5-4
SCRExx.TMP, temporary file, SCREEN 1-16
scripting facility, TRANS 6-57
SCRMENU statement, SCREEN 5-90
SEARCH subroutine H-40
searching records, TRANS 6-13
second, /2 derivation operator, REP 7-19
secondary field names 2-20
section length control, RMO, REP 7-82
SELECT command, ANALYZER 12-15
select criteria at run time, MOVE 3-8
SELECT line in TAP, ACQUIR and FACQUIR 17-11
select part of a field, STR H-16
select records in TRANS, S$SEL, RMO with TRANS 16-23
SELECT Statement

relation to S$SEL 5-48
SELECT statement 2-21
SELECT statement, REP 7-33
SELECT statement, TRANS 5-47
SELECT, MOVE VIRTUAL statement 3-14
selecting records by key values, REPORT 7-34
self-sort 4-2
self-sort, index only 4-3
self-sort, index only, cautionary note 4-3
self-sort, rebuild index with partially full blocks 4-4
SEND command, send messages to terminals 13-20
SEQ command (FILECONVERT) 13-9
SEQINC subroutine, generate sequential number H-59
sequential file 2-14
sequential number generator, SEQINC subroutine H-59
set a value into the group shared area, SETGRP H-66
set meta key, TRANS environment file 6-34
SETGRP subroutine 20-1, H-66
SETKEY subroutine H-114
setkey=physical, TRANS environment file 6-37
ADMINS User Guide   Index-33



SETRPL subroutine H-19
setup, ADMINS Data Dictionary I-58
SETUP.COM, Data Dictionary set up command procedure I-60
SH$ fields, TRS 5-38
SH$+nnn/I, TRS 5-38
shared memory concepts 20-1, G-1
shared memory emulation 20-6
SHARED.FIL, creating 20-3
shell procedures, operating system differences C-2
shfk_sort, TRANS$ENV keyword, change SHFK display order 6-39
SHORT keyword, LINK paragraph, TRS 5-14
SHORT, screen header line, TRS 5-12
SHOW command, ANALYZER 12-41
signficant bytes, sorting 2-15
simulate keystrokes in TRANS, SETKEY subroutine H-114
SINGLE statement, REP 7-59
single-user file access 19-1
SK$SK, skipping fields control, RMO with TRANS 16-14
skip n records, MOVE 3-2
skip n records, PROD 11-2
SKIP, MOVE VIRTUAL statement 3-14
SKIP, special RMO field, MOVE VIRTUAL 3-23
skipping fields control, SK$SK, RMO with TRANS 16-14
slash "/", inserting into alpha string, FORMAT subroutine H-30
-SM single or multi-user access (append to file spec) 19-4
SNDX subroutine H-141
sort (command line switch), AdmMove 3-7
SORT command 4-1
sort control, DEF 2-13
SORT functions 4-1
SORT KEEPTEXT, don’t reorganize TSF and TCF in self-sort 4-5
sort order, required to find a record by key value E-3
SORT statement, conditional, REP 7-31
SORT statement, REP 7-29
SORT subroutine H-93
-sort, disable alternate indexes and sort upon completion 2-23
sorting records for reporting 7-29
SORTxx.TMP temporary file, SORT 4-3
sound index, SNDX H-141
SPAWN command, ANALYZER 12-66
SPAWN statement, TRANS environment file 6-38
SPAWN subroutine H-141
special conditions, writing records to disk, text fields K-5
specifying forms type, REP 7-64
spelling checker personal dictionary J-12
spelling checker, TED J-10
split screen, TRS 5-48
Index-34   ADMINS User Guide



SPLIT subroutine H-33
SPn, screen header line, TRS 5-8
square roots, DPOWER and FPOWER subroutines H-57
SQUEEZ subroutine H-18
STACK subroutine H-146
statement, RMS 9-7
Status line, TRANS 6-23
status, S$S, RMO with TRANS 15-2
STOP statement, RMS 9-8
STR subroutine H-16
STRTYP subroutine H-31
STRTYP subroutine, example H-31
structure level conversion, FILECONVERT 13-10
structure level, ADMINS data file E-6
STYLE INITPAGE statement, REPORT 7-74
STYLE INITPAGE statement, REPORT, placing an image 7-75
STYLE INITPAGE, placing image on each page of report output 7-75
STYLE statement, REPORT 7-71
SUBFIELD

Operation 0 H-88
Operation 1 H-88
Operation 2 H-89
Operation 3 H-89, H-91

SUBFIELD subroutine H-87
subheadings, DETAIL section, REPORT 7-17
submitting a batch job from ADMINS for OpenVMS H-123
subroutines H-1
subroutines used with TRANS 16-41
SUBSCREEN action code, menu bar, SCREEN 5-80
subscreen control, ADM$SUBSCR, RMO with TRANS 16-30
subscreen design considerations 5-89
subscreen facility, SCREEN 5-88
subscreen menu, SCREEN 5-88
subscreen syntax, SCREEN 5-90
subscreens, TRANS 6-20
subscript, local and TABLE arrays 9-3
subscripts in file definition arrays 8-8
substitute data into text field at run time, REPORT 7-16
substitution tokens, MLOCK output text formatting 19-13
subtotalling with automatic formatting and DETAIL 7-22
subtotalling with automatic formatting without DETAIL 7-23
subtract, arithmetic operator in expressions 8-2
summarizing SORT 4-7
SUMMARY *CSV statement, AdmReport 7-26
SUMMARY section position, REP 7-25
SUMMARY subroutine H-149
suppress asterisk display, NO* 1-13
ADMINS User Guide   Index-35



suppress field logging, TRS 5-9
suppress formfeed beginning of REPORT output, option A-7
suppress formfeed end of REPORT output, option A-5
SUPPRESS statement, conditional, REPORT 7-78
SUPPRESS statement, REPORT 7-78
SUPPRESS ZERO statement, REPORT 7-78
symbolic name subroutines H-61
symbols for ADMINS commands, OpenVMS C-6
SYNC command 13-12
SYNC Implementation issues 13-14
SYNC subroutine H-152
synchronization between ADMINS commands 13-1
synchronization in ADMINS COM files 14-17
synchronize access to a file, SYNCH H-152
Syntax, obsolete O-1

T
-T record lockout action code appended to file spec 19-5
T$T, terminal number, TRS 5-34
TABBING, screen header line, TRS 5-6
TABLE command, ANALYZER 12-25
table driven check statement error messages, TRS 5-32
table driven check statement messages, RMO with TRANS 16-33
TABLE paragraph, alternative for TABLE statement, REP 7-43
TABLE qualifier, format for entries 17-24
TABLE statement, automatic field renaming, REP 7-43
TABLE statement, REP 7-42
TABLE statement, RMS 9-11
TAP instruction file 17-2
TAPCOPY command, ADMINS for OpenVMS 17-20
TAPDMP command, ADMINS for OpenVMS 17-17
TAPSPL command, ADMINS for OpenVMS 17-20
TCF file, text catalog file, Using Text Fields K-1
TDBG keystroke, invoke VIA from TRANS 6-58
TED subroutine H-48
TED, text editor J-1
TED, text initialization file J-25
TED, using buffers J-24
TED.ENV file, described J-16
TED.ENV file, example J-24
temporary files 1-16
TERM, environment variable, used to determine tkb file G-2
terminal modes, TRANS 6-4
terminal support, ADMINS 1-3
terminating a command file, MAINT 10-7
terminating a command file, PROD 11-13
test mode local field, ADM$TESTSW, RMO with TRANS 15-10
Index-36   ADMINS User Guide



test mode operation, MAINT 10-3
test mode tutorial, RMO with TRANS 15-12
test mode, DEFINE 2-2
test mode, MAINT 10-2
test mode, RMO with MOVE 3-5
test mode, RMO with PROD 11-8
test mode, RMO with TRANS 15-9
TEST, keystroke, test mode toggle 15-10
testing check digit for Norwegian SS#, DCS H-132
text blocks, screen layout using field designators 5-49
text blocks, screen layout using precise placements 5-51
text field types 2-12
text field, run time data substitution, REPORT 7-16
text fields in SCREEN 5-91
text fields, automatic initialization of, in RMO 16-43
text fields, special considerations for using K-1
text fields, specifying attributes, Data Dictionary I-8
text fields, syntax, REPORT 7-14
text fields, using K-1
text handling subroutines H-35
TEXTATTR subroutine H-38
TEXTCOPY examples H-37
TEXTCOPY subroutine H-35
TEXTCOPY subroutine, appending a lock mark at the end of internal text H-38
TEXTCOPY subroutine, set lock mark H-37
third, /3 derivation operator, REP 7-19
through notation, PROD 11-3
TICKS, in the current time, MAINT 10-8
TICKS, in the current time, MOVE 3-5
TICKS, in the current time, PROD 11-10
time difference H-9
time field type 2-11
time in RNF N-8
time-out in TRANS, G$TMO 5-43
timeout, global (Trans Environment File) 6-37
TIMESTR subroutine H-15
TInn field type 2-12
TInn fields, specifying attributes, Data Dictionary I-8
TITLE statement, SCREEN 5-90
tkb file G-1
TKB file, sample G-3
TM field type 2-11
TMDIFF subroutine H-9
TMDIFF, returning values in an integer array H-11
TODAY and NOW, create test values B-5
TODAY, to use as DT field in REPORT, option "d" A-5
TODAY, today's date, REP 7-58
ADMINS User Guide   Index-37



