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Abstract Patients with severe traumatic brain injury or
large intracranial space-occupying lesions (spontaneous

cerebral hemorrhage, infarction, or tumor) commonly

present to the neurocritical care unit with an altered mental
status. Many experience progressive stupor and coma from

mass effects and transtentorial brain herniation compro-

mising the ascending arousal (reticular activating) system.
Yet, little progress has been made in the practicality of

bedside, noninvasive, real-time, automated, neurophysio-

logical brainstem, or cerebral hemispheric monitoring. In
this critical review, we discuss the ascending arousal sys-

tem, brain herniation, and shortcomings of our current

management including the neurological exam, intracranial
pressure monitoring, and neuroimaging. We present a

rationale for the development of nurse-friendly—continu-

ous, automated, and alarmed—evoked potential
monitoring, based upon the clinical and experimental lit-

erature, advances in the prognostication of cerebral anoxia,

and intraoperative neurophysiological monitoring.
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Abbreviations
AAS Ascending arousal (reticular activating) system
BAEP Brainstem auditory evoked potential

BR Blink reflex

CPP Cerebral perfusion pressure
CSF Cerebrospinal fluid

CT Computed tomography

EMG Electromyography
EP Evoked potential

ICP Intracranial pressure

IONM Intraoperative neurophysiological monitoring
MAP Mean arterial pressure

MBAEP Modified forms of the BAEP

MEP Motor evoked potentials
NCCU Neurocritical care unit

SOL Space-occupying lesion

SSEP Short latency somatosensory evoked potentials
sTBI Severe traumatic brain injury

TcE-

MEP

Transcranial electrical motor evoked potentials

TcM-

MEP

Transcranial magnetic motor evoked potentials

TrSSEP Trigeminal short latency somatosensory evoked
potential

TTH Transtentorial herniation
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Introduction

Patients in the neurocritical care unit (NCCU) often have an

altered level of consciousness and require sedation, anal-

gesia, andmuscle paralysis for restlessness, pain, intubation/
airway management, facilitating radiological studies, and

controlling intracranial pressure (ICP). The neurological

examination to establish—level of consciousness, pupils,
extraocular motility, and extremity responses—may be

limited to brief periods of reduced or withheld medications.

Often without apparent warning—or following carbon
dioxide retention, a seizure, vigorous tracheal suctioning,

diminished venous outflow, or ventricular system block-

age—ominous findings occur such as onset of coma,
pupillary changes, and motor posturing [1–6].

Lethargy, hypersomnolence, stupor, and coma sec-

ondary to space-occupying lesions (SOLs), usually
indicate involvement of the ascending arousal (ascending

reticular activating) system (AAS) [6–11]. SOLs are

commonly associated with adjacent vasogenic edema,
hyperemia, and ischemia. Compensation occurs by dis-

placement of cerebrospinal fluid (CSF) and venous blood,

and distortion of the brain parenchyma [12, 13]. As these
mechanisms fail, precipitous brain tissue displacements,

secondarily increased ICP, lateral midbrain shifts (uncal

herniation) and/or downward herniation through the ten-
torial opening (transtentorial herniation, TTH) ensues.

Without early detection, life threatening rostrocaudal

deterioration and severe disability or death result from
deep hemispheric shifts with ischemic injury, and/or

secondary brainstem infarctions and hemorrhages [8–11].

Indeed, TTH is among the most emergent situations
encountered in clinical medicine [4, 6, 8, 11, 14–16].

Various limitations and pitfalls exist in our present

reliance on ICP, cerebral perfusion pressure (CPP), and
neuroimaging [3, 6, 17, 18]. Reliable physiological or

functional information is needed for more timely treatment.
We advocate the use of short latency sensory and motor

evoked potential modalities (EPs) in close proximity to the

AAS in the upper pons, midbrain, and diencephalic region
[19–22]. These monitoring tools, and possibly several

others, can be automated for practical, real-time, nurse-

friendly application within the NCCU.
‘Real-time assessment of global or regional brain dys-

function could help clinicians recognize early worsening,

prompt specific management changes, monitor response to
therapy…(and)…used as surrogate endpoints in clinical

trials [23].’ Such monitoring would augment our present

treatments and be utilized in patients not ordinarily con-
sidered for invasive ICP monitoring—such as somnolent

patients with moderate head injuries, cerebral infarctions,

and hemorrhages without rupture into the ventricle. This

review is intended to stimulate development of bedside

nurse-friendly, automated electrophysiological monitoring
for these challenging patients.

