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Sinc	function	fourier	transform.		Fourier	transform	of	sinc(wt).		Fourier	transform	sinc	function	example.		Fourier	series	of	sinc	function.		

6,557	Let	$f(x)	=	\text{sinc}(x)$.	
We	can	rewrite	$$	f(x)	=	\text{sinc}(x)	=	\frac{\sin(\pi	x)}{\pi	x}	=	\frac{1}{2\pi}\frac{e^{i	\pi	x}-e^{-i	\pi	x}}{i	x}	=	\frac{1}{2	\pi}\int	\limits_{-	\pi}^{\pi}e^{i	\omega	x}	\,d	\omega	=	\mathcal{F}^{-1}(1_{[-\pi,	\pi]}).$$	Related	videos	on	Youtube	06	:	11	Sinc	Function	48	:	00	Lecture	26	|	Fourier	Transform	(Rect	&	Sinc)	|	Signals	&	Systems	05
:	36	Lecture	on	Fourier	Transform	of	Sinc	Function	19	:	39	Lecture	23	|	Fourier	Transform	of	Rect	&	Sinc	Function	08	:	46	Fourier	Transform	Duality	Rect	and	Sinc	Functions	Iain	Explains	Signals,	Systems,	and	Digital	Comms	11	Comments	Let	us	consider	the	sinc	function:	\begin{equation}	{\rm{sinc}}(x)=	\begin{cases}	\frac{	\sin(\pi	x)}{\pi	x}
\qquad	&x	ot=	0,\\	1\qquad	&	x=0,	\end{cases}	\end{equation}	What	is	the	fourier	transform,	so-defined:	$$\int_{-\pi}^{\pi}	f(x)	e^{-\imath	k	x}dx$$	of	sinc	function?	I	can't	calculate	this	integral:	$$\int_{-\pi}^{\pi}	{\rm{sinc}}(x)	e^{-\imath	k	x}dx$$	Any	suggepstion	please?	Sine	the	function	is	not	in	$L^1$,	you	can	only	do	it	in	the
distributional	sense.	The	answer,	if	I	remember	correctly,	is	$\chi_{[-1,1]}$,	the	characteristic	function.	Then	$\mathcal{F}	\left(\text{sinc}(x)\right)=\mathcal{F}\left(\mathcal{F}^{-1}(1_{[-\pi,	\pi]})\right)=1_{[-\pi,	\pi]}$?	
Yes	@Mark.	That's	it.	Special	mathematical	function	defined	as	sin(x)/x	"Sinc"	redirects	here.	For	the	designation	used	in	the	United	Kingdom	for	areas	of	wildlife	interest,	see	Site	of	Importance	for	Nature	Conservation.	For	the	signal	processing	filter	based	on	this	function,	see	Sinc	filter.	In	mathematics,	physics	and	engineering,	the	sinc	function,
denoted	by	sinc(x),	has	two	forms,	normalized	and	unnormalized.[1]	SincPart	of	the	normalized	sinc	(blue)	and	unnormalized	sinc	function	(red)	shown	on	the	same	scaleGeneral	informationGeneral	definition	sinc	⁡	x	=	{	sin	⁡	x	x	,	x	≠	0	1	,	x	=	0	{\displaystyle	\operatorname	{sinc}	x={\begin{cases}{\dfrac	{\sin	x}{x}},&xeq	0\\
[2px]1,&x=0\end{cases}}}	Motivation	of	inventionTelecommunicationDate	of	solution1952Fields	of	applicationSignal	processing,	spectroscopyDomain,	Codomain	and	ImageDomain	R	{\displaystyle	\mathbb	{R}	}	Image	[	−	0.217234	…	,	1	]	{\displaystyle	\left[-0.217234\ldots	,1\right]}	Basic	featuresParityEvenSpecific	valuesAt	zero1Value
at	+∞0Value	at	−∞0Maxima1	at	x	=	0	{\displaystyle	x=0}	Minima	−	0.21723	…	{\displaystyle	-0.21723\ldots	}	at	x	=	±	4.49341	…	{\displaystyle	x=\pm	4.49341\ldots	}	Specific	featuresRoot	π	k	,	k	∈	Z	≠	0	{\displaystyle	\pi	k,k\in	\mathbb	{Z}	_{eq	0}}	Related	functionsReciprocal	{	x	csc	⁡	x	,	x	≠	0	1	,	x	=	0	{\displaystyle	{\begin{cases}x\csc	x,&xeq