TODAY, today's date, TRS 5-34
TODAY, today’s date, MAINT 10-8
TODAY, today’s date, MOVE 3-5
TODAY, today’s date, PROD 11-10
toggle switch, test mode in TRANS 15-10
top of file control, F$F, RMO with TRANS 16-18
TOTAL control_field, REP 7-20
TOTAL EOF PREVIEW, REP 7-28
TOTAL EOF, REP 7-20
TOTAL n, REP 7-21
TOTAL statement, REP 7-19
TPR$ENV logical name J-33
TPR$ENV, ADM$SPOOLn keyword J-34
TPR$FIELD, logical name, Specify field for TPR -INT J-31
TPR$FILENAME, logical name, Specify file for TPR J-31
TPR$FROM_PAGE, logical name, specify 1st page (TPR-INT) J-32
TPR$KEY , logical name, Specify key value for TPR - INT J-31
TPR$TO_PAGE, logical name, specify last page (TPR -INT) J-32
TPR, print internal text (TInn) fields J-31
TPR.ENV, TPR environment file J-33
TRANS

DMAP and MAP 6-35
escaping from key sequence 6-15

TRANS environment file 6-32
TRANS HELP, using video attributes in 6-25
TRANS keystroke help screen 6-3
TRANS keystroke, reassign physical key, TRANS$ENV 6-33
TRANS scripting facility 6-57
TRANS$ENV, logical name 6-32
TRANS, branching 6-19
TRANS, development facility for editing HELP files 6-27
TRANS, editing keys help screen 6-8
TRANS, function keys help screen 6-3
TRANS_ENV statement, AdmScreen 5-12
transfer fields, PROD 11-3
transfer records, TRANS 6-17
translate a logical name, TRLOG H-62
translate a symbolic name (OpenVMS), TRSYMBOL H-64
TRF keystroke 6-17
TRLOG subroutine H-62
TRSYMBOL subroutine H-64
TSF file, text storage file, Using Text Fields K-1
TTCOM H-153
TTCOM, new operation code H-156
TTn, screen header line, TRS 5-8
TX$INITF, special RMO field, initialize text field 16-43
TXnn field type 2-12
Index-38   ADMINS User Guide



TXnn fields, specifying attributes, Data Dictionary I-8
TXTACQ command 17-12

U
U$SER, UIC user number, TRS 5-35
U%field, get UAC field from codelist table I-31
UDK command 13-21
UDKs, detecting with F$UNCKEY 16-29
underline, highlighting fields, RMO with TRANS 16-17
unique names, Win32 C-2
UP (arrow) keystroke 6-8
Update Mode control with backout, TRS 5-11
Update Mode control, TRS 5-11
Update Mode, TRANS 6-4
UPDGRP subroutine 20-3, H-66
usage management file L-8
user defined function keys, detecting with F$UNCKEY 16-29
user defined function keys, UDK command 13-21
using branching, TRANS 6-19
using menu bars and submenus, TRANS 6-22
utilities 13-1

V
V fields, virtual field, TRS 5-26
VADM command L-3
validate field contents, CHECKCHAR subroutine H-32
VALIDATE statement, COM 14-8
values, /V derivation operator, DEF 2-16
values, /V derivation operator, REP 7-19
variable formatting, REP 7-48
VERIFY statement, COM 14-14
verifying a base 10 check digit, DCS subroutine H-132
VIA (View Internal ADMINS), CMP 9-18
video attributes in TRANS HELP files 6-25
video attributes keywords, TRS 5-64
video attributes, precedence 5-66
video highlighting facilities, TRS 5-64
VIDEO statement, TRS 5-64
view contains file/element relationship, Data Dictionary I-41
VIEWTEXT subroutine H-49
virtual fields, TRS 5-26
VIRTUAL, MOVE with instruction file 3-10
VISIBLE, OPTIONS keyword for menu bar, SCREEN 5-79

W
-W file open action code appended to file spec 19-4
ADMINS User Guide   Index-39



W$W in MOVE 3-5
W$W, controlling write back and output 11-12
W$W, controlling writeback, MAINT 10-5
W$W, controlling writeback, RMO with TRANS 16-1
Where Used Screen, Data Dictionary I-57
WHILE statements, RMO 8-5
WHITE meta key, TRANS environment file 6-34
who ran report, admreport -xml 7-109
WIDTH statement, REP 7-60
wildcard notation for transfer fields, PROD 11-4
wildcard syntax, SCREEN 5-3
working field, deriving aggregates 2-18
write ASCII file, ASCWRITE subroutine H-99
WRITE command, ANALYZER 12-55
write external disk files, FDATAP 17-15
write tape, ADMINS for OpenVMS 17-14
write the group shared area to disk, UPDGRP H-66
write to disk immediate when text field is altered K-5

X
-X exclusive file access (appended to file spec) 19-3
XML Switch 7-99

Generation of XML 7-99
L$XSL_STYLESHEET 7-112
Report’s XML Preprocessor 7-103
Special Handling of Text Fields 7-109
XML Attributes 7-106
XML Statement 7-104
XMLMORE Statement 7-104
XMLTOTAL Statement 7-104
XSL Stylesheet 7-109

Xpic field type 2-11
XRET keystroke 6-19

Y
Y$EAR subroutine H-13

Z
zero suppression, REP 7-16
 N-2
Index-40   ADMINS User Guide


	TheManual
	Chapter 1: Introduction
	1.1 Using ADMINS
	1.2 ADMINS Terminal Support
	1.3 ADMINS Manual
	1.3.1 Manual Conventions

	1.4 ADMINS Instruction Files
	1.4.1 Comments
	1.4.2 Continuation
	1.4.3 Indirect References
	1.4.3.1 Passing Parameters in Indirect References

	1.4.4 Parameterization
	1.4.5 Referencing Data Dictionary Elements
	1.4.6 Conditional Compilation
	1.4.6.1 Defining Names and Values on Command Line


	1.5 Processing Progress of ADMINS Commands
	1.6 Logging Interactive Sessions
	1.7 Providing Responses for Command Dialogue on the Command Line
	1.8 File Specification
	1.8.1 ADMINS File Types

	1.9 Dynamic Data File Expansion
	1.10 Localizing ADMINS
	1.11 Alternative Collating Sequences
	1.12 ADMINS Messages Facility
	1.12.1 Operation of the Message Facility
	1.12.2 Expanded Message Facility

	1.13 Logging Fatal Errors
	1.14 Host and Operating System Differences

	Chapter 2: AdmDefine: Creating Files
	2.1 Outline of a File Definition (DEF)
	2.2 AdmDefine Dialogue and Example
	2.2.1 AdmDefine Output Messages
	2.2.2 AdmDefine in Test Mode
	2.2.3 REDEFINE: Redefine & Convert Existing File
	2.2.3.1 ADDREDEF: Redefine & Convert Existing using DDID

	2.2.4 READONLY qualifier: Block Write Access via GENED
	2.2.5 IXONLY qualifier: Create Index-only file
	2.2.6 INIT: Initialize File with a Blank Record

	2.3 File Description Line
	2.3.1 FILE_TYPE Specification
	2.3.2 NRECS Specification
	2.3.3 LOGNAM Specification
	2.3.3.1 Utilizing DEFs in Other Directories

	2.3.4 FLGSIZ Specification

	2.4 Field Description Lines
	2.4.1 Field Names
	2.4.1.1 Reserved Field Names

	2.4.2 Field Data Types
	2.4.2.1 Input and Output Representation Options
	2.4.2.2 Referencing Data Dictionary Data Elements

	2.4.3 Sort and Access Control
	2.4.3.1 Sequential Files
	2.4.3.2 Sorting On Significant Bytes

	2.4.4 Deriving Aggregates
	2.4.4.1 Method of Operation

	2.4.5 Secondary Field Names
	2.4.6 Comments

	2.5 Record Selection
	2.6 Level 3 File Structure
	2.7 Multiple Indices
	2.7.1 Use of Multi-Indexed Files.

	2.8 AdmENLARG: Enlarging ADMINS Files
	2.9 MKDEF - Create .DEF file from Data File
	2.10 Field Logs
	2.11 Parameterization
	2.11.1 Logical Parameters

	2.12 Alternative Collating Sequences
	2.12.1 Manipulating the Alternative Collating Tables


	Chapter 3: AdmMove: Moving Records Between Files
	3.1 Functions of AdmMove
	3.2 AdmMove Dialogue
	3.2.1 AdmMove with Multiple Output Files
	3.2.2 AdmMove with RMO
	3.2.2.1 Test Mode in AdmMove

	3.2.3 Move with Generalized Field Type Conversion
	3.2.4 SELECT qualifier: Run Time SELECT Criteria
	3.2.5 OVERRIDE: Ignore Output File Select Criteria
	3.2.6 SORT: Rebuild indexes after records moved

