CE 491: DEEP LEARNING APPLICATIONS AND AI B.TECH 7TH SEMESTER (CIVIL) PROGRAMME ELECTIVE - IV

Credits and Hours:

Teaching Scheme	Theory	Tutorial/Practical	Total	Credit
Hours/week	4	2	6	5
Marks	100	50	150	

A. Objective of the Course:

The main objectives of the course are:

- To make students aware about Deep Learning and Artificial Intelligence applications
- To learn about the most effective AI techniques, and gain practice implementing them
- To learn how to quickly and powerfully apply these techniques to new problems
- To make students aware about field where AI can be applied in civil engineering problems

B. Outline of the Course:

Sr. No.	Title of the Unit	Minimum Number of Hours
1	Introduction	10
2	Deep neural network	12
3	Improving deep neural network	10
4	Convolution Neural Network	10
5	Sequence models	10
6	Structuring Deep learning project	08

Total Hours (Theory): 60 Total Hours (Lab): 30 Total Hours: 90

C. Detailed Syllabus:				
1	Introduction	10 Hours	16%	
1.1	Introduction: deep learning			
1.2	Tools for deep learning			
1.3	Shallow and deep neural network			
1.4	Tensor flow			
2	Deep Neural Network	12 Hours	20%	
2.1	Forward propagation			
2.2	Backpropagation			
2.3	Application: Load Forecasting			
3	Improving Deep Neural Network	10 Hours	17%	
3.1	Learning rate, Activation Function			
3.2	Number of Layers and Neurons			
3.3	Overfitting and Underfitting Test			
4	Convolution Neural Network	10 Hours	17%	
4.1	Convolution operation			
4.2	Padding and strides			
4.3	Activation functions			
4.4	Pooling and dropout layers			
5	Sequence models	10 Hours	17%	
5.1	Time series and sequence data			
5.2	Modelling data for sequence learning			
5.3	Recurrent neural network			
5.4	Long short-term memory network			
6	Structuring Deep learning project	08 Hours	13%	

D. Instructional Method and Pedagogy:

- At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- Lectures will be conducted with the aid of multi-media projector, black board, OHP etc.

- Attendance is compulsory in lectures and practical session which carries 10 Marks and 5 marks weightage respectively.
- Two internal exams will be conducted and average of the same will be converted to equivalent of 15 Marks as a part of internal theory evaluation.
- Assignment/Surprise tests/Quizzes/Seminar will be conducted which carries 5 Marks as a part of internal theory evaluation.
- The course includes a practical session where students have an opportunity to build an appreciation for the concepts being taught in lectures.

E. Students Course Outcomes:

On successfully completion of the course, students will be able to

- understand fundamental of Deep Learning and Artificial Intelligence,
- To select any R&D field related to application of AI,
- To solve difficult and complex problem of computer science using AI techniques.
- Identify fields where AI can be applied

F. Recommended Study Material:

Reference Books:

- 1. Stuart Russell, Artificial Intelligence A Modern Approach (3 Edition), Pearson, U.K., 2016.
- 2. Tariq Rashid, Make your own neural network, CreateSpace Independent Publishing Platform, U.S., 2016.
- 3. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, The MIT Press, Cambridge, England, 2017.
- 4. Seth Weidman, Deep Learning from scratch, O'Reilly media, U.S.A., 2019.

Web Materials:

- 1. https://www.udemy.com/course/artificial-intelligence-for-civil-engineers-part-l/
- 2. https://www.udemy.com/course/artificial-intelligence-for-civil-engineers-part-2/

LIST OF PRACTICALS

Practical No.	Name of Practical
1	Application of hybrid artificial intelligence approaches for hydraulic problems
2	Using artificial neural networks for estimation of the energy consumption obtained by dams and hydropower plants
3	Swarm intelligence for optimum weight of the structures
4	Metaheuristic optimization algorithm in design optimization of 2D and 3D steel or concrete structure
5	Application of fuzzy logic in civil engineering problems
6	Optimization model for single- and multi-objective solutions for construction management