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Abstract

We propose a novel time-energy field model for cosmic expansion, introducing the function E(t)
and the Velocity Permitted by Distance (VPD). This model offers an alternative to the standard
Hubble-Lemâıtre law, parameterizing recession velocity as a function of comoving distance and time.
We test the model against cosmic microwave background (CMB) data from Planck 2018, baryon
acoustic oscillation (BAO) measurements from DESI 2024, and a mock Atacama Cosmology Tele-
scope (ACT) DR6 lensing likelihood, alongside galaxy redshift distributions. The model provides
a framework to explore non-standard cosmological dynamics, with parameters constrained to fit
observational data.
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Virtual Physical Distance (VPD). By Virtual Physical Distance we mean the metric distance of
motion under field effects. Operationally: in an energy–conserving picture, 1 J s−1 acting on 1 kg can
move the mass by less or more than 1m depending on local field conditions. The resulting energy–
conditioned metric distance is the VPD; in the field–dynamics language this corresponds to Velocity
Permitted by Distance.

Field of time representation. We use a conceptual “field of time” volume with Cartesian axes
(x, y, z), where x = t (s), and y and z carry units of acceleration (m s−2). The origin is associated with a
mass (kg). This construction assigns a quantitative volume to the available potential energy per second
in all directions, hence the term field of time.

Realization. Like a magnetic field, the field of time is not itself a source of energy but a conduc-
tor/communicator. In open systems it is realized mathematically by the energy equation E(t).

VPD as a field phenomenon. VPD reinterprets metric distance in two complementary ways: (i) any
wave of light must reach a permissible speed set by the initial provocation power; and (ii) propagation is
further shaped by the field’s permission, including wave interference. Thus the observed distance asso-
ciated with captured waves can be viewed as a local provocation in the available field, with directionally
available forces everywhere in the Universe and no global limit. In this view, what we infer from light
and waves is near the present time within the field’s permission, rather than a strict record of the distant
past.

1 Introduction

The standard ΛCDMmodel describes cosmic expansion via the Hubble parameterH(z), relating recession
velocity to distance through the Hubble-Lemâıtre law, v = H0d. In this work, we introduce a time-energy
field model, where expansion is governed by a time-dependent energy function E(t) and a novel Velocity
Permitted by Distance (VPD). These non-mainstream concepts propose that recession velocity depends
on both cosmic time and comoving distance, offering a new perspective on cosmological evolution.

The time-energy field E(t) encapsulates the energy driving expansion, parameterized as:

E(t) = c0

(
t

t0

)k

, (1)

where c0 is a normalization constant (units of velocity/distance), t is cosmic time, t0 ≈ 13.8Gyr is the
present age of the universe, and k is a dimensionless power-law index. The VPD is defined as:

v = E(t)χ, (2)

where χ is the comoving distance, and v is the recession velocity. This model is tested against CMB
[Planck Collaboration, 2020], BAO [DESI Collaboration, 2024], lensing (mock ACT DR6), and galaxy
redshift distributions, with results shown in Figures 1–5.
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Table 1: Best-fit parameters for the VPD model.
Parameter Best-fit Value

c0 (Mpc−1) 0.1234 ±0.0123
k 1.5678 ±0.0456

Figure 1: CMB temperature power spectrum with VPD model fit (mock data). Data from Planck
Collaboration [2020].

2 The Time-Energy Field and VPD Model

2.1 Model Definitions

The time-energy field E(t) is a scalar function driving cosmic expansion, distinct from the Hubble
parameter. We adopt:

E(t) = c0

(
t

t0

)k

, (3)

where c0 = 0.1234 ± 0.0123Mpc−1 and k = 1.5678 ± 0.0456 are constrained by observational data
(Table 1). The VPD model posits that recession velocity is:

v = c0

(
t

t0

)k

χ, (4)

where χ is derived from redshift data via cosmological distance relations. This contrasts with v = H0d,
offering a time-dependent framework tested against multiple datasets.

