

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

GENETIC STATS

Predicted adult weight: **79 lbs** Genetic age: **3 human years** Based on the date of birth you provided

TEST DETAILS

Kit number: EM-14421634 Swab number: 31201152517111

DNA Test Report

Fun Fact Berners can haul up to 1,000 pounds -10 times their weight! Test Date: May 9th, 2021

embk.me/apricot10

BERNESE MOUNTAIN DOG

The Bernese Mountain Dog, commonly referred to as a 'Berner', is a versatile working dog that is both visually pleasing and a loyal companion. The Bernese Mountain Dog was bred to herd cattle, pull carts and be a watchdog in the Swiss farmlands. The ancient 'Molosser' breed is considered the main contributor to Mastiff-type dogs, which include the Berner. It is likely that the Molosser bred with farm dogs from the Swiss Alps in the first century B.C., developing a number of Swiss Sennenhund ("mountain dog") breeds, including the Berner Sennenhund. It is thought that the Berner continued working on these Swiss farmlands for over 2,000 years, before their primary purpose switched from herding cattle to appearing as a show dog in the early 20th century. They were first classified as the Bernese Mountain Dog at this time by the Swiss Kennel Club. Following World War I, in which the breed nearly became extinct, Berners were exported to America before being accepted by the AKC as an official breed in 1937. Breed development faltered somewhat during World War II before Berners became an established and popular breed in the mid to late 20th century. This easygoing breed likes to be around their owners, where their calm and intelligent nature makes them a beloved family dog. Berners exhibit their working dog instincts in their willingness to learn and relative ease to be trained. Their heritage also often results in being protective and sometimes shy towards new people and dogs. Early socialization training allows the Bernese Mountain Dog to learn to overcome initial caution around new things. This breed is a large dog, weighing around 100 pounds, and likes to keep busy, so it is important training is conducted while young and manageable. While they are well-tempered dogs, they are slow to mature and often exhibit puppy behavior for a number of years before reaching full maturity. Due to their beautiful and thick double coat, Berners tend to shed generously, requiring frequent brushing to keep under control. Unfortunately, owing to their size and limited gene pool, Bernese Mountain Dogs are prone to health problems and have a life expectancy of between 6-8 years. Nonetheless, this lovable dog carries many attractive traits that see Berners rank as the 29th most popular breed.

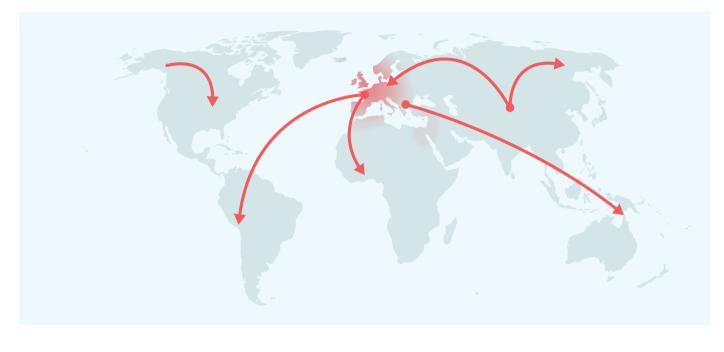
RELATED BREEDS

Greater Swiss Mountain Dog Sibling breed

Entlebucher Mountain Dog Sibling breed

Appenzeller Sennenhund Sibling breed

Saint Bernard Cousin breed



DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

MATERNAL LINE

Through Truly's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1e

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to "explode" out and spread guickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

HAPLOTYPE: A228

Part of the large A1e haplogroup, we have spotted this haplotype in village dogs in the Democratic Republic of the Congo and in the Dominican Republic. Among breeds, we see it frequently in big dogs like Saint Bernards, Leonbergers, and Great Danes. However, we also see it in small breeds including wire Fox Terriers and Rat Terriers. That's a pretty wide size range!

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

RESULT

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the **k**^Y**k**^Y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K^B**k**^Y may be brindle rather than black or brown.

