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ABSTRACT 

Over 5 years ago, EMC Supplementary Cementitious Materials ("EMC-SCMs") entered 

the general concrete and concrete-products market in Texas.  

Meeting key criteria for broad adoption in the marketplace, the EMC-SCM CemPozz®

("CemPozz") is a general-application product, using 95% fly-ash ("FA") treated by using EMC-

SCM technologies ("EMC-SCM Technology"). To wit, over 4.5 millions of cubic yards of concrete 

have been cast using CemPozz, including over 500 miles of pavements for US-State and Federal 

highways, to confirm CemPozz can replace 50-70% Portland Cement ("PC") depending upon the 

design-mix.  

This paper confirms CemPozz can now comprise natural pozzolans ("NPs") in place of its 

FA quotient (part or all). It focuses on the industrial application of CemPozz, comprising circa 5%

PC and 95% FA or NPs – whether for paving, structural concrete or concrete products. 

This paper summarizes the performance of significantly-reduced carbon footprint (high 

durability) concrete paving, industrially-produced using EMC-SCMs, that deliver life-cycle cost 

savings through enhanced durability and long-term strength, at a competitive up-front cost.  

By implication, this paper confirms that, upon applying EMC-SCM Technology, the 

carbon footprint of industrially-produced concrete can be reduced by over 50%.
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1. INTRODUCTION 

For over 5 years, CemPozzFA — an SCM containing about 95% FA and about 5% PC — has 

been widely used to comprise about 50% of the total cementitious content in high-volume pozzolan 

concrete ("HVPC"), for sustainable pavements and Texas-DOT ("TXDOT") engineering structures. 

CemPozzFA has yielded excellent performance, with significantly reduced cracking (due to its 

reduced drying shrinkage); high abrasion resistance; high freeze-thaw resistance; high sulfate 

resistance; and very low chloride permeability. (See, References: 1).  

1.1 Summary of EMC-SCMs. 

EMC-SCMs use raw materials in DOT specifications, whose characteristics are well 

known. This approach permits rapid DOT-adoption. For example, from the start of testing it took 

less than 6 months for Pennsylvania DOT's ("PENNDOT") approval of 50% CemPozzFA. In short, 

EMC-SCMs:

(i) have demonstrated competitive pricing; 

(ii) have demonstrated increased productivity in the paving process; 

(iii) comprise a significantly-reduced carbon footprint through reduced PC content; 

(iv) exhibit reduced cracking, required early-age performance (i.e., workability, set-

time and early-age strength), improved long-term strength, and vastly-increased durability. 

1.2 Recent Additional and Significant Advances. 

During 2009–10, two major advances have been completed vis-à-vis EMC-SCM Technology: 

(i) In addition to the use of Class-F FA, preparation for the roll-out of CemPozz 

containing NPs complying with ASTM C-618 ("CemPozzNP"). This will be particularly significant 

in the western U.S.A., where FA is scarce yet NPs are plentiful. 

(ii) The roll-out of a new class of products, enabling up to about 70% pozzolanic 

content of the total cementitious content in the concrete. 

1.3 About EMC-SCM Technology. 

EMC-SCM Technology comprises the mechanical processing of the blends of pozzolans 

and small-volume PC, using multiple high-intensity milling systems. It imparts an increased 

surface activation of the pozzolan and PC particles, eschewing expensive chemical admixtures. 

Rather, the mix designs will generally require low-to-mid range water reducers, in line with 

traditional pozzolan content.  

Typically, the high-intensity milling is accomplished by multiple stages of vibratory or 

stirred ball-mills. (See, e.g., References: 1, 2 , 3, 4, 9, 10, 11, 12, 13; as well as: 5, 6, 7, 8).   

CemPozz can be added to PC cement in a conventional concrete mixer to about 70% FA

(slightly lower when NPs are used).  

The water-to-cementitious ratio is a key element for performance. Although there are 

some differences depending upon the NPs used, in both FA and NP-based products, the required
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slump, set time and workability is achieved using normal levels of low-to-mid range water-

reducers.

Using different types of NPs, CemPozzNP correlates with the performance of CemPozzFA.

