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Summary: Recent clinical studies have addressed the utility of sensory evoked po-
tentials (auditory, somatosensory, and visual) in head injury. The clinical signifi-
cance of evoked potentials in head trauma, states of increased intracranial pressure,
and post-traumatic syndrome is discussed. Emphasis is placed on up-to-date studies
discussing evoked potential correlation with clinical findings, lesion localization, in-
tracranial pressure, brain herniation, and prognosis. Key Words: Sensory evoked
potentials—Head injury—Clinical findings—Intracranial hypertension—Prognos-
tic indicator.

Electrophysiological monitoring has been advocated in intensive care settings as
comparable to the clinical examination in reliable assessment of brain function. Evoked
potential (EP) recording is safe, noninvasive, and may be performed at the neurotrau-
ma bedside (generally requiring less than 1 h). In a situation in which adequate com-
munication with the patient is impossible, EP monitoring may provide significant func-
tional information that could not be known otherwise. EP recording has been shown to
be a helpful clinical tool in the pediatric as well as the adult head-injured population
(Sohmer et al., 1974; Nodar et al., 1980; Hecox et al., 1981; Hall et al,, 1985). EPs
have been commonly used not only as a diagnostic test but also as strong prognostic in-
dicator (Greenberg et al., 1977a,b, 1981; Lindsay et al., 1981; Narayan et al., 1981;
Hall and Mackey-Hargadine, 1984; Newlon and Greenberg, 1984; Karnaze et al.,
1985; Cant et al., 1986).

Sensory EPS represent the neurophysiological responses of sensory pathways to
appropriate sensory stimuli. These EPs can be classified according to the type of stim-
ulation into somatosensory EPs (SEPs), auditory EPs (AEPs), and visual EPs (VEPs).
EPs are also classified by time of occurrence after stimulation into short-, middle-, and
long-latency potentials. Short-latency potentials include cochlear and brainstem (<10-
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TABLE 1. Possible generator sources of BAEP components

BAEP
component Generator source Level

I Auditory nerve Cochlea-pontomedullary entry
1 Auditory nerve/cochlear nucleus  Pontomedullary

111 Olivary complex Caudal pontine

v Lateral lemniscus Rostral pontine/midbrain

Vv Inferior colliculus Midbrain

VI Medial geniculate body Thalamic

VII Thalamocortical radiation Thalamic/thalamocortical

15 ms) AEPs (BAEPs). The electrocochleogram (ECochG) reflects the electrical
response of the cochlea and auditory nerve to acoustic stimulation. The BAEP is large-
ly or completely generated by cochlear and brainstem auditory pathways. Short-laten-
cy potentials also include short-latency somatosensory potentials (SSEPs) (<25-50
ms according to the peripheral nerve being stimulated). On the other hand, middle- and
long-latency potentials are considered cortically generated and called near-field po-
tentials (SEPs, AEPs, and VEPs). Long-latency sensory EPs provide evidence for
hemispheric function.

The possible generator sources of BAEPs and SSEPs are listed in Tables 1 and 2
(Lev and Sohmer, 1972; Sohmer et al., 1974; Buchwald and Huang, 1975; Starr and
Achor, 1975; Cracco and Cracco, 1976; Starr and Hamilton, 1976; Thornton and
Hawkes, 1976; Jones, 1977; Stockard and Rossiter, 1977; Chiappa et al., 1979; Hashi-
moto et al., 1979; Noel and Desmedt, 1980; Allison and Hume, 1981; Anziska and
Cracco, 1981; Brown et al., 1981; Lueders et al., 1981; Lastimosa et al., 1982; Naka-
nishi et al., 1982; Chiappa, 1983; Lueders et al., 1983; Mauguiére et al., 1983b; Hashi-
moto, 1984; Eisen and Aminoff, 1986; Chiappa, 1987). Less is known concerning the
exact origin of middle- and long-latency potentials, often believed to reflect thalamo-
cortical projections, primary cortical association areas, or secondary cortical associa-
tion areas. VEPs are generated in the occipital cortex, and their components are thought
to reflect electrical activity of the visual system (Creutzfeldt and Kuhnt, 1967; Mon-
nier, 1974; Celesia, 1982; Halliday, 1982).

TABLE 2. Possible generator sources of SEP
components following median nerve stimulation
at the wrist and posterior tibial nerve at the ankle

SEP component

(ms) (P/N)

Median  Tibial Generator source/level
9 - Brachial plexus
11 18-20  Spinal cord entry
13 27 Dorsal column/dorsal column nuclei
14 30 Medial lemniscus/brainstem
18 32 Thalamus/thalamocortical radiations
22 36-38  Parietal somatosensory cortex
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Short-latency potentials are very resistant to environmental and subject variations,
whereas middle- and long-latency potentials show larger intersubject and intrasubject
variability. The latter potentials are affected by state of consciousness or attentiveness
of the subject, sedatives, barbiturates, and anesthetic agents (Cracco and Cracco, 1976;
Hillyard et al., 1978; Sohmer et al., 1978; Chiappa et al., 1979; Halliday, 1982; Chi-
appa, 1983; Grundy, 1985). As a consequence short-latency potentials are more sta-
ble and have been more widely used in the intensive clinical setting with critically ill
head-injured patients.

Latencies of the different peaks and interpeak latencies (IPLs) of the BAEP are more
consistent and stable than waveform amplitudes in each individual under normal condi-
tions (Coats and Martin, 1977; Coats, 1978; Sohmer et al., 1978). Latency and IPL
changes may indicate more serious damage than amplitude changes (American Elec-
troencephalographic Society, 1984). The I-V IPL and N13/N14-N20 latency reflect
brainstem auditory or somatosensory central transmission time (CTT). IPL or CCT
prolongation indicates pathological dysfunction of the central auditory system or soma-
tosensory system and is considered a sensitive criterion for central (but not peripheral)
conduction changes (Starr, 1976; Chiappa et al., 1980; Hume and Cant, 1981; Chi-
appa, 1983; Cant et al., 1986; Eggermont and Don, 1986; Stockard et al., 1986; Chi-
appa, 1987; Starr, 1987).

Delay in latency may indicate slowed conduction, whereas small amplitude may
represent a decrease in the number of active neurons or, possibly, increased extracere-
bral resistance to recording the signals (Starr and Achor, 1975). Asynchrony of con-
duction may cause a variable decrease in amplitude, increase in latency, and waveform
distortion. Pathological insults affecting a conducting neuronal pathway such as dis-
ruption, ischemia, or distortion/compression may alter EPs (Nagao et al., 1983, 1984;
Grundy, 1985).

Integrity of peripheral sensory function should be assessed (when possible) before
considering the EP results (Starr, 1976; Chiappa, 1983). This may be especially im-
portant in trauma. Peripheral assessment is generally performed by recording early
components, verifying the adequacy of the sensory input. For example, appropriate
ophthalmological examination and electroretinal testing is recommended in VEP test-
ing. When recording BAEPs, ideally peripheral hearing should be verified with an
audiogram. Middle ear impedance and pressure abnormalities may be found in coma-
tose head-injured patients and may confuse the interpretation of BAEP findings, espe-
cially if absolute latencies, rather than IPLs, are considered (Hall et al., 1982, 1985).
External or middle ear conductive hearing losses are perceived as a decreased stimulus
intensity, and post-traumatic hemotympanum may complicate BAEP testing in head
trauma. In SEP monitoring, slow peripheral nerve conduction velocities due to peri-
pheral nerve injury, extremity length, or hypothermia may account for increased ab-
solute latencies of SEP peaks (Cracco and Cracco, 1976; Jones, 1979; Chiappa et al.,
1980; Allison and Hume, 1981; Anziska and Cracco, 1981; Newlon et al., 1982; Chi-
appa, 1983).