	3.3 Operation of AdmMove
	3.4 AdmMove Example
	3.5 VIRTUAL qualifier: Complex Processing Using Instruction File
	3.5.1 Operation of AdmMove VIRTUAL
	3.5.2 AdmMove VIRTUAL: Instruction File Outline
	3.5.3 The FILE Statement
	3.5.4 AdmMove VIRTUAL Processing Options
	3.5.5 OUTPUT Statement
	3.5.6 Link File Paragraph
	3.5.7 Add File Paragraph
	3.5.8 Processing Control
	3.5.8.1 EXECUTE statement: RMO Processing
	3.5.8.2 GROUP statement

	3.5.9 AdmMove VIRTUAL Example

	3.6 Merge Files (AdmMrgFil)

	Chapter 4: SORT: Sorting Records Between Files
	4.1 Functions of SORT
	4.2 SORT Dialogue
	4.2.1 Temporary Files
	4.2.2 Index-only Self-Sort Option
	4.2.2.1 Rebuilding Index with Partially Full Blocks
	4.2.2.2 Rebuilding Indices After Batch Processing

	4.2.3 KEEPTEXT: Self-Sort without TSF, TCF processing

	4.3 Operation of SORT
	Pre-Pass (1) Set Up and Check
	Pass (1)
	Pass (2)
	Pass (3)

	4.4 Deriving Aggregates (Summarizing Sort)
	4.5 SORT Example Creating an Index File

	Chapter 5: AdmScreen: Compiling Screen Forms
	5.1 Outline Of The Screen Instruction File (TRS)
	5.2 AdmScreen Command Dialogue
	5.3 Screen Header Line
	5.3.1 Screen Header Line Keywords
	5.3.1.1 INSERT, DELETE, or APPEND Records
	5.3.1.2 NOMSG: Inhibit On-line Messages
	5.3.1.3 AUTOCR: Automatic Carriage Return
	5.3.1.4 TABBING or QUERY: Field Selection Mode
	5.3.1.5 BREAK On A Multi-Record Screen
	5.3.1.6 PASSW: Password Protect the Screen
	5.3.1.7 Screen Size
	5.3.1.8 MATCH: Require Exact Match
	5.3.1.9 SPn or TTn: Print Device Specification
	5.3.1.10 NOP or SCALE n: Scaling
	5.3.1.11 NOLOG: Suppress Field Logging
	5.3.1.12 NOWRITE After Each Field Change
	5.3.1.13 PREV, NEXT: Record to Display if Key not Found
	5.3.1.14 NOBR: Inhibit Manual Branching
	5.3.1.15 NOXR: Prevent Return to Screen by Browsing Keys
	5.3.1.16 NOEX: Inhibit Screen Exit
	5.3.1.17 NOTR: Inhibit Manual TRANS Entry
	5.3.1.18 LFEXIT or LFBACK: Update Mode Control
	5.3.1.19 SHORT: Conserve MD Array Space
	5.3.1.20 COMMA/NOCOMMA
	5.3.1.21 NOTMO

	5.3.2 TRANS_ENV Statement
	5.3.3 ADM_DD Statement

	5.4 External Files
	5.4.1 LINK Paragraph
	5.4.1.1 Chain Linking
	5.4.1.2 Linking Without an Exact Match

	5.4.2 APPEND Paragraph
	5.4.2.1 APPEND Paragraph INSERT and DELETE

	5.4.3 INDEX Paragraph
	5.4.3.1 NO_NULL: Suppress Null Keys in Index File


	5.5 Field Names
	5.5.1 Display
	5.5.1.1 Restrict TRANS to Key Range

	5.5.2 Editable
	5.5.3 Loggable
	5.5.4 Virtual Fields
	5.5.5 REQUIRE Statement
	5.5.6 Check Statement
	5.5.6.1 Table Driven Check Statement Error Messages

	5.5.7 Message Fields
	5.5.8 Internal Fields
	5.5.8.1 TODAY: Current Date
	5.5.8.2 NOW: Current Time
	5.5.8.3 Terminal Number
	5.5.8.4 D$IR: Default Directory
	5.5.8.5 G$RP: UIC Group Number
	5.5.8.6 U$SER: UIC User Number
	5.5.8.7 ADM$SCRNAM
	5.5.8.8 ADM$TRONAM
	5.5.8.9 ADM$CHKLCK: Check record locked status

	5.5.9 Global Fields
	5.5.9.1 STRUCTURE: Lay out global fields section

	5.5.10 Group Shared Area Fields
	5.5.11 BOX statement
	5.5.11.1 Drawing BOXes in the screen layout

	5.5.12 CAPS statement: Convert entry to all uppercase
	5.5.13 CAP1 statement: Capitalize each word in entry
	5.5.14 NOECHO
	5.5.15 ALLOW statement
	5.5.16 TIMEOUT statement
	5.5.16.1 Time-out Examples

	5.5.17 Button Objects in TRANS
	5.5.17.1 PushButton Object
	5.5.17.2 LabelButton Object
	5.5.17.3 Using Button Fields

	5.5.18 %PUSHBUTTON: Display Alpha field as PUSHBUTTON
	5.5.19 SELECT Statement in TRANS

	5.6 Screen Layout
	5.6.1 Precise Placement of Fields
	5.6.1.1 Precise Placement of Text Blocks

	5.6.2 Inclusive Field Names
	5.6.3 Displaying Fields More than Once

	5.7 Branches
	5.7.1 Customizing the "Pop-up" Branch Menu
	5.7.2 Automatic-only Branches
	5.7.3 Calculated Branches

	5.8 Time Card Entry Example
	5.9 Multi-Record Screens
	5.9.1 Multi-Record Screen Example
	5.9.2 BREAK In a Multi-Record Screen
	5.9.2.1 BREAK Example


	5.10 Video Highlighting Facilities
	5.10.1 %GRAPHICS: Display Field Contents in Graphics Mode

	5.11 LOOKUP Window
	Field Search
	5.11.1 LOOKUP Window: Examples
	5.11.2 LOOKUP Menu
	5.11.3 LOOKUP on Local Arrays

	5.12 Menu Bar
	5.12.1 Bar Paragraph Syntax
	5.12.2 The Menu Paragraph
	5.12.3 Enhanced Accelerator Capability

	5.13 The MESSAGE Facility
	5.13.1 MESSAGE Facility Example

	5.14 Subscreens
	5.14.1 Subscreen Design Considerations
	5.14.2 Subscreen Syntax

	5.15 Text Fields
	5.16 Parameterization
	5.16.1 Logical Parameters
	5.16.2 Data DIctionary Parameters


	Chapter 6: TRANS: Screen Transactions
	6.1 Standard Functional Keystrokes
	6.1.1 TRANS Function Key Help

	6.2 TRANS Modes
	6.2.1 Update Mode
	6.2.1.1 Update Mode Under LFEXIT Control

	6.2.2 Append Mode
	6.2.3 Insert Mode
	6.2.4 Error Mode

	6.3 Entering or Changing Fields
	6.3.1 Keystrokes: Entering or Changing Fields
	6.3.2 Keystrokes: Editing fields in TRANS

	6.4 Field Logging
	6.4.1 Field Log Example
	6.4.2 Field Logging, Method of Operation
	6.4.3 Expanded Field Log Facilities

	6.5 Record Moving and Searching
	6.6 Record Operations
	6.7 Control Functions
	6.8 Branching and Subscreens
	6.8.1 Subscreens

	6.9 Lookup Windows
	6.10 Menu Bars and Submenus
	6.10.1 Alternate Menu Bar Behavior - "Option Q"

	6.11 Status line
	6.12 HELP in TRANS
	6.12.1 Development Facility for HELP in TRANS files

	6.13 Entering TRANS On A Specific Record
	6.14 General Editor Mode (“GENED”)
	6.14.1 Selecting Fields For Display
	6.14.2 User Specified Field Widths
	6.14.3 Alternate Indexes in GENED
	6.14.4 Formatting the Display
	6.14.5 Restricting Use of General Editor Mode
	6.14.6 Instruction File for General Editor Mode

	6.15 The TRANS Environment File
	6.15.1 Reassign Key for TRANS Keystroke Function
	6.15.2 Define Macro Function
	6.15.3 Rename Standard Function Key
	6.15.4 Set "Meta Key": GOLD, WHITE, RED, or BLUE
	6.15.5 DMAP and MAP
	6.15.6 F$UNCKEY=PHYSICAL, Load F$UNCKEY with Physical Key Names
	6.15.7 SETKEY=PHYSICAL, Simulate VT-type Function Keys
	6.15.8 Global Timeout
	6.15.9 Global Branch
	6.15.10 SPAWN Statement: Alternative Behavior after SPAWN
	6.15.11 NOL$PROMPT - Don’t prompt for L$ parameters (text initialization)
	6.15.12 REF_INIT: Optional Screen Refresh Behavior
	6.15.13 SHFK_SORT Statement: Change Function Key Display Order
	6.15.14 Conditional Compilation Logic in TRANS$ENV
	6.15.15 “Localizing” Messages and Prompts
	6.15.16 TRANS$ENV Lexicon
	6.15.16.1 TRANS main program
	6.15.16.2 Edit Mode
	6.15.16.3 Edit subroutine
	6.15.16.4 Menu Bar
	6.15.16.5 Sub menu
	6.15.16.6 Lookup Menu
	6.15.16.7 Lookup
	6.15.16.8 Branch and Sub-screen Menus
	6.15.16.9 Viewtext
	6.15.16.10 Help in TRANS