Field observations reveal that CemPozz concrete has significantly-less apparent cracks when 

producing highway pavings and slabs, as compared to using "traditional" PC concretes. 

Reference is made also to the drying-shrinkage of CemPozzFA and CemPozzNP discussed here. 

2. CEMPOZZ MANUFACTURED WITH CLASS-F FA (CEMPOZZFA)

2.1 Experimental Program. 

Material. 

CemPozzFA was produced by Texas EMC Products, Ltd ("EMC") at the Limestone plant 

in Jawett, Texas. Raw materials comprised Class-F FA (from NRG's Limestone power-plant) and 

Type I PC. The physical and chemical characteristics of CemPozzFA were compared to that of 

PC, FA and conventional blends of PC and FA. CemPozzFA performance in mortar and concrete 

was compared to neat PC and PC with 20—50% FA replacement. 

Chemical Analysis. 

The chemical analyses were performed per ASTM D-4326 and ASTM C-114. The particle 

size distributions of CemPozzFA and the constituent raw materials (PC and FA) were obtained 

using Hariba laser-scattering particle-size analysis.  

Setting Time. 

The setting-time of CemPozzFA paste was compared to reference PC paste using Gilmore 

apparatus, per ASTM C-266. The paste consistency was verified using a Vicat needle, per ASTM C-187.

Compressive Strength. 

The evaluation of water demand and compressive strength development of mortar and 

concrete were established per ASTM C-109, ASTM C-311 and ASTM C-192.

Sulfate Resistance. 

Sulfate resistance ("SR") and alkali silica reactivity ("ASR") were evaluated respectively 

per ASTM C-1012 and ASTM C-441. Frost and abrasion resistances were tested per ASTM C-666

and C-944.

Shrinkage. 

Shrinkage tests were performed for mortar specimens of size 1.8×1.8×7.2" (40×40×160 

mm). After casting, using plastic foil they were sealed against moisture exchange, during the first 

day. After about 24 h, the specimens were then sealed by epoxy resin on the top, bottom and end 

surfaces, and then placed to dry-out indoors (temperature ~20ºC), with one-dimensional double-

sided moisture migration.  

The shrinkage test for CemPozzFA concrete with 50% PC-replacement was performed per 

ASTM C-157. The mortars for the shrinkage test were prepared per ASTM C-109, with a  water to 
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cementitious materials ratio (w/cm) of 0.46, and sand-to-cementitious material ratio of 2.75. 

European norm (EN) sand was used. The cementitious materials were PC and ASTM Class-F FA.

The test specimens were cast on three contiguous days, ensuring the same environment 

during the entire test-period. Two length-measurements were obtained for each specimen, at 

each point in time.  

The representative shrinkage strain shrε  was calculated per Equation 1:

shrε  = 
meas

BA

l

ll

⋅

∆+∆

2
        (1)

Al∆  = change in length side A [inch]; 

Bl∆  =  change in length side B [inch]; 

measl  =  measuring length = 4 inches (0.1 m). 

2.2 Results and discussion. 

Chemical Analysis. 

The chemical analysis of CemPozzFA and its constituents is listed in Table 1, with 

corresponding particle-size distributions in Table 2. The chemical analysis corresponds to ASTM

Class-F FA. EMC-SCM Technology was effective in reducing the coarse fraction of the FA. The 

percentage of the blend retained on 325 Mesh was decreased from 12% to 3% by the EMC-SCM

Technology. This specific type of FA is relatively coarse and has significantly lower pozzolanic 

activity as compared to the other ashes in the area.  

Another study of EMC-SCMs using 50% ASTM Class-F FA revealed that fine particles of FA

and cement formed agglomerates of outer size, comparable to cement grains, but with a 

considerable inner surface – explaining the increased reactivity. (See, References: 5). 

Setting Time.  

The setting times are shown in Table 3. The setting behavior of CemPozzFA paste is very 

similar to that of the reference PC. Conventional high volume FA ("HVFA") PC-pozzolan blends 

typically have longer set times: 3—5 hours, initial set; 5—7 hours, final set. 

Compressive Strength Development.  

