

Center for Integrated Nanotechnologies & Semiconducting Nanowires

S. Tom Picraux
Chief Scientist
Center for Integrated Nanotechnologies
picraux@lanl.gov

Arizona Nanotechnology: Small is Big April 10, 2008

Center for Integrated Nanotechnologies

Sandia National Laboratories • Los Alamos National Laboratory

"One scientific community focused on nanoscience integration"

- World class scientific staff
- Vibrant user community
- State-of-the-art facilities
- A focused attack on nanoscience integration challenges
- Leveraging LANL/SNL capabilities
- Developing and deploying innovative approaches to nanoscale integration

CINT's focus is on Nanoscience Integration

The science of nanomaterials integration

Combining diverse nanomaterials together into composite structures across length scales and into nanosystems to discover, understand, and design materials with novel properties and performance.

Bifunctional materials Metal Semiconductor Co CdSe

Directed assembly

Nanocomposite materials

Nanoscale inhomgeneities

Engineered nanocomposites

Active nanosystems

Nanowire arrays

Switchable metamaterials

Nanomechanical arrays

Length scale

10 nm

Combining ferromagnetic &

semiconducting behavior

Micro/Macroscale

CINT is one of five Department of Energy Nanoscale Science Research Centers (NSRCs)

Center for Nanoscale Materials Argonne National Lab.

Nanoscience Integration Challenges address key challenges in integration

Energy Transfer

How do nanoscale systems detect, transfer, and transduce energy?

SEM of actual device

Emergent Properties

What are the collective properties of composite nanoscale systems?

There is significant synergy across thrusts in the approach to the Energy Transfer Grand Challenge

Material A

Material A

multiplication in quantum wires and epitaxial QDs.

Nanosytems: Efficient separation and transport of electrons and holes in core-Core B shell nanowires. Shell A

600 nm

Los Alamos

Soft/Bio: **Assemblies of** synthetic lightharvesting nanomaterials.

Theory & Simulation: The description of these processes at the quantum and molecular level.

The CINT thrusts approach the Emergent Properties Grand Challenge in diverse ways

SI-GaAs

Nanophotonics:
Active
electromagnetic
metamaterials

Nanosystems:
Collective
phenomena in 2D
electron gases

Soft/Bio: Nanoscale material assemblies that mimic biological functionality

Science Thrusts provide broad expertise

Nanophotonics & Optical Nanomaterials

Synthesis, excitation and energy transformations of optically active nanomaterials and collective or emergent electromagnetic phenomena (plasmonics, metamaterials, photonic lattices)

Soft, Biological, & Composite Nanomaterials

Solution-based materials synthesis and assembly of soft, composite and artificial bio-mimetic nanosystems

Nanoscale Electronics, Mechanics & Systems

Control of electronic transport and wavefunctions, and mechanical coupling and properties using nanomaterials and integrated nanosystems

Theory & Simulation of Nanoscale Phenomena

Assembly, interfacial interactions, and emergent properties of nanoscale systems, including their electronic, magnetic, and optical properties

Discovery Platforms: Unique User Capabilities For Nanomaterials Research

Discovery Platforms = "chips" that allow Users to:

- Stimulate
- Interrogate
 - •Exploit

nanomaterials in microsystem environments

Users provide the materials

Discovery PlatformsTM are available for experiments

These platforms will evolve, based on CINT scientist and user input.

Cantilever Array Platform

Electrical Transport & Optical Spectroscopy Platform

Ver. 2 for Quantum computing

Post processing:

n+ polysilicon gates define by EBL & RIE

New instrumentation is essential for progress in nanoscience integration

In situ tensile tester

Single protein force spectroscopy

3D single particle tracking

Nanomanipulation for placement of nanostructures

Los Alamos

Nanowires—Synthesis, Integration & Applications

Semiconductor nanowires will enable previously unattainable control of electronic properties for integrated nanosystems

Si, Ge and Si/Ge heterostructure growth

CVD NW growth with in situ doping

Ge NWs

Si/Ge axial heterostructured

Integration by directed assembly

Electrodeposition to embed NWs

Tom Picraux (LANL), Sean Hearne, Alec Talin (SNL)

Vertical arrays

Crossbar architecture for high density electronics & sensing

Nanowire sensing

Nanoimprint-formed Si NWs

△V_a is proportional to edonating/withdraing character of analyte molecules (Hammett parameter – σ_n) Nitrobenzene, $\sigma_n = 0.78$ Phenol $\sigma_n = -0.37$;

Future impact

- National security: ultra sensitive chem/bio sensors; low power electronics
- **Energy applications: high efficiency thermoelectrics**
- Industrial competitiveness: future nanoscale electronic and photonic devices

NNEDC Project:

Nano-electronics and photonics for the 21st Century

modeling contact

contact resistance in nanotubes and nanowires

Leonard & Talin, PRL 97, 2006 Ordered growth and integration

A. Talin

State-of-the-art fabrication, test, and modeling of nanodevices

Nanoscale circuit simulation

CINT will play a leading role in nanoscience integration

Laboratories