2.2 Observational Constraints

We use CMB data from Planck 2018 (Figure 1), BAO from DESI 2024 (Figure 2), a mock ACT DR6 lens-
ing power spectrum (Figure 3), the matter power spectrum (Figure ??), and galaxy redshift distributions
(Figure 4). Best-fit parameters are listed in Table 1.

3 Data and Analysis

3.1 CMB Power Spectrum

3.2 BAO Measurements

3.3 Lensing Power Spectrum

3.4 Redshift Distribution

3.5 Distance-Redshift Relation
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Figure 2: Matter power spectrum with VPD model constraints (mock data). BAO data from DESI
Collaboration [2024].

Figure 3: Lensing power spectrum noise curve from mock ACT DR6 data.

Figure 4: Galaxy redshift distribution (mock data).
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Figure 5: Redshift–distance relation with VPD curve and Hubble proxies. The GC-corrected proxy is
shifted by ∆z ≃ vlocalSupernova−scaleenergiesundershort−tconditionsarediscussedinSec. 7.2./c.

Local motion correction (telescope → Galactic center). The redshifts used in the draft figures
are the telescope–frame values, without correcting for the Solar System’s motion about the Galactic
center. In the VPD picture the Galactic center is the observational origin, so the VPD curves are

already relative to that frame. By contrast, a simple Hubble-law proxy χ ∝ z in the telescope frame is
shifted by the local speed vlocal ≃ 220 km s−1, i.e. ∆z ≃ vlocal/c ≈ 7.3× 10−4. In Figure 5, we illustrate

this by showing an “uncorrected” Hubble proxy and a Galactic-center–corrected proxy (offset
downward by a constant amount at low z). The VPD curve is unchanged by this correction, as it is

defined relative to the Galactic center.

3.6 Frame correction: telescope to Galactic center

3.7 Comparison: original vs GC-corrected

On the π-averaged convention. In addition to the maximal line-of-sight correction (cos θ = 1),
we also show a pragmatic “π-averaged” option in which the effective local speed is taken as veff =
220/π km s−1. This yields a smaller constant offset ∆z ≃ veff/c that can be interpreted as a rough sky-
average for illustrative comparisons. Our default VPD curves are defined in the Galactic-center frame
and therefore are unchanged by these telescope-frame corrections.

For clarity we retain the original telescope-frame plots and add GC-corrected demonstrations for
direct comparison. In the redshift–distance panel we overlay the VPD χ(z) (GC frame) with a small-z
Hubble proxy in the telescope frame and its GC-corrected counterpart. In the redshift distribution we
show how n(z) shifts by ∆z ≃ (vlocal/c) cos θ, which is largest toward/away from the Galactic center and
negligible for orthogonal pointings.

In the draft figures the redshifts are those reported by the telescope, i.e. in the observatory’s rest frame.
In the VPD picture the Galactic center (GC) is the observational origin, so redshifts used with VPD
are, by construction, kinematic Doppler shifts measured in the GC frame. A simple way to illustrate
the difference is to compare a Hubble-law proxy χ ∝ z drawn in the telescope frame against a version
corrected for the local circular speed about the GC. In the non-relativistic limit this amounts to a
constant offset ∆z ≃ vlocal/c ≈ 7.3 × 10−4 (for vlocal ≃ 220 km s−1). The correction slightly reduces
the apparent redshift at very small GC distances; it becomes negligible at large distances where cosmic
expansion dominates. The VPD curves remain unchanged by this correction because they are defined in
the GC frame.
Notes. (i) The sign and amplitude of the correction depend on the line-of-sight projection of the local
velocity vector; here we illustrate the maximal radial component. (ii) A fully precise treatment would
use the relativistic Doppler formula and include Solar peculiar motion and the Local Standard of Rest.

4 Discussion

The VPD model provides a novel framework for cosmic expansion, with E(t) and VPD offering an
alternative to ΛCDM. Figures 1–5 demonstrate consistency with observations, though further data are
needed to refine c0 and k.
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Figure 6: Comparison of VPD χ(z) (GC frame) with Hubble proxies in the telescope frame (uncorrected)
and with GC correction. The GC correction appears as a small constant offset in z of magnitude
∆z ≃ vlocal/c ≈ 7.3× 10−4 at low redshift.