Table 4 comprises data for water-demand and compressive strength development of 

mortars, based on 1:1 blend of PC and CemPozzFA, in comparison with reference blends: (i) 

standard PC; and (ii) standard PC with 20 and 40% of replacement using FA that has not been 

subjected to EMC-SCM Technology. 

Per Table 4, the blend made by 50% PC and 50% CemPozzFA exhibited slightly lower 

early-age strength development in comparison with pure PC, but was superior to PC mortar after 

28 days. The 50% CemPozzFA mix performed significantly better than Portland-pozzolan blended 

cements with 20% and 40% FA replacements. The workability of this EMC-SCM appears better 
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than PC. The high FA content, in combination with optimized particle-size distribution, allows a 

10% reduction in w/cm. Combined with the increased reactivity of FA, this contributes to a higher 

long-term strength.  

Slump and Compressive Strength.  

Table 5 comprises the strength development of 35—60% CemPozzFA ready-mix 

concretes. Whence, 28-day strengths of 3000 psi (ca. 20 MPa) to 5000 psi (ca. 35 MPa) can be 

achieved with the same mix designs that ready-mix concrete producers use in their everyday 

operations. CemPozzFA concretes demonstrate continuous strength-increase (up to 40%) during 

28—56 days curing periods, having a very beneficial effect on concrete durability and the 

stability of the entire building cycle. 

Sulfate Expansion. 

Table 6 comprises the change in length of mortar bars exposed to sulfate solution, with the 

maximum permissible values for specimens. Six specimens for each type of cement were tested. 

The mortar bars made with 50% CemPozzFA have slightly improved SR over the reference-PC.

The expansion after 4 weeks was approximately one-fourth of the maximum permissible level for 

blended cement. 

Table 6 also shows that mortar bars made with CemPozzFA have a considerably better 

resistance (92% improvement) with respect to ASR, than PC equivalents. 

Shrinkage. 

Table 7 comprises the compositions of the mortars for the shrinkage tests. The 

shrinkage (i.e., the combination of autogenous and drying shrinkage) results are plotted in 

Figure 1. The solid lines represent the average shrinkage for each test series of three specimens 

M1, M2, M3, with the individual results from each specimen represented as symbols. The spread in 

shrinkage for each series is ± 25×10-6. The difference in the shrinkage for the studied mixtures 

after seven months (= 4704 h) of drying is about 130–180×10-6. Thus, the "final" difference in 

shrinkage is significant across the different mixtures. However, the measured shrinkage for the 

first six weeks (= 1008 h) is approximately the same for all specimens tested. 

To summarize the shrinkage tests, the empirical expressions are fitted into Equation 2:

shrε  = 
η

ε
1

1 )/( tt

u e
−

⋅         (2)

shrε = test specimen shrinkage; 

µε   = formal ultimate shrinkage; 

1t    = fitting parameter for time development, t  = time from start of drying; 

1η   = fitting parameter for time development. 

Table 8 comprises the fitting-parameters for the average results of mixes M1, M2 and M3.
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A drawback of Equation 2 is that the results are not necessarily valid in all 

circumstances. Testing in different conditions is required to build more accurate models.  

From Table 8, the formal ultimate shrinkage is significantly different for M1, M2, M3. The 

final shrinkage is smallest for the usage of 60% modified FA (CemPozzFA in M3) and largest for 

the use of pure PC (M1). The shrinkage of 20% non-modified FA is about in-between. 

Assuming the increases in shrinkage for M1 and M2 are primarily related to drying 

shrinkage, then the risk of cracking at the surface of a concrete is increased, as drying-

shrinkage is related to shrinkage-gradients inside the body. This logic is founded on the 

observation that the increase in shrinkage is rather late. By this stage, the chemical reaction is 

quite slow, and consequently the rate of autogenous shrinkage is likely very small.  

A higher drying-shrinkage causes a higher cracking-risk, because drying-shrinkage 

causes high shrinkage-gradients related to the moisture profile, while the autogenous shrinkage 

is almost homogenous inside a concrete body. If the external restraint for a structure is small, 

per a slab cast on frictional ground, homogenous shrinkage results only in deformations, but 

without high stresses. Yet, shrinkage-gradients have to be balanced internally by deformations, 

to counterbalance tensile and compressive stresses. When drying starts, the surface of a 

concrete body is directly in balance with the surroundings, and consequently reaches the "final"

shrinkage locally. This will cause high tensile stresses ("Stresses") near the surface, as that part 

continuously "moves" into the body as drying continues.  