	6.16 Mouse Support in TRANS
	6.16.1 Automatic Mouse
	6.16.1.1 Moving from Field to Field
	6.16.1.2 Multi-Record screens
	6.16.1.3 Edit Mode
	6.16.1.4 Menus
	6.16.1.5 LOOKUP
	6.16.1.6 VIEWTEXT
	6.16.1.7 Help in TRANS
	6.16.1.8 TED in TRANS

	6.16.2 Programmable Mouse
	6.16.3 Implementation Notes

	6.17 File Access Optimization: Files Left Open at Branch
	6.18 TRANS Scripting Facility
	6.19 VIA: View Internals of ADMINS

	Chapter 7: AdmREPORT: Creating Reports
	7.1 Outline of a Report Instruction File (REP)
	7.2 REPORT Statement
	7.3 FILE Statement
	7.4 HEADING Section
	7.5 DETAIL Statement
	7.5.1 Specifying Field Widths in the DETAIL Statement
	7.5.2 DETAIL *CSV: Output in CSV Format
	7.5.2.1 Embed CSV syntax in "multi-purpose" report


	7.6 DETAIL Section
	7.6.1 Text Fields
	7.6.1.1 Substituting Values into Text Fields at Run Time

	7.6.2 Zero Suppression
	7.6.3 Comma Suppression
	7.6.4 Explicit Print Field Designator
	7.6.5 Explicit Print Field Width
	7.6.6 DETAIL Subheadings

	7.7 TOTAL Statement
	7.7.1 Break At A Key or Sort Field Change
	7.7.2 Break At End of File
	7.7.3 Break At End of Page
	7.7.4 Break At A Fixed Number of Records
	7.7.5 Break At Partial Field

	7.8 Subtotaling with Automatic Formatting and DETAIL
	7.8.1 Automatic Formatting Examples, DETAIL and Subtotals

	7.9 Subtotaling with Automatic Formatting without DETAIL
	7.10 SUMMARY Section
	7.10.1 Positioning The SUMMARY Section
	7.10.2 Multi Column Reports
	7.10.3 Summary *CSV statement : CSV output based on TOTALs

	7.11 PREVIEW Section
	7.11.1 TOTAL EOF PREVIEW

	7.12 SORT Statement
	7.12.1 Relationship of SORT Statement to Other Statements
	7.12.2 Comparison of SORT Statement and SORT Command
	7.12.3 Conditional SORT Statement

	7.13 Processing Statements
	7.13.1 CREATE Statement
	7.13.1.1 CREATE Statements after TOTAL Statements

	7.13.2 SELECT Statement
	7.13.2.1 ORSELECT Statement
	7.13.2.2 No Record Selected

	7.13.3 KEY Statement
	7.13.4 LINK Statement
	7.13.4.1 LINK Example
	7.13.4.2 Interaction of LINK and KEY Statements
	7.13.4.3 LINK with the NULL Keyword
	7.13.4.4 LINK One To Many (MULTIPLE)
	7.13.4.5 LINK Without an Exact Match

	7.13.5 TABLE Statement
	7.13.6 LINK and TABLE Paragraphs: Alternative Syntax
	7.13.7 Automatic Field Renaming in LINK, TABLE Statements
	7.13.8 RECODE Statement
	7.13.9 Quit Before the End of File: Q$Q
	7.13.10 Layout Statement: Variable Formatting

	7.14 Parameterization
	7.14.1 Repetitive Parameterization
	7.14.2 Logical Parameters
	7.14.3 Saving Report Parameters for Later Use
	7.14.4 Rerunning Parameterized Reports, RETRY
	7.14.5 DEF Statement

	7.15 Floating Fields
	7.16 Internal Field Names
	7.17 Report Options
	7.17.1 SINGLE Statement
	7.17.2 PAGE Statement
	7.17.3 LENGTH Statement
	7.17.4 WIDTH Statement
	7.17.5 IPAD Statement
	7.17.6 INDENT Statement
	7.17.7 OUTPUT Statement
	7.17.7.1 Report Output
	7.17.7.2 OUTPUT LP (Line Printer)
	7.17.7.3 OUTPUT TI (User's Terminal)
	7.17.7.4 OUTPUT VT (Video Terminal)
	7.17.7.5 OUTPUT LA (Terminal's Printer Port)
	7.17.7.6 OUTPUT SO (Direct Output to Standard Output)
	7.17.7.7 OUTPUT TT0 (Direct Output to Physical Device)

	7.17.8 LP Statement
	7.17.8.1 Multiple Copies
	7.17.8.2 Logical Queuing Device Number
	7.17.8.3 Overprinting
	7.17.8.4 Bypass Queuing; Specify Form Type, File Name
	7.17.8.5 LP Examples

	7.17.9 SCALE Statement
	7.17.10 PRINT ODD or EVEN
	7.17.11 NRECS Statement
	7.17.12 FORMAT Statement
	7.17.13 FORCE_HEADING Statement
	7.17.14 DIRECT Statement: Multiple Output Files
	7.17.15 DIRECT Statement Example
	7.17.16 STYLE Statement: Insert Device Control Sequences
	7.17.16.1 STYLE INITPAGE: Initialize Page
	7.17.16.1.1 Using STYLE INITPAGE to Place An Image on Each Page of an ADMINS Report Output



	7.18 TOTAL Paragraph Options
	7.18.1 SUPPRESS Statement
	7.18.2 EJECT Statement
	7.18.3 RESET PAGE statement

	7.19 EXECUTE Statement: RMO Processing
	7.19.1 REP$SECLEN - Controlling Section Length in the RMO

	7.20 Data Description File for Automatic Formatting
	7.20.1 Example Using a Data Description File

	7.21 Pre-Compiled Reports
	7.22 The REPORT Environment File
	7.23 Report Overlay Feature (MERGE)
	7.24 PCLtoPDF: Convert ".LIS" file to PDF format
	7.25 Report Command Line Options
	7.25.1 HTML: Create an HTML “wrapper” for output.
	7.25.1.1 ADM$HTML_STYLEn: Customized HTML wrapper
	7.25.1.2 Example: Customized HTML wrapper

	7.25.2 CSV: read special CSV instructions in the “.REP” file
	7.25.3 Excel: Create output in Excel’s XML format
	7.25.3.1 Styles Available.
	7.25.3.2 User Defined Styles.
	7.25.3.3 Page Printing .
	7.25.3.4 Miscellaneous Keywords.

	7.25.4 XML: create XML output
	7.25.4.1 Generation of XML
	7.25.4.2 REPORT's XML Preprocessor
	7.25.4.3 XMLOPTIONS Statement
	7.25.4.4 XML Statement
	7.25.4.5 XMLTOTAL and XMLMORE Statements
	7.25.4.6 XML Attributes
	7.25.4.7 Special Handling of Text Fields
	7.25.4.8 Special Document Attributes Store Report Info
	7.25.4.9 The XSL Stylesheet
	7.25.4.9.1 DESC: column heading and summary label
	7.25.4.9.2 ALN: cell formatting and display
	7.25.4.9.3 CELLCLASS: color and font characteristics
	7.25.4.9.4 ADM_HEADING: override default document heading
	7.25.4.9.5 ADM_TITLE: override default document title
	7.25.4.9.6 ADM_BORDER: suppress display of table cell borders

	7.25.4.10 L$XSL_STYLESHEET: Specifying the stylesheet
	7.25.4.10.1 Identifying the stylesheet inside the .REP file
	7.25.4.10.2 Example: using the "default" stylesheet




	Chapter 8: Expressions
	8.1 Constants
	8.2 Arithmetic Operators
	8.2.1 Decimal Operations

	8.3 Comparison and Special Operators
	8.3.1 WHILE Statements in RMOs

	8.4 Logical Operators
	8.5 Conditional Statements
	8.6 Parentheses
	8.7 Arrays
	8.8 Subroutines

	Chapter 9: CMP: The Record Maintenance Compiler
	9.1 CMP Dialogue
	9.2 Outline of A Record Maintenance Procedure (RMS)
	9.3 FILE Statement
	9.4 TABLE Statement
	9.5 LOCAL Section
	9.5.1 Creating Local Fields
	9.5.2 Checking the Subscript Value for Local Arrays
	9.5.3 ALIAS: Create Field Names for Local Array Elements
	9.5.3.1 Example: Using ALIAS with REPORT


	9.6 PROGRAM Section
	9.6.1 Record Maintenance Paragraphs
	9.6.2 Record Maintenance Statements
	9.6.3 The GOSUB Statement

	9.7 Parameterization
	9.7.1 Logical Parameters

	9.8 TABLE Statement
	9.9 Declaring Local Fields in Indirect References
	9.10 Record Maintenance Examples
	9.11 DEBUG Mode
	9.11.1 Source Code Window
	9.11.2 Command Line
	9.11.3 VIA: View Internal ADMINS
	9.11.3.1 VIA: File Information
	File Information

	9.11.3.2 VIA: Logical Names and Values
	9.11.3.3 VIA: Internal Values and Limits



	Chapter 10: MAINT: The Record Maintenance Processor
	10.1 MAINT Dialogue
	10.1.1 ADM$RECORDLOCK