More likely to have a patterned haircoat (k^yk^y)

No dark mask or

arizzle (EE)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

Any light hair likely

(Intermediate Red

yellow or tan

Pigmentation)

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci LINKAGE

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Black/Brown and tan coat color pattern (a^ta^t)

D Locus (MLPH)

The D locus result that we report is determined by two different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and a less common allele known as "**d2**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies. To view your dog's **d1** and **d2** test results, click the "SEE DETAILS" link in the upper right hand corner of the "Base Coat Color" section of the Traits page, and then click the "VIEW SUBLOCUS RESULTS" link at the bottom of the page.

Dark areas of hair and skin are not lightened (DD)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Cocoa (HPS3)

B Locus (TYRP1)

Dogs with the **coco** genotype will produce dark brown pigment instead of black in both their hair and skin. Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. Dogs that have the **coco** genotype as well as the **bb** genotype at the B locus are generally a lighter brown than dogs that have the **Bbb** or **BB** genotypes at the B locus.

Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin.

Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies.

E Locus **ee** dogs that carry two **b** alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

No co alleles, not expressed (NN)

Black or gray hair and skin (BB)

Saddle Tan (RALY)

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Not saddle tan patterned (II)

Likely to have little to no white in coat (SS)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "phantom" merle, that is, they have a merle allele that does not affect coat color. Dogs with an **M*M*** result are likely to be phenotypically merle alleles and are unlikely to be phenotypically merle or double merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A) LINKAGE

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

No merle alleles (mm)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

DNA Test Report	Test Date: May 9th, 2021	embk.me/apricot1
RAITS: OTHER COAT	TRAITS	
RAIT		RESU
urnishings (RSPO2) LINKAGE		
haracteristic of breeds like the Sc lleles will not have furnishings, wh	e F allele have "furnishings": the mustache, beard, and eyebrows chnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I hich is sometimes called an "improper coat" in breeds where tandard. The mutation is a genetic insertion which we measure ly correlated with the insertion.	Likely unfurnished (n mustache, beard, and/or eyebrows) (II)
oat Length (FGF5)		
umans. In dogs, the T allele confe ong Haired Whippet. The ancestra	hair length in many different species, including cats, dogs, mice, and ers a long, silky haircoat as observed in the Yorkshire Terrier and the al G allele causes a shorter coat as seen in the Boxer or the American eds (such as Corgi), the long haircoat is described as "fluff."	Likely long coat (TT)
hedding (MC5R)		
eavy or seasonal shedders, while nd Chihuahuas, tend to be lighter	ancestral C allele, like many Labradors and German Shepherd Dogs, are those with two copies of the T allele, including many Boxers, Shih Tzus shedders. Dogs with furnished/wire-haired coats caused by RSPO2 ow shedders regardless of their genotype at this gene.	Likely heavy/seasona shedding (CT)
airlessness (FOXI3) LINKAGE		
hape and number. This mutation of chinese Crested (other hairless broot be hairless while dogs with the l ever been observed, suggesting t	uses hairlessness over most of the body as well as changes in tooth occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and eeds have different mutations). Dogs with the NDup genotype are likely NN genotype are likely to have a normal coat. The DupDup genotype has that dogs with that genotype cannot survive to birth. Please note that be as predictive as direct tests of the mutation in some lines.	Very unlikely to be hairless (NN)
lairlessness (SGK3)		Very unlikely to be
	ess Terrier arises from a mutation in the SGK3 gene. Dogs with the ND vhile dogs with the NN genotype are likely to have a normal coat.	hairless (NN)

DNA Test Report Test Date: May 9th, 2021 embk.me/apricot10 TRAITS: OTHER COAT TRAITS (CONTINUED) TRAIT RESULT Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE Dogs with two copies DD of this deletion in the SLC45A2 gene have oculocutaneous albinism type 2 (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to Likely not albino (NN) lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion ND will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines. Coat Texture (KRT71) Dogs with a long coat and at least one copy of the T allele have a wavy or curly coat characteristic of Likely straight coat Poodles and Bichon Frises. Dogs with two copies of the ancestral C allele are likely to have a straight coat, (CC)

but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or

two copies of the T allele but still have straight coats.