To enhance yield of information and display of EPs, serial recording with multichan-
nel electrode arrays may be used to improve the visualization of certain peaks and veri-
fy multiple afferent pathways. Examples are the indifferent contralateral or noncephal-
ic (neck) electrodes for waves IV and Vof BAEP and SSEP waves P/N1 1-N18. Serial
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EP recording is essential for early detection of insults and for demonstration of progres-
sion or regression of EP abnormalities. Repeated testing may be important for timely
medical management or for monitoring the effectiveness of treatment (Hall et al., 1982,
1985). Measurement of latency intensity and amplitude intensity (input-output func-
tions) of waves I, I1I, and V of BAEP and IPLs at multiple intensities may enhance the
utility of BAEP in patients with audiological or neurological problems (Coats and Mar-
tin, 1977; Coats, 1978; Despland, 1987; Stone et al., 1987; Ghaly et al., 1988). An
increase in stimulation rate may also increase the power of BAEP and VEP testing
(Ommaya and Gennarelli, 1974, 1976; Coats and Martin, 1977; Stockard and Ros-
siter, 1977; Coats, 1978; Hecox et al., 1981; Pratt et al., 1981; Robinson and Rudge,
1982). Multimodality sensory EPs (MMEPs) or frequent testing generally requires a
dedicated technician or team.

EP recording provides accurate information regarding functional integrity of the
peripheral sensory system, brainstem, and hemispheres. Furthermore, significant
changes in arterial oxygenation (P,0,), carbon dioxide (P,C0,) content, intracranial
pressure (ICP), cerebral blood flow (CBF), cerebral perfusion pressure (CPP), and
hypothermia may alter or obliterate EPs (Larson et al., 1966; Clague et al., 1973; Foit
et al., 1980; Goitein et al., 1983; Nagao et al., 1984; Sohmer et al., 1984; Symon and
Wang, 1984; Mackey-Hargadine et al., 1985). Changes often need to be extreme to
markedly alter the short-latency EPs. The presumption is that early detection and cor-
rection of systemic or focal brain insults may improve the morbidity and mortality of
head-injured patients. Prompt discovery of abnormal neuronal conducting systems
could lead to timely diagnosis and treatment before irreversible damage takes place.
Clinical-pathological correlates and the prognostic power of sensory EPs in head in-
jury will be discussed below.

CLINICAL FINDINGS

An abnormal BAEP in comatose head-injured patients may indicate injury to the
peripheral auditory apparatus (hemotympanum), eustacian tube dysfunction and mid-
dle ear pressure changes, temporal bone fracture, or brainstem abnormality (Greenberg
et al, 1977a,b; Hall et al., 1982, 1985).

Clinical otological and BAEP findings were poorly correlated in acute head-injured
patients (Aguilar et al., 1986). Otological disorders were reported in one-half of head
trauma patients with a normal BAEP. By contrast, an abnormal BAEP due to brain-
stem insult can be seen in patients with a normal otological examination (Aguilar et al.,
1986). Although no correlation was found between computed tomography (CT) find-
ings and BAEP results, a temporal bone fracture could result in aloss of all BAEP waves
beyond I or II. BAEP assessment, otological examination, and CT provided comple-
mentary information about the functional and structural status of the peripheral and
central auditory system. Audiological follow-up and temporal bone CT analysis were
recommended in patients with an abnormal BAEP and otological examination (Agui-
lar et al., 1986).

Although there is no linear correlation between the Glasgow Coma Scale (GCS)
(Teasdale and Jennett, 1974) and EP findings, a higher incidence of EP abnormalities
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occurred in patients with a low GCS score (Hall et al., 1984; Mackey-Hargadine and
Hall, 1986). Patients with a GCS score of 8 or less are considered to have a severe head
injury; and a GCS score of 9-13 indicates a more moderate injury. In astudyof 111
traumatically head-injured patients, 52% of 95 patients with a GCS score of 3 or 4 had
an abnormal BAEP recording, in contrast to only 19% of the 16 patients with a GCS
score of 7 or greater (Mackey-Hargadine and Hall, 1986). EPs reflect sensory phe-
nomena, whereas GCS scores include important prognostic motor functions. Never-
theless, the GCS score was found to correlate with SEP and VEP, but not with BAEP
and AEP (Lindsay et al., 1981). Another study showed good agreement between a
normal BAEP and a GCS score above 7, and there was also good agreement between
an abnormal BAEP and a GCS score below 5. However, there was poorer correlation
between BAEP changes and a GCS score of 5-7 (Brewer and Resnick, 1984).

Normal BAEP has been reported in patients with severe neurological dysfunction,
including brainstem findings (Hall et al., 1984). Normalization of an abnormal BAEP
was a good indicator for clinical improvement, and deterioration of the BAEP was seen
in patients with clinical neurological deterioration (Nagao et al., 1982). Persistent EP
abnormalities were seen in patients likely to remain severely disabled (Mjoen et al.,
1983).

Brainstem dysfunction can be assumed when short-latency AEPs and SEPs are pres-
ent but are severely abnormal. On the other hand, hemispheric dysfunction can be ex-
pected in patients with severely abnormal or absent VEPs, (long-latency) SEPs and/or
AEPs (Seelig et al., 1981). The duration of coma, decerebration, and decortication
were correlated with cerebral hemispheric dysfunction detected by cortical and sub-
cortical (far-field) EPs (Greenberget al., 19775, 1981). Good agreement was present
between intact brainstem reflexes and a normal BAEP, but not between an abnormal
BAEP and brainstem reflexes (Brewer and Resnick, 1984).

Decerebration was associated with BAEP abnormalities including increased latency
of all components and instability of the peaks. Recovery of these abnormalities was re-
corded later than recovery from decerebration (Klug, 1982). However, it is clear that
decerebrate patients may show a normal BAEP, suggesting that posturing may relate to
hemispheric dysfunction and not to brainstem dysfunction (Greenberg et al., 1977b;
Uziel and Benezech, 1978; Karnaze et al., 1982). Another study showed no relation-
ship among BAEP abnormalities, corneal reflex, and posturing abnormalities (Facco
et al., 1985).

Absence of BAEP components, except wave I, was a common finding in flaccid pa-
tients, whereas a normal BAEP recording was more often found in patients with flexion
reactivity (Uziel and Benezech, 1978). The majority of patients with bilateral dilated
and fixed pupils showed abnormalities in or absence of waves V, IV, and III. Preser-
vation of wave V correlated well with intact vertical eye movements, whereas preser-
vation of wave III was correlated with intact horizontal eye movements. Unilateral
pupillary abnormalities were associated with abnormalities in waves IV and V orwitha
normal BAEP (Uziel and Benezech, 1978). Significant association was found between
the BAEP and oculocephalic reflex; an absence of the oculocephalic reflex for 8 h was
associated with absence of the peaks beyond wave I (Karnaze et al., 1985).

BAEP changes were found to correlate with the clinical findings of transtentorial
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(uncal) herniation and brainstem compression (Mackay et al., 1980; Tsubokawaet al.,
1980; Nagao et al., 1982, 1984; Facco et al., 1985). Furthermore, in that setting,
BAEP changes were recorded earlier than clinical changes (Ahmed, 1980; Mackay et
al., 1980; Tsubokawa et al., 1980; Brewer and Resnick, 1984; Nagao et al., 1987).
Changes in wave V amplitude were well correlated with pupillary signs during uncal
herniation, which may reflect associated ischemia of the upper brainstem (Nagao et
al., 1984, 1987).

