

Outline

- ➤ Objective
- ➤ Scope of work and Deliverables
- ➤ Reference Engine Simulation
- > Floating Piston 3D CFD combustion simulation model build
- > Summary

Objective

3D-Combustion Simulation

- Evaluation of relative motion engine performance at two operating points (rated power and max torque points) w r.t reference SI (Spark Ignited) engine.
- All the simulations carried out in closed cycle.

Scope of work and deliverable

3D-Combustion Simulation

- Base reference SI engine will be selected for comparative study. The same engine will be modelled and simulation results will be validated at rated power and peak torque points.
- M/s. KAnalysis will provide the 3D-models of relative motion engine required for combustion simulation and its displacement volume shall be maintained equivalent to base engine displacement.
- ARAI will prepare the simulation model based on 3D-model & other inputs and boundary conditions provided by M/s KAnalysis.

Scope of work and deliverable

3D-Combustion Simulation

- In case of unavailability of any input or boundary conditions, ARAI will assume after mutual understanding.
- Simulation work will be carried out at max. power and max torque points.
- Relative motion engine simulation results will be analysed and compared with reference SI engine performance such as power, torque, in-cylinder pressure, etc.
- Max. 4 no. of iterations considered for relative motion engine 3D-combustion analysis. Any more iterations may call for price and time implications.

Inputs & Deliverables

Inputs required from KAnalysis

- 2D drawings and 3D models of components and sub-systems, animations of entire new engine concept.
- All inputs and boundary conditions used while conceptualisation.
- Intake & Exhaust valve/port timings.
- Floating piston details like piston motion profile etc.
- Data calculations/literature related to new engine concept.
- Analysis/simulation reports of components/sub-systems of new engine.

Deliverables

3D Combustion Analysis report along with results comparison with base SI engine considered in this analysis

Reference engine specification and Inputs

Parameters	Base Engine
Engine Type	Inline, WC
Bore x Stroke (mm)	100 X 112
Connecting Rod Length (mm)	181
Compression Ratio	11.1
No. of cylinders	4
Cubic capacity (litre)	3.52
Valves per Cylinder	2
Aspiration	TCIC
Rated Power	78 kW @ 2800 rpm
Max. torque	306 Nm @ 1400 rpm
Rated BMEP (bar)	9.5
Max. BMEP (bar)	10.93
CNG Fuel System	MPFI
Manifold Pressure, bar	1.61 bar
IVC	52° a BDC
EVO	52° b BDC
IVC Temperature	445 K
Spark Timing	21.4 ⁰ bTDC
Spark duration	0.53ms
Air flow rate, kg/hr @ 2800rpm	338.6
Fuel flow rate, kg/h @ 2800rpm	19.9
FMEP, bar	1.45
PMEP, bar	0.60
FMEP+PMEP, bar	2.05
A/F ratio (Stoichiometric)	17.0

Reference Engine Model

Side View Top View

Inputs – Initial & Boundary Conditions

Valve Timings:

- IVO: 336 CAD & IVC: 592 CAD
- EVO: 848 CAD & EVC: 1094 CAD
- Start of Injection: 760 CAD
- End of Injection :1110 CAD
- Duration of Injection: 350 CAD

> Initial & boundary condition:

Intake Valve Lift

- Intake & exhaust port pressures
- Intake & exhaust valve lift profile & timing
- Air flow rate, fuel flow rate
- Compression ratio: 11.1

Exhaust Valve Lift

Base Engine Performance

							Engine :	Speed - 2800 r	pm							
Simulation Cases	Equivalent Displacement (4-cylinder)	IVC/EVO	Air flow	fuel	Air flow fuel		A/F	Heat Energy Input	I I OTAL HEAT	Combustion Efficiency based on heat energy release		ВМЕР	Power	Torque	kW/I	Peak Firing Pressure (PFP)
	~cc		mg	/st				J	J	%	Ва	r	kW	Nm		bar
Base Engine test	3520	52 aBDC/52bBDC	949.0	55.8	319.0	18.76	17.0	2735.18	2488	91.0	1.45	9.492	78	266.02	22.16	90.00
Base Engine simulation	3520	52 aBDC/52bBDC	928.1	54.6	311.8	18.35	17.0	2674.91	2460	92.0	1.45	9.39	77.1	262.84	21.89	88.20
% deviation b/s test & sim	-	-	2.2	2.2	2.2	2.21	-	2.2	1.1	-1.1	-	1.1	1.2	1.2	1.2	2.0

