

I'm not a robot



Continue

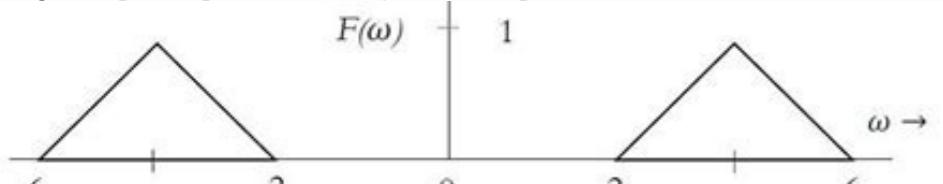
Fourier transform of sinc function pdf

Sinc function fourier transform. Fourier transform of sinc(wt). Fourier transform sinc function example. Fourier series of sinc function.

6,557 Let $f(x) = \text{sinc}(x)$.

TABLE 3.1
Short Table of Fourier Transforms

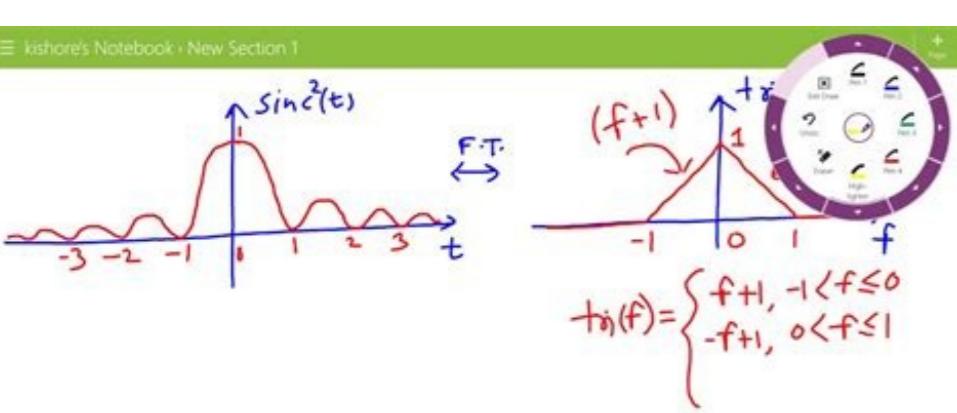
$g(t)$	$G(f)$	
$e^{-at}u(t)$	$\frac{1}{a + j2\pi f}$	$a > 0$
2 $e^{at}u(-t)$	$\frac{1}{a - j2\pi f}$	$a > 0$
3 $e^{-a t }$	$\frac{2a}{a^2 + (2\pi f)^2}$	
4 $te^{-at}u(t)$	$\frac{1}{(a + j2\pi f)^2}$	$a > 0$
5 $t^n e^{-at}u(t)$	$\frac{n!}{(a + j2\pi f)^{n+1}}$	
6 $\delta(t)$		
7 1	$\delta(f)$	
8 $e^{j2\pi f_0 t}$	$\delta(f - f_0)$	
9 $\cos 2\pi f_0 t$	$0.5 [\delta(f + f_0) + \delta(f - f_0)]$	
10 $\sin 2\pi f_0 t$	$j0.5 [\delta(f + f_0) - \delta(f - f_0)]$	
11 $u(t)$	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$	
12 $\operatorname{sgn} t$	$\frac{2}{j2\pi f}$	
$\cos 2\pi f_0 t u(t)$	$\frac{1}{4} [\delta(f - f_0) + \delta(f + f_0)] + \frac{j2\pi f}{(2\pi f_0)^2 - (2\pi f)^2}$	
14 $\sin 2\pi f_0 t u(t)$	$\frac{1}{4j} [\delta(f - f_0) - \delta(f + f_0)] + \frac{2\pi f_0}{(2\pi f_0)^2 - (2\pi f)^2}$	
15 $e^{-at} \sin 2\pi f_0 t u(t)$	$\frac{2\pi f_0}{(a + j2\pi f)^2 + 4\pi^2 f_0^2}$	
16 $e^{-at} \cos 2\pi f_0 t u(t)$	$\frac{a + j2\pi f}{(a + j2\pi f)^2 + 4\pi^2 f_0^2}$	
$\Pi\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}\left(\frac{\pi f \tau}{2}\right)$	
18 $2B \operatorname{sinc}(2\pi Bt)$	$\Pi\left(\frac{f}{2B}\right)$	
19 $\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2} \operatorname{sinc}^2\left(\frac{\pi f \tau}{2}\right)$	
20 $B \operatorname{sinc}^2(\pi Bt)$	$\Delta\left(\frac{f}{2B}\right)$	
21 $\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$f_0 \sum_{n=-\infty}^{\infty} \delta(f - n f_0)$	
22 $e^{-t^2/2\sigma^2}$	$\sigma \sqrt{2\pi} e^{-2(\sigma\pi f)^2}$	