BAEP changes can be seen in patients with brainstem ischemia before the onset of
clinical deterioration and may correlate with clinical signs of increased ICP (Benna et
al., 1982b; Nagata et al., 1984). Wave Il was foundtobe a sensitive indicator for med-
ullary failure and respiratory arrest (Nagata et al., 1984). Normalization of wave V
latency was seen following the use of intravenous hypertonic solution in patients with
high ICP due to supratentorial mass lesions. However, pupillary normalization was
only seen in a limited number of patients (Nagao et al., 1987).

Intact pupillary responses and oculovestibular reflexes were associated with preser-
vation of long- and middle-latency AEPs (Rosenbergetal., 1984). The presence of any
cranial nerve reflexes was also associated with intact VEPs and SEPs, whereas ab-
sence of cranial nerve reflexes was associated with lost SEPs and VEPs (Trojaborg and
Jorgensen, 1973).

SEP changes can also be seen with cerebral ischemia and hypoxia (Symon and Wang,
1984; Grundy, 1985; Mackey-Hargadine et al., 1986). Good agreement was observed
between cortical activation produced either by peripheral nerve stimulation or by vol-
untary movement and regional CBF (Foit et al., 1980). Recovery of the evoked re-
sponse was seen after correction of the causative vascular insult or systemic hypoxia
(Larson et al., 1966; Branston et al., 1976; Grundy, 1985). SEP abnormalities were
reported in trauma patients with hemiparesis or hemiplegia, and the chance of recovery
was predicted from the severity of SEP abnormalities (Greenberget al., 1977b; Ander-
son et al., 1984). Persistent asymmetry of the SEP was also reported in hemiplegic
brain-injured patients (Greenberg et al., 1977b; Hume and Cant, 1981; Anderson et
al., 1984).

Sensory EPs may successfully be used to assess patients under conditions in which
the clinical neurological examination and other investigations may be misleading. For
example, BAEP is a valuable test to assess patients in barbiturate coma at atime when
EEG and neurological examinations are severely altered. Related conditions include
chemically paralyzed patients and patients sedated to control respirations and intra-
cranial pressure (Newlon et al., 1982; Newlon and Greenberg, 1984; Mackey-Har-
gadine and Hall, 1985).

EPs are less helpful regarding etiology of the lesion or pathological process. How-
ever, sensory EPs can certainly provide some diagnostic clues and substantiate sus-
picion of an intrinsic brainstem lesion or impending herniation. BAEP was reported to
be of diagnostic importance in differentiating comatose patients with brainstem lesions
from patients with metabolic or psychogenic disorders (Stockard and Rossiter, 1977;
Hashimoto et al., 1979; Sohmer, 1983; Stockard et al., 1986). BAEFEP is expected to be
abnormal if the underlying etiology of coma is a sizable brainstem lesion, but it is more
likely to be normal if the underlying etiology is metabolic or psychogenic (Stockard and
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Rossiter, 1977; Mackey-Hargadine and Hall, 1985; Stockard et al., 1986; Starr, 1987).
EP recording may also be useful in monitoring patients with altered mental status due
to trauma-related changes, severe systemic metabolic problems, intoxications, and
hypothermia. These conditions will also worsen EP abnormalities secondary to trau-
matic structural damage. Serial recordings have been recommended by many investi-
gators to assess the patient’s condition throughout the critical medical period and to
provide an accurate evaluation of brain function at the time of recording. Delayed sys-
temic or intracranial insults are common in severe head-injured patients, and serial
recordings may be helpful (Greenbergetal., 19774, b; Tsubokawa et al., 1980; Lindsay
et al., 1981; Narayan et al., 1981; Newlon and Greenberg, 1984; Mackey-Hargadine
and Hall, 1985; Ottaviani et al., 1986). At some point in the future, sensory EPs may
become an even more effective guide in the treatment of post-traumatic coma.

Cortical and subcortical EPs can correlate with post-traumatic findings such as cog-
nitive impairment, postconcussion syndrome, and behavioral disorders (Larson et al.,
1973; Ommaya and Gennarelli, 1974; Rappaport et al., 1977; Benna et al., 1982q;
Greenberg et al., 1982; Newlon et al., 1982; Gupta et al., 1986; Olbrich et al., 1986;
Papanicolaou et al., 1986). Fifty-five patients with postconcussion syndrome under-
went BAEP testing (Benna et al., 19824), and 15 showed abnormal responses and par-
ticularly prolonged IPLs, whereas 9 had borderline abnormal responses. No correla-
tion was found between BAEP changes and dizziness or caloric vestibular dysfunction.
However, there was a good argument between BAEP improvement and clinical re-
covery (Benna et al., 1982a).

Latency of P300 wave of the AEP was considered to be a sensitive indicator of trau-
matic brain dysfunction in 18 patients (Olbrich et al., 1986). A strong correlation was
found between P300 latency prolongation and neuropsychological measures, especial-
ly orientation and memory. A return to normal P300 values was associated with re-
coverly of cognitive impairment. In another study, P300 latency was thought to corre-
late with post-traumatic amnesia, and it normalized with the resolution of the amnesia
(Papanicolaou et al., 1984).

VEP may also be a sensitive indicator for post-traumatic cognitive and interactive
behavioral dysfunction (Bergamasco et al., 1966; Ommaya and Gennarelli, 1976;
Bergstrom and Nystrom, 1970; Rappaport et al., 1977; Newlon et al., 1982; Gupta et
al., 1986). The severity of cognitive impairment was correlated with alterations in pat-
tern-shift (reversal) VEP (PSVEP) (Gupta et al., 1986). Of 33 head-injured patients
tested with PSVEP, 50% of patients with severe cognitive dysfunction had abnormal
PSVEP, 39% with moderate cognitive impairment had abnormal PSVEP, and only
119% with mild cognitive impairment had abnormal PSVEP. The mean of both P100
PSVEP latency difference and interocular P100 PSVEP latency difference was signif-
icantly abnormal in the head trauma group compared to the control group (Guptaetal.,
1986)., In a study of patients with symptomatic postconcussion syndrome, a mildly
abnormal flash VEP was seen clearly at higher stimulation frequencies (Ommaya and
Gennarelli, 1976). However, asymptomatic concussed patients had nearly normal
VEP, which was mainly of small amplitude and was asymmetric. The ability to follow
VEP at higher frequency was correlated with clinical recovery (Ommaya and Gen-
narelli, 1976).
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LESION LOCALIZATION

BAEPs

BAEP findings have been reported in human pathological lesions and intraoperative
brainstem recording in humans (Starr and Achor, 1975; Starr and Hamilton, 1976;
Thornton and Hawkes, 1976; Hashimoto et al., 1979; Nodar et al., 1980; Scherget al.,
1984; Hammond et al., 1985; York, 1986). BAEP can provide reliable information
concerning the site of the lesion as well as the degree of involvement of auditory path-
ways (Table 1). The BAEP peaks of waves I, III, and V are stable and often useful in-
dicators for demonstrating auditory pathway integrity (Chiappa et al., 1979). Pro-
longation of both peak V latency and I-V IPL, at times reversible, was often found in
patients with various brainstem pathological conditions (Starr, 1976; Thornton and
Hawkes, 1976; Coats and Martin, 1977; Stone et al., 1983). On the other hand, all five
peaks were intact in patients with cerebral or cerebellar lesions (Sohmer et al., 1974;
Starr and Achor, 1975).