The reduction of surface Stresses might explain the observed improvements in cracking 

behavior in CemPozzFA concrete slabs. If there is high restraint between the newly-cast section 

and adjacent previously-cast section, homogeneous shrinkage might also be the cause of 

cracking near the casting joint — but note, in all cases a lower total-shrinkage imparts a lower 

cracking-risk. Finally, a very low diffusivity, due to smaller pores inside a body (which is 

expected for M3 with modified FA), likely also reduces water vapor-pressure over the pore 

menisci, producing a reduced moisture-loss rate. Reduced permeability will also reduce the rate 

of water-loss. 

Some data on drying-shrinkage is shown in Table 9.

Frost-thaw and Abrasion Resistance. 

Table 10 presents data on the frost-thaw and abrasion resistant for 50% CemPozzFA
paving concrete of total cementitious content 342 kg/m3 (580 lbs/cy), and water-to-cementitious 

ratios 0.40 and 0.45. The data confirms the excellent durability of HVFA made with CemPozzFA.

A Paving Job Example.  

Figures 2, 3 and 4 are photographs from paving jobs on IH-10 (East of Houston) in 

Texas, U.S.A. Table 5 comprises the concrete mix design. The 28-day strength was 49.7 MPa.

This is significantly higher than TXDOT's requirements, respectively: 33.4 MPa (4400 psi) for 

paving and 35.9 MPa (5200 psi) for structural applications. Surface finish was excellent, with 

reduced labor requirements. According to TXDOT, pavements with CemPozzFA concrete 

demonstrated a 50% reduction in cracking compared to traditional pavement. 
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3. CEMPOZZ MANUFACTURED WITH NATURAL POZZOLANS (CEMPOZZNP)

3.1 Natural Pozzolans: An Abundant Source for CemPozzNP

Since circa. B.C. 5–4000, diatomaceous earth and hydraulic binders (containing lime and 

NP) from the Persian Gulf were used for the production of mortars and concrete — long before 

the invention of PC in 1824. The use volcanic-ash natural pozzolans from eruptions on the Aegean 

island of Thera and Mt. Vesuvius, Italy, date as far back to B.C. 16–1500 and A.D. 79. Such ash 

contained about 80% highly-amorphous glasses (pumice and obsidian). Even then, civil 

engineers were using very high durability pozzolan concretes. After more than 2000 years, many 

such structures (e.g. the Roman coliseums and aqueducts) and harbors in the Black Sea and 

Mediterranean remain in good shape today. 

In the twentieth-century, there has been some use of NPs in U.S. engineering projects. 

Examples include San Francisco's Golden Gate and Oakland Bridges, where 25% ground 

calcined Monterey shale was used in order to reduce the heat of hydration and the risk of 

thermo-cracking. During the '60s and early-'70s, NPs accounted for 42kg/m3 (ca. 15% of total 

cementitious weight) in nearly all of the concrete in the California Aqueduct. This was the most 

extensive use of NPs in U.S. history. (See, References: 14). Yet, despite North America having 

millions of tons of NPs, the reasons for their limited use include the following:  

(i) NPs typically have a low pozzolanic activity. Thermo-treatments to improve this 

(calcinations) make NPs more expensive that SCMs (e.g., FA or blast furnace slag). 

(ii) The porous structure of NP particles means NP concrete-mixes carry a much 

higher water demand, requiring higher levels of water-to-cementitious ratios to achieve the 

same slump as pure PC concretes. 

(iii) Higher w/cm ratios lead to lower strength development (especially early-age) 

and increased drying shrinkage-deformations.  

3.2 Resolution of NPs' Performance Limitations. 

EMC-SCM Technology resolves the aforesaid performance-limitations of NPs, without the 

hitherto cost-implications thereby associated. 