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Likely to have hind dew claws (TT)

Rembark

RESULT

Likely medium or long muzzle (CC)

Likely normal-length tail (CC)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4) LINKAGE

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog. RESULT

Less likely to have blue eyes (NN)

Likely normal muscling (CC)

DNA Test Report	Test Date: May 9th, 2021	embk.me/apricot10
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Larger (NN)
The I allele is associated with smaller body size	e.	
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller body siz	Z0.	
Body Size (STC2)		Larger (TT)
The A allele is associated with smaller body size \mathbf{A}	ze.	
Body Size (GHR - E191K)		Larger (GG)
The A allele is associated with smaller body siz	ze.	
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body siz	ze.	Laiger (66)

-

DNA Test Report	Test Date: May 9th, 2021	embk.me/apricot10
TRAITS: PERFORMANC	E	
TRAIT		RESULT
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with	pecially tolerant of low oxygen environments (hypoxia), such as those at least one A allele are less susceptible to "altitude sickness." This breeds from high altitude areas such as the Tibetan Mastiff.	Normal altitude tolerance (GG)
Appetite (POMC) LINKAGE		
dogs with no copies of the mutation likely to have high food motivation, v	ound primarily in Labrador and Flat Coated Retrievers. Compared to (NN), dogs with one (ND) or two (DD) copies of the mutation are more which can cause them to eat excessively, have higher body fat besity. Read more about the genetics of POMC, and learn how you can	Normal food motivation (NN)

contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We

measure this result using a linkage test.

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

CLINICAL TOOLS

These clinical genetic tools can inform clinical decisions and diagnoses. These tools do not predict increased risk for disease.

Alanine Aminotransferase Activity (GPT)

🗸 Truly's baseline ALT level is Normal

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

HEALTH REPORT

How to interpret Truly's genetic health results:

If Truly inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Truly for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Good news!

Truly is not at increased risk for the genetic health conditions that Embark tests.

Breed-Relevant Genetic Conditions	2 variants not detected	V
Additional Genetic Conditions	204 variants not detected	

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

BREED-RELEVANT CONDITIONS TESTED

Truly did not have the variants that we tested for, that are relevant to her breed:

Von Willebrand Disease Type I (VWF)

C Degenerative Myelopathy, DM (SOD1A)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

ADDITIONAL CONDITIONS TESTED

Truly did not have the variants that we tested for, in the following conditions that the potential effect on dogs with Truly's breed may not yet be known.

- 🔀 MDR1 Drug Sensitivity (MDR1)
- P2Y12 Receptor Platelet Disorder (P2Y12)
- 🌄 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Terrier Variant)
- 💎 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)
- Factor VII Deficiency (F7 Exon 5)
- 🌄 Factor VIII Deficiency, Hemophilia A (F8 Exon 10, Boxer Variant)
- 😴 Factor VIII Deficiency, Hemophilia A (F8 Exon 11, Shepherd Variant 1)
- Factor VIII Deficiency, Hemophilia A (F8 Exon 1, Shepherd Variant 2)
- 🌄 Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)
- 💎 Thrombopathia (RASGRP1 Exon 8)
- 🌄 Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)
- 🔀 Von Willebrand Disease Type III, Type III vWD (VWF Exon 4)
- 🔀 Von Willebrand Disease Type III, Type III vWD (VWF Exon 7)
- Von Willebrand Disease Type II, Type II vWD (VWF)
- Canine Leukocyte Adhesion Deficiency Type I, CLADI (ITGB2)
- 😋 Canine Leukocyte Adhesion Deficiency Type III, CLADIII (FERMT3)
- 📀 Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)
- Canine Elliptocytosis (SPTB Exon 30)
- 😴 Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12)
- 🔀 May-Hegglin Anomaly (MYH9)
- 💎 Prekallikrein Deficiency (KLKB1 Exon 8)
- Pyruvate Kinase Deficiency (PKLR Exon 5)
- Ϛ Pyruvate Kinase Deficiency (PKLR Exon 7 Labrador Variant)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

