

The importance and relevance of advanced electron microscopy in nanotechnology

Dr Debbie Stokes

Overview

- Advanced electron microscopy and FEI Company
- Role of electron microscopy in nanotechnology
- Specific examples
 - Key challenges in nanotechnology

FEI facilities

Hillsboro, Oregon, USA

Corporate Headquarters
Fab Product Division
400 employees

Eindhoven NLEO Product Division

475 employees

More than 1800 employees in 41 countries

Brno CZ

'Subsidiary' of EO Product Division 200 employees

Tokyo, Japan

Plus Shanghai, China, just opened

Nanotechnology applications: nanofabrication

Deposition

 $FOV = 10x10 \mu m^2$

Cap of piezo resistive pressure sensor (KU Leuven, Belgium)

Milling

 $FOV = 2x2 \mu m^2$

Fresnel Micro Lens

Lithography

 $FOV = 5x5 \mu m^2$

Nano Arrays

The NextGen TEM

FEI Company selected to work with five DoE labs:

- Berkeley
- Frederick Seitz
- Argonne
- Oak Ridge
- Brookhaven

Titan S/TEM

Movement of single atoms on surface can be monitored Atoms are activated by focusing the beam maximal on the area

HR-TEM on Silicon <110>

TITAN image Cs-corrector vs. non-Cs corrected TEM @ 300kV

Images and FSR: B.Freitag, Sample J.Thibault, Marseille

Transistor gate (TITAN C_s-corrected vs. non-corrected TEM @ 300 kV)

Non C_s-corrected HR-TEM

C_s-corrected HR-TEM

More accurate interface structure determination (roughness)

HR-TEM Example: Si₃N₄ (001), NCSI

Karsten Tillmann, Lothar Houben,

FSample courtesy of M. Svete, Bonn University

SWCNT PbTe and CuBr, C_s-corrected at 80 kV

Nanoparticles with C_s-corrected TEM (gold nano-particles)

Better detection of small nano-particles (<1 nm) on carbon films

Contrast enhancement on silicon devices at 80kV

Cs-corrected HR-TEM at 300kV

and 80kV

Clear contrast enhancement for layer thickness determination

Key challenges in nanotechnology

- Clean, sustainable energy
- Environment
- Health
- Security
- Etc...
- Energy & environment:
 - Efficiency
 - Cost
- Examples:
 - GaN LEDs use energy efficiently
 - Organic LEDs, photovoltaics, etc low cost
 - Catalysts make processes more efficient
 - Fuel cells use energy efficiently

Example: polymer photvoltaics

Close to bottom

Close to top

(P3HT/PCBM)

Volume reconstruction of the P3HT network

Example: catalysts

Delocalization effect: problem for surface imaging

Contrast delocalization is quantified by point spread function:

$$R(G) = 2\pi (C_1 \lambda G + C_3 \lambda G^3)$$

 $G = \alpha / \lambda$ the spatial frequency

()n

Silver nano-particles: comparison of surfaces

- Surface of particles prepared via incipient wetness show more kinks and edges than particles prepared via precipitation technique
- Atoms at kinks and edges favour the formation of AyOH, this explains the higher selectivity of sample 9Ag/SiO2-IW
- HR-TEM images of the surfaces clearly reveal the difference in the active sites of both samples

Modeling inter-atomic structure

Su, Jacob, Hansen, Wang, Schlögl, Freitag & Kujawa

Visualising inter-atomic structure

Simulation

Image

Example: solid oxide fuel cells

STEM tomography: CeO₂ nano-particles

Tomography gives greater morphological information

Tomography reveals that particle morphology is more complex than shown by 2D data

Conditions:

Tilting: -70° - 74°

Tilting step: 2°

Collected on a Tecnai F20

Reconstructed using FEI Inspect3D package

Visualization using Amira

A new era with new challenges needs new results

FEI is committed to "innovate for knowledge" through

- New hardware
- New software
- New methods
- New applications
- New partnerships

And we need leading & passionate customers to make it happen!