In over 100 patients studied, abnormalities of each BAEP component were correlat-
ed with radiological and postmortem localization of brainstem lesions (Stockard and
Rossiter, 1977). Alteration or loss of wave I was correlated with auditory nerve lesion,
wave II with pontomedullary lesions, wave III with caudal pontine lesions, wave IV
with rostral pontine or midbrain lesions, wave V with midbrain lesions, and wave VI
with thalamic lesions (Starr and Achor, 1975; Starr, 1976; Starr and Hamilton, 1976;
Thornton and Hawkes, 1976; Stockard and Rossiter, 1977; Uziel and Benezech, 1978;
Nodar et al., 1980). Abnormal BAEP was found in all patients with pontine lesions
(Hashimoto et al., 1979). Significant delay of mean latencies of waves III and V was
observed, and, in particular, a prolonged latency of wave V was seen in midbrain le-
sions (Hashimoto et al., 1979).

Preservation of waves I and III with absence of wave V bilaterally was reported in
two patients with rostral pontine tegmental hematomas (Brown et al., 1981). Lesions in
the ventral pons that spare the dorsal tegmental auditory tracts (as in patients with
“locked-in” syndrome) were associated with intact BAEP (Brown et al., 1981; Oh et
al., 1981). The latter investigators reported a normal BAEP recording in patients with
lateral medullary syndrome. Traumatic midbrain injury was associated with altered
BAEP wave V, even before the lesion was visualized on CT (Ropper and Miller, 1985).

BAEP testing was done in two patients with unilateral gunshot wounds to the pons.
In one case, BAEP was reported as normal, which indicated sparing of the adjacent
superior olivary complex and lateral lemniscus (Clark et al., 1985). Inthe second case,
ipsilateral BAEP showed loss of waves II and II1, suggesting damage of the superior
olivary complex (Boller and Jacobson, 1980). These investigators concluded that the
clinical findings, neuroradiographical features, operative course, and evoked response
data reflected the functional anatomy of the pons.

Asymmetries of bilaterally recorded BAEPs may refer to a unilateral brainstem le-
sion or to a lesion affecting the crossed auditory projection. Nevertheless, the abnor-
mality of BAEP is usually ipsilateral to the brainstem lesion (Hashimoto et al., 1979;
Oh et al., 1981). However, an abnormal BAEP recorded contralateral to the side of
lesion was noted in some reports (Brown et al., 1981; Nagaoetal., 1987). Insummary,
unilateral upper pontine or midbrain defects usually show abnormality (III-V IPL or
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IV/V complex) on contralateral ear stimulation, whereas lateralized lesions from the
eighth nerve to the caudal pons usually show abnormality ipsilateral to the ear stimu-
lated (Starr and Hamilton, 1976; Chiappa, 1983; Starr, 1987).

BAEP was reported to provide more reliable early information regarding brainstem
function than were neurological signs or CT findings (Starr and Achor, 1975; Starr and
Hamilton, 1976; Hashimoto et al., 1979; Tsubokawa et al., 1980; Ropper and Miller,
1985; Stockard et al., 1986). Primary brainstem injury and hidden lesions can be diag-
nosed by BAEPs (Tsubokawa et al., 1980; Bricolo et al., 1983). Instrinsic traumatic
brainstem lesions may be associated with increased latency of waves III-V and sup-
pression of waves II-V, whereas extrinsic brainstem compression produced an increase
in all latencies and interpeak latencies (Hashimoto et al., 1979). In one study, there
was a poor correlation between BAEP findings and brainstem lesions as revealed by
CT (Kjaer, 1980). Yet, many clinicians believe that serial BAEP recording is a useful
measure to follow patients with brainstem lesions.

SEPs

SEP recording can be helpful in the clinical diagnosis of peripheral nerve or brachial
plexus injury, spinal cord lesions, brainstem lesions, thalamic lesions, and cortical le-
sions (Jones, 1979; Noel and Desmedt, 1980; Anziska and Cracco, 1981; Glover et
al., 1981). Avulsion injury of dorsal spinal roots was associated with intact P9 and ab-
sence of subsequent SEP peaks (Anziska and Cracco, 1981). Hemisection at the level
of bulbospinal junction produced loss of SEP components beyond P/N13 (Mauguiére
etal., 1983a). P14 and N18 waves may still be seen in patients with thalamic, radia-
tion, or cortical lesions (Anziska and Cracco, 1981).

Alteration of N13 (N14) or N18 has been seen in patients with brainstem lesions
(Anziska and Cracco, 1981; Hashimoto, 1984), and N18 of SEP has been suggested
for brainstem monitoring (Anziska and Cracco, 1981; Desmedt, 1986). The absence
of N18 (N19) and a prolonged P/N13-N18 were noted in patients with pontine or mid-
brain lesions (Anziska and Cracco, 1980). In another study, the absence of SEP waves
beyond P/N13 was seen in patients with pontine, midbrain, or total brain death (Chiap-
pa, 1983).

Asymmetries of the SEP have been seen in patients with unilateral lesions affecting
the sensory pathway (Giblin, 1964; Larson et al., 1966, 1973; Chiappa, 1983). Focal
destructive hemispheric lesions may affect SEPs recorded over the affected lobe or side
(Giblin, 1964; Liberson, 1966; Laget et al., 1967; Williamson, 1970). SEPs were also
found to be helpful in patients with thalamic lesions (hemorrhage, infarction), particu-
larly when CT failed to demonstrate the lesion (Mauguiére et al., 19835b; Kudo and
Yamadori, 1985). Ipsilateral delay in SEP latency and waveform changes (monophas-
ic) were also reported in patients with compressive intracranial hematomas (Larson et
al., 1973; Ommaya and Gennarelli, 1976). SEP abnormalities were correlated with
the severity of these lesions (Giblin, 1964; Williamson et al., 1970). Several studies
were done to correlate the type of intracranial insult and SEP findings. Compressive
lesions, i.e., subdural hematomas, were associated with loss of waveform complexity
and delayed latency. Ischemia was associated with amplitude suppression, whereas
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TABLE 3. Reported changes in auditory
evoked potentials (AEP and BAEP) associated
with elevated intracranial pressure and
early herniation

Depressed cortical AEP

Latency delay wave IV and V and amplitude depression
Latency delay wave III

Prolonged interpeak latencies I-V, III-V

Latency delay wave I

hematomas were associated with changes in waveform morphology (Larson et al.,
1966, 1973; Baker et al., 1968).

Abnormal sensory EPs recorded in the postinjury period may relate to a reversible
functional disturbance and not necessarily to an overt structural abnormality. Persist-
ent EP abnormalities may point to irreversible peripheral or central nervous system
damage (Lutschg et al., 1983; Rumpl et al., 1983). Brain or spinal cord edema may
also contribute to EP abnormalities after injury. It should be remembered, however,
that lesions sparing auditory or somatosensory pathways may be associated with nor-
mal BAEPs or SEPs, respectively (Anziska and Cracco, 1980; Brown et al., 1981; Oh
et al., 1981).

VEPs and MMEPs

Visual pathway abnormalities may be detected by VEPs. Anterior visual pathway
dysfunction and possibly posterior visual impairment can be diagnosed early using
PSVEPs (Halliday et al., 1976). However, in our experience, orbital swelling from
frontal or temporal impacts or swelling from surgery may not allow adequate visual
stimulation in many severe head injuries.

MMEPs were reported to be useful in patients with acute traumatic intracranial
hematomas (Greenberg et al., 19775; Seelig et al., 1981). A positive correlation was
found between the location of neuroanatomical lesions at autopsy or operation and the
location of traumatic brain dysfunction detected by MMEPs. Occipital lesions were
found to correlate well with VEP findings, parietal lobe lesions with SEPs, temporal
lobe lesions with VEP and AEP, diencephalic lesions with SEP, and brainstem lesions
with SSEP and BAEP. On the other hand, frontal lobe lesions failed to show correla-
tion with MMEPs (Greenberg et al., 1977b).