0\\1,&x=0\end{cases}}}	Derivative	sinc	′	⁡	x	=	{	cos	⁡	x	−	sinc	⁡	x	x	,	x	≠	0	0	,	x	=	0	{\displaystyle	\operatorname	{sinc}	'x={\begin{cases}{\dfrac	{\cos	x-\operatorname	{sinc}	x}{x}},&xeq	0\\0,&x=0\end{cases}}}	Antiderivative	∫	sinc	⁡	x	d	x	=	Si	⁡	(	x	)	+	C	{\displaystyle	\int	\operatorname	{sinc}	x\,dx=\operatorname	{Si}	(x)+C}	Series
definitionTaylor	series	sinc	⁡	x	=	∑	k	=	0	∞	(	−	1	)	k	x	2	k	(	2	k	+	1	)	!	{\displaystyle	\operatorname	{sinc}	x=\sum	_{k=0}^{\infty	}{\frac	{\left(-1\right)^{k}{x}^{2k}}{\left(2k+1\right)!}}}	The	sinc	function	as	audio,	at	2000	Hz	(±1.5	seconds	around	zero).	In	mathematics,	the	historical	unnormalized	sinc	function	is	defined	for	x	≠	0	by	sinc	⁡	x	=	sin
⁡	x	x	.	{\displaystyle	\operatorname	{sinc}	x={\frac	{\sin	x}{x}}.}	Alternatively,	the	unnormalized	sinc	function	is	often	called	the	sampling	function,	indicated	as	Sa(x).[2]	In	digital	signal	processing	and	information	theory,	the	normalized	sinc	function	is	commonly	defined	for	x	≠	0	by	sinc	⁡	x	=	sin	⁡	(	π	x	)	π	x	.	{\displaystyle	\operatorname	{sinc}	x=
{\frac	{\sin(\pi	x)}{\pi	x}}.}	In	either	case,	the	value	at	x	=	0	is	defined	to	be	the	limiting	value	sinc	⁡	0	:=	lim	x	→	0	sin	⁡	(	a	x	)	a	x	=	1	{\displaystyle	\operatorname	{sinc}	0:=\lim	_{x\to	0}{\frac	{\sin(ax)}{ax}}=1}	for	all	real	a	≠	0	(the	limit	can	be	proven	using	the	squeeze	theorem).	The	normalization	causes	the	definite	integral	of	the	function	over
the	real	numbers	to	equal	1	(whereas	the	same	integral	of	the	unnormalized	sinc	function	has	a	value	of	π).	As	a	further	useful	property,	the	zeros	of	the	normalized	sinc	function	are	the	nonzero	integer	values	of	x.	The	normalized	sinc	function	is	the	Fourier	transform	of	the	rectangular	function	with	no	scaling.	It	is	used	in	the	concept	of
reconstructing	a	continuous	bandlimited	signal	from	uniformly	spaced	samples	of	that	signal.	The	only	difference	between	the	two	definitions	is	in	the	scaling	of	the	independent	variable	(the	x	axis)	by	a	factor	of	π.	In	both	cases,	the	value	of	the	function	at	the	removable	singularity	at	zero	is	understood	to	be	the	limit	value	1.	The	sinc	function	is	then
analytic	everywhere	and	hence	an	entire	function.	The	function	has	also	been	called	the	cardinal	sine	or	sine	cardinal	function.[3][4]	The	term	sinc	/ˈsɪŋk/	was	introduced	by	Philip	M.	Woodward	in	his	1952	article	"Information	theory	and	inverse	probability	in	telecommunication",	in	which	he	said	that	the	function	"occurs	so	often	in	Fourier	analysis
and	its	applications	that	it	does	seem	to	merit	some	notation	of	its	own",[5]	and	his	1953	book	Probability	and	Information	Theory,	with	Applications	to	Radar.[6][7]	The	function	itself	was	first	mathematically	derived	in	this	form	by	Lord	Rayleigh	in	his	expression	(Rayleigh's	Formula)	for	the	zeroth-order	spherical	Bessel	function	of	the	first	kind.