	10.2 Test Mode
	10.2.1 Test Mode Display Examples
	10.2.2 Test Mode Operation
	10.2.3 Test Mode Hints

	10.3 Operate on KEY Values
	10.3.1 Operate on Key Range

	10.4 Controlling Write Back: W$W
	10.5 Record Deletion: D$D
	10.5.1 NOFLUSH: No Disk Write After Deletion

	10.6 Quitting Before End of File: Q$Q
	10.7 Terminating a Command File: E$XIT
	10.8 Printing On-line Messages: P$P
	10.8.1 Example Using P$P, W$W, and Q$Q

	10.9 Internal Fields: TODAY, NOW, and TICKS
	10.10 Backspace Records: BACKSPACE
	10.11 Look Ahead: NX$fieldname
	10.12 Writing Other Files: OUTFILE/OUTRECS
	10.12.1 OUTFILE Example

	10.13 Rebuilding Indices After Batch Processing

	Chapter 11: PROD: File Linkage Relational Product
	11.1 Conceptual Description
	11.2 Detail File
	11.2.1 PROD with Key Range: PROD/KEY
	11.2.2 Wildcard and Copy Syntax for Transfer Fields

	11.3 Lookup File
	11.4 Output File
	11.5 PROD Examples
	11.6 Inserting In The Lookup File
	11.6.1 PROD/NOFLUSH: No Disk Writeback with Insert/Delete

	11.7 Use of Record Maintenance Procedures
	11.7.1 Test Mode in PROD

	11.8 PROD Example Using An RMO
	11.9 Internal Fields: TODAY, NOW and TICKS
	11.10 NOMATCH qualifier: Functionality without LOOKUP link
	11.11 Controlling Writeback and Output: W$W
	11.12 Controlling Lookup File Insertion: DI$DI
	11.13 Record Deletion: D$D
	11.14 Terminating a Command File: E$XIT
	11.15 Quitting Before End of File: Q$Q
	11.16 Itemization and De-Itemization
	11.17 Multiple Lookup Files
	11.17.1 Keeping Multiple Lookup Files Open

	11.18 LOOKUP Without an Exact Match

	Chapter 12: ANALYZER: Generalized Data Analysis
	12.1 Method of Operation
	12.1.1 Reporting and Outputting Data Files
	12.1.2 Conventions and Concepts
	12.1.3 Command Summary
	12.1.3.1 Recall & Line Editing in the ANALYZER Session

	12.1.4 The Preventive Maintenance Example
	12.1.5 Personnel File Example

	12.2 The FILE Command and SAV Files
	12.2.1 The FILE Command
	12.2.2 The SAV File
	12.2.2.1 Initializing the SAV File

	12.2.3 Accessing Data Views

	12.3 The LINK Command
	12.3.1 LINK Syntax
	12.3.2 Efficiency Considerations

	12.4 SELECT
	12.4.1 Single Set Syntax
	12.4.2 Multiple Set Syntax
	12.4.3 SELECT Using An Existing Set

	12.5 The MARGINAL Command
	12.5.1 MARGINAL Syntax
	12.5.2 Using MARG to Build Interval Sets
	12.5.3 MARGINAL Using An Existing Set

	12.6 The INTERSECT Command
	12.6.1 INTERSECT Syntax

	12.7 The UNION Command
	12.7.1 UNION Syntax

	12.8 COMPLEMENT
	12.8.1 COMPLEMENT Syntax
	12.8.1.1 One Set Syntax

	12.8.2 Two Set Syntax

	12.9 The XOR (Exclusive Or) Command
	12.9.1 XOR Syntax

	12.10 The TABLE Command
	12.10.1 TABLE Syntax
	12.10.1.1 TABLE on the Whole Logical File
	12.10.1.2 TABLE on a List of Sets, One Dimensional
	12.10.1.3 Two Dimensional Table

	12.10.2 Operations On Values
	12.10.2.1 Percentages of Values

	12.10.3 Int ersection Functions
	12.10.4 Table Formats
	12.10.5 The Fisher Exact Test

	12.11 The GRAPH Command
	12.11.1 GRAPH Syntax
	12.11.1.1 GRAPH on a List of Sets, One Dimensional
	12.11.1.2 Two Dimensional Graph
	12.11.1.2.1 One Set Across the Top
	12.11.1.2.2 Multiple Sets Across the Top


	12.11.2 Graph Restrictions and Conventions
	12.11.3 Adding Values on the Same Bar Graph
	12.11.4 Graphing Negative Values
	12.11.5 Summary of Graphs Types
	12.11.6 Scale Option
	12.11.7 Graph Shadings

	12.12 The SHOW Command
	12.12.1 Show Fields
	12.12.1.1 Show All Fields, in Detail
	12.12.1.2 Show Fields, Briefly
	12.12.1.3 Show All Created Fields
	12.12.1.4 Show a Particular Field
	12.12.1.5 Show All Labeled Fields

	12.12.2 Show Sets
	12.12.2.1 Show All Sets
	12.12.2.2 Show All Labeled Sets
	12.12.2.3 Show the Last "n" Sets
	12.12.2.4 Show a Particular Set

	12.12.3 Show File-Name
	12.12.4 Show Options, Show Command Log

	12.13 The NAME Command
	12.13.1 Using the NAME Command with Fields
	12.13.2 Using the NAME Command With Sets

	12.14 The EXAMINE Command
	12.15 The HELP Command
	12.15.1 Location of the HELP File

	12.16 The CREATE Command
	12.17 Output Files
	12.17.1 OUTPUT Syntax
	12.17.2 Building Output Files
	12.17.3 Output Files with New Key Structure
	12.17.4 Example of the OUTPUT command
	12.17.5 Recoding Multi-Value Fields
	12.17.6 Output Files: Summary

	12.18 The WRITE Command
	12.18.1 WRITE Syntax
	12.18.2 Example using the WRITE Command

	12.19 The OPTION Command
	12.19.1 Page Width
	12.19.2 Page Length
	12.19.3 Format Control - Form Feeds
	12.19.4 Row Label Width
	12.19.5 Column Label Width
	12.19.6 Pause
	12.19.7 Line Printer
	12.19.8 Scale
	12.19.9 Group
	12.19.10 Spooler Number
	12.19.11 Number of Copies

	12.20 The STOP and QUIT commands
	12.20.1 STOP
	12.20.2 QUIT
	12.20.3 Exiting from the ANALYZER Via Ctrl/C

	12.21 Command Files
	12.21.1 Command File Conventions
	12.21.2 Example of an ANALYZER Command File

	12.22 Multi-Value Data
	12.22.1 Building Sets from Multi-Value Fields

	12.23 SPAWN and ATTACH

	Chapter 13: Utilities
	13.1 PREPROCESS ADMINS Instruction File
	13.2 AdmFu: ADMINS File Utility
	13.2.1 AdmFu Dialogue
	13.2.2 Initialize
	13.2.3 Describe
	13.2.4 Detailed Describe
	13.2.5 DXn - Disable Index n
	13.2.6 DROPn - DropIndex n
	13.2.7 Line Printer
	13.2.8 Terminal
	13.2.9 Help

	13.3 AdmDIFF: File Differences Utility
	13.4 FILECONVERT - Convert ADMINS datafile attributes
	13.4.1 Sequentialize an ADMINS data file
	13.4.2 Convert Structure Level
	13.4.3 Convert Collating Sequence
	13.4.4 Converting a List of Files

	13.5 SYNC - Synchronization Between ADMINS Commands
	13.5.1 SYNC Implementation Issues
	13.5.1.1 Determination of Enqueue Quota
	13.5.1.2 ADM$SYNC_HOLD logical name assignment

	13.5.2 FLAGS Utility

	13.6 AdmAv - Communicate with ADMINS Files via Logical Names
	13.7 AdmPassw - Password Protect An ADMINS File
	13.8 SEND - Send Messages to Terminals
	13.9 UDK: Load User Defined Function Keys
	13.10 AdmJoin

	Chapter 14: Command Files
	14.1 Preparing A Command File
	14.2 Executing A Command File
	14.3 Parameterization
	14.3.1 Parameterization Example
	14.3.2 Repetitive Parameterization
	14.3.3 Logical Parameters
	14.3.4 VALIDATE statements in ADMINS Command Files
	14.3.4.1 VALIDATE Statement Syntax
	14.3.4.2 VALIDATE Statement Examples

	14.3.5 CAPS ON/OFF: Convert Param Response to Uppercase

	14.4 DISPLAY and PAUSE Statements
	14.5 Translate Logical Name ADM$TERM: $TT$
	14.6 SKIP Part Of A Command File
	14.7 Indirect Command Files
	14.8 BRIEF and VERIFY
	14.9 Command File Calling A Command File
	14.9.1 Command File Calling A Command File Example
	14.9.2 Command File Menu Example

	14.10 Restarting Command Files
	14.11 Terminating a Command File In MAINT and PROD
	14.12 Synchronization of ADMINS Command Files
	14.13 Command File Communication: AdmAV Command

	Chapter 15: Basic RMO Functions with TRANS
	15.1 Communication with TRANS
	15.1.1 Status: S$S
	15.1.2 Mode: M$M
	15.1.2.1 M$M_nn: Action Code For Button