The Ascending Arousal System and Transtentorial
Herniation

Critical structures enclosed within the incisural plane or

hiatus of the tentorium cerebelli are depicted in Fig. 1a–c

[4, 14, 16]. These include the midbrain nuclei and fibers of
the AAS which modulates cerebral cortical activity in the

maintenance of vigilance and consciousness [9, 24].
Additional causes of coma consist of bilateral or central

AAS lesions, or their thalamic targets, and portions of the

hypothalamus and basal forebrain (Figs. 1c, 2)
[7–11, 16, 19, 25]. Upward projecting AAS nuclei and

major fiber bundles such as the central tegmental tract,

being aligned parallel to the long axis of the brainstem
(Fig. 2), may make the system particularly vulnerable to

perpendicular or lateral bending forces.

TTH is dependent upon SOL volume, rate of radial
expansion, vector force, and the presence or absence of

cerebral atrophy [7, 8, 26–35]. Central herniation directs

the mesodiencephalic region more caudally than laterally
[7, 8, 10, 11, 36–39]. Earlier stages of TTH typically show

mesial displacement of the basal hemisphere at or just

above the tentorium, with widening of the ipsilateral
ambient cistern (Figs. 3, 4) [36]. Accompanying this dis-

placement is transposition of the attached midbrain, whose

peduncle may become compressed or ‘notched’ against the
contralateral rigid tentorial edge, causing hemiparesis

ipsilateral to the SOL—the Kernohan-Woltman Phenom-

ena (Figs. 3, 4, 5) [36, 40].
About half of SOL patients with TTH have only hori-

zontal midbrain displacement and the other half downward

shift of the midbrain tectum [4, 41–43]. Stupor and coma
more closely correlate with a 6- to 13-mm midline hemi-

spheric shift than vertical descent [44]. And effacement or

closure of the perimesencephalic (ambient) cisterns a
worsened outcome as well [45, 46]. At times, brainstem

ischemia can be a significant factor without clear evidence of

mechanical herniation or brainstemhemorrhage [36, 47–52].
The sudden and unpredictable nature of TTH is likely

influenced by the extreme anatomic variability of the

incisural length and width, midbrain proximity to the ten-
torial edge (0–7 mm), and oculomotor nerve distances

[14, 16, 36, 53, 54]. Preferably, surgical decompressions

should be performed at the early diencephalic (drowsy or
stuporous) phase; but with loss of the neurological exam,

and without a clear physiological indicator, much vari-

ability remains [46, 55–59].

144 Neurocrit Care (2017) 26:143–156

123



Intracranial Pressure (ICP) and Related Issues

‘The pathogenesis of signs and symptoms of an expanding
mass lesion that causes coma is rarely a function of the

increase in ICP itself, but usually results from imbalances

of pressure between different (intradural) compartments
leading to tissue herniation.’ [8, p. 95].

The intracranial contents largely consist of inhomoge-

neous brain tissue, liquid blood, and CSF [60–63]. The
largest component—brain is a deformable viscoelastic

structure, which exhibits properties characteristic of a solid

as well as a fluid [12, 13, 61, 64–71]. This property pre-
disposes to ‘shear stresses’ resulting in ‘pressure

differentials’ or ‘gradients’ between regions of increased

and decreased tension within the brain. Gradients are fre-
quent in the vicinity of compressed or deformed brain

tissue but also occur contralateral and across compartments

predisposed to TTH and foramen magnum herniation
[61, 64–66]. Experimental intracranial mass expansion

results in the immediate appearance and elevation of such

gradients, with quick reversal by decompression
[28, 30–32, 34, 64, 65, 72–74]. Gradients have also been