Properties	The	local	maxima	and	minima	(small	white	dots)	of	the	unnormalized,	red	sinc	function	correspond	to	its	intersections	with	the	blue	cosine	function.	The	zero	crossings	of	the	unnormalized	sinc	are	at	non-zero	integer	multiples	of	π,	while	zero	crossings	of	the	normalized	sinc	occur	at	non-zero	integers.	The	local	maxima	and	minima	of	the
unnormalized	sinc	correspond	to	its	intersections	with	the	cosine	function.	That	is,	sin(ξ)/ξ	=	cos(ξ)	for	all	points	ξ	where	the	derivative	of	sin(x)/x	is	zero	and	thus	a	local	extremum	is	reached.	This	follows	from	the	derivative	of	the	sinc	function:	d	d	x	sinc	⁡	(	x	)	=	cos	⁡	(	x	)	−	sinc	⁡	(	x	)	x	.	{\displaystyle	{\frac	{d}{dx}}\operatorname	{sinc}	(x)={\frac
{\cos(x)-\operatorname	{sinc}	(x)}{x}}.}	The	first	few	terms	of	the	infinite	series	for	the	x	coordinate	of	the	n-th	extremum	with	positive	x	coordinate	are	x	n	=	q	−	q	−	1	−	2	3	q	−	3	−	13	15	q	−	5	−	146	105	q	−	7	−	⋯	,	{\displaystyle	x_{n}=q-q^{-1}-{\frac	{2}{3}}q^{-3}-{\frac	{13}{15}}q^{-5}-{\frac	{146}{105}}q^{-7}-\cdots	,}	where	q	=	(	n
+	1	2	)	π	,	{\displaystyle	q=\left(n+{\frac	{1}{2}}\right)\pi	,}	and	where	odd	n	lead	to	a	local	minimum,	and	even	n	to	a	local	maximum.	Because	of	symmetry	around	the	y	axis,	there	exist	extrema	with	x	coordinates	−xn.	In	addition,	there	is	an	absolute	maximum	at	ξ0	=	(0,	1).	The	normalized	sinc	function	has	a	simple	representation	as	the	infinite
product:	sin	⁡	(	π	x	)	π	x	=	∏	n	=	1	∞	(	1	−	x	2	n	2	)	{\displaystyle	{\frac	{\sin(\pi	x)}{\pi	x}}=\prod	_{n=1}^{\infty	}\left(1-{\frac	{x^{2}}{n^{2}}}\right)}	The	cardinal	sine	function	sinc(z)	plotted	in	the	complex	plane	from	-2-2i	to	2+2i	and	is	related	to	the	gamma	function	Γ(x)	through	Euler's	reflection	formula:	sin	⁡	(	π	x	)	π	x	=	1	Γ	(	1	+	x	)	Γ	(	1	−
x	)	.	

{\displaystyle	{\frac	{\sin(\pi	x)}{\pi	x}}={\frac	{1}{\Gamma	(1+x)\Gamma	(1-x)}}.}	Euler	discovered[8]	that	sin	⁡	(	x	)	x	=	∏	n	=	1	∞	cos	⁡	(	x	2	n	)	,	{\displaystyle	{\frac	{\sin(x)}{x}}=\prod	_{n=1}^{\infty	}\cos	\left({\frac	{x}{2^{n}}}\right),}	and	because	of	the	product-to-sum	identity[9]	Domain	coloring	plot	of	sinc	z	=	sin	z/z	∏	n	=	1	k	cos	⁡	(	x	2
n	)	=	1	2	k	−	1	∑	n	=	1	2	k	−	1	cos	⁡	(	n	−	1	/	2	2	k	−	1	x	)	,	∀	k	≥	1	,	{\displaystyle	\prod	_{n=1}^{k}\cos	\left({\frac	{x}{2^{n}}}\right)={\frac	{1}{2^{k-1}}}\sum	_{n=1}^{2^{k-1}}\cos	\left({\frac	{n-1/2}{2^{k-1}}}x\right),\quad	\forall	k\geq	1,}	Euler's	product	can	be	recast	as	a	sum	sin	⁡	(	x	)	x	=	lim	N	→	∞	1	N	∑	n	=	1	N	cos	⁡	(	n	−	1	/	2	N	x	)	.