	15.1.3 Local Fields in the RMO

	15.2 Order of Events
	15.2.1 Beginning of Record Processing: S$S = 'BEGREC'
	15.2.2 Field by Field Processing: S$S = 'fieldname'
	15.2.3 End of Record Processing: S$S = 'EOFREC'
	15.2.4 Processing Record Deletions
	15.2.5 Processing Record Transfers

	15.3 Test Mode in TRANS
	15.3.1 Using Test Mode to Understand S$S and M$M
	15.3.2 Test Mode Example

	15.4 Examples Using an RMO Behind the Screen
	15.4.1 Accounts Payable Example
	15.4.2 Example of Appending Via the RMO
	15.4.3 Example Using Global Fields
	15.4.4 Example Using a Pre-Link RMO Call


	Chapter 16: Advanced RMO Functions with TRANS
	16.1 Controlling Changes Written To Disk
	16.1.1 High Volume Update: NOWRITE
	16.1.2 Reject APPEND, INSERT, UPDATE, DELETE, or Transfer
	16.1.2.1 Example of Using RJ$RJ


	16.2 Automatic Branching: B$B and R$R
	16.2.1 Example of Automatic Branching
	16.2.2 Automatic NEXT key: B$B = 'LF'
	16.2.3 Automatic PREV Keystroke: B$B = 'BS'
	16.2.4 Automatic Exit From TRANS: B$B = 'CB'
	16.2.5 Automatic Insert: B$B = 'IN'
	16.2.5.1 Automatic Insert Example

	16.2.6 Non-Refreshing Automatic Branching: B$B = 'An'
	16.2.7 B$B = 'Ad': Don't Refresh Literals/Graphics
	16.2.8 Bookmarking Screen, Returning to a Bookmarked Screen

	16.3 Cursor Control: C$C and C$MULREC
	16.3.1 Example of Cursor Control

	16.4 Controlling the Skipping of Fields: SK$SK
	16.4.1 SK$SK Example

	16.5 Highlighting Fields
	16.5.1 Highlighting Example

	16.6 Printing Messages: P$P
	16.6.1 Example Printing a Tax Bill Validation

	16.7 Top of File Control: F$F
	16.7.1 Example Using F$F To Secure Student Records

	16.8 Post-Writeback EOFREC RMO Call: B$OB
	16.8.1 Using B$OB

	16.9 Look Ahead: NX$fieldname
	16.9.1 Look Ahead Example

	16.10 Select Records: S$SEL
	16.10.1 Implementation of Record Selection
	16.10.2 Caution In The Use of Record Selection
	16.10.3 Example Of Record Selection

	16.11 Status Line Control: M$MSG and M$LOC
	16.12 Check Screen Exit Keystroke: E$NDSCR
	16.13 S$BL-Detect “blank” typed into numeric field
	16.14 F$UNCKEY - Function Key Detection in RMO
	16.14.1 F$UNCKEY - Example
	16.14.2 Detecting User Defined Function Keys (VT terminals)

	16.15 Subscreen Status and Control: ADM$SUBSCR
	16.16 ADM$ENTER: Force TRANS Field Entry Processing
	16.17 Special Keystroke to Call the RMO
	16.18 Using the RMO with Table Driven Error Messages
	16.18.1 Check Statement Syntax for Table Driven Messages
	16.18.2 Error Message Table Example

	16.19 Calculated Branches with Variable Branch Keys
	16.20 Managing Ignored Record Locks - ADM$NOLOCK and ADM$NLREC
	16.20.1 ADM$NOLOCK: Record Lock Ignored Flag
	16.20.2 ADM$NLREC: Identify Ignored Locks

	16.21 Multi-Record RMO Support
	16.21.1 ADM$RECNO: Record Position in Multi-Record Screen
	16.21.2 Multi-Record Summary Screens
	16.21.2.1 Example of a Multi-Record Summary Screen


	16.22 Subroutines Used with TRANS
	16.23 TX$INITF: Automatic Initialization of Text Fields
	16.23.1 TX$INITF Example

	16.24 ADM$LRC: Log RMO Calls

	Chapter 17: External Data Files
	17.1 TAP Instruction File
	17.1.1 Outline of the TAP Instruction File
	17.1.2 TAP - File Description Line
	17.1.3 TAP - Field Description Line(s)
	17.1.4 Example Of A TAP Instruction File
	17.1.5 EBCDIC and ASCII Character Sets

	17.2 ACQUIR and FACQUIR: Read External File
	17.2.1 ACQUIR: Read Tape File
	17.2.2 FACQUIR: Acquire External Disk File
	17.2.3 External File Description Options
	17.2.3.1 Records Spread Across Blocks
	17.2.3.2 Skip N Bytes Per Tape Block
	17.2.3.3 Excess Bytes
	17.2.3.4 Skipping Initial Bytes
	17.2.3.5 Ignore End of File Mark

	17.2.4 ACQUIR and FACQUIR Field Description Options
	17.2.4.1 ACQUIR and FACQUIR Format Options
	17.2.4.2 Override Byte Address Outside Record

	17.2.5 TAP - SELECT Line

	17.3 TXTACQ: Acquire Text Files
	17.4 DATAP and FDATAP: Write External File
	17.4.1 DATAP: Write Tape File
	17.4.2 FDATAP: Write External Disk File
	17.4.3 DATAP and FDATAP Field Description Options
	17.4.3.1 Leading Zeroes In EN Fields
	17.4.3.2 Overpunch (Minus) Sign In EN Fields
	17.4.3.3 Literals and Hexadecimal Constants
	17.4.3.4 Conditional Hexadecimal Constant

	17.4.4 Select Via Key Range Option

	17.5 TAPDMP: Printing Tape Contents
	17.5.1 Sample of TAPDMP Output

	17.6 TAPCOPY: Copy from Tape to Disk
	17.7 TAPSPL: Write Text File to Magnetic Tape
	17.7.1 JOIN: Combine Multiple Input Lines

	17.8 IE: the ADMINS Import/Export Facility
	17.8.1 Managing Text Fields in IE


	Chapter 18: ADED: The Data File Editor
	18.1 Function of ADED
	18.2 ADED Dialogue
	18.3 ADED Instructions
	18.3.1 HEADING
	18.3.2 PRINT
	18.3.3 WIDTH
	18.3.4 VERIFY
	18.3.5 BRIEF
	18.3.6 TOP
	18.3.7 END
	18.3.8 NEXT
	18.3.9 UP
	18.3.10 FIND
	18.3.11 LOCATE
	18.3.12 CHANGE
	18.3.13 APPEND
	18.3.14 INSERT
	18.3.15 DELETE
	18.3.16 CLOSE

	18.4 ADED Example
	18.5 Restricting Use of ADED

	Chapter 19: Concurrency Control: Multi-User Files
	19.1 Modes of File Access
	19.1.1 Overriding the Default File Processing Mode

	19.2 Resolving File Access Conflicts
	19.3 Resolving Record Access Conflicts
	19.3.1 Special Treatment of Full-Block Records
	19.3.2 ADM$NOTIFYUSER - Periodically Displaying a Record Lock Message

	19.4 Scope of ADMINS Concurrency Control
	19.5 Resolution of Deadlocks
	19.6 Concurrency Control Across DECnet
	19.7 MLOCK: Lock Monitor Utility
	19.7.1 MLOCK Output Display
	19.7.2 MLOCK Output Text Formatting Facility

	19.8 FLOCK: File Lock Reservation Utility
	19.8.1 FLOCK: OpenVMS Implementation and System Management Notes
	19.8.2 FLOCK: Changing the Default Action


	Chapter 20: Shared Memory Emulation
	20.1 Group Shared Area
	20.2 Using the Group Shared Area
	20.3 Initial Setup of the Group Shared Area
	20.4 Example Using the Group Shared Area
	20.5 Emulation of Shared Memory in the OpenVMS Cluster Environment

	Chapter 21: Printer Queues
	21.1 ADM$SPOOLn: Logical Print Queue Specification
	21.2 Number of Copies Specification
	21.3 Deleting the Output File (ADMINSxx.LIS)
	21.4 Output to Non-queued device, ADM$PRT0

	Appendix A: Options
	Appendix B: Special Logical Names used by ADMINS
	Appendix C: Platform and Operating System Differences
	C.1 File and Device Specification Differences
	C.1.1 Differences in Print File and Temporary File Naming

	C.2 Commands and Procedures
	C.3 Concurrency Control and Network Access
	C.4 Setting up ADMINS for the User
	C.4.1 OpenVMS Symbols for ADMINS commands


	Appendix D: Reserved Field Names
	D.1 Reserved Field Name List

	Appendix E: File Concepts
	E.1 Internal File Layout
	E.1.1 File Level 2
	E.1.2 File Level 3

	E.2 File Operations
	E.2.1 Finding Records by Key Value

	E.3 Key Index Structure
	E.3.1 Structure Level

	E.4 Available Space

	Appendix F: Limits
	F.1 DEFINE
	F.2 SORT
	F.3 SCREEN
	F.4 TRANS
	F.5 REPORT
	F.6 CMP
	F.7 PROD
	F.8 ACQUIR
	F.9 DATAP
	F.10 TAPDMP
	F.11 FACQUIR
	F.12 FDATAP
	F.13 TAPCOPY