detected in SOL patients with multiple ICP monitors

[17, 29, 75–82].
Due to the risk of causing clinical deterioration and

TTH, ICP devices are customarily placed contralateral to

the SOL. Thus, ICP underestimates distant gradient effects,

but also the effects of brain turgor and compliance adjacent
to the mass lesion or deeper, or how fast deadly processes

may be occurring [60, 67, 70, 71, 82–84]. Consequently,

ICP devices must be suspect of measuring a local as
opposed to a generalized, broadly applied value like sys-

temic arterial pressure. In addition, midline shifts may lead

to falsely low ICP values by narrowing third ventricular
width, impeding CSF egress, thus transmission of ICP to

the contralateral ventricular monitor [72]. Acute mass

lesions in the temporal or posterior fossa have progressed
to somnolence and herniation even with ICP levels recor-

ded at 20 mm Hg [18].

Cerebral perfusion pressure (CCP) has been helpful in
management of patients with increased ICP to avert

hypotension [62, 84]. Either hypotension—reduced mean
arterial pressure (MAP) or increased ICP (without an

associated increase in MAP)—results in decreased cerebral

perfusion pressure (CPP = MAP minus ICP) [83–86].
However, the CPP is critically dependent upon the ICP

value and, like ICP, only can be relied upon to reflect the

value near the monitor’s tip [18].
There is certainty that refractory ICP is detrimental, and

an initial ICP value greater than 20 mm Hg is associated

with poor outcome after severe traumatic brain injury
(sTBI, Glasgow Coma Score B8) [18, 46, 62, 84]. In

Fig. 1 a Drawing depicting the
incisural opening of the
tentorium cerebelli for passage
of the midbrain. Note adjacent
structures (from Finney and
Walker 1962 with permission)
[14]. b Cross section of the
midbrain within the incisural
plane as viewed from below.
A—aqueduct of Sylvius, B—
basilar artery, BC—basal
cistern, C—internal carotid
arteries, CP—cerebral
peduncles, OC—optic chiasm,
PC—posterior cerebral arteries,
S—stalk of pituitary, T—
tentorium cerebelli, WAC—
wings of the ambient cistern.
Large asterisk approximates the
midbrain (reticular) ascending
arousal system (AAS) (adapted
from Walker 1969 with
permission) [16]. c Sagittal
section, stippling represents the
predominant areas most related
to preservation of
consciousness. ‘I’—
approximates the incisural plane
(from Jefferson 1958 with
permission) [26]
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addition, ICP per se is not a useful indicator for a func-

tional outcome [6, 62, 86]. Recent consensus holds that

ICP/CPP-directed monitoring and adherence to guidelines
leads to overall improved attention and management of the

sTBI patient (efficiency of care). However, due to a num-
ber of factors such as a baseline high mortality, variability

in ICP devices, a lack of standards for recording ICP val-

ues, uncertainty of individual ICP threshold values, as well
as the ability to effectively control ICP, outcome remains

similar to those managed without ICP monitoring

[17, 62, 85–94].
A large, prospective, double-blind, sTBI study analyzed

secondary pupillary or motor score deterioration and

argued a critical need to identify patients at particular risk

[46]. Another prospective study examined patients with a
large-volume cerebral hemispheric infarction who under-

went decompressive hemicraniectomy [55]. This study

made a strong case that ICP monitoring was unreliable,
thalamic/brainstem shift on imaging studies held more

importance, and earlier recognition was essential to pre-

serve life and a functional recovery [55]. Perhaps more
reliable or different information is needed than can be

presently obtained from ICP monitoring [17, 95, 96].

Neuroimaging

Neuroimaging provides essential structural-anatomic detail

for acute diagnosis and emergency medical and surgical
treatments of hemorrhages, hydrocephalus, tumors, and

infarctions [6]. However, clear imaging of brain tissue

impacted by deep mass effects and the propensity for
identifying early TTH is limited (see above ‘The Ascend-

ing Arousal System and Transtentorial Herniation’

section). In patients without pupillary findings or motor
posturing, the ICP value usually carries more importance

than the significance of nonhemorrhagic CT findings such

as increased edema, midline shift, or basal cistern obliter-
ation. In stable patients, MRI may be performed and

coronal images are particularly revealing (Fig. 5b) com-

pared to axial CT and coronal reconstructions.
Unfortunately, these patients are often unstable and trans-

porting them may be problematic [6]. Laying these patients

flat and moving them into and out of scanners not infre-
quently leads to stubborn increases in ICP and monitor

malfunction or dislodgement, including other mounted

monitoring devices. We believe functional or physiological
bedside information is necessary for more timely treatment

of TTH.

