Why Your Algorithm Will Fail
Reason 4: The Optimization Approach

If you had a disease, you would go to the doctor’s office, right? The nurse would
take your vitals, you would talk about your symptoms with your doctor, and perhaps the
doctor would run some tests based on those symptoms. You would then be much closer
to getting a proper diagnosis and the right treatment -

But what if you couldn’t communicate - at all? There would be some major issues
indeed.

The human body is a very complex instrument. It would be nearly impossible for
a doctor to know if you have a particular disease based solely on your appearance,
right? It would be even harder to diagnose if you were unable to give the doctor any
details of your symptoms. Sure, a doctor could take your vitals, run every test
imaginable and possibly diagnose you that way, but that would be horribly inefficient in
terms of both cost and time. It would also divert resources away from the patients who
really need it, and without your feedback, it would be difficult to determine if treatments
were even working. In other words -

Communication is critical.



Lucky for us, humans have brains and vocal chords that allow us to communicate. It's a
pretty convenient design, right? -

Right. But how does this tie into algorithmic development?

Well, when designing our systems, we need to make it easy for them to “tell” us
their problems. Otherwise, if and when things go wrong, we won’t know how to
diagnose them. For instance, let’'s say we optimize 7 indicators and the SL/TP levels all
at once, and somehow arrive at a seemingly robust system (don’t do this). We would
have no idea how or why it works.

There’s a huge transparency issue here. Consequently, what do you do if a
component fails? Spend a ton of time investigating the entire system - or even worse -
go back to the drawing board? What if you actually have a good system, and it just
needs a small tweak? You would have no idea.

Yeah, big waste of time. So what'’s the alternative?

If we're serious about building professional trading systems, we need to look at
how other industries approach their development processes, particularly the IT industry.
In the past, IT developers used a method now known as the Waterfall approach.
Waterfall development is when all stages of a project occur one after the other. In this
approach, there is a planning phase, where product requirements are established,
followed by a long development phase, and finally, a testing phase.

Unfortunately, with the Waterfall approach, testing could only occur once a
product was finished. This is because there were no points throughout the development
phase in which the product was functional enough to be tested. By the time a project
was complete, it may not have even met the requirements that were established
beforehand. This posed a big problem: due to lack of testing, they didn’t know exactly
which components were underperforming. It was very difficult to go back and make
corrections.



Bad —— Bad Bad

Traditional Waterfall Development

This caused a lot of major IT project failures, which eventually led developers to
invent a new approach known as the Agile methodology. Agile development is when
stages of a project occur in increments. In each increment, requirements are defined
for a single component. The component is then developed and tested before moving
onto the next one. This ensures a fully functional product that can be used and tested at
every stage of development. If any changes are required, it’s relatively easy to identify
the issues and quickly make corrections.

Great Optimal

Incremental Agile Development

If you notice, the Agile and Waterfall methods are both trying to create the same
product - in our case, a robust strategy - but the paths they take to get there are
completely different. You can see for yourself which one is optimal - the Agile
approach. So, what does this mean for algorithmic traders like us? Well, to develop an
algorithm in line with the Agile approach, you need to break down the components of
your algorithm in terms of priority and test them from the ground up by first defining
the requirement.




In a trading context, the requirement is also known as the system premise. A
system’s premise is based on exploiting an observable market condition - in our
case, trends.

After defining the requirement, you should then implement a development
phase which prioritizes functionality, in line with the Agile approach. Our focus will
now be on defining the most critical components of a trading system, then building
them in order of priority. So, what’s the first most critical component of a trading
system?

Is it the Entry? The SL? The TP? Nope -

It’s the ability to identify a market condition. This is a simple, yet often overlooked
fact.