	Appendix G: TKB File: Keystroke Table
	G.1 Sample TKB file

	Appendix H: Subroutines
	H.1 Format of Presentation
	H.2 Integer Decimal Values for ASCII Characters
	H.3 Concatenation Subroutines
	H.3.1 NCAT - Concatenating fields
	H.3.1.1 NCAT Syntax for Concatenating Fields
	H.3.1.2 NCAT Concatenation Examples

	H.3.2 NCAT - Converting Between Field Types
	H.3.2.1 NCAT Syntax for Converting Fields
	H.3.2.2 NCAT Example of Converting Fields

	H.3.3 FCAT - Retaining Punctuation
	H.3.3.1 FCAT Syntax for Retaining Punctuation
	H.3.3.2 FCAT Retaining Punctuation Examples

	H.3.4 FCAT - Right Justify Decimal Values in Alpha Field
	H.3.4.1 FCAT Right Justification Example

	H.3.5 FCAT - Custom Formatted Dates in Alpha Fields
	H.3.6 FCAT - Converting a String to a Date Field
	H.3.7 FCAT - Format result with source field’s edit mask

	H.4 Date and Time Subroutines
	H.4.1 TMDIFF - Difference Between Dates and Times
	H.4.2 ADDA and ADDT - Add a Number of Days to a Date
	H.4.2.1 ADDA and ADDT Syntax
	H.4.2.2 ADDA Example

	H.4.3 ADDTM - Time and Date Calculation
	H.4.4 CHKDATE
	H.4.5 Y$EAR - Extracting the Year from a Date
	H.4.6 M$ONTH Extracting the Month from a Date
	H.4.7 D$AY Extracting the Day from a Date
	H.4.8 TIMESTR - Extract Hours, Minutes, Seconds from Time

	H.5 Character String Handling Subroutines
	H.5.1 STR - Select Part of a Field
	H.5.1.1 STR Syntax
	H.5.1.2 STR Example

	H.5.2 CASE - Convert Between Upper and Lower Case Letters
	H.5.2.1 CASE Syntax
	H.5.2.2 CASE Example

	H.5.3 SQUEEZ - Remove Extra Blanks in One or More Fields
	H.5.3.1 SQUEEZ Syntax
	H.5.3.2 SQUEEZ Example

	H.5.4 SETRPL - Set Up Character Replacements for REPLAC
	H.5.4.1 SETRPL Syntax

	H.5.5 REPLAC - Replace Characters Based on SETRPL
	H.5.5.1 REPLAC Syntax
	H.5.5.2 SETRPL and REPLAC Example

	H.5.6 LOCSTR - Locate a String Within a String
	H.5.6.1 LOCSTR Syntax
	H.5.6.2 LOCSTR Example

	H.5.7 LOCATE: Find a String within a String (any data type)
	H.5.8 CLEN - Find the Length of a String
	H.5.8.1 CLEN Syntax
	H.5.8.2 CLEN Example

	H.5.9 BLDSTR - Build a String From Another String
	H.5.9.1 BLDSTR Syntax
	H.5.9.2 BLDSTR Example

	H.5.10 INSTR - Insert a String into Another String
	H.5.10.1 INSTR Syntax
	H.5.10.2 INSTR Example

	H.5.11 OUTSTR - Extract a String from Another String
	H.5.12 INTC - Find Integer Decimal Value of a Character
	H.5.12.1 INTC Syntax
	H.5.12.2 INTC Example

	H.5.13 FLDEQL - Find Value in Group of Fields
	H.5.13.1 FLDEQL Example

	H.5.14 FSEARCH - Find Character String in Group of Fields
	H.5.14.1 FSEARCH Example

	H.5.15 FORMAT - Format Alphanumeric Strings
	H.5.15.1 FORMAT Example

	H.5.16 STRTYP - Check Format of Alphanumeric String
	H.5.16.1 STRTYP Example

	H.5.17 CHECKCHAR - validate field contents for special purpose
	H.5.18 SPLIT - Splitting an Alpha String into Several Fields

	H.6 Text Handling Subroutines
	H.6.1 TEXTCOPY: Move Information Between Text Fields
	H.6.1.1 Using TEXTCOPY to set a Lock Mark
	H.6.1.2 TEXTCOPY Examples
	H.6.1.3 TEXTCOPY - Appending a Lock Mark at the End of Internal Text

	H.6.2 TEXTATTR: Get Text Field Attributes
	H.6.2.1 TEXTATTR Example

	H.6.3 SEARCH: Find Character String in Text Field
	H.6.4 SUBSTITUTE: Replace character string with another string
	H.6.5 EDIT: "Paragraph" Editing in TRANS
	H.6.5.1 EDIT Syntax
	H.6.5.2 EDIT Examples

	H.6.6 GETMSG - Retrieving “Literal” Text From a File
	H.6.7 PARAG: Reformat Consecutive Fields as Paragraph
	H.6.8 TED: Call TED Text Editor in TRANS
	H.6.9 VIEWTEXT: Display Text File in TRANS

	H.7 File Information Subroutines
	H.7.1 FILE32 - Retrieve File Information From File Header
	H.7.1.1 FILE32 Syntax
	H.7.1.2 FILE32 Example

	H.7.2 FIELD - Retrieve Field Information From File Header
	H.7.2.1 FIELD Syntax
	H.7.2.2 FIELD Example


	H.8 Arithmetic Subroutines
	H.8.1 CARITH - Perform Array Arithmetic on D Type Fields
	H.8.1.1 CARITH Syntax
	H.8.1.2 CARITH Example

	H.8.2 FARITH - Perform Array Arithmetic on F Type Fields
	H.8.2.1 FARITH Syntax

	H.8.3 DPOWER - Raise a D Type Field to a Power
	H.8.4 FPOWER - Raise a F Type Field to a Power
	H.8.5 RANDOM - Random Number Generator
	H.8.6 SEQINC - Sequential Number Generator

	H.9 Logical Name and Symbolic Name Subroutines
	H.9.1 CRLOG - Create or Delete a Logical Name
	H.9.1.1 CRLOG Syntax
	H.9.1.2 CRLOG Example
	H.9.1.3 Special CRLOG Syntax for Modifying OPTION

	H.9.2 TRLOG - Translate a Logical Name
	H.9.2.1 TRLOG Syntax
	H.9.2.2 TRLOG Example

	H.9.3 CRSYMBOL: Create/Delete Symbolic Name
	H.9.4 TRSYMBOL: Translate a Symbolic Name

	H.10 Group Shared Area Subroutines
	H.10.1 GETGRP - Get a Value From the Group Shared Area
	H.10.1.1 GETGRP Syntax

	H.10.2 SETGRP - Set a Value Into the Group Shared Area
	H.10.2.1 SETGRP Syntax

	H.10.3 UPDGRP - Write the Group Shared Area to Disk
	H.10.3.1 UPDGRP Syntax

	H.10.4 REFGRP - Refresh Shared Memory Emulation in TRANS
	H.10.4.1 REFGRP Syntax


	H.11 Record and Field Access Subroutines
	H.11.1 DDATTR: Get Data Dictionary Attributes & Codelists
	H.11.2 RECOPN and RECIDX - Access Records in any File
	H.11.2.1 RECOPN - Open Files for RECIDX
	H.11.2.2 RECIDX Syntax
	H.11.2.3 RECOPN, RECIDX Examples

	H.11.3 FNDTAB - Set Up Data for LODTAB
	H.11.3.1 FNDTAB Syntax

	H.11.4 LODTAB - Load Data Into An Array Based On FNDTAB
	H.11.4.1 LODTAB Syntax
	H.11.4.2 FNDTAB And LODTAB Example

	H.11.5 GETFLD: Read Field Identified in Data Field
	H.11.6 PUTFLD: Write Field Identified in Data Field
	H.11.6.1 GETFLD and PUTFLD Example

	H.11.7 OUTPUT - Append Records to Data File
	H.11.8 EDITMASK
	H.11.9 SUBFIELD: Obtain information about a field’s sub-fields
	H.11.9.1 SUBFIELD - Operation 0: Get a list of Sub-field names
	H.11.9.2 SUBFIELD - Operation 1: Copy a Parent field and replace Sub-fields
	H.11.9.3 SUBFIELD - Operation 2: Check if a Sub-field is NULL (blank or zero)
	H.11.9.4 SUBFIELD - Operation 3: Create a parent field value from subfield values
	H.11.9.5 SUBFIELD - Operation 4: Populate subfield values from parent value


	H.12 Array Processing Subroutines
	H.12.1 BINSRC - Binary Search in RMO Tables and Arrays
	H.12.1.1 BINSRC Syntax
	H.12.1.2 BINSRC Example

	H.12.2 The SORT Subroutine
	H.12.2.1 SORT Syntax
	H.12.2.2 SORT Example

	H.12.3 ARSZ Subroutine
	H.12.4 ARINI Subroutine
	H.12.5 ARFND Subroutine
	H.12.6 ARNONL Subroutine - Locate Non-Zero/Non-Blank Element

	H.13 ASCII I/O Subroutines
	H.13.1 ASCOPEN - Open ASCII File
	H.13.2 ASCREAD - Read ASCII File
	H.13.3 ASCWRITE - Write ASCII File
	H.13.4 ASCCLOSE - Close ASCII File
	H.13.5 DELFILE - Delete File