Neurophysiological Monitoring at the Incisural
Plane: A Review of Related Clinical
and Experimental Research

Neurophysiological monitoring ‘allows for real-time
assessment of neurologic integrity, signal transmission, and

secondary processing of sensory information… Signal

changes can be measured over time…to detect responses to
therapeutic interventions, recovery of brain function, or

progression of injury’ [97]. For decades, somatosensory

evoked potentials (EPs) have been used as indicators to
assess stroke and sTBI patients [98–104]. Positive clinical

correlations were found, and advantages of serial EP

recordings were realized [98, 103–106]. Reviews were
optimistic regarding the future use of somatosensory EPs in

Fig. 2 a Classic depiction of the brainstem ascending (reticular)
arousal system (AAS) activating higher central nervous system
centers resulting in arousal (from Magoun 1954 with permission)
[25]. b Model of the brainstem and hypothalamus prepared from
thinly cut human material, and sub-millimeter MRI images from a
number of patients with brainstem coma. c A ‘cutaway model’
depicting the volume of the midbrain and pons that constitutes the
reticular formation of the AAS (designated with long horizontal
arrow). Superimposed in proximity are the corticospinal tract, medial
lemniscus, and lateral lemniscus/inferior colliculus—responsible for
the respective evoked potential responses—MEP, SSEP, and BAEP
(adapted from Parvizi and Damasio 2004 with permission) [9]
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coma and TTH, but advances in neuroimaging and adop-

tion of ICP/CPP-directed care led to less use of EPs in the

NCCU [86, 97–99, 101, 107]. More recent NCCU studies
and improved EP technology have significantly confirmed

and extended the usefulness of EPs in these patients

[97, 100, 108–118].

In accordance with recent literature on neurocritical

care, the ideal monitor provides bedside, noninvasive, real-

time, user-friendly advanced data analysis to improve
treatment [86, 97, 118]. We believe some of the neuro-

physiological modalities described in this section could be

adapted to fulfill this present void in our NCCU care.

Fig. 3 Eighty-three-year-old
male with dementia and falls
presented with extreme lethargy
and right-sided weakness.
a Plain CT scan of the brain
showed a large right, mixed-
density, chronic, subdural
hematoma with marked
subfalcine herniation (asterisk)
and pronounced right to left
midline shift. b Basal image of
the CT scan shows medial
displacement of the right
temporal horn (upper arrow)
and widening of the right
ambient cistern (lower arrow).
The left midbrain cerebral
peduncle appears compressed
(short arrow) and the adjacent
left temporal horn dilated.
Despite timely surgical
decompression, the patient later
expired from medical
complications

Fig. 4 Fifty-one-year-old nurse with progressive headaches requiring
aspirin, recent vomiting, and lethargy. She slept when left alone
(somnolent), opened her eyes (but not fully) after moderate stimuli,
was oriented to person, place and time, and followed commands.
Glasgow Coma Score was deceptive at 14. She had drift of the left
outstretched arm and a right Babinski sign. a Plain CT scan showed a
large left subacute-appearing subdural hematoma, obliteration of
much of the left lateral ventricle, and approximately 1.5-cm midline
shift. b, c A trapped, dilated right temporal horn was present; and the
right midbrain cerebral peduncle appeared effaced by the right

tentorial edge (arrows). The left ambient cistern was enlarged (left
arrow). Due to the alteration in consciousness, mass effect, and
radiographic appearance of incipient TTH, she was given mannitol
and platelets, promptly taken to the operating room for intubation, and
a left frontotemporoparietal craniotomy was performed. Neurological
deficits resolved and she returned to work as a nurse about 6 months
later
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The Blink Reflex (BR)

The blink reflex (BR), used to indicate facial nerve integ-
rity, is largely a pontine reflex resulting in momentary,

bilateral eye closure (orbicularis oculi muscles) [119, 120].