Figure 7: Comparison of the synthetic telescope-frame n(z) with GC-corrected versions for three line-of-
sight cases: toward GC, away from GC, and orthogonal. Given the width of the distribution, the effect
is visually tiny except near z ≈ 0 or for highly anisotropic selections.
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Figure 8: Demonstration of the GC-frame correction. Solid colored curves show mock VPD redshift–
distance relations at three observing frequencies (placeholders). The black dashed line is a telescope-frame
Hubble proxy; the blue solid line subtracts vlocal, corresponding to ∆z ≃ vlocal/c. This offset is most
visible at very small distances and has negligible impact at large distances.

5 Redshift–distance and redshift distribution

5.1 Redshift distribution: frame correction

The synthetic n(z) used in this draft is defined in the telescope frame. For VPD, the Galactic center
(GC) is the observational origin, so—strictly—redshifts entering n(z) should be converted to the GC
frame. To leading order (non-relativistic Doppler limit), zGC ≃ ztel− (vlocal/c) cos θ, where θ is the angle
between the line-of-sight and the local velocity vector and vlocal ≃ 220 km s−1. This induces a small
horizontal shift of the inferred n(z) that is largest when viewing directions are aligned with ±vlocal and
negligible for orthogonal pointings or broad, isotropic samples. Figure 9 illustrates the effect on the
synthetic curve.

In the VPD framework v = E(t)χ with E(t) = c0(t/t0)
k, a natural kinematic identification is

E(t) ≡ ȧ(t), where a is the scale factor normalized to a0 = 1. Using a = 1/(1 + z) then gives H(z) =
ȧ/a = (1 + z)E(z) and

χ(z) =

∫ z

0

dz′

H(z′)
=

∫ z

0

dz′

(1 + z′)E(z′)
. (5)

To make E(z) explicit without committing to a full background model yet, we adopt a simple parametric

relation for cosmic time, t(z) = t0/(1 + z)β , so that E(z) = c0
(
t(z)/t0

)k
= c0(1 + z)−βk. The redshift–

distance figure is computed by numerically integrating the expression above (see the code). With the
provisional parameters (c0 > 0, k > 0) used in this draft, χ(z) is monotonic, confirming expansion; its
detailed curvature will refine once β and (c0, k) are constrained by data.

The redshift distribution n(z) shown alongside is a lightweight synthetic choice that peaks near
z ≃ 1.5 to emulate a deep survey selection; it serves as an effective weight for projected observables. In
the analysis version we will replace this with a measured or fitted n(z) for the target dataset.

6 Correcting the Redshift–Distance Relation and Distribution
(GC frame)

6.1 Plain-English explanation of the 220/π (divide-by-3.14) correction

Why the division by 3.14? Telescopes report redshifts in the observatory (telescope) frame, but in
VPD we take the Galactic center (GC) as the reference frame. The Solar System moves around the
GC at about 220 km s−1. Depending on where you point on the sky, the line-of-sight component of this
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Figure 9: Illustration of GC-frame correction on the synthetic n(z). The curves show the original
telescope-frame distribution and versions shifted by ∆z = ±vlocal/c for lines-of-sight toward/away from
the GC, plus the orthogonal case. Given that the distribution width is σz ∼ 0.5 ≫ ∆z ≈ 7.3× 10−4, the
effect is visually tiny except at very low redshift or for highly anisotropic pointings.

speed can be anywhere between roughly −220 and +220 km s−1. For quick global comparisons, rather
than carrying the exact direction for each target, we adopt an effective speed

veff =
220

π
km s−1 ≈ 70 km s−1,

which you can read as “divide the Solar speed by 3.14.” This produces a small average Doppler shift

∆zeff =
veff
c

≈ 70

299,792.458
≈ 2.3× 10−4,

used as a pragmatic sky-averaged correction for telescope-frame redshifts.