ADDITIONAL CONDITIONS TESTED

- **Over Service And Service And**
- Trapped Neutrophil Syndrome (VPS13B)
- 🌄 Ligneous Membranitis, LM (PLG)
- Platelet factor X receptor deficiency, Scott Syndrome (TMEM16F)
- 🔿 Methemoglobinemia CYB5R3
- 😋 Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)
- 🔇 Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant)
- Complement 3 Deficiency, C3 Deficiency (C3)
- Severe Combined Immunodeficiency (PRKDC)
- Severe Combined Immunodeficiency (RAG1)
- X-linked Severe Combined Immunodeficiency (IL2RG Variant 1)
- 🔇 X-linked Severe Combined Immunodeficiency (IL2RG Variant 2)
- Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21 Irish Setter Variant)
- Progressive Retinal Atrophy, rcd3 (PDE6A)
- Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)
- Progressive Retinal Atrophy, prcd (PRCD Exon 1)
- 🗸 Progressive Retinal Atrophy (CNGB1)
- Progressive Retinal Atrophy (SAG)
- 😴 Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)
- Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)
- Progressive Retinal Atrophy, crd1 (PDE6B)
- 💽 Progressive Retinal Atrophy crd4/cord1 (RPGRIP1)
- 🝼 X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)
- Progressive Retinal Atrophy, PRA3 (FAM161A)
- 🔀 Collie Eye Anomaly, Choroidal Hypoplasia, CEA (NHEJ1)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

ADDITIONAL CONDITIONS TESTED

- 🔀 Day blindness, Cone Degeneration, Achromatopsia (CNGB3 Exon 6)
- Achromatopsia (CNGA3 Exon 7 German Shepherd Variant)
- Achromatopsia (CNGA3 Exon 7 Labrador Retriever Variant)
- 💽 Autosomal Dominant Progressive Retinal Atrophy (RHO)
- 🔀 Canine Multifocal Retinopathy (BEST1 Exon 2)
- Canine Multifocal Retinopathy (BEST1 Exon 5)
- 🔀 Canine Multifocal Retinopathy (BEST1 Exon 10 Deletion)
- 🔀 Canine Multifocal Retinopathy (BEST1 Exon 10 SNP)
- 🔀 Glaucoma (ADAMTS10 Exon 9)
- 🔀 Glaucoma (ADAMTS10 Exon 17)
- 🔀 Glaucoma (ADAMTS17 Exon 11)
- 🔇 Glaucoma (ADAMTS17 Exon 2)
- Coniodysgenesis and Glaucoma (OLFM3)
- 😴 Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts (HSF4 Exon 9 Shepherd Variant)
- Primary Lens Luxation (ADAMTS17)
- Congenital Stationary Night Blindness (RPE65)
- 🔇 Congenital Stationary Night Blindness (LRIT3)
- 💽 Macular Corneal Dystrophy, MCD (CHST6)
- 🔇 2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis (APRT)
- 🔇 Cystinuria Type I-A (SLC3A1)
- Cystinuria Type II-A (SLC3A1)
- Cystinuria Type II-B (SLC7A9)
- 🔇 Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU (SLC2A9)
- 🔽 Polycystic Kidney Disease, PKD (PKD1)
- 🗸 Primary Hyperoxaluria (AGXT)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