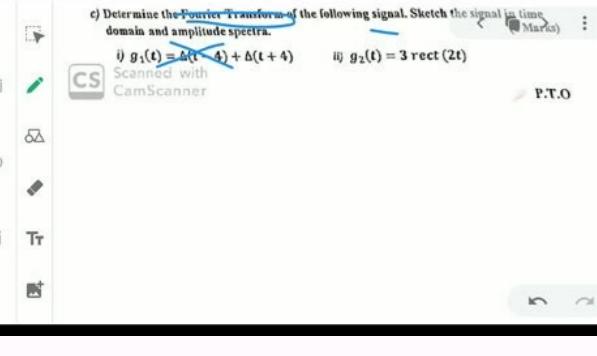
where: $\Delta(t)$ is the Unit Triangle Function $\Delta\left(\frac{t}{\tau}\right) \Leftrightarrow \frac{\tau}{\pi} \text{sinc}^2\left(\frac{\omega\tau}{\pi}\right)$

doi:10.1137/15M1014164. ^ "Advanced Problem 6241". *American Mathematical Monthly*. Washington, DC: Mathematical Association of America. 87 (6): 496–498. June–July 1980. doi:10.1080/00029890.1980.11995075. ^ Robert Baillie; David Borwein; Jonathan M. Borwein (December 2008).

	$f(x)$	$\hat{f}_s(w) = \mathcal{F}_s(f)$
1	$\begin{cases} 1 & \text{if } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$	$\sqrt{\frac{2}{\pi}} \left[\frac{1 - \cos aw}{w} \right]$
2	$1/\sqrt{x}$	$1/\sqrt{w}$
3	$1/x^{3/2}$	$2\sqrt{w}$
4	$x^{a-1} \quad (0 < a < 1)$	$\sqrt{\frac{2}{\pi}} \frac{\Gamma(a)}{w^a} \sin \frac{a\pi}{2}$
5	$e^{-ax} \quad (a > 0)$	$\sqrt{\frac{2}{\pi}} \left(\frac{w}{a^2 + w^2} \right)$
6	$\frac{e^{-ax}}{x} \quad (a > 0)$	$\sqrt{\frac{2}{\pi}} \arctan \frac{w}{a}$
7	$x^n e^{-ax} \quad (a > 0)$	$\sqrt{\frac{2}{\pi}} \frac{n!}{(a^2 + w^2)^{n+1}} \operatorname{Im} (a + iw)^{n+1} \quad \begin{matrix} \operatorname{Im} = \\ \text{Imaginary part} \end{matrix}$
8	$xe^{-x^2/2}$	$we^{-w^2/2}$
9	$xe^{-ax^2} \quad (a > 0)$	$\frac{w}{(2a)^{3/2}} e^{-w^2/4a}$
10	$\begin{cases} \sin x & \text{if } 0 < x < a \\ 0 & \text{otherwise} \end{cases}$	$\frac{1}{\sqrt{2\pi}} \left[\frac{\sin a(1-w)}{1-w} - \frac{\sin a(1+w)}{1+w} \right]$
11	$\frac{\cos ax}{x} \quad (a > 0)$	$\sqrt{\frac{\pi}{2}} u(w-a)$
12	$\arctan \frac{2a}{x} \quad (a > 0)$	$\sqrt{2\pi} \frac{\sinh aw}{e^{-aw}}$



hdl:1959.13/940062. JSTOR 27642636. S2CID 496934. ^ Baillie, Robert (2008). "Fun with Fourier series".



arXiv:0806.0150v2 [math.CA]. ^ a b c Ye, W.; Entezari, A. (June 2012). "A Geometric Construction of Multivariate Sinc Functions". IEEE Transactions on Image Processing. 21 (6): 2969–2979. Bibcode:2012ITIP...21.2969Y. doi:10.1109/TIP.2011.2162421. PMID 21775264.

S2CID 15313688. External links Weisstein, Eric W.

"Sinc Function". MathWorld. Retrieved from "More...Less... The sinc function, also called the "sampling function," is a function that arises frequently in signal processing and the theory of Fourier transforms. The full name of the function is "sine cardinal," but it is commonly referred to by its abbreviation, "sinc." There are two definitions in common use. The one adopted in this work defines where is the sine function, plotted above. This has the normalization This function is implemented in the Wolfram Language as Sinc[x]. When extended into the complex plane, is illustrated above. The derivative is given by and the indefinite integral by where is the sine integral. Woodward (1953), McNamee et al. (1971), and Bracewell (1999, p. 62) adopt the alternative definition The latter definition is sometimes more convenient as a result of its simple normalization. That variant also satisfies the sum. In addition, the binomial coefficient satisfies which is essentially a restatement of the reflection relation of the gamma function (M. Somos, pers. comm., Oct. 26, 2006). The sinc function is closely related to the spherical Bessel function of the first kind and, in particular, and is given in terms of the Meijer G-function as Let be the rectangle function, then the Fourier transform of is the sinc function. The sinc function therefore frequently arises in physical applications such as Fourier transform spectroscopy or the so-called instrument function, which gives the instrumental response to a delta function input. Removing the instrument functions from the final spectrum requires use of some sort of deconvolution algorithm.