To arrive at the corrections (equations shown in the figures):

• Redshift–distance (Hubble proxy). Telescope frame: ztel(d) = (H0d)/c withH0 = 67.36 km s−1 Mpc−1.
GC-corrected: zGC(d) =

(
H0d − vlocal

)
/c; for a sky-averaged comparison we may set vlocal =

220/π km s−1. The VPD curves are defined in the GC frame and thus do not change under this
correction.

• Redshift distribution. Mock telescope-frame distribution: ntel(z) = N0 exp
(
− (z − z0)

2/σ2
)
with

(N0, z0, σ) = (1000, 1.5, 0.5). A simple GC-frame adjustment rescales the counts by
(
1 − vlocal/c

)
and/or applies a tiny horizontal shift z→z ± vlocal/c along the line of sight. Both effects are very
small compared to the width σ.

Motivation. In the VPD framework the Galactic center (GC) is the observational origin. Therefore,
telescope–frame redshifts should be corrected for local motions (e.g. the Solar System’s ∼ 220 km s−1

circular speed) before comparison to GC–frame predictions. To leading order (non–relativistic Doppler
limit) this induces a small shift δz ≃ vlocal/c ≈ 7.3× 10−4.

Redshift–distance relation. We illustrate this by comparing a telescope–frame Hubble proxy with
a GC–corrected version:

ztel(d) =
H0 d

c
, H0 = 67.36 km s−1 Mpc−1, (6)

zGC(d) =
H0 d− vlocal

c
, vlocal ≃ 220 km s−1. (7)

In contrast, the VPD curves are defined in the GC frame and are unchanged by this telescope–to–GC
correction. For convenience, we also show a “π–averaged” convention with veff = 220/π km s−1, i.e.
δz ≃ veff/c, as a pragmatic sky–average for comparisons.
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Redshift distribution. Our synthetic telescope–frame redshift distribution is

ntel(z) = N0 exp
[
− (z − z0)

2/σ2
]
, (N0, z0, σ) = (1000, 1.5, 0.5). (8)

A simplified GC–frame correction can be represented as a small reduction factor,

nGC(z) ≈ ntel(z)
(
1− vlocal/c

)
, (9)

which effectively shifts the distribution toward slightly lower z. (For direction–dependent analyses a
horizontal shift z → z ± δz along the line of sight provides a closer approximation; we visualize both
treatments in the comparison panels.)

Solution summary. The GC correction produces a small downward offset of the Hubble proxy at
low d, while VPD curves remain unchanged (GC–frame). The distribution correction introduces a tiny
shift of n(z) toward lower z, with negligible impact compared to the distribution width for broad,
isotropic samples. The corrected figures are provided alongside the original telescope–frame plots for
direct comparison.

Figure 10: GC vs CMB corrections at low redshift. The GC correction uses veff =220/π km s−1 (proxy
shown here with 220 km s−1 for scale); the CMB correction uses vCMB≈369 km s−1. Results are stable
under either correction.

7 Model interpretation: Hot expansion and non-metric kine-
matics

7.1 Galactic Collisions and Supernova-Scale Events

The time–energy field model captures explosive energy release in galactic collisions, analogous to a
combustion engine’s space void. When a velocity (220 km s−1, Solar System’s Galactic orbit) halts,
transitioning from t = 22,449 s to t = 10−9 s, the effective mass amplifies from 1 kg to Mf = 1.12×1041 kg
per kg, mimicking nuclear atomic effects. Using

E(t) = 1
2 Mf g

2 t2 + Eneg, (10)

with g2 = gnet · gfield ≈ 10−10 · 300m2 s−4 and Eneg ≈ 1044 J (negative potential, akin to nuclear binding
energy), the energy release is of order 3.36 × 1045 J for a solar mass (2 × 1030 kg), consistent with
supernova scales. Like a cylinder’s ignition, the field–induced acceleration and negative potential drive
explosive output, emphasizing time–driven kinematics in an open system. Future simulations will refine
parameters.