A brief stimulus applied to the supraorbital branch of the

trigeminal nerve results in an early ipsilateral oligosynaptic

orbicularis oculi muscle action potential (R1-10 ms), and a
later bilateral multisynaptic response (R2-20 ms) interfaces

with the pontine reticular formation before synapsing in

bilateral facial motor nuclei [120, 121]. In patients with
sTBI or cerebrovascular lesions affecting the cerebral

Fig. 5 Thirty-six-year-old male was beaten up, found moderately
lethargic (stuporous), only intermittently followed commands, and
Glasgow Coma Score was 10. A right hemiparesis was present. a CT
scan of the brain disclosed a large right-sided subdural hematoma
with midline shift, a right basifrontal hemorrhagic contusion, and
smaller bitemporal contusions. The basal cisterns showed an abun-
dance of subarachnoid hemorrhage and a possible area of low density
in the left midbrain cerebral peduncle (arrow). Due to the prominent
subarachnoid hemorrhage as well as weakness ipsilateral to the
subdural, MRI/MRA of the brain was obtained and no vascular
lesions were detected. b MRA—coronal view shows the large
subdural, and right to left shift with angulation of the diencephalic–
midbrain region (solid line). An altered signal intensity (white

arrows) believed to represent insult to the left corticospinal (pyra-
midal) tract was evident in the hemisphere and upper brainstem. The
midbrain was well visualized and T1 axial (MRA) image (c) showed a
faint low density within the left midbrain peduncle (arrow). A very
bright, white signal was noted in the axial left midbrain peduncle on
Flair (d), T2 (e), DWI (f), and ADC (g) images. The findings are not
considered compatible with an ischemic event but rather a non-
hemorrhagic bruise or damage to the densely packed motor fibers of
the corticospinal (pyramidal) tract. Increased lethargy and slight right
arm extensor posturing prompted emergent right-sided craniotomy for
evacuation of the subdural and basifrontal hematoma. After extensive
rehabilitation, he remained moderately disabled due to right-sided
weakness and cognitive problems
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cortex, basal ganglia, and deep cerebral regions, R2 is

absent or suppressed in the early days after the insult
[119, 122–125]. Perhaps the polysynaptic connections of

R2 make this waveform of increased sensitivity to cephalad

or mesodiencephalic reticular influences. A study in cats of
increased ICP, which led to mesodiencephalic ischemia,

was associated with the disappearance of R2 and preser-

vation of R1 [126]. Although known to be suppressed by
sleep and sedatives, the BR can now be recorded under

general anesthesia [127–130]. Less-studied reflexes utilize
the jaw jerk (masseteric reflex) believed to invoke the

mesencephalic trigeminal nucleus and could have future

clinical applications [120, 128].

Upper Extremity Short Latency Somatosensory
Evoked Potentials (SSEP)

The SSEP provides an ‘objective test for cortical reactivity

to external stimulation—a measure of responsiveness to the
outside world and sine qua non of consciousness’ [97]. The

upper extremity SSEP is derived secondary to median

nerve stimulation in the upper extremity. The signal is
recorded at the brachial plexus (Erb’s point), carried in the

ipsilateral posterior column, and a cervical electrode (N13)

indicates spinal cord entry or the cervicomedullary region.
After a synapse in the cuneatus nucleus, the tract crosses to

become the contralateral medial lemniscus, which ascends

the medulla, pons, and midbrain before a synapse in the
ventroposterolateral nucleus of the thalamus with relay to

the postcentral gyrus. Here, the major cortically generated

peak is N20, recorded from the central regions of the scalp
C30 and C40 (Fig. 2c) [99, 131–138].

SSEP responses are durable, and widely used in contin-

uous intraoperative neurophysiological monitoring
(IONM), where an N20 latency increase of 10 %, or 50 %

diminished amplitude from the patient’s presurgical base-

line is considered a significant change and the surgical team
notified [131, 132, 139, 140]. Recently, SSEPs have become

very useful in the NCCU as an important prognostic indi-

cator after cerebral anoxia. Bilateral absence of N20 after
cardiac arrest is associated with persistent vegetative state

or death in all patients [112, 113, 118, 138, 141–143]. In a

meta-analysis, SSEP as a single prognostic marker of both
good and bad outcomes after sTBI performed better than

pupillary response, Glasgow Coma Scale, CT findings, and

EEG [113]. Recent work suggests amplitude values of a
preserved N20 and later cortical N35 peak may relate to

outcome quality, further increasing prognostic accuracy

[144].