INTRACRANIAL PRESSURE AND HERNIATION

Several clinical studies have shown that measurements of BAEP waves I, III, IV,
and V and the ITI-V and I-V IPLs may be sensitive indicators of increased ICP and
transtentorial herniation (Table 3). Generally, very high ICP or actual brainstem shift
has been required to produce these abnormalities. In addition, studies have suggested
that VEPs may be abnormal in states of hydrocephalus and increased ICP.
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BAEPs

Auditory sensitivity, in the face of raised intracranial tension, is known to deteriorate
by about 30 dB and to return to normal following surgical decompression (Saxenaet al.,
1969; Barlas et al., 1983). This deterioration in hearing may reflect changes in peri-
lymphatic pressure in response to raised ICP (Carlborg and Farmer, 1983). The most
common EP changes detected with increased ICP and brain herniation have involved
alteration in the AEPs.

In arecent BAEP study of 15 patients with supratentorial mass lesions, wave V ab-
solute latency prolongation was noted 2—15 h before pupillary changes (Nagao et al.,
1987). BAEP changes were marked when ICP approached 30 mm Hg. Following the
lowering of ICP with intravenous glycerol, shortening or normalization of a prolonged
wave V absolute latency was demonstrated in almost all patients with anisocoria, with
or without clinical improvement of uncal herniation. Inconsistent ITI-V IPL prolonga-
tion was also noted (Nagao et al., 1987).

Wave V absolute latency prolongation and suppression of wave V amplitude as are-
sult of high ICP and early signs of uncal herniation were also reported in another series
of 12 patients with supratentorial mass lesions (Nagao et al., 1984). Efforts to lower
ICP by glycerol administration were successful in normalizing wave V latency with or
without clinical improvement (Nagao et al., 1984). Suppression of wave V and pro-
longation of -V IPL were noted earlier than clinical deterioration in three patients with
brainstem compression secondary to supratentorial lesions (Ahmed, 1980). Adminis-
tration of steroids caused normalization of wave V latency in two of the three tumor
patients (Ahmed, 1980). Wave V changes were found to correlate with rostrocaudal
deterioration of brainstem function, and wave V recovery was delayed compared to the
earlier BAEP components (Nagao et al., 1984; Nagata et al., 1984; Ghaly et al., 1988).

Another study was done in 15 patients with different causes of increased ICP (Nagao
et al., 1983). Changes in latency and amplitude of wave V were seen earlier and at
slightly raised ICP in patients with clinical signs of central and uncal herniation. Incon-
trast, patients with diffuse intracranial hypertension without brainstem displacement
did not show wave V changes even at a very high level of ICP (60—70 mm Hg) (Nagao et
al., 1983).

BAEP abnormalities have been correlated with clinical brainstem functioning in
both uncal and central herniation syndromes. Normalization occurred after evacuation
of intracranial lesions. At the beginning of central herniation in a patient with acute
obstructive hydrocephalus, there were no remarkable BAEP changes (Nagao et al.,
1982). As the process of herniation progressed, delay in latency and suppression of
wave V was seen, and waves VI and VII disappeared. An immediate shunt operation
produced progressive recovery of the BAEP. Thus, BAEP correlated with neurologi-
cal deterioration and the severity of downward herniation in this patient (Nagao et al.,
1982). Prolongation of wave V absolute latency was seen earlier than amplitude sup-
pression and accompanied rostrocaudal axial deterioration. An important conclusion
of these studies was that physical shift of the brainstem itself and not the height of
ICP was believed responsible for determining BAEP changes (Nagao et al., 1983).

The upper brainstem was reported to be more vulnerable than the lower brainstem
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during clinical rostrocaudal deterioration (Jennett and Stern, 1966). Accordingly,
BAEP abnormalities can be helpful in the detection of transtentorial herniation at dif-
ferent stages of progression. In a study of 20 patients with traumatic brainstem lesions,
patients with I-V IPL (<4.48 ms) showed basal cistern obliteration with or without
temporal horn dilatation of CT, whereas patients with a prolonged I-V IPL(>4.48 ms)
or absence of all BAEP components beyond wave I showed more severe brainstem
deformation on CT (Zuccarello et al., 1983). The presence of brainstem rotation or
foreshortening on CT was found to correlate with prolongation of the I-V IPL (>4.48
ms) (Zuccarello et al., 1983; Faccoet al., 1985). CT-verified compression of the basal
cisterns about the brainstem may relate to a delay in III-V IPL. However, 45% of 59
patients with a normal BAEP had basal cistern compression (Mackey-Hargadine and
Hall, 1986).

BAEP changes, including prolongation of III-V and I-V IPL, suppression of wave
V, and absence of waves VI and VII, were reported in 8 of 20 patients with supraten-
torial tumors and clinical signs of increased ICP (Bennaet al., 1982b). In a patient with
a large supratentorial meningioma, BAEP wave latency was reported to be an early
sign associated with high ICP (Skondras et al., 1986).

Forty-one patients with impending transtentorial herniation underwent binaural
BAEPs recorded between Cz and the mastoid ipsilateral to a lateralized lesion (Nagata
et al., 1984). Nonsurvivors showed prolongation of wave V absolute latency and I-V
IPL. Prolongation of wave I latency was a consistent finding in those who died com-
pared to those who survived. In the early third-nerve stage of transtentorial herniation,
I-I1I and I-V IPLs were within normal limits. In the midbrain—upper pons stage, I-V
IPL was increased and no patients survived. Finally, in the medullary stage, waves III
and V were absent, and no patients survived. There was good general correlation be-
tween ICP and BAEP latencies over the course of transtentorial herniation. BAEP
peaks disappeared as the ICP reached its highest level, and the reduction of ICP was
associated with shortening of IPLs. Consequently, absolute BAEP latencies and IPLs
were thought to be sensitive indicators in early detection of brainstem dysfunction
(Nagata et al., 1984).

An elevated BAEP threshold was also noted in 70% of 40 hydrocephalic patients;
the condition improved in some of the patients when the increased ICP was corrected
(Kraus et al., 1984). The most common abnormal response in these latter patients was
distortion of wave V. Wave V was broadened, and it lacked its characteristic following
reverse slope (Kraus et al., 1984). A depression of wave V amplitude and prolongation
of I-V IPL was observed in a hydrocephalic neonate who improved after shunting
(Despland and Galambos, 1980).

In a BAEP study of 16 hydrocephalic babies, waves I and V showed prolonged la-
tency and depressed amplitude (Edwards et al., 1985). The V/I ratio was significantly
reduced. Elevated BAEP threshold was also noted. However, I-V IPL did not show
marked changes. Of all BAEP abnormalities, reduction of wave V amplitude presented
the most common abnormality. Improvement of BAEP was noted in some patients on
followup testing (Edwards et al., 1985).

Some investigators concluded that there was no relationship between BAEP changes
and ICP in humans (Keith et al., 1983; Karnaze et al., 1985). However, others have
found that CPP was the crucial factor, rather than ICP (Goitein et al., 1983; Hall and
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Mackey-Hargadine, 1984). Very high ICP values (64 mm Hg) did not affect BAEP re-
corded from children as long as the CPP was maintained above 30 mm Hg (Goitein et
al., 1983). Recovery of BAEP abnormalities occurred as soon as the CPP was correct-
ed (Goitein et al., 1983). Low CPP is believed to produce brainstem ischemia, which
results in BAEP abnormalities. Moreover, in experimental studies, BAEP was found
to be more resistant than EEG and SSEP to low CPP. Mildly low CPP values sup-
pressed EEG and the late components of SEPs, but significant changes were not yet
observed in BAEPs. Only at very low CPP did BAEPs show significant changes (Soh-
mer, 1983; Sohmer et al., 1984).