ADDITIONAL CONDITIONS TESTED

- Protein Losing Nephropathy, PLN (NPHS1)
- X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)
- 😴 Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN (COL4A4 Exon 3)
- Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3)
- 📀 Primary Ciliary Dyskinesia, PCD (NME5)
- Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly Coat Syndrome, CKCSID (FAM83H Exon 5)
- 😴 X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia (EDA Intron 8)
- Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND (FLCN Exon 7)
- Canine Fucosidosis (FUCA1)
- 🔇 Glycogen Storage Disease Type II, Pompe's Disease, GSD II (GAA)
- 😴 Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC)
- 🔇 Glycogen Storage Disease Type IIIA, GSD IIIA (AGL)
- 🔇 Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6 Variant 1)
- 🚫 Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6 Variant 2)
- 💽 Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5)
- 💽 Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3)
- Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM Whippet and English Springer Spaniel Variant)
- 😴 Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM Wachtelhund Variant)
- 🔀 Lagotto Storage Disease (ATG4D)
- Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8)
- 🚫 Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4)
- 🚫 Neuronal Ceroid Lipofuscinosis 1, Cerebellar Ataxia, NCL4A (ARSG Exon 2)
- 👽 Neuronal Ceroid Lipofuscinosis 1, NCL 5 (CLN5 Border Collie Variant)
- Ϛ Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7)
- 🔀 Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 English Setter Variant)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

ADDITIONAL CONDITIONS TESTED

- Neuronal Ceroid Lipofuscinosis (MFSD8)
- Neuronal Ceroid Lipofuscinosis (CLN8 Australian Shepherd Variant)
- Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5)
- 🔀 Neuronal Ceroid Lipofuscinosis (CLN5 Golden Retriever Variant)
- 🛃 Adult-Onset Neuronal Ceroid Lipofuscinosis (ATP13A2, Tibetan Terrier Variant)
- 🛃 Late-Onset Neuronal Ceroid Lipofuscinosis (ATP13A2, Australian Cattle Dog Variant)
- 🔀 GM1 Gangliosidosis (GLB1 Exon 15 Shiba Inu Variant)
- 🔀 GM1 Gangliosidosis (GLB1 Exon 15 Alaskan Husky Variant)
- GM1 Gangliosidosis (GLB1 Exon 2)
- 🔀 GM2 Gangliosidosis (HEXB, Poodle Variant)
- 🔀 GM2 Gangliosidosis (HEXA)
- 🔇 Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5)
- 🏷 Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (Italian Greyhound Variant)
- 🍼 Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (Parson Russell Terrier Variant)
- Persistent Mullerian Duct Syndrome, PMDS (AMHR2)
- 💽 Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A)
- 😴 Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)
- 🔀 Neonatal Interstitial Lung Disease (LAMP3)
- 🛃 Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy (SLC19A3)
- 🔿 Alexander Disease (GFAP)
- 🔀 Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD (SPTBN2)
- 🔀 Cerebellar Ataxia, Progressive Early-Onset Cerebellar Ataxia (SEL1L)
- 🕑 Cerebellar Hypoplasia (VLDLR)
- S Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA (CAPN1)
- 😴 Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

ADDITIONAL CONDITIONS TESTED

- 🗸 Hereditary Ataxia (RAB24)
- 😴 Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy (LGI2)
- 🔀 Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2)
- Hypomyelination and Tremors (FNIP2)
- 🚫 Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome (PLP)
- 💽 Neuroaxonal Dystrophy, NAD (Spanish Water Dog Variant)
- 📀 Neuroaxonal Dystrophy, NAD (Rottweiler Variant)
- 🔀 L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH)
- 💽 Neonatal Encephalopathy with Seizures, NEWS (ATF2)
- 💽 Polyneuropathy, NDRG1 Malamute Variant (NDRG1 Exon 4)
- 🚫 Narcolepsy (HCRTR2 Intron 6)
- Narcolepsy (HCRTR2 Exon 1)
- 🗸 Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 15)
- 🏷 Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 4)
- Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV (RAB3GAP1, Rottweiler Variant)
- 😴 Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS (GDNF-AS)
- 😴 Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 (LPN1, ARHGEF10)
- Juvenile Myoclonic Epilepsy (DIRAS1)
- 🌄 Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2 (GJA9)
- 😴 Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome (KCNJ10)
- 🔀 Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 (ATP1B2)
- Dilated Cardiomyopathy, DCM1 (PDK4)
- 💽 Dilated Cardiomyopathy, DCM2 (TTN)
- 🚺 Long QT Syndrome (KCNQ1)
- 🏷 Cardiomyopathy and Juvenile Mortality (YARS2)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