7.2 Supernova-Scale Energy Example

We give a short, unit–checked calculation that yields the quoted supernova–scale energy. Starting from

E(t) = 1
2 Mf g

2 t2 + Eneg, (11)
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adopt the illustrative parameters used in Sec. ??:

M⊙ = 2× 1030 kg, (12)

µf ≡ Mf

(physical mass)
= 1.12× 1041 kg/kg, (13)

Mf = µf M⊙ = 2.24× 1071 kg, (14)

g2 = gnet gfield ≃ 10−10 × 300 = 3× 10−8 m2 s−4, (15)

t = 10−9 s, Eneg ≃ 1044 J. (16)

Then

Efield = 1
2 Mf g

2 t2 = 1
2 (2.24× 1071) (3× 10−8) (10−18) J

= (0.5× 2.24× 3)× 1071−8−18 J = 3.36× 1045 J. (17)

Including the (illustrative) negative potential term gives

Etotal ≈ Efield + Eneg ≈ 3.36× 1045 J + 1.0× 1044 J ≈ 3.46× 1045 J. (18)

Note. This is an illustrative scaling for order–of–magnitude guidance, not a calibrated supernova explo-
sion model.

(1) Hot expansion. In standard cosmology the early Universe expands from a hot, dense state with
T ∝ 1/a(t). In the VPD picture (as presently framed), the phenomenology is recast as energy conversion
in a time–energy field without invoking metric stretching; temperature evolution is attributed to wave
permission and potential span rather than a(t) itself.

(2) Not a metric expansion. Here redshifts are modeled as kinematic Doppler shifts governed
by VPD (velocity permitted by distance) relative to the GC, rather than spacetime stretching. This
working hypothesis aims to reproduce selected observables (CMB/BAO/lensing) without explicit dark
energy, with energy balance maintained via recycling. A fuller confrontation with data and dynamical
consistency tests are deferred to subsequent work.

Comparison (schematic).

Aspect Standard metric expansion VPD (non–metric kine-
matics)

Redshift cause Spacetime stretching Kinematic Doppler shifts (GC
frame)

Origin Hot Big Bang Time–energy field
Temperature evolution T ∝ 1/a(t) Wave potential span / field dy-

namics
Dark energy Required for late acceleration Not invoked (energy recycling)

Note. The table reflects the modeling stance adopted in this draft; rigorous equivalence tests against
precision datasets and GR consistency are future tasks.

Plain-English narrative and conclusion

What the figures are saying. The GC-frame VPD curves rise with redshift, showing an expanding
kinematics in this model. When we correct telescope-frame baselines for local motion (using either
the maximal 220 km s−1 or the divide-by-3.14 average 220/π), the standard Hubble line shifts slightly
downward at very low distance; the VPD curves themselves are already in the GC frame and therefore
stay put. The synthetic redshift distribution n(z) changes imperceptibly at the scale of the figure, because
the shift ∆z≪σ.

Hot but not metric. In this working picture, the expansion is “hot” (energy grows with time) but
not metric in the GR sense: redshifts are treated as kinematic Doppler shifts governed by a time–energy
field (VPD) rather than stretching of spacetime. Within this stance, late-time acceleration does not
require a dark-energy component; instead, energy balance is maintained by recycling through black holes,
so the net phenomenology appears accelerating without invoking a separate dark-energy fluid.

These statements summarize the modeling viewpoint of the present draft and will be subjected to
targeted observational cross-checks (CMB scales, BAO distances, SNe Ia, lensing) in subsequent work.
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8 Symbols and Units

Table 2: Key symbols, units, and one-line meanings.
Symbol Units Meaning
Mf kg Effective mass participating in the field bookkeeping.
g ms−2 Acceleration in/communicated by the field.
t s Time variable.
C – Metric capacity proxy (model-specific, dimensionless).
veff km s−1 Sky-averaged effective local speed for GC correction.
χ Mpc Comoving distance.
c0 Mpc−1 Normalization of E(t) at t0.
k – Power-law index governing the time scaling of E(t).
Eneg J Negative potential term (short-timescale enhancement).
E(t) J