It has been our experience that elevations of ICP in the clinical range frequently en-
countered, in the absence of brainstem shift, do not significantly alter routine BAEPs in
patients with intracranial lesions. Yet laboratory and clinical evidence exists that
cochlear function is affected by elevated ICP.

Only a few studies in humans are available correlating high ICP and SEP, or AEP.
AEPs (middle- and long-latency AEPs) were abnormal in 6 of 15 hydrocephalic pa-
tients (deVlieger et al., 1981). P300 of AEP was significantly altered in a patient with
marked hydrocephalus due to congenital aqueductal stenosis despite a nearly normal
VEP, BAEP, and middle-latency auditory response (MLR) (Woods et al., 1987). SEP
recording was normal in hydrocephalic patients despite abnormal VEP (McInnes,
1980).

VEPs

A number of studies in patients with hydrocephalus and increased ICP had shown
definite VEP alterations that tended to normalize after cerebrospinal fluid diversion
(Engel, 1975; Fichsel, 1976; Rossini et al., 1978; Ehle and Sklar, 1979; Sklar et al.,
1979; Mclnnes, 1980; deVlieger et al., 1981; Onofij et al., 1981; York et al., 1981;
Guthkelch et al., 1982; Humphrey et al., 1982; McSherry and Walters, 1982; Guth-
kelch et al., 1984; York et al., 1984; Alani, 1985).

In patients with hydrocephalus or brain edema, a linear relationship was found be-
tween ICP levels (>300 mm H,0; 39 mm Hg) and a latency shift of the N2 wave of
flash VEPs (York et al., 1981, 1984). VEP changes included a delayed latency of
P100, abnormal P100 waveform, asymmetries, and fatigability to increasing stimulus
frequency (Sklar et al., 1979). A reduction of P100 latency was seen after shunting for
hydrocephalus, and worsening of the VEP was associated with progression of hydro-
cephalus (Sklar et al., 1979).

PSVEP was found to be an excellent indicator of visual pathway dysfunction in pa-
tients with hydrocephalus (Alani, 1985). VEP abnormalities were consistently seen in
infants with ventriculomegaly and a slow return of P100 to normal values after shunt-
ing (Guthkelch et al., 1982). Flash VEP was abnormal in 8 of 15 hydrocephalic pa-
tients, whereas AEP was abnormal in 6 patients. Four patients had abnormal VEPs
and abnormal AEPs (deVlieger et al., 1981).

In 10 patients with hydrocephalus, six had abnormal VEP configuration and two had
delayed latency (McInnes, 1980). Following ventriculoperitoneal shunting, normal-
ization of VEP was only seen in those with abnormal VEP configuration (McInnes,
1980). Delayed latency of flash-evoked P100 was seen frequently in infants develop-
ing hydrocephalus before 56 weeks of age (Guthkelch et al., 1984). Significant pro-
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TABLE 4. Evoked potential findings
associated with unfavorable outcome

Consistent gross abnormalities

Multiple abnormalities

Abnormality(ies) detected in more than one modality
Absence of peak(s)

Prolonged interpeak latencies (central conduction time)
Reversed amplitude ratio

longation of P100 was also observed in macrocephalic infants with brain damage. Re-
covery of P100 after shunting was mostly seen in patients with normal mental status
regardless of ventricular size. These investigators suggested that serial VEP recording
might be helpful in assessing mental development of hydrocephalic infants (Guthkelch
et al., 1984).

Additional studies showed VEP changes in patients with papilledema and benign
intracranial hypertension (Hume and Cant, 1976; Kirkham and Coupland, 1981).
Others believe that a poor correlation exists between papilledema, benign intracranial
hypertension, and VEP (Rouher et al., 1969; Asselman et al., 1975; Babel et al., 1977;
Halliday and Mushin, 1980; Halliday, 1982; Chiappa, 1983). Further confirmation of
relative VEP changes due to hydrocephalus and increased ICP is needed, but this may
well prove a fruitful area of investigation.

EPs AS A PROGNOSTIC SIGN

Serial clinical examination at times provides the most accurate prediction of out-
come in severely head-injured patients. However, sensory EPs may enhance the ac-
curacy of outcome prediction, particularly when clinical findings are unclear. BAEPin
particular was found to be a reliable measure in patients who were in barbiturate coma
or were therapeutically paralyzed, or when the clinical examination was not obtained
(Newlon et al., 1982; Hall and Mackey-Hargadine, 1984; Mackey-Hargadine and
Hall, 1985, 1986). EP results were believed by many authors to be more reliable than
clinical findings, and no false pessimistic predictions were encountered (Narayanetal.,
1981; Anderson et al., 1984; Karnaze et al., 1985).

Sensory EPs may even give an accurate prediction of the patient’s outcome in the
early postinjury period (Seales et al., 1979; Kaga et al., 1985; Ottaviani et al., 1986).
Mechanical brain trauma and edema may cause EP changes recorded in the early post-
injury period (Lutschg et al., 1983). These EP abnormalities may recover at a later
time, emphasizing the importance of serial and delayed EP recording in predicting out-
come.

Repeatedly, grossly abnormal sensory EPs, or abnormalities in more than one EP
modality, usually indicate an unfavorable outcome, and consistently normal potentials
often predict favorable outcome (Table 4). Mildly abnormal EPs may not be as helpful
in prognostication. Serial monitoring is required for accurate prediction of outcome,
and further EP changes may relate to deterioration or improvement in the patient’s
condition. Reversible EP abnormalities as a result of aggressive management may or
may not indicate improvement in the ultimate outcome (Hall et al., 1984).
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BAEPs

Although the type of sensory EPs used to evaluate head injury prognosis has varied,
many investigators believe that BAEP is a useful prognostic indicator in head-injured
patients (Seales et al., 1979; Tsubokawa et al., 1980; Hall et al., 1982; Ducati et al.,
1983; Hall et al., 1983; Mjoen et al., 1983; Scarpino et al., 1983; Anderson et al.,
1984: Facco et al., 1985; Papanicolaou et al., 1986). These investigators and others
recommend the use of a combination of BAEPs and AEPs (middle- and long-latency
auditory potentials) as predictors of outcome (Karnaze et al., 1982; Hall et al., 1983;
Hall and Mackey-Hargadine, 1984; Rosenberg et al., 1984; Kaga et al., 1985; Kar-
naze et al., 1985; Ottaviani et al., 1986).

BAEP s a sensitive indicator of the functional integrity of the brainstem ( Tsubokawa
et al., 1980; Sohmer, 1983; Brewer and Resnick, 1984). Absence of all BAEP com-
ponents or absence of all components beyond wave I or II usually indicates poor out-
come and is often irreversible (Tsubokawa et al., 1980; Klug, 1982; Klug et al., 1983;
Ducatiet al., 1983; Hall et al., 1983; Lutschget al., 1983; Mjoen et al., 1983; Scarpino
etal., 1983; Sohmer, 1983; Yagi and Baba, 1983; Brewer and Resnick, 1984; Hall and
Mackey-Hargadine, 1984; Rosenberg et al., 1984; Ottaviani et al., 1986).

Gross BAEP abnormalities were often seen in traumatized patients with an unfavor-
able outcome (Hall et al., 1982; Karnaze et al., 1982; Hall et al., 1983; Karnazeet al.,
1985; Papanicolaou et al., 1986). Absence of wave IV, V, or all BAEP peaks carried a
worse prognosis than simply a delay in latencies (Marcus and Stone, 1984). Marked
exaggeration of wave I amplitude compared to other waves was seen in cases with se-
vere brainstem dysfunction (Starr and Hamilton, 1976; Mjoen et al., 1983; Hall and
Mackey-Hargadine, 1984; Hall et al., 1985). In another study, all patients with ab-
sent IV-V or earlier waves died (Ducati et al., 1983).