The sinc function can be written as a complex integral by noting that, for , and that the integral both equal 1 for. The sinc function can also be written as the infinite product a result discovered in 1593 by Francois Viète (Kac 1959, Morrison 1995) and sometimes known as Euler's formula (Prudnikov et al. 1986, p. 757; Gearhart and Shulz 1990). It is also given by (Gearhart and Shulz 1990) and (Prudnikov et al. 1986, p. 757). Another product is given by (OEIS A118253; Prudnikov et al. 1986, p. 757), where is the constant from polygon circumscribing. Sums of powers of over the positive integers include The remarkable fact that the sums of and are equal appears to have first been published in Baillie (1978). Amazingly, the pattern of these sums being equal to plus a rational multiple of breaks down for this power, where the sum equals where The sinc function satisfies the identity Definite integrals involving the sinc function include After dividing out the constant factor of , the values are again 1/2, 1/2, 3/8, 1/3, 115/384, 11/40, 5887/23040, 151/630, 259723/1146880, ... (OEIS A049330 and A049331; Gradshteyn 1945; Medhurst and Roberts 1965). These are all special cases of the amazing general result where and are positive integers such that is the sinc function, and is taken to be equal to 1 (Kogan; cf. Espinosa and Moll 2000). This spectacular formula simplifies in the special case where is a positive even integer to where is an Euler number (Kogan; cf. Espinosa and Moll 2000). The solution of the integral can also be written in terms of the recurrence relation for the coefficients. The half-infinite integral of can be derived using contour integration. In the above figure, consider the path "Now write" on an arc, and on the right. Write where is a arbitrary point. Now define where the path is closed. Simplify, where the third term vanishes by Jordan's lemma. Performing the integration of the first term and combining the others yield Rearranging gives so The same result is arrived at using the method of complex residues by noting so. Since the integrand is symmetric, we therefore have giving the sinc integral evaluated at 0 as Borwein Integrals: Fourier Transform, Fourier Transform—Rectangle Function, Instrument Function, Jinc Function, Kilroy Curve, Sine, Sine Integral, Sinhc Function, Tanc Function Baillie, R.

"Advanced Problem 6241." Amer. Math. Monthly 85, 828, 1978.Baillie, R., Henrici, P., and Johnsonbaugh, R.

"Solution to Advanced Problem 6241." Amer. Math. Monthly 87, 496–498, 1980.Bracewell, R. "The Filtering or Interpolating Function." In The Fourier Transform and Its Applications, 3rd ed.

New York: McGraw-Hill, pp. 62–64, 1999.Brown, J. W. and Churchill, R. V. Fourier Series and Boundary Value Problems, 5th ed. New York: McGraw-Hill, 1993.Espinosa, O. and Moll, V. H.

"On Some Definite Integrals Involving the Hurwitz Zeta Function." 11 Dec 2000.Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, 2003.Gearhart, W. B. and Schulz, H. S. "The Function." College Math. J. 21, 90–99, 1990. A. H. R. "On the Accumulation of Chance Effects and the Gaussian Frequency Distribution." Phil. Mag. 36, 294–295, 1945.Higgins, J. R. "Five Short Stories About the Cardinal Series." Bull. Amer. Math. Soc. 12, 45–89, 1985.Kac, M. Statistical Independence in Probability, Analysis and Number Theory, Washington, DC: Math. Assoc. Amer., 1959.Kogan, S. "A Note on Definite Integrals Involving Trigonometric Functions." Unpublished manuscript, n.d.McNamee, J.; Stenger, F.; and Whitney, E. L. "Whittaker's Cardinal Function in Retrospect." Math. Comput. 25, 141–154, 1971.Medhurst, R. G. and Roberts, J. H. "Evaluation of the Integral." Math. Comput.

19, 113–117, 1965.Morrison, K. E. "Cosine Products, Fourier Transforms, and Random Sums." Amer. Math. Monthly 102, 716–724, 1995.Prudnikov, A. P.; Brychkov, Yu. A.; and Marichev, O. I. Integrals and Series, Vol. 1: Elementary Functions. New York: Gordon & Breach, 1986.Sloane, N. J. A. Sequences A049330, A049331, and A118253 in "The Online Encyclopedia of Integer Sequences."Stenger, F. Numerical Methods Based on Sinc and Analytic Functions. New York: Springer-Verlag, 1993.Woodward, P. M. Probability and Information Theory with Applications to Radar. New York: McGraw-Hill, 1953.Zimmermann, P. "Int(sinh(x)^k/x^k, x=0..infinity)." math-fun@cs.arizona.edu posting, 4 Mar 1997.Sinc Function Weisstein, Eric W.

"Sinc Function." From MathWorld--A Wolfram Web Resource. Subject classificationsMore...Less...