Trigeminal Short Latency Somatosensory Evoked
Potentials (TrSSEPs)

Of possible interest in regard to NCCU monitoring are the

TrSSEPs [145, 146]. Electrical stimulation is applied to the

lower lip, and scalp recording of a potential at 20 ms is
obtained from positions just lateral to those used for upper

extremity SSEPs (C50, C60) [147, 148]. A latency differ-

ence between sides of greater than 1 ms or diminished
amplitude greater than 50 % is considered abnormal [149].

Having been used largely in the dental/maxillofacial fields

under general anesthesia, TrSSEPs may prove of value in
NCCU monitoring [148, 150].

Brainstem Auditory Evoked Potentials (BAEP)

The BAEP is a subcortical response generated by the

cochlear and brainstem auditory pathways. Each ear is
stimulated separately in response to moderately loud, short-

duration click stimuli delivered thru soft insert earphones.

The waveform response is recorded from the vertex (Cz) or
frontal scalp (Fz) and generally appears within 10 ms after

stimulation. Wave I—Auditory nerve, Wave III—Superior

olivary nucleus (pons), and Waves V and Vn—Inferior
colliculus (midbrain, tentorial incisura) are measured for

their latency and amplitude [151–155]. This robust

response is refractory to level of consciousness, medica-
tions, general anesthesia, or muscle paralyzing agents

[98, 139, 152–155]. Like the SSEP, threshold abnormalities

of the major peaks during IONM are a 10 % latency
increase or 50 % amplitude decrease from baseline

[131, 135, 139, 152, 154, 156]. Nurse-friendly neonatal

hearing screening with rapid automated interpretation uti-
lizing BAEP Wave V is at present extensively performed

[152, 157].

BAEP studies in patients with herniation syndromes
have shown correlations with ICP, pupillary changes, TTH,

and outcome. Timely decompressive treatments in a

number of these studies resulted in rapid clinical and
electrophysiological improvement [115–117, 158–168].

Faster rates of BAEP stimulation worsen BAEP abnor-

malities, and modified forms of the BAEP (MBAEP) may
increase the diagnostic utility of the test [98, 155, 169, 170].

Notable MBAEP changes were found in normal volunteers

placed in a 10"–15" downward head position to simulate
increased ICP [155] and patients symptomatic of mild to

moderately increased ICP with mass effects and shifts from

large, slow-growing cerebral SOLs (mostly tumors)
[171, 172]. In the patients, significant MBAEP changes

normalizedwhen re-tested after surgical excision [171, 172].
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Upper Extremity Motor Evoked Potentials (MEP)

Upper extremity MEPs are obtained during IONM in
neurosurgical patients undergoing operations under general

anesthesia, or on awake patients, in response to respective

transcranial electrical (TcE-MEP) or transcranial magnetic
(TcM-MEP) stimulation over the central regions (C3, C4)

[173, 174]. Following such pyramidal/corticospinal tract

stimulation, the signal is recorded from extremity muscles
by needle or surface EMG. Although the responses are

more variable than the sensory EPs, a 50 % or greater loss

of amplitude is concerning [173–175]. In conscious
patients, TcM-MEP has found much interest in clinical

neurology to assess central motor pathways [176, 177].

TcM-MEP is delivered by a very well tolerated, locally
applied cap-like coil MEP [176, 177]. Repetitive TcM-

MEP techniques lead to intracortical motor facilitation and

have improved the motor response [178–180].
Recent clinical reports on the Kernohan notch syndrome

(Figs. 3, 4, 5) have included MEP studies on patients with

cerebral mass lesions and TTH [181–190]. Upper extremity
TcM-MEP was performed in a small group of patients with

intracerebral hematomas, altered mental status, and pyra-

midal tract involvement [190]. The presence of any MEP
response indicated a compressed but not destroyed pyra-

midal tract with propensity for recovery [190].

