New Memory Technology Migration from Lab to Fab

Narbeh Derhacobian Adesto Technologies Corp

Presented at Arizona Nanotechnology Cluster Symposium April 2008

Memory Technology Migration From Lab to Fab

For a successful migration, where is the beginning and where is the end?

Underpinning of Migration from Lab to Fab

The base technology has to solve a problem in order to start the migration

3 Key Questions:

- What is the size of the problem? How bad is the pain?
- How well does the base technology address the problems?
- How much does it cost to take the base technology from the Lab to the Fab?
 - Does the ROI make sense?

Constraints

- Existing market expectations have to be respected
 - Fundamentals
 - Power / Performance / Cost
 - Reliability
 - End Use Models

Where is the Market Pull?

Market / End Applications for semiconductor memory:

Consumer, Communication, Computing, Automotive Electronics Industry

3 Key Problems:

- Cost / Scaling
- Performance / Power
- Functional Integration

Economic Size of The Problem (just for NVM):

- Discrete NVM Market (2011): ~\$50B
- Embedded NVM Market (2011): ~\$7B

Base Technologies Coming to Rescue:

- Evolution of Existing Technologies
 - nanoFG, U-FG, etc.
- Emerging Memory Technologies
 - RRAM (PCM, PMC, CMO, etc)
 - MRAM, FRAM
 - NEMS, MEMS, etc

Who Will Win?

- OK, now we have a significant end market facing serious problems and involving billions of dollars of economic value.
- Looking at the base technologies in the Lab, can you tell who has the best chance of addressing the problems and winning?
- It's all about MARGINS and CONSTRAINTS.
 - How well does the base technology solve the different problems?
 - How does this technology impact all the CONSTRAINTS?
 - Example:

		Existing Technology	Technology X			
	Metric	Production	Lab	Fab	Qualifciation	Production
	Fundamentals	OK	OK			
Higher is Better →	Performance	1 X	100 X			
Lower is Better →	Power	1 X	1 X			
Lower is Better →	Cost	1 X	1 X			
Higher is Better →	Reliability	1 X	1 X			
	End Use Model	OK	OK			

DEAD on ARR

Candidate Technologies

			Emerging Technology Options for Non-Volatile Memory			
		Existing Non Volatile Memory Solutions	Phase Change Ovonics	MRAM	PMC Technology (Arizona State Univ.)	
	Fundamentals	OK	OK	OK (?)	OK	
Higher is Better →	WRITE Performance	1	100 X	1000 X	500 X	
Higher is Better →	READ Performance	1	10 X	10 X	50 X	
Lower is Better →	WRITE Power	1	1 X	1 X	0.001 X	
Lower is Better → Lower is Better →	READ Power	1	0.1 X	0.1 X	0.01 X	
	Cost	1	0.5 X	2 X	0.1 X	
Higher is Better →	Reliability	1	??	??	??	
	End Use Model	ОК	OK	OK	OK	

Always Bet on the Technology with the Largest MARGINS

Requirement to Win: Withstand Trauma of Migration

- Base technology must exhibit orders of magnitude improvements and margins in key CONSTRAINTS to withstand the qualification and commercialization process
- Lab to Fab is 12 rounds of vicious punishment