Table 11 comprises setting-time and cement paste water-demand. Figure 5 depicts the 

strong correlation between 50% CemPozzFA and 50% CemPozzNP concretes, viz. 28 days' 

compressive strength for 3000 psi (20 MPa), 4000 psi (28 MPa) and 5000 psi (35 MPa). Table 12

comprises data viz. an ASTM C-157 drying shrinkage test, performed on ASTM C-109 mortar. These 

results have been obtained with CemPozzNP manufactured with Californian perlite. Importantly. 

datasets derived by using other ASTM C-618 NPs (e.g., pumice, rhyolite, tuff, etc) reveal a very 

close correlation to the results presented here. 

4. CONCLUSIONS 

In no particular order of precedence: 

4.1 Over 5 years' of full-scale industrial implementation of HVPC manufactured with 

CemPozzFA (using Class-F FA) confirms the consistent production of environmentally efficient 

high-performance concrete for sustainable pavements, replacing up to 50% PC.
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4.2. 50% CemPozzFA concretes performed in line with traditional 20% FA mixes. Using 

traditional concrete mix designs, up to 70% PC can be replaced to achieve compressive strengths 

of 3000–5000 psi at 28 days. 

4.3. 50% CemPozzFA concretes have less water requirements (and increased 

workability) than comparable traditional blends, which contributes to a higher strength with 

increased fineness. 

4.4. 50% CemPozzFA mortar samples had improved SR. The change of length values 

stood at just over 1/4 of the permitted level after 4 weeks, and 1/10th of the permitted level after 

15 weeks. 

4.5. 50% CemPozzFA mortar samples had considerably higher resistance to alkali-

silica reaction (up to 92% lower change in length) in comparison with standard PC.

4.6. Concrete and mortars containing up to 60% CemPozzFA are characterized by 

significantly lower drying-shrinkage as compared to PC and 20% FA concretes, demonstrating 

also much lower cracking tendency/development in pavements. 

4.7. NPs subjected to EMC-SCM Technology demonstrated a contribution to a 

strength development that concords with CemPozzFA. Both water demand and drying-shrinkage 

of resultant CemPozzNP concretes were similar to PC concretes. 
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TABLE 1. Chemical Composition (%) of CemPozzFA (1:1 PC/FA)

and its Constituents (PC and FA)

Compound PC FA CemPozzFA

CaO

SiO2

Al2O3

Fe2O3

SO3

Na2O

K2O

Insoluble residue 

62.4

17.8

4.0

3.9

3.2

<0.1

0.3

0.5

15.0

49.4

19.6

5.2

0.8

0.3

1.2

51.3

40.9

33.2

6.3

4.1

1.6

0.1

1.2

21.6
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TABLE 2. Particle-Size Distribution 

Parameter PC FA Blend of 

1:1 PC/FA

CemPozzFA

Median Particle size (µm) 16.0 14.3 14.3 11.8

Min. Particle size (µm) 1.5 1.3 1.3 1.5

Max. Particle size (µm) 50 100 100 50

Specific surface (cm2/cm3) 5,624 6,624 6,075 7,520

Less than 10 µm (%) 61 38 52 65

Retained on 325 Mesh (%) 5 20 12 3
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TABLE 3. Setting Time of (i) PC-Paste and  

(ii) 1:1 PC/CemPozzFA Paste 

Property PC CemPozzFA

w/cm 0.24 0.22 

Initial Set Time (hours:min) 2:29 2:32 

Final Set Time (hours:min) 3:33 3:50 
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TABLE 4. Compressive Strength Development, 

ASTM C-109 (MPa)

Curing time (days) 
Cement type w/cm 

1 3 7  28 

PC 0.48 10.3 26.6 30.0 38.6 

50% CemPozzFA* 0.43 9.1 21.9 27.2 41.1 

80% PC1 + 20% FA 0.46 6.5 20.4 23.6 35.8 

60% PC1 + 40% FA 0.44 3.8 15.1 17.7 29.6 

* PC from Texas, U.S.A. 
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TABLE 5. Concrete Mix Designs Using CemPozzFA,

Slump and Strength Development (MPa). 