{\displaystyle	{\frac	{\sin(x)}{x}}=\lim	_{N\to	\infty	}{\frac	{1}{N}}\sum	_{n=1}^{N}\cos	\left({\frac	{n-1/2}{N}}x\right).}	The	continuous	Fourier	transform	of	the	normalized	sinc	(to	ordinary	frequency)	is	rect(f):	∫	−	∞	∞	sinc	⁡	(	t	)	e	−	i	2	π	f	t	d	t	=	rect	⁡	(	f	)	,	{\displaystyle	\int	_{-\infty	}^{\infty	}\operatorname	{sinc}	(t)\,e^{-i2\pi
ft}\,dt=\operatorname	{rect}	(f),}	where	the	rectangular	function	is	1	for	argument	between	−1/2	and	1/2,	and	zero	otherwise.	This	corresponds	to	the	fact	that	the	sinc	filter	is	the	ideal	(brick-wall,	meaning	rectangular	frequency	response)	low-pass	filter.	This	Fourier	integral,	including	the	special	case	∫	−	∞	∞	sin	⁡	(	π	x	)	π	x	d	x	=	rect	⁡	(	0	)	=	1
{\displaystyle	\int	_{-\infty	}^{\infty	}{\frac	{\sin(\pi	x)}{\pi	x}}\,dx=\operatorname	{rect}	(0)=1}	is	an	improper	integral	(see	Dirichlet	integral)	and	not	a	convergent	Lebesgue	integral,	as	∫	−	∞	∞	|	sin	⁡	(	π	x	)	π	x	|	d	x	=	+	∞	.	{\displaystyle	\int	_{-\infty	}^{\infty	}\left|{\frac	{\sin(\pi	x)}{\pi	x}}\right|\,dx=+\infty	.}	The	normalized	sinc	function	has
properties	that	make	it	ideal	in	relationship	to	interpolation	of	sampled	bandlimited	functions:	It	is	an	interpolating	function,	i.e.,	sinc(0)	=	1,	and	sinc(k)	=	0	for	nonzero	integer	k.	The	functions	xk(t)	=	sinc(t	−	k)	(k	integer)	form	an	orthonormal	basis	for	bandlimited	functions	in	the	function	space	L2(R),	with	highest	angular	frequency	ωH	=	π	(that
is,	highest	cycle	frequency	fH	=	1/2).	Other	properties	of	the	two	sinc	functions	include:	The	unnormalized	sinc	is	the	zeroth-order	spherical	Bessel	function	of	the	first	kind,	j0(x).	The	normalized	sinc	is	j0(πx).	where	Si(x)	is	the	sine	integral,	∫	0	x	sin	⁡	(	θ	)	θ	d	θ	=	Si	⁡	(	x	)	.	{\displaystyle	\int	_{0}^{x}{\frac	{\sin(\theta	)}{\theta	}}\,d\theta
=\operatorname	{Si}	(x).}	λ	sinc(λx)	(not	normalized)	is	one	of	two	linearly	independent	solutions	to	the	linear	ordinary	differential	equation	x	d	2	y	d	x	2	+	2	d	y	d	x	+	λ	2	x	y	=	0.	{\displaystyle	x{\frac	{d^{2}y}{dx^{2}}}+2{\frac	{dy}{dx}}+\lambda	^{2}xy=0.}	The	other	is	cos(λx)/x,	which	is	not	bounded	at	x	=	0,	unlike	its	sinc	function
counterpart.	Using	normalized	sinc,	∫	−	∞	∞	sin	2	⁡	(	θ	)	θ	2	d	θ	=	π	⇒	∫	−	∞	∞	sinc	2	⁡	(	x	)	d	x	=	1	,	{\displaystyle	\int	_{-\infty	}^{\infty	}{\frac	{\sin	^{2}(\theta	)}{\theta	^{2}}}\,d\theta	=\pi	\quad	\Rightarrow	\quad	\int	_{-\infty	}^{\infty	}\operatorname	{sinc}	^{2}(x)\,dx=1,}	∫	−	∞	∞	sin	⁡	(	θ	)	θ	d	θ	=	∫	−	∞	∞	(	sin	⁡	(	θ	)	θ	)	2	d	θ	=	π	.	{\displaystyle
\int	_{-\infty	}^{\infty	}{\frac	{\sin(\theta	)}{\theta	}}\,d\theta	=\int	_{-\infty	}^{\infty	}\left({\frac	{\sin(\theta	)}{\theta	}}\right)^{2}\,d\theta	=\pi	.}	∫	−	∞	∞	sin	3	⁡	(	θ	)	θ	3	d	θ	=	3	π	4	.	{\displaystyle	\int	_{-\infty	}^{\infty	}{\frac	{\sin	^{3}(\theta	)}{\theta	^{3}}}\,d\theta	={\frac	{3\pi	}{4}}.}	∫	−	∞	∞	sin	4	⁡	(	θ	)	θ	4	d	θ	=	2	π	3	.	{\displaystyle