- Reference engine combustion efficiency is only 92%
- Performance is within 3%
- Validated model input conditions considered for floating piston concept analysis

Floating Piston (RM) Model Provided by KAnalysi

Crank Piston at BDC

CP stroke= 112 FP stroke= 56 RM engine volume= 687.8 cc ARAI engine volume= 966.7 cc

- 3D-model for RM piston concept and floating piston motion data provided by Analysis
- Final model considered for closed cycle combustion simulation
- Equivalent 4-cylinder engine displacement will be 2.47 ltr and the same considered for calculations

Floating Piston (RM) Model Provided by KAnalysi

Crank Piston at BDC

CP stroke= 112 FP stroke= 56 RM engine volume= 687.8 cc ARAI engine volume= 966.7 cc From KAnalysis

Model corrected by ARAI after discussions with KAnalyis and RM engine total volume (displacement + clearance volumes = 729.6 cc Engine cylinder displacement : 663.3cc

Model prepared by ARAI for simulation with CR: 11.1

Equivalent 4-cylinder engine displacement will be 2.63 ltr

Floating Piston (RM) Meshing

- Final 3D model provided by KAnalysis used for meshing
- During meshing few inter sections observed and resolved to complete the floating piston concept engine meshing

3D CFD cold flow simulation

• Close cycle cold flow simulation for full load point at 2800rpm carried out.

3D CFD Combustion Simulation – Relative Motion

 Following two cases performed for performance evaluation of floating piston and compared with base engine performance

Parameters	Case 1	Case 1								
Displacement/cly, cc	619									
Connecting Rod Length (mm)	181									
Compression Ratio	11	1								
No. of cylinders	4									
Cubic capacity (litre)	2.	47								
Manifold Pressure, bar	1.61 bar	1.61 bar								
IVC	52° a BDC	45° a BDC								
EVO	52° b BDC									
IVC Temperature	422	.5 K								
Spark Timing	21.4 ⁰	bTDC								
Spark duration	0.53	3ms								
Air flow rate, kg/hr @ 2800rpm	287.2	314.8								
Fuel flow rate, kg/h @ 2800rpm	15.83	18.52								
FMEP, bar	1.45	1.45								
PMEP, bar	0.60	0.60								
FMEP+PMEP, bar	2.05	2.05								
A/F ratio (Stoichiometric)	17.0	17.0								

- Case 1: IVC pressure is same as base and accordingly fuel quantity calculated based on stoichiometric a/f
- Case 2: IVC conditions changed to get tapped mass equivalent to base engine. This case performed to check the response of floating piston

Performance Comparison – Relative Motion

							Engin	e Speed - 280	0 rpm							
Simulation Cases	Equivalent Displacement (4-cylinder)	IVC/EVO	Air flow	fuel	Air flow	fuel	A/F	Heat Energy Input	Total Heat Release	Combustion Efficiency based on heat energy release	FMEP	ВМЕР	Power	Torque	kW/I	Peak Firing Pressure (PFP)
	~cc		mg	/st	kg	/hr		J	J	%	Ва	r	kW	Nm		bar
Base Engine test	3520	52 aBDC/52bBDC	949.0	55.8	319.0	18.76	17.0	2735.18	2488	91.0	1.45	9.492	78	266.02	22.16	90.00
Base Engine simulation	3520	52 aBDC/52bBDC	928.1	54.6	311.8	18.35	17.0	2674.91	2460	92.0	1.45	9.39	77.1	262.84	21.89	88.20
% deviation b/s test & sim	-	-	2.2	2.2	2.2	2.21	ı	2.2	1.1	-1.1	-	1.1	1.2	1.2	1.2	2.0
Floating Piston Case1	2653	45 aBDC/52bBDC	936.9	55.1	314.8	18.52	17.0	2700.39	2611	96.7	1.45	13.19	81.7	278.69	30.80	108.50
Floating Piston Case2	2653	52 aBDC/52bBDC	801.0	47.1	287.2	15.83	17.0	2307.9	2262	98.0	1.45	11.71	72.5	247.35	27.34	90.57

Note: RM piston engine friction considered equivalent to base engine and above calculations done for comparison

Relative Motion Friction – Simulation Results

- RM piston is having additional two relative motions and additional piston rings, these may contribute to additional friction.
- Assuming about 50% additional friction, total engine friction estimated to up to 2.17 bar.

