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We introduce a time field framework to model dynamics in open physical systems

with energy exchange, such as combustion engines with two pistons or cosmic interac-

tions. The framework defines a scalar time field through internal and external accel-

erations, an effective mass, a normalized acceleration product, and a complex phase

capturing field polarization. In open systems, the effective acceleration, influenced

by a secondary piston’s design, quantifies energy availability in a three-dimensional

Cartesian system. In closed systems, it reduces to Newtonian acceleration. The

model supports nonlinear dynamics, power exchange, and variable-direction field

effects, with a clear closed-system limit. A numerical example demonstrates its ap-

plication to a combustion engine, and we propose experimental validation, making

the framework accessible to physics graduates and applicable to diverse systems.

I. INTRODUCTION

Open physical systems, characterized

by energy exchange with external environ-

ments, pose challenges for traditional mod-

els like Newtonian or Lagrangian mechan-

ics, which often assume isolated dynamics.

The time field framework addresses this gap

by introducing a scalar field to model tem-

poral influences, capturing variable external

effects such as pressure in mechanical sys-

tems or cosmic forces in astrophysical con-

texts. Motivated by applications like a com-

bustion engine with two pistons in a Rela-

tive Motion design, this framework defines

dynamics in a three-dimensional Cartesian

system (x = t, y = A1(t), z = A2(t))

for open systems, transitioning to a two-

dimensional time-acceleration plot (x = t,

y = A1(t)) in closed systems.

This paper, aimed at physics graduates

familiar with classical mechanics, field the-

ory, and complex analysis, formalizes the

time field through internal and external ac-

celerations, a complex phase, and an effec-

tive mass. It supports nonlinear dynamics,

power exchange, and field variability, with

a clear reduction to Newtonian mechanics.

Section II defines the framework, Section

III presents dynamical equations, Section

IV applies it to a combustion engine, and

Section VI discusses implications and future

work.
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II. TIME FIELD DEFINITION

A. System Context

The time field operates in open sys-

tems where internal forces (e.g., fuel com-

bustion) interact with external field effects

(e.g., pressure from a secondary piston). Its

characteristics include:

• External Influence: Acceleration

from field effects, variable in value

and direction.

• Polarization: A complex phase

modeling field interactions.

• Power Exchange: Energy transfer,

termed energy availability (J/s).

• Nonlinearity: From time, mass, and

acceleration interactions.

• Closed System Limit: Reduction

to Newtonian dynamics when exter-

nal effects vanish.

B. Motivation

Traditional models struggle with exter-

nal fields varying in direction and magni-

tude, such as pressure changes in a com-

bustion engine’s power stroke. The time

field framework unifies these dynamics, of-

fering a generalized approach applicable to

terrestrial and cosmic systems, with a ro-

bust closed-system limit.

C. Mathematical Components

1. Energy Availability

The energy availability, or power (J/s),

is:

E(t) =
1

2
Meff(t)g(t)

2teiϕ(t) (1)

where Meff(t) is the effective mass (kg),

g(t)2 the normalized acceleration product

(m²/s), t time (s), and eiϕ(t) the phase.

Units: kg ·m2/s4 · s = J/s.

2. Effective Mass

Meff(t) = M0 · f(A2(t), A1(t)) (2)

where M0 is the reference mass (kg),

and f(A2(t), A1(t)) = |A2(t)|
|A1(t)|+ϵ

, with ϵ =

0.01m/s2, is dimensionless.

3. Normalized Acceleration

g(t)2 = kn·A2(t)A1(t), kn =
g20∫ n+1

n
A2(τ)A1(τ) dτ

,

(3)

where g0 = 9.8m/s2

where A1(t) (m/s²) is the known internal

acceleration (e.g., fuel combustion), A2(t)

(m/s²) is the variable external acceleration,

and kn (s¹) normalizes the product per sec-

ond. Units: (s−1) · (m2/s4) = m2/s4.
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4. Effective Acceleration

In open systems:

Aeff(t) = A1(t) · A2(t) (4)

Units: m²/s, measured every 0.001 s, for

energy availability.