\int	_{-\infty	}^{\infty	}{\frac	{\sin	^{4}(\theta	)}{\theta	^{4}}}\,d\theta	={\frac	{2\pi	}{3}}.}	The	following	improper	integral	involves	the	(not	normalized)	sinc	function:	∫	0	∞	d	x	x	n	+	1	=	1	+	2	∑	k	=	1	∞	(	−	1	)	k	+	1	(	k	n	)	2	−	1	=	1	sinc	⁡	(	π	n	)	.	{\displaystyle	\int	_{0}^{\infty	}{\frac	{dx}{x^{n}+1}}=1+2\sum	_{k=1}^{\infty	}{\frac
{(-1)^{k+1}}{(kn)^{2}-1}}={\frac	{1}{\operatorname	{sinc}	({\frac	{\pi	}{n}})}}.}	Relationship	to	the	Dirac	delta	distribution	The	normalized	sinc	function	can	be	used	as	a	nascent	delta	function,	meaning	that	the	following	weak	limit	holds:	lim	a	→	0	sin	⁡	(	π	x	a	)	π	x	=	lim	a	→	0	1	a	sinc	⁡	(	x	a	)	=	δ	(	x	)	.	{\displaystyle	\lim	_{a\to	0}{\frac	{\sin
\left({\frac	{\pi	x}{a}}\right)}{\pi	x}}=\lim	_{a\to	0}{\frac	{1}{a}}\operatorname	{sinc}	\left({\frac	{x}{a}}\right)=\delta	(x).}	This	is	not	an	ordinary	limit,	since	the	left	side	does	not	converge.	Rather,	it	means	that	lim	a	→	0	∫	−	∞	∞	1	a	sinc	⁡	(	x	a	)	φ	(	x	)	d	x	=	φ	(	0	)	{\displaystyle	\lim	_{a\to	0}\int	_{-\infty	}^{\infty	}{\frac	{1}
{a}}\operatorname	{sinc}	\left({\frac	{x}{a}}\right)\varphi	(x)\,dx=\varphi	(0)}	for	every	Schwartz	function,	as	can	be	seen	from	the	Fourier	inversion	theorem.	In	the	above	expression,	as	a	→	0,	the	number	of	oscillations	per	unit	length	of	the	sinc	function	approaches	infinity.	Nevertheless,	the	expression	always	oscillates	inside	an	envelope	of	±1/
πx,	regardless	of	the	value	of	a.	This	complicates	the	informal	picture	of	δ(x)	as	being	zero	for	all	x	except	at	the	point	x	=	0,	and	illustrates	the	problem	of	thinking	of	the	delta	function	as	a	function	rather	than	as	a	distribution.	A	similar	situation	is	found	in	the	Gibbs	phenomenon.	Summation	All	sums	in	this	section	refer	to	the	unnormalized	sinc
function.	The	sum	of	sinc(n)	over	integer	n	from	1	to	∞	equals	π	−	1/2:	∑	n	=	1	∞	sinc	⁡	(	n	)	=	sinc	⁡	(	1	)	+	sinc	⁡	(	2	)	+	sinc	⁡	(	3	)	+	sinc	⁡	(	4	)	+	⋯	=	π	−	1	2	.	{\displaystyle	\sum	_{n=1}^{\infty	}\operatorname	{sinc}	(n)=\operatorname	{sinc}	(1)+\operatorname	{sinc}	(2)+\operatorname	{sinc}	(3)+\operatorname	{sinc}	(4)+\cdots	={\frac	{\pi	-1}
{2}}.}	The	sum	of	the	squares	also	equals	π	−	1/2:[10][11]	∑	n	=	1	∞	sinc	2	⁡	(	n	)	=	sinc	2	⁡	(	1	)	+	sinc	2	⁡	(	2	)	+	sinc	2	⁡	(	3	)	+	sinc	2	⁡	(	4	)	+	⋯	=	π	−	1	2	.	{\displaystyle	\sum	_{n=1}^{\infty	}\operatorname	{sinc}	^{2}(n)=\operatorname	{sinc}	^{2}(1)+\operatorname	{sinc}	^{2}(2)+\operatorname	{sinc}	^{2}(3)+\operatorname	{sinc}	^{2}
(4)+\cdots	={\frac	{\pi	-1}{2}}.}	When	the	signs	of	the	addends	alternate	and	begin	with	+,	the	sum	equals	1/2:	∑	n	=	1	∞	(	−	1	)	n	+	1	sinc	⁡	(	n	)	=	sinc	⁡	(	1	)	−	sinc	⁡	(	2	)	+	sinc	⁡	(	3	)	−	sinc	⁡	(	4	)	+	⋯	=	1	2	.	{\displaystyle	\sum	_{n=1}^{\infty	}(-1)^{n+1}\,\operatorname	{sinc}	(n)=\operatorname	{sinc}	(1)-\operatorname	{sinc}