A normal to mildly abnormal BAEP was associated with favorable outcome (Kar-
naze et al., 1982; Hall et al., 1983; Mjoen et al., 1983; Sohmer, 1983; Karnaze et al.,
1985; Ottaviani et al., 1986). Absence or delayed latency of wave V may also be re-
versible and has been observed with a favorable outcome (Tsubokawa et al., 1980;
Lutschg et al., 1983; Gennarelli, 1987). Absence of wave V with subsequent stepwise
loss of wave peaks IV and III at less than 12 h following injury was associated with an
unfavorable outcome (Tsubokawa et al., 1980).

Timing of BAEP testing as well as repeated recordings were helpful to reflect the
severity and progression of brainstem injury and to predict outcome (Tsubokawa et al.,
1980). Patients with prolonged I-V IPLs were graded better than patients with absence
of wave V (Mjoen et al., 1983; Ottaviani et al., 1986). Patients with a high IV-V/I
amplitude ratio were more likely to have a favorable outcome (Scarpino et al., 1983).
I-V IPL was found to be a sensitive predictor of outcome in severely head-injured pa-
tients (Facco et al., 1985). Favorable outcome was noted in patients with I-V IPL
<4.48 ms compared with an unfavorable outcome in those with I-V IPL >4.48 ms
(normal I-V IPL, 4.03 +0.17) (Faccoetal., 1985). In 30 head trauma patients, there
was a correlation between III-V IPL and poor outcome. Prolonged I-III IPL was as-
sociated with grave prognosis (Scarpino et al., 1983).

An abnormal BAEP recording was a better predictor of unfavorable outcome than a
normal test was for predicting a favorable outcome (Anderson et al., 1984; Hall and
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Mackey-Hargadine, 1984; Papanicolaou et al., 1984; Kaga et al., 1985; Cant et al.,
1986; Mackey-Hargadine and Hall, 1986). It has been reported that patients with bi-
lateral normal BAEP responses had the best chance of survival (Ducati et al., 1983).
In one study it was estimated that the overall predictive accuracy of BAEP was 50%
(Hall et al., 1982). By contrast, another BAEP study in post-traumatic patients showed
an overall predictive accuracy of 77% or 91%, if deaths from extracranial causes were
excluded (Brewer and Resnick, 1984).

BEAPs, MLRs, and AEPs

Patients with preservation of middle- and long-latency AEPs had a favorable out-
come (Karnaze et al., 1982; Rosenberg et al., 1984; Kaga et al., 1985). These later
auditory potentials could be significant measures of communicative/cognitive outcome
in head-trauma patients. Favorable outcome was also observed in patients with intact
long-, middle-, and short-latency potentials, compared to those with only short-latency
(BAEP) responses (Karnaze et al., 1982; Rosenberg et al., 1984; Kaga et al., 1985).
Normalization of BAEPs has been correlated with recovery from the postconcussion
syndrome (Benna et al., 1982a).

BAEPs and MLRs (10-50 ms) may enhance accuracy of prognosis (Kamaze et al.,
1982; Hall et al., 1983; Hall and Mackey-Hargadine, 1984; Rosenberg et al., 1984;
Kaga et al., 1985; Mackey-Hargadine and Hall, 1986; Ottaviani et al., 1986). Con-
sistently normal MLRs within 10 days postinjury was reported to indicate good neuro-
logical and communicative outcome, whereas consistently abnormal MLRs indicated
poor outcome even with a normal BAEP (Hall and Mackey-Hargadine, 1984; Ottavi-
ani et al., 1986). However, MLRs can be altered by medications and other factors.
The outcome of patients with an increased BAEP I-V IPL was found to be related to
MLR results and to subsequent improvement of auditory waveforms within the first 3
months after injury (Ottaviani et al., 1986).

Fifty-four acutely comatose patients were assessed with short- (BAEP), middle-
(MLR), and long-latency AEPs within 72 h after admission (Kaga et al., 1985). Sur-
vival rate was 100% in patients with normal potentials, 91% in patients with only an
absence of long-latency potentials, 60% in patients with only intact BAEPs, 10% in
patients with abnormal BAEPs and absent subsequent potentials, and no survival of
patients with absence of all AEPs. All patients with altered or obliterated BAEPs had
absent subsequent potentials. These investigators deduced that a normal MLR was
clearly a predictor of survival in comatose patients, whereas anormal BAEP wasnot a
reliable predictor of survival. Abnormal or absent BAEP was a reliable predictor of
death (Kaga et al., 1985). The addition of clinical findings to BAEP and AEP was
found to predict the outcome more accurately and with no false pessimistic predictions
(Karnaze et al., 1985).

The P300 (ms) long-latency AEP was strongly correlated with neuropsychological
evaluation and was useful to confirm cognitive impairment and residual brain dysfunc-
tion (Larson et al., 1973; Ommaya and Gennarelli, 1974; Rappaport et al., 1977; Ben-
naet al., 1982a; Greenberg and Ducker, 1982; Newlonet al., 1982; Guptaet al., 1986;
Olbrich et al., 1986; Papanicolaou et al., 1986). The P300 was also found to correlate
with post-traumatic amnesia (Papanicolaou et al., 1986).
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SEPs

SEPs were thought to be a reliable predictor of favorable or unfavorable outcome
from head injury (De La Torre et al., 1978; Hume and Cant, 1981; Pruggeret al., 1983;
Rumpl et al., 1983; Anderson et al., 1984; Mackey-Hargadine and Hall, 1985; Pfurt-
scheller et al., 1985; Cant et al., 1986; Mackey-Hargadine and Hall, 1986; Walser et
al., 1986). It has recently been reported that SSEPs were more vulnerable to central
nervous system trauma than BAEPs and VEPs (Anderson et al., 1984; Cant et al.,
1986). In addition, normal BAEPs have been reported in patients with severely ab-
normal SSEPs (Cant et al., 1986).

Trauma patients with eight identifiable SEP wave peaks in the first 300 ms had a bet-
ter outcome than those with only five peaks, whereas no recovery was reported in pa-
tients with only two primary SEP peaks (De La Torre et al., 1978). Absence of early
components had a worse prognostic value than absence of later components only (pro-
vided no barbiturates or sedatives were given). The majority of patients with absence
of all components or absence of all components beyond P15 died (Greenberg et al.,
1977a,b; De La Torre et al., 1978; Lutschget al., 1983; Rumpl et al., 1983; Pfurtschel-
ler et al., 1985; Walser et al., 1986).

SSEPs have been correlated with outcome in 75-80% of head-trauma patients. Im-
provements of SSEPs was seen in patients with good recovery, whereas cons istently
abnormal SEPS were recorded in disabled patients (Hume and Cant, 1981).

The central conduction time (CCT) (CCT = N20 — N14) of SEPs has been corre-
lated with outcome after head injury (Hume and Cant, 1981; Lutschg et al., 1983; Prug-
ger et al., 1983; Rumpl et al., 1983; Cant et al., 1986; Walser et al., 1986). In addi-
tion, CCT was found to be more resistant to barbiturates than later SEP components
(Lutschg et al., 1983; Marcus and Stone, 1984).

Normal CCT and N20/N14 amplitude ratio (ratio between the peak of N20 and its
subsequent positivity and the peak of N14 and its subsequent positivity) were found in
trauma patients with good outcome (Rumpl et al., 1983). Prolonged CCT and decreased
amplitude ratio were correlated with poor outcome. The most prolonged CCT was seen
in patients who died. Asymmetries of SSEPs were seen in patients with moderate to
severe disability (Rumpl et al., 1983). Early normalization of CCT and amplitude ratio
was found in patients with a favorable outcome. It was reported that patients with pri-
mary brainstem injuries who had a good recovery might demonstrate asymmetric or
absent SSEPs and increased CCT (Prugger et al., 1983; Rumpl et al., 1983).