In closed systems:

Aeff(t) = A1(t) =
F

M0

(5)

Units: m/s², reflecting Newtonian acceler-

ation.

5. Phase

ϕ(t) = k· A2(t)

A1(t) + ϵ
, k = 1 s2/m, ϵ = 0.01m/s2

(6)

Units: dimensionless, capturing directional

variability.

6. Accelerations

• A1(t) =
∫ n+1

n
afuel(τ) dτ , from fuel use

(e.g., 1 g/s).

• A2(t) =
∫ n+1

n
apressure(τ) dτ , from

pressure forces.

D. Time-Acceleration Representation

In open systems, dynamics are modeled

in a 3D Cartesian system (x = t, y = A1(t),

z = A2(t)), capturing A2(t)’s variability. In

closed systems, the XY plane (x = t, y =

A1(t)) is used, where Aeff(t) = A1(t). See

Fig. 1.

t

A1(t)

A2(t)

A1(t) (closed system)

A2(t) (open system)

FIG. 1. Time-acceleration plot: XY plane (x =

t, y = A1(t)) for closed systems; XYZ system

includes A2(t) (dashed) for open systems.

III. DYNAMICAL EQUATIONS

A. Open System Dynamics

Energy availability is:

E(t) =
1

2
M0f(A2(t), A1(t))·knA2(t)A1(t)·teiϕ(t)

(7)

using Aeff(t) = A1(t) · A2(t).

B. Closed System Dynamics

When A2(t) → 0:

Aeff(t) = A1(t) =
F

M0

(8)

E(t) → M0v(t)A1(t), v(t) =

∫ t

0

A1(τ) dτ

Units: kg ·m/s ·m/s2 = J/s.
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C. Energy Comparison

|E(t)| = 1

2
M0f(A2(t), A1(t))·knA2(t)A1(t)·t

A decrease in A2(t) or f(A2(t), A1(t)) re-

duces |E(t)|.

IV. APPLICATION: COMBUSTION

ENGINE

Consider a combustion engine with two

pistons:

• A1(t) = F0

m
, with F0 = 100N, m =

0.5 kg, so A1(t) = 200m/s2.

• A2(t) =
P0Apiston

mω
[cos(ωt) −

cos(ω(t+∆t))], with P0 = 105 Pa,

Apiston = 0.01m2, m = 0.5 kg,

ω = 100 rad/s, ∆t = 0.01 s. The

secondary piston’s shape and size

control pressure variability:

– Design 1: A2(t) becomes neg-

ative after 50% of the power

stroke (e.g., t = T/2, T =

0.02 s).

– Design 2: A2(t) becomes neg-

ative after 30% of the power

stroke (e.g., t = 0.3T ).

Example: A2(t) ≈ 200[cos(100t) −

cos(100(t+ 0.01))]m/s2.

• Open system: Aeff(t) = A1(t) · A2(t),

measured every 0.001 s.

• Closed system: Aeff(t) = A1(t).

V. EXPERIMENTAL VALIDATION

The framework can be tested by mea-

suring Aeff(t) in engines with varying sec-

ondary piston designs. For Design 1 and

Design 2, accelerometers could record A1(t)

and A2(t), with pressure sensors verifying

the sign change at 50% or 30% of the power

stroke. Numerical simulations using the

given parameters can predict E(t), enabling

comparison with experimental data.

VI. CONCLUSION

The time field framework models open

system dynamics with Aeff(t) = A1(t) ·

A2(t), capturing energy availability influ-

enced by secondary piston design. It re-

duces to Newtonian mechanics in closed sys-

tems, supporting polarization, power ex-

change, and nonlinearity. Future work

could refine f and ϕ(t), extend applications

to astrophysical systems, or validate predic-

tions experimentally.