ADDITIONAL CONDITIONS TESTED

- Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)
- Muscular Dystrophy (DMD Pembroke Welsh Corgi Variant)
- Muscular Dystrophy (DMD Golden Retriever Variant)
- 🔀 Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)
- 😴 Ulrich-like Congenital Muscular Dystrophy (COL6A3, Labrador Variant)
- Centronuclear Myopathy (PTPLA)
- Exercise-Induced Collapse (DNM1)
- Inherited Myopathy of Great Danes (BIN1)
- 🚫 Myostatin Deficiency, Bully Whippet Syndrome (MSTN)
- 🚫 Myotonia Congenita (CLCN1 Exon 7)
- 🚫 Myotonia Congenita (CLCN1 Exon 23)
- 🔇 Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM (MTM1, Labrador Variant)
- Inflammatory Myopathy (SLC25A12)
- 🛃 Hypocatalasia, Acatalasemia (CAT)
- Pyruvate Dehydrogenase Deficiency (PDP1)
- 🚫 Malignant Hyperthermia (RYR1)
- 😴 Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 53)
- 💽 Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 8)
- 🔀 Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN)
- 🔀 Lundehund Syndrome (LEPREL1)
- 🔀 Congenital Myasthenic Syndrome (CHAT)
- 💽 Congenital Myasthenic Syndrome (COLQ)
- 🔽 Congenital Myasthenic Syndrome (CHRNE)
- 🔽 Congenital Myasthenic Syndrome (COLQ)
- 🔨 Myasthenia Gravis Like Syndrome (CHRNE)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

ADDITIONAL CONDITIONS TESTED

- Episodic Falling Syndrome (BCAN)
- 📀 Paroxysmal Dyskinesia, PxD (PGIN)
- C Demyelinating Polyneuropathy (SBF2/MTRM13)
- 💽 Dystrophic Epidermolysis Bullosa (COL7A1)
- Oystrophic Epidermolysis Bullosa (COL7A1)
- C Ectodermal Dysplasia, Skin Fragility Syndrome (PKP1)
- 🔀 Ichthyosis, Epidermolytic Hyperkeratosis (KRT10)
- C Ichthyosis (PNPLA1)
- C Ichthyosis (SLC27A4)
- C Ichthyosis (NIPAL4)
- V Hereditary Footpad Hyperkeratosis (FAM83G)
- 🔀 Hereditary Footpad Hyperkeratosis (DSG1)
- Hereditary Nasal Parakeratosis (SUV39H2)
- Musladin-Lueke Syndrome (ADAMTSL2)
- 💽 Oculocutaneous Albinism, OCA (Pekingese Type)
- 🛃 Bald Thigh Syndrome (IGFBP5)
- 🌄 Lethal Acrodermatitis (MKLN1)
- C Ehlers Danlos (Doberman) (ADAMTS2)
- Cleft Lip and/or Cleft Palate (ADAMTS20)
- 🔀 Hereditary Vitamin D-Resistant Rickets (VDR)
- 🔇 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A2)
- 🔀 Osteogenesis Imperfecta, Brittle Bone Disease (SERPINH1)
- 🔇 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A1)
- 🔇 Osteochondrodysplasia, Skeletal Dwarfism (SLC13A1)
- 🔀 Skeletal Dysplasia 2, SD2 (COL11A2)

DNA Test Report

Test Date: May 9th, 2021

embk.me/apricot10

ADDITIONAL CONDITIONS TESTED

- Craniomandibular Osteopathy, CMO (SLC37A2)
- 🔀 Raine Syndrome, Canine Dental Hypomineralization Syndrome (FAM20C)
- Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD (FGF4 retrogene CFA12)
- Chondrodystrophy, Norwegian Elkhound and Karelian Bear Dog Variant (ITGA10)

DNA Test Report

Test Date: May 9th, 2021

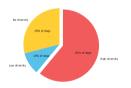
embk.me/apricot10

RESULT

INBREEDING AND DIVERSITY

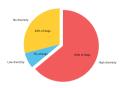
CATEGORY

Coefficient Of Inbreeding


Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

-- Bernese Mountain Dog -- All Breeds

High Diversity


25%

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.