In another study, bilateral absence of the N20-P23 complex was associated with
poor outcome, and the majority of these patients met the clinical criteria of brain death
(Marcus et al., 1984). The length of survival was correlated partly with the presence or
absence of BAEPs and brainstem reflexes. Patients with only BAEP wave I or no
BAEP response survived 8—46 days. Patients with unilateral delay in SSEPN14-N20
conduction had a favorable outcome compared to patients with bilateral N14-N20
delay (Marcus et al., 1980; Marcus and Stone, 1984).

Patients with unilateral or bilateral absence of N20 within the first 4 days had an un-
favorable outcome (Cant et al., 1986). Preservation of N20/P23 implied a good prog-
nosis, whereas loss of N20/P23 implied poor prognosis (Goldie et al., 1981).

Long-latency SEPs were correlated with the patient’s clinical status and outcome
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(Perot, 1976). Normal long-latency SEPs indicated favorable outcome, whereas miss-
ing or questionable long-latency SEPs was an unfavorable sign (provided no barbitu-
rates or sedatives were given). A return of consciousness and improvement of neuro-
logical status correlated with return of the late SEP components (Perot, 1976). In
another report, the appearance of long-latency SEPs during emergence from coma was
compatible with a more optimistic outcome (Pfurtscheller et al., 1985).

VEPs

A study of VEPs in head-trauma patients showed that flash VEP was a good indica-
tor of unfavorable outcome, but false pessimistic predictions were present (Anderson et
al., 1984). A study of monocular PSVEPs was found to correlate with cognitive func-
tion in awake post-traumatic patients. P100 latency prolongation was the most com-
mon finding (Gupta et al., 1986).

In another study of brain-damaged patients, long-latency VEPs were reported to
correlate with psychosocial disability (Rappaport et al., 1977). Mildly abnormal VEPs
were found in patients with post-traumatic syndrome (Ommaya and Gennarelli, 1974,
1976; Rappaport et al., 1977; Guptaet al., 1986). Recovery was frequently underway
when the VEP was able to follow a faster rate of stimulation (Ommaya and Gennarelli,
1976). Long-latency VEPs restricted to the occipital region did not correlate with clin-
ical status or outcome (Pfurtscheller et al., 1985). However, severe hemispheric dys-
function was usually present if VEPs were preserved in the occipital region only. A
gradual spreading of VEP over the scalp tended to indicate improvement in cerebral
function (Pfurtscheller et al., 1985).

MMEPs

In one study of severely head-injured patients, MMEPs (AEPs, SEPs, and VEPs)
were well correlated with outcome, whereas short-latency brainstem potentials alone
did not correlate with outcome (Lindsay et al., 1981). The above investigators found
that simply counting the number of identifiable waves present was an optimum method
for analyzing the data. Summation of waves from all responses provided a useful index
of brain dysfunction. The fewer the number of wave peaks, the poorer the outcome
(Lindsay et al., 1981). Later cortical components of each modality correlated with the
level of consciousness and depth of coma (Greenberg et al., 19774, b; Newlon et al.,
1982).

A combination of SEPs and BAEPs was a more reliable indicator of outcome than
either EP alone (Lutschg et al., 1983). SSEP was found to be a powerful prognostic
indicator in the early postinjury period, whereas BAEP was significantly correlated to
later outcome (Greenberget al., 1977a,5). A combination of SEP-BAEP (Lutschg et
al., 1983; Cant et al., 1986) or long-latency SEP-VEP (Pfurtscheller et al., 1985) has
also been suggested. MMEPs with a specific grading scale for AEPs, SEPs, and VEPs
were thought to give the most accurate results. MMEP recording appears to be an ex-
cellent prognostic indicator as the functional integrity of three different sensory path-
ways is assessed (Greenberg et al., 1977a,b, 1981; Lindsay et al., 1981; Seelig et al.,
1981; Newlon et al., 1982).
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Graded MMEPs predicted outcome in 100 severely head-injured patients with ap-
proximately 100% accuracy, excluding patients who died from systemic causes (80%
without exclusion) (Greenberg et al., 1981). Mildly abnormal MMEPs were predic-
tive of good to moderate outcome in 81% of patients, whereas severe to absent MMEPs
indicated a poor outcome in 76% of patients. A linear relationship was found between
severity of MMEP abnormality and a less favorable outcome. Severely abnormal
MMEDPs (the last grade in the scale) was maximally predictive of poor outcome regard-
less of any other factors (Greenberg et al., 1981).

In patients with acute subdural hematoma, MMEP was a clear indicator not only for
outcome prediction, but also for early detection of reversible and irreversible brainstem
dysfunction (Seelig et al., 1981). Similar results were found using BAEP in patients
with severe brain contusion and subdural hematoma (Tsubokawa et al., 1979). Alarge
decompressive procedure was found ineffective in patients with absent BAEP peaks
(Tsubokawa et al., 1979).

In 133 severely head-injured patients, MMEPs were the most reliable predictor for
outcome (Narayan et al., 1981). The accuracy rate was 91%, and there were no false
pessimistic predictions. When clinical and MMEP data were combined together, the
accuracy rate became 89% with 4% false pessimistic predictions. By contrast, clin-
ical data alone predicted outcome with 82% accuracy and 9% false pessimistic pre-
dictions (Narayan et al., 1981).

A follow-up study over a one-year post-injury period was carried out using MMEPs
(Newlon et al., 1982). Patients with consistently normal MMEPs had good recovery,
whereas patients with consistently absent potentials had poor outcome. Patients with
stable or improving mildly abnormal MMEPs had favorable outcome despite compli-
cations. Patients with severe MMEP abnormalities that later improved had a favorable
outcome, whereas those with persistent or deteriorating severe EP abnormalities had
poor outcome. The changes found in serial MMEPs were better prognostic indicators
than the presence or absence of medical complications. MMEP changes (deterioration
or improvement) may at times precede changes in the patient’s clinical status (Newlon
et al., 1982).

CONCLUSIONS

EP recording is a useful tool for providing accurate information regarding the integ-
rity of sensory input to the central nervous system in critically head-injured patients.
This is especially important in unconscious patients given barbiturates or who are ther-
apeutically paralyzed to control increased ICP.

Correlations exist between EPs and clinical findings such as the lower GCS, ocular
abnormalities, rostrocaudal brainstem deterioration, and post-traumatic cognitive dis-
orders. Sensory EPs are also valuable in terms of lesion localization. Short-latency
potentials reflect brainstem function, whereas middle- and long-latency potentials
assess hemispheric function. Localization of a brainstem lesion within several centi-
meters using short-latency EPs may be possible, but it must be remembered that EPs
test the functional rather than anatomical integrity of a specific tract.

Experience with EP monitoring in patients demonstrating clinical herniation syn-
dromes and increased ICP has shown significant clinical promise. In particular, AEPs
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and VEPs appear helpful in these clinical situations. EP monitoring, especially MMEPs,
have also proved to be an excellent predictor of outcome. In a number of studies, out-
come prediction from EP analysis has been more effective with fewer false pessimistic
results than the clinical examination.

The morbidity and mortality of post-traumatic coma remain high, and there is a great
need for physiological monitoring in this challenging group of patients. More investi-
gation remains to be done in head-injured patients as we find the sensory EP modalities
that correlate best with neurological function and ultimate outcome.
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