CemPozzFA (%) 70** 60** 50** 50***

Cementitious materials*  (kg/m3)

CemPozzFA (kg/m3)

Water (kg/m3)

25 mm limestone aggregate (kg/m3)

Fine aggregate (kg/m3)

Air-entrainer (ml/m3)

Water reducer (oz/cwt) 

277

194

89

1106

951

0

5

277

166

83

1097

960

0

5

277

139

83

1047

968

0

5

300

150

90

1107

868

150

1

w/cm 0.32 0.30 0.30 0.30 

Slump (mm) 169 175 175 5 

7 days compressive strength (MPa) 

28 days compress. strength (MPa) 

56 days compress. strength (MPa) 

16.5

27.6

36.5

17.9

29.4

38.9

19.7

34.3

43.4

25.8

40.9

49.7

* Portland cement + CemPozzFA,   

** Ready-Mix Concrete mix design,  

*** TXDOT mix design 
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TABLE 6. Expansion of Mortar Due to 

Sulfate Exposure and ASR.

SR per ASTM C-1012 (Change in length, %)

Portland cement Blended cement 

Maximum permissible values: 0.012 0.041 

(after 4 weeks) PC (reference) 50 % CemPozzFA

Exposure 1 week 0.006 0.006 

 2 weeks 0.012 0.011 

 3 weeks 0.013 0.011 

 4 weeks 0.013 0.011 

ASR per ASTM C-441 (Change in length, %)

PC 50 % CemPozzFA

Results at 14 days: 0.026 0.002
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TABLE 7. Material Parameters for Test Mixtures M1, M2, M3:

Linear Shrinkage. 

Specimen Mix FA PC w/cm 

11, 12, 13 M1 0% 100% 0.46 

21, 22, 23 M2 20% 80% 0.46 

31, 32, 33 M3 60%* 40% 0.46 

* Energetically modified fly ash (CemPozzFA)
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TABLE 8. Fitting Parameters According to Equation 2.

Test No. 1t , h 1η uε , 10-6

Average, M1 385 0.548 –1500 

Average, M2 303 0.697 –1200 

Average, M3 188 1.065 – 880 
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TABLE 9. Drying-Shrinkage Test Results (ASTM C-157), 

50% CemPozzFA Concrete 

Time, days 4 7 28 

Average shrinkage, % – 0.009 – 0.010 
– 0.013 

– 0.019*

* Average shrinkage for the concrete of the same mix design with pure PC
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TABLE 10. Frost-Thaw and Abrasion Resistance 

Water-to-

cement ratio

Total air 

content, %

Spacing

factor, in 

Durability 

factor, %

Abrasion resistance,

mass loss after 180s 

0.45 5.7 0.0037 92 2.5 

0.40 4.0 0.0034 100 5.0 
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TABLE 11. Setting Time of (i) PC Paste and 

(ii) 1:1 PC/CemPozzNP Paste 

Property PC EMC 

Water demand for standard consistency 0.24 0.25 

Initial Set Time (hours:min) 2:29 2:25 

Final Set Time (hours:min) 3:33 3:57 
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TABLE 12. Drying-Shrinkage Measurements (ASTM C-157) comparison  

between (i) PC and (ii) 1:1 PC/CemPozzNP-perlite ("CemPozz-NP")

Drying Time(days) PC CemPozzNP

7 – 0.039 – 0.042 

28 – 0.078 – 0.068 

56 – 0.098 – 0.108 
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FIGURE 1: Measured Shrinkage for Test Mixtures M1, M2, M3

(three test-specimens for each mixture) 

FIGURE 1: The solid lines show the average shrinkage for each mixture. 
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FIGURE 2: Laying the Concrete on IH 10, Texas, U.S.A. 
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FIGURE 3: Steel Ahead of Placer on IH 10, Texas, U.S.A. 
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FIGURE 4: Finishers Behind Slip Form on IH 10, Texas, U.S.A. 



26 AN INDUSTRIALLY-PROVEN SOLUTION FOR SUSTAINABLE PAVEMENTS OF HIGH VOLUME POZZOLAN CONCRETE

FIGURE 5: Compressive Strength Correlation: 

CemPozzFA –v– CemPozzNP Formulations 
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FIGURE 5: Comparison of 28-days' compressive strength for two kinds of  

CemPozz concretes made with NP (vertical axis) and with FA (horizontal axis) 
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