This is where Agile algorithm development begins to deviate from the
Waterfall approach. Instead of relying solely on the entry, or beginning with
predetermined components of a system (such as ATR values, MACD settings, etc),
for our systemic foundation, let’s prioritize functionality to build an algorithm
from scratch:

Filter

Premise

Entry/Exit

Special Rules——Risk Management

Trading System Development

1. Premise

- The first most critical component of a trading system is the system
premise. In step 1, you will not optimize anything. You will determine the
market condition you want to exploit and design basic rules to do so.
Without a system premise, none of your trading system components
mean anything.



- The second most critical component of a trading system is the ability
to identify the market condition you are targeting with your system
premise. In step 2, you will formulate a rule to identify when the condition
is happening and when it is not happening. This ensures your system is in
the market when it should be, and isn’t in the market when it shouldn’t be.
You may use indicators or other means to accomplish this.

3. Entry/Exit

- The third most critical component of a trading system is the ability to
both open and close a trade in line with the system premise. In step
3, you will design entry and exit conditions with respect to your filter. This
ensures the most basic trading functionality aligned to a system premise.
You may use indicators or other means to accomplish this. Exit conditions
can include an indicator, SL and/or TP.

4. Special Rules

- The fourth critical component of a trading system is refined signal
processing. This is where you can test and/or add complementary rules
like: continuation entries, recovery entries, additional exits, the One
Candle Rule, spread filters, session filters, trade timing, etc. You can think
of this phase as taking your system to the lab for further study. If a rule
doesn’t enhance your system, refine it or scrap it.

5. Risk Management

- The final critical component of a trading system is the ability to
manage risk. | know what you’re thinking: “How is risk management last,
in terms of priority?” Hear me out: risk management itself is critical to
trading your algorithm in a live setting, but it can distort functionality in
the beginning. Remember, we are prioritizing functionality during
development, which will ultimately determine the transparency of your
system. Design your risk management in such a way that it extracts the
maximum potential from your edge while protecting capital according to
your risk appetite.

An important note on indicator functionality: The indicator types you may
be familiar with are misnomers. Classifying indicators as “Two Lines Cross,”



“Zero Line Cross,” “Baseline,” or “On-Chart” gives zero context about the
indicator’s function. This is not good.

You need to be able to differentiate between actual indicator types so you
don’t end up with a bunch of indicators telling you the exact same information in
different ways. The proper indicator classifications are Trend, Momentum,
Volatility, Volume, Cycle and Support/Resistance.

Trend indicators measure the overall strength and direction of price while filtering
volatile price action.

- Examples: Moving Average, Aroon Up/Down
Momentum indicators measure the direction and rate of price change.
- Examples: Stochastic Oscillator, Relative Strength Index

Volatility indicators measure price deviation.

- Examples: Average True Range, Standard Deviation

Volume indicators measure the number of price changes over a given timeframe
or the number of shares/lots transacted over a given timeframe.

- Examples: On Balance Volume, Chaikin Money Flow

Cycle indicators measure periodic highs and lows.

- Examples: Commodity Channel Index, Detrended Price Oscillator
Support/Resistance indicators estimate supply and demand levels.

- Examples: Pivot Points, DeMarker
Many indicators overlap with each other, and thus understanding the inner
workings of any indicator you are considering implementing in a live trading

environment is crucial to the success or failure of your system.

End note.



By using the Agile approach to build an algorithm, any component of your
system that may be lacking can be immediately diagnosed and treated accordingly. You
have designed it to communicate with you. Pretty cool, right? Try it yourself. You may
be pleasantly surprised at the increased transparency.

This transparency enables you to build, diagnose and rebuild systems quite
quickly. Combined with the proper optimization process and your understanding of
overfitting, spending months building ineffective trading systems will be a thing of the
past.

Sounds perfect! Right? -

Too perfect...

The truth is, all of your knowledge can still be undone by one simple error. Remember:
although algorithmic trading is a truly amazing science, it's only as good as your ability
to find your weaknesses before the market does. In fact, your biggest shortcoming may
be something that you think is a benefit. In the next article, we will explore an often

overlooked, but horrible habit that many people have when developing algorithms -

Your Achilles Heel -

Doing things manually.