Herniation Research Using Multiple Modalities

A number of years ago our group studied anatomically

confirmed TTH in the cat andmonkey—indicated by sudden

pupillary dilatation ormidposition fixation—secondary to an
expanding temporal extradural balloon. TTH in the cat over a

2-h period was monitored with ICP, BAEP, upper extremity

SSEP, and in someMEP [191–193]. Cats showed significant
BAEP/SSEP abnormalities from baseline, and the prominent

warning sign just before TTH was a 30 % drop in BAEP

Wave V amplitude. Complete Wave V flattening, caudal
displacement of the inferior colliculus [191, 192], and a

marked drop in inferior colliculus blood flow were tightly

correlated with TTH [193]. A unilateral MEP loss was
considered hemispheric compression, whereas bilateral

MEP loss, especially if associatedwith significant changes in
BAEP Wave V, heralded the beginning of TTH [194].

A 4-h primate model of TTH [195] was patterned after

classic studies decades earlier [27, 28, 33]. Four hours was
chosen to simulate the frequently encountered SOL, acute

subdural hematoma with a similar delay allowing some

compensatory mechanisms to occur [196]. Twelve maca-
que monkeys underwent gradual expansion of an extradural

balloon, which at 10 % of brain volume led to the pre-

cipitous onset of bilaterally dilated or less often
midposition fixed pupils (Fig. 6a, b) [195]. Two hours

before TTH, a transient rise in ICP followed each inflation,

as did systolic hypertension and bradycardia (Cushing
reflex). ICP gave significant forewarning of TTH 1 h

before (16 mm Hg, p < 0.05), one-half hour before

(23 mmHg, p < 0.01), and at TBH (44 mm Hg,
p < 0.001). Compared to ICP, Wave V of the BAEP gave

an identically significant warning (25 % amplitude

depression) 1 h before TTH, further Wave V amplitude
depression being a more statistically significant warning

than the ICP one-half hour before (p < .001), and a sim-

ilarly significant severe Wave V flattening or loss at TTH
(p < .001) [195]. Upper extremity SSEP showed depres-

sed amplitude one-half hour before TTH (p < .05) and

near loss or absence of SSEP at TTH (p < .01) [195].

Fig. 6 a Frontal/coronal section of the non-human primate experi-
mental TTH study depicting the right-sided (balloon) mass and its
effect on the hemisphere at the time of TTH. Note the diencephalic/
midbrain angulation. bMagnified view of the displaced temporal horn
and herniated right temporal lobe (asterisk) at the time of TTH. Note

the displaced inferior colliculus and damage to the contralateral
cerebral peduncle. This overall appearance closely models the TTH
situation in patients (adapted from Stone et al. 1990 with permission)
[195]
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The Future

Monitoring in the NCCU (SSEP, BAEP, TcM-MEP) must
be nurse friendly, preferably continuous (or nearly so), with

automation of threshold breaches (similar to those used in

IONM) leading to alarms. Nurses, residents, fellows, or
technicians are easily taught scalp surface electrode

placement for stimulation and recording (International

10-20 system). Technical requirements such as adequate
noninvasive afferent signal delivery, grounding, electrode

impedance, artifact rejection, advanced filtering, and other

concerns have much improved in recent decades
[97, 109–111, 115].

Conclusion

This focused review of the neurocritical care and related lit-
erature has emphasized a number of shortcomings in our

current ICP/neuroimaging-directed management of patients

with an altered level of consciousness secondary to intracra-
nial mass lesions. We elected to concentrate on noninvasive

bedside electrophysiological monitoring tools that we believe

could substantially improve patient management.
Data collected over decades on stuporous or comatose

NCCU patients is highly supportive of the continuous

monitoring of sensory and motor EPs, as well as the
development of nurse-friendly, automated devices to

monitor brain function. Structured clinical trials correlating
neurophysiological changes in the early and later phases of

TTH would appear to be a fertile field to investigate and

develop. Improving the neurological and neurosurgical
care of these challenging conditions by more timely

recognition and intervention is of obvious importance, and

technology to do so may well be at hand.
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