(2)+\operatorname	{sinc}	(3)-\operatorname	{sinc}	(4)+\cdots	={\frac	{1}{2}}.}	The	alternating	sums	of	the	squares	and	cubes	also	equal	1/2:[12]	∑	n	=	1	∞	(	−	1	)	n	+	1	sinc	2	⁡	(	n	)	=	sinc	2	⁡	(	1	)	−	sinc	2	⁡	(	2	)	+	sinc	2	⁡	(	3	)	−	sinc	2	⁡	(	4	)	+	⋯	=	1	2	,	{\displaystyle	\sum	_{n=1}^{\infty	}(-1)^{n+1}\,\operatorname	{sinc}	^{2}(n)=\operatorname
{sinc}	^{2}(1)-\operatorname	{sinc}	^{2}(2)+\operatorname	{sinc}	^{2}(3)-\operatorname	{sinc}	^{2}(4)+\cdots	={\frac	{1}{2}},}	∑	n	=	1	∞	(	−	1	)	n	+	1	sinc	3	⁡	(	n	)	=	sinc	3	⁡	(	1	)	−	sinc	3	⁡	(	2	)	+	sinc	3	⁡	(	3	)	−	sinc	3	⁡	(	4	)	+	⋯	=	1	2	.	{\displaystyle	\sum	_{n=1}^{\infty	}(-1)^{n+1}\,\operatorname	{sinc}	^{3}(n)=\operatorname	{sinc}	^{3}
(1)-\operatorname	{sinc}	^{3}(2)+\operatorname	{sinc}	^{3}(3)-\operatorname	{sinc}	^{3}(4)+\cdots	={\frac	{1}{2}}.}	Series	expansion	The	Taylor	series	of	the	unnormalized	sinc	function	can	be	obtained	from	that	of	the	sine	(which	also	yields	its	value	of	1	at	x	=	0):	sin	⁡	x	x	=	∑	n	=	0	∞	(	−	1	)	n	x	2	n	(	2	n	+	1	)	!	=	1	−	x	2	3	!	+	x	4	5	!	−	x	6	7	!
+	⋯	{\displaystyle	{\frac	{\sin	x}{x}}=\sum	_{n=0}^{\infty	}{\frac	{(-1)^{n}x^{2n}}{(2n+1)!}}=1-{\frac	{x^{2}}{3!}}+{\frac	{x^{4}}{5!}}-{\frac	{x^{6}}{7!}}+\cdots	}	The	series	converges	for	all	x.	The	normalized	version	follows	easily:	sin	⁡	π	x	π	x	=	1	−	π	2	x	2	3	!	+	π	4	x	4	5	!	−	π	6	x	6	7	!	+	⋯	{\displaystyle	{\frac	{\sin	\pi	x}{\pi	x}}=1-
{\frac	{\pi	^{2}x^{2}}{3!}}+{\frac	{\pi	^{4}x^{4}}{5!}}-{\frac	{\pi	^{6}x^{6}}{7!}}+\cdots	}	Euler	famously	compared	this	series	to	the	expansion	of	the	infinite	product	form	to	solve	the	Basel	problem.	
Higher	dimensions	The	product	of	1-D	sinc	functions	readily	provides	a	multivariate	sinc	function	for	the	square	Cartesian	grid	(lattice):	sincC(x,	y)	=	sinc(x)	sinc(y),	whose	Fourier	transform	is	the	indicator	function	of	a	square	in	the	frequency	space	(i.e.,	the	brick	wall	defined	in	2-D	space).	The	sinc	function	for	a	non-Cartesian	lattice	(e.g.,
hexagonal	lattice)	is	a	function	whose	Fourier	transform	is	the	indicator	function	of	the	Brillouin	zone	of	that	lattice.	For	example,	the	sinc	function	for	the	hexagonal	lattice	is	a	function	whose	Fourier	transform	is	the	indicator	function	of	the	unit	hexagon	in	the	frequency	space.	
For	a	non-Cartesian	lattice	this	function	can	not	be	obtained	by	a	simple	tensor	product.	However,	the	explicit	formula	for	the	sinc	function	for	the	hexagonal,	body-centered	cubic,	face-centered	cubic	and	other	higher-dimensional	lattices	can	be	explicitly	derived[13]	using	the	geometric	properties	of	Brillouin	zones	and	their	connection	to	zonotopes.
For	example,	a	hexagonal	lattice	can	be	generated	by	the	(integer)	linear	span	of	the	vectors	u	1	=	[	1	2	3	2	]	and	u	2	=	[	1	2	−	3	2	]	.	{\displaystyle	\mathbf	{u}	_{1}={\begin{bmatrix}{\frac	{1}{2}}\\{\frac	{\sqrt	{3}}{2}}\end{bmatrix}}\quad	{\text{and}}\quad	\mathbf	{u}	_{2}={\begin{bmatrix}{\frac	{1}{2}}\\-{\frac	{\sqrt	{3}}
{2}}\end{bmatrix}}.}	Denoting	ξ	1	=	2	3	u	1	,	ξ	2	=	2	3	u	2	,	ξ	3	=	−	2	3	(	u	1	+	u	2	)	,	x	=	[	x	y	]	,	{\displaystyle	{\boldsymbol	{\xi	}}_{1}={\tfrac	{2}{3}}\mathbf	{u}	_{1},\quad	{\boldsymbol	{\xi	}}_{2}={\tfrac	{2}{3}}\mathbf	{u}	_{2},\quad	{\boldsymbol	{\xi	}}_{3}=-{\tfrac	{2}{3}}(\mathbf	{u}	_{1}+\mathbf	{u}	_{2}),\quad	\mathbf	{x}	=
{\begin{bmatrix}x\\y\end{bmatrix}},}	one	can	derive[13]	the	sinc	function	for	this	hexagonal	lattice	as	sinc	H	⁡	(	x	)	=	1	3	(	cos	⁡	(	π	ξ	1	⋅	x	)	sinc	⁡	(	ξ	2	⋅	x	)	sinc	⁡	(	ξ	3	⋅	x	)	+	cos	⁡	(	π	ξ	2	⋅	x	)	sinc	⁡	(	ξ	3	⋅	x	)	sinc	⁡	(	ξ	1	⋅	x	)	+	cos	⁡	(	π	ξ	3	⋅	x	)	sinc	⁡	(	ξ	1	⋅	x	)	sinc	⁡	(	ξ	2	⋅	x	)	)	.	{\displaystyle	{\begin{aligned}\operatorname	{sinc}	_{\text{H}}(\mathbf	{x}	)=
{\tfrac	{1}{3}}{\big	(}&\cos	\left(\pi	{\boldsymbol	{\xi	}}_{1}\cdot	\mathbf	{x}	\right)\operatorname	{sinc}	\left({\boldsymbol	{\xi	}}_{2}\cdot	\mathbf	{x}	\right)\operatorname	{sinc}	\left({\boldsymbol	{\xi	}}_{3}\cdot	\mathbf	{x}	\right)\\&{}+\cos	\left(\pi	{\boldsymbol	{\xi	}}_{2}\cdot	\mathbf	{x}	\right)\operatorname	{sinc}	\left({\boldsymbol
{\xi	}}_{3}\cdot	\mathbf	{x}	\right)\operatorname	{sinc}	\left({\boldsymbol	{\xi	}}_{1}\cdot	\mathbf	{x}	\right)\\&{}+\cos	\left(\pi	{\boldsymbol	{\xi	}}_{3}\cdot	\mathbf	{x}	\right)\operatorname	{sinc}	\left({\boldsymbol	{\xi	}}_{1}\cdot	\mathbf	{x}	\right)\operatorname	{sinc}	\left({\boldsymbol	{\xi	}}_{2}\cdot	\mathbf	{x}	\right){\big
)}.\end{aligned}}}	This	construction	can	be	used	to	design	Lanczos	window	for	general	multidimensional	lattices.[13]	See	also	Anti-aliasing	filter	–	Mathematical	transformation	reducing	the	damage	caused	by	aliasing	Borwein	integral	–	Type	of	mathematical	integrals	Dirichlet	integral	–	Integral	of	sin(x)/x	from	0	to	infinity.	Lanczos	resampling	–
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S2CID	15313688.	External	links	Weisstein,	Eric	W.	
"Sinc	Function".	MathWorld.	Retrieved	from	"	More...Less...	The	sinc	function	,	also	called	the	"sampling	function,"	is	a	function	that	arises	frequently	in	signal	processing	and	the	theory	of	Fourier	transforms.	The	full	name	of	the	function	is	"sine	cardinal,"	but	it	is	commonly	referred	to	by	its	abbreviation,	"sinc."	There	are	two	definitions	in	common
use.	The	one	adopted	in	this	work	defines	where	is	the	sine	function,	plotted	above.	This	has	the	normalization	This	function	is	implemented	in	the	Wolfram	Language	as	Sinc[x].	When	extended	into	the	complex	plane,	is	illustrated	above.	