	H.14 Subroutines that Modify or Control TRANS
	H.14.1 AUTOBR: Automatic Branch Control
	H.14.2 Button - Creating and Modifying Buttons in TRANS
	H.14.3 CTRLP - Print All or Part of a Screen in TRANS
	H.14.3.1 CTRLP Syntax
	H.14.3.2 CTRLP Example

	H.14.4 DISPFLDS: Modify Field Display List in TRANS
	H.14.4.1 DISPFLDS - Example

	H.14.5 EDFLDS - Modify List of Editable Fields in TRANS
	H.14.5.1 EDFLDS - Example

	H.14.6 GBLSTORE - Access TRANS Global Area on Disk
	H.14.7 NOEK - Set TRANS to Read Next Field With No Echo
	H.14.7.1 NOEK Example

	H.14.8 PAUSE - Create a Pause in TRANS
	H.14.8.1 PAUSE Syntax
	H.14.8.2 PAUSE Example

	H.14.9 READBR Subroutine: Read-Only Branch Access
	H.14.10 SETKEY - Simulate Keystrokes in TRANS
	H.14.10.1 SETKEY Syntax
	H.14.10.2 SETKEY Example

	H.14.11 MOVFLD - Move Fields Among Files Accessed via TRO
	H.14.11.1 MOVFLD Syntax
	H.14.11.2 MOVFLD Example

	H.14.12 FLDINFO - Retrieving Information About Fields in TRANS

	H.15 Miscellaneous Subroutines
	H.15.1 ATTACH Subroutine: Attach to Another Process
	H.15.2 ASKSCR: Prompt directly from RMO
	H.15.3 BATCHJOB: Submit Batch Job
	H.15.3.1 BATCHJOB - Example

	H.15.4 CHECKFILE - Check Whether File Exists
	H.15.5 DCS: Date to Year/Week/Day; Check Digit Conversion
	H.15.5.1 DCS Syntax: Convert Date to Year, Week, Day
	H.15.5.1.1 Date Conversion Example

	H.15.5.2 DCS Syntax: Get Date of Nth weekday in a month
	H.15.5.3 DCS Syntax: Compute date some number of business days after another date.
	H.15.5.4 DCS Syntax to Compute Base 10 Check Digit
	H.15.5.4.1 Compute Check Digit Example

	H.15.5.5 DCS Syntax to Verify Base 10 Check Digit
	H.15.5.5.1 Verify Check Digit Example

	H.15.5.6 DCS Syntax: Test Check Digit, Norwegian SS#

	H.15.6 EVALUATE - Compile, Execute Expression at Runtime
	H.15.6.1 Using EVALUATE
	H.15.6.2 EVALUATE Syntax

	H.15.7 EXTERNAL - Call External Language Routine
	H.15.7.1 EXTERNAL Syntax
	H.15.7.2 Passing Arrays as Arguments
	H.15.7.3 AdmExternal.c: Program Sample

	H.15.8 MBX - Read/Write Mailbox
	H.15.9 GETJPI - Get Process Information
	H.15.10 SNDX - Calculate a Sound Index for a Name
	H.15.10.1 SNDX Syntax
	H.15.10.2 SNDX Example

	H.15.11 SPAWN - Create Subprocess from ADMINS Command
	H.15.11.1 Example of Using MBX and SPAWN Subroutines

	H.15.12 STACK - Store and Retrieve Data in a Stack
	H.15.13 SUMMARY - REPORT TOTAL Style Summaries
	H.15.14 SYNC - Synchronize Access to a File
	H.15.14.1 SYNC Syntax
	H.15.14.2 SYNC Example

	H.15.15 TTCOM - Communication With Another Terminal
	H.15.15.1 TTCOM Syntax
	H.15.15.2 TTCOM Example
	H.15.15.3 TTCOM - New Operation Code

	H.15.16 BLOBIO - Access Binary Large Object (BLOB) Field


	Appendix I: ADD: The ADMINS Data Dictionary
	I.1 Introduction
	I.1.1 Using the ADD Screens
	I.1.2 Deleting Entities
	I.1.3 The Demonstration Application: DEMO

	I.2 Data Elements
	I.2.1 Data Elements Overview Screen
	I.2.2 Data Elements Attributes Screen
	I.2.3 Text Fields
	I.2.4 Help Text
	I.2.5 Descriptive Text for Application Documentation
	I.2.6 DEMO: Describing Data Elements
	I.2.7 DEMO: Entering User Help
	I.2.8 DEMO: Documentation

	I.3 Prototype Data Elements
	I.3.1 Prototype Elements Screen Family
	I.3.2 Relationship of Prototype Elements to Data Elements
	I.3.3 DEMO: Describing Prototype Elements
	I.3.4 DEMO: Relating Elements to Prototypes

	I.4 Files
	I.4.1 File Attributes screen
	I.4.2 The File Contains Element Relationship
	I.4.2.1 File_contains_Element Relationship Screen
	I.4.2.2 File Contains Element Screen: The Menu Bar

	I.4.3 Descriptive Text for Application Documentation
	I.4.4 DEMO: File attributes
	I.4.5 DEMO: File contains data element

	I.5 Codelists
	I.5.1 Codelist Table Attributes Screen
	I.5.1.1 Describing Codelist Repositories

	I.5.2 Overview of Internal Codelist Table Values
	I.5.2.1 Update Internal Codelist Tables

	I.5.3 Automatic Lookup Windows
	I.5.4 DEMO: Codelists
	I.5.5 DEMO: Automatic Lookup Windows
	I.5.6 DEMO: Codelist Repositories

	I.6 Data Views
	I.6.1 Data View Attributes screen
	I.6.2 The View Contains File/Element Relationship
	I.6.2.1 The View Relationship: FILES Screen
	I.6.2.2 FILES Screen: The Menu Bar
	I.6.2.3 The View Relationship: FIELDS Screen

	I.6.3 DEMO: Create Data View

	I.7 Application Development using ADD
	I.7.1 DEMO: Wrapping up the Database Design
	I.7.2 DEMO: Screen Specification
	I.7.3 DEMO: ORDER.RMS

	I.8 Data Dictionary Reports and Where Used Analysis
	I.8.1 Data Dictionary Reports
	I.8.2 Where Used Screen

	I.9 Setup for the ADMINS Data Dictionary
	I.9.1 Logical Names and Symbols
	I.9.2 The ADMINS Data Dictionary Files
	I.9.3 Setup Procedures for the ADMINS Data Dictionary
	I.9.3.1 Setting up the ADD DEMO Application


	I.10 Converting Applications to the ADD Environment
	I.10.1 Converting Data Files
	I.10.1.1 Loading information from the DEFs
	I.10.1.2 Converting the files

	I.10.2 Converting Table Files To Internal Codelists
	I.10.3 Converting the Application
	I.10.3.1 Associating fields to Codelist Tables
	I.10.3.2 Changing the application code


	I.11 AdmDDM: Data Dictionary “Batch” Tool
	I.11.1 AdmDDM Commands and Syntax
	I.11.2 ADD, MODIFY, UPDATE, COPY, REMOVE
	I.11.2.1 Entity Types and Attributes
	I.11.2.1.1 Element and Prototype attributes
	I.11.2.1.2 File attributes
	I.11.2.1.3 Dataview attributes
	I.11.2.1.4 Codelist attributes
	I.11.2.1.5 Codetable attributes


	I.11.3 LIST and EXPORT
	I.11.4 VERIFY, WHEREUSED and DEFINE
	I.11.5 CSV and NOREF


	Appendix J: The TED Text Editor
	J.1 TED Function Keys
	J.2 Rulers
	J.3 Checking Spelling
	J.3.1 Language Support
	J.3.2 Spelling Checker Personal Dictionary

	J.4 Command Mode (Screen)
	J.4.1 Command Line Mode

	J.5 The TED.ENV File
	J.5.1 TED.ENV Example
	J.5.2 Alternate TED.ENV files

	J.6 Using Buffers
	J.7 The Text Initialization File
	J.7.1 TX$OPTION - Setting Various Options for Internal Text Editing

	J.8 Special Heading and Footing Control Words
	J.9 Including Font Codes with TED
	J.10 The Printer Control Screen
	J.11 Printing Text Fields: TPR
	J.11.1 The TPR.ENV Environment File


	Appendix K: Using Text Fields
	K.1 Special Considerations

	Appendix L: Managing ADMINS
	L.1 Distribution Kit
	L.2 Installing ADMINS Commands
	L.2.1 Command Procedures for Installing/Removing Images

	L.3 Version and Date Stamp of an ADMINS Command
	L.4 Installation Control
	L.4.1 VADM Command
	L.4.1.1 License Expiration Reminder


	L.5 Implementing the Shared Memory Facility
	L.6 Managing ADMINS Usage Slots

	Appendix M:
	Appendix N: RNF: The Document Runoff Program
	N.1 Function of RNF
	N.2 RNF Dialogue
	N.3 RNF Control Words
	N.4 Ejecting Before Printing Literal Paragraphs
	N.5 Control Code Facility
	N.6 Including Date and Time in Output Document
	N.7 Sample RNF Source Text

	Appendix O: Obsolete Commands and Syntax
	Index