With revised friction, engine performance is as below

									Engine Sp	eed - 2800 r	pm						
Simulation Cases	Equivalent Displacement (4-cylinder)	IVC/EVO	Air flow	fuel	Air flow	fuel	A/F	Heat Energy Input	Total Heat	Combustion Efficiency based on heat energy release		ВМЕР	Power	Torque	kW/l	Peak Firing Pressure (PFP)	
		~cc		mg/s	mg/st		kg/hr		J	J	%	Bar		kW	Nm		bar
Fic	oating Piston Case1	2653	45 aBDC/52bBDC	936.9	55.1	314.8	18.52	17.0	2700.39	2611	96.7	1.45	13.19	81.7	278.69	30.80	108.50
Fic	oating Piston Case2	2653	52 aBDC/52bBDC	801.0	47.1	287.2	15.83	17.0	2307.9	2262	98.0	1.45	11.71	72.5	247.35	27.34	90.57
Flo	oating Piston Case1	2653	45 aBDC/52bBDC	936.9	55.1	314.8	18.52	17.0	2700.39	2611	96.7	2.17	12.47	77.2	263.38	29.11	108.50
Flo	oating Piston Case2	2653	52 aBDC/52bBDC	801.0	47.1	287.2	15.83	17.0	2307.9	2262	98.0	2.17	10.99	68.0	232.03	25.64	90.57

RM engine performance is also depending on engine friction level

Relative Motion Friction – Simulation Results

Parameters	Case 3
Displacement/cly, cc	663.3
Connecting Rod Length (mm)	181
Compression Ratio	11.1
No. of cylinders	4
Cubic capacity (litre)	2.65
Manifold Pressure, bar	2.0 bar
IVC	52° a BDC
EVO	52° b BDC
IVC Temperature	422.5 K
Spark Timing	21.4 ⁰ bTDC
Spark duration	0.53ms
Air flow rate, kg/hr @ 2800rpm	358.9
Fuel flow rate, kg/h @ 2800rpm	21.1
FMEP, bar	2.17
PMEP, bar	0.60
FMEP+PMEP, bar	2.77
A/F ratio (Stoichiometric)	17.0

Case 3 simulation run performed with higher intake mass flow about 12.5% as compared to case 1 to understand the engine combustion performance.

Relative Motion Friction – Simulation Results

								Engine Sp	eed - <mark>2800</mark> r	pm						
Simulation Cases	Equivalent Displacement (4-cylinder)	IVC/EVO	Air flow	fuel	Air flow	fuel	A/F	Heat Energy Input	Total Heat Release	Combustion Efficiency based on heat energy release		ВМЕР	Power	Torque	kW/I	Peak Firing Pressure (PFP)
	~cc		mg/s	t	kg/hr			J	J	%	Bar		kW	Nm		bar
Floating Piston Case1	2653	45 aBDC/52bBDC	936.9	55.1	314.8	18.52	17.0	2700.39	2611	96.7	1.45	13.19	81.7	278.69	30.80	108.50
Floating Piston Case2	2653	52 aBDC/52bBDC	801.0	47.1	287.2	15.83	17.0	2307.9	2262	98.0	1.45	11.71	72.5	247.35	27.34	90.57
Floating Piston Case1	2653	45 aBDC/52bBDC	936.9	55.1	314.8	18.52	17.0	2700.39	2611	96.7	2.17	12.47	77.2	263.38	29.11	108.50
Floating Piston Case2	2653	52 aBDC/52bBDC	801.0	47.1	287.2	15.83	17.0	2307.9	2262	98.0	2.17	10.99	68.0	232.03	25.64	90.57
Floating Piston Case3	2653	45 aBDC/52bBDC	1054.0	62.1	358.9	21.11	17.0	3040.45	3036	99.9	2.17	16.06	99.5	339.23	37.49	126.00

Summary of Results

- Base engine simulation model validated within 3%
- RM piston engine model and floating piston motion profile shared by Kanalysis
- Model shared by KAnalysis corrected by ARAI and total clearance volume 729.6cc and compression ratio
 11.1
- 50% higher friction considered for RM piston friction and calculations done with both base and revised friction for comparison
- Base model IVC conditions considered for RM piston model and two case studies simulation performed with IVC 45 deg aTDC and 52 deg aTDC
- Results shows that combustion efficiency improvement with RM piston concept
- Flat peak pressure observed with RM piston as compared to base which is unique feature of this concept

•

Summary of Results

- 40% higher Power/Itr with RM piston concept for the same fuel and air mass conditions
- About 25% higher Power/Itr with RM piston concept for RM piston conditions where air+fuel mass fuel is as per actual engine size and conditions
- Improved combustion efficiency is good sign of this concept

Making Your Auto Concept a Reality