An	interesting	property	of	is	that	the	set	of	local	extrema	of	corresponds	to	its	intersections	with	the	cosine	function	,	as	illustrated	above.	The	derivative	is	given	by	and	the	indefinite	integral	by	where	is	the	sine	integral.	Woodward	(1953),	McNamee	et	al.	(1971),	and	Bracewell	(1999,	p.	62)	adopt	the	alternative	definition	The	latter	definition	is
sometimes	more	convenient	as	a	result	of	its	simple	normalization,	That	variant	also	satisfies	the	sum	In	addition,	the	binomial	coefficient	satisfies	which	is	essentially	a	restatement	of	the	reflection	relation	of	the	gamma	function	(M.	Somos,	pers.	comm.,	Oct.	26,	2006.)	The	sinc	function	is	closely	related	to	the	spherical	Bessel	function	of	the	first
kind	and,	in	particular,	and	is	given	in	terms	of	the	Meijer	G-function	as	Let	be	the	rectangle	function,	then	the	Fourier	transform	of	is	the	sinc	function	The	sinc	function	therefore	frequently	arises	in	physical	applications	such	as	Fourier	transform	spectroscopy	as	the	so-called	instrument	function,	which	gives	the	instrumental	response	to	a	delta
function	input.	Removing	the	instrument	functions	from	the	final	spectrum	requires	use	of	some	sort	of	deconvolution	algorithm.	
The	sinc	function	can	be	written	as	a	complex	integral	by	noting	that,	for	,	and	that	and	the	integral	both	equal	1	for	.	The	sinc	function	can	also	be	written	as	the	infinite	product	a	result	discovered	in	1593	by	Francois	Viète	(Kac	1959,	Morrison	1995)	and	sometimes	known	as	Euler's	formula	(Prudnikov	et	al.	1986,	p.	757;	Gearhart	and	Shulz	1990).
It	is	also	given	by	(Gearhart	and	Shulz	1990)	and	(Prudnikov	et	al.	1986,	p.	757).	Another	product	is	given	by	(OEIS	A118253;	Prudnikov	et	al.	1986,	p.	757),	where	is	the	constant	from	polygon	circumscribing.	Sums	of	powers	of	over	the	positive	integers	include	The	remarkable	fact	that	the	sums	of	and	are	equal	appears	to	have	first	been	published
in	Baillie	(1978).	Amazingly,	the	pattern	of	these	sums	being	equal	to	plus	a	rational	multiple	of	breaks	down	for	the	power	,	where	the	sum	equals	where	The	sinc	function	satisfies	the	identity	Definite	integrals	involving	the	sinc	function	include	After	dividing	out	the	constant	factor	of	,	the	values	are	again	1/2,	1/2,	3/8,	1/3,	115/384,	11/40,
5887/23040,	151/630,	259723/1146880,	...	(OEIS	A049330	and	A049331;	Grimsey	1945,	Medhurst	and	Roberts	1965).	These	are	all	special	cases	of	the	amazing	general	result	where	and	are	positive	integers	such	that	,	,	is	the	floor	function,	and	is	taken	to	be	equal	to	1	(Kogan;	cf.	Espinosa	and	Moll	2000).	This	spectacular	formula	simplifies	in	the
special	case	when	is	a	positive	even	integer	to	where	is	an	Eulerian	number	(Kogan;	cf.	Espinosa	and	Moll	2000).	The	solution	of	the	integral	can	also	be	written	in	terms	of	the	recurrence	relation	for	the	coefficients	The	half-infinite	integral	of	can	be	derived	using	contour	integration.	In	the	above	figure,	consider	the	path	.	Now	write	.	On	an	arc,	and
on	the	x-axis,	.	Write	where	denotes	the	imaginary	part.	Now	define	where	the	second	and	fourth	terms	use	the	identities	and	.	Simplifying,	where	the	third	term	vanishes	by	Jordan's	lemma.	Performing	the	integration	of	the	first	term	and	combining	the	others	yield	Rearranging	gives	so	The	same	result	is	arrived	at	using	the	method	of	complex
residues	by	noting	so	Since	the	integrand	is	symmetric,	we	therefore	have	giving	the	sine	integral	evaluated	at	0	as	Borwein	Integrals,	Fourier	Transform,	Fourier	Transform--Rectangle	Function,	Instrument	Function,	Jinc	Function,	Kilroy	Curve,	Sine,	Sine	Integral,	Sinhc	Function,	Tanc	Function	Baillie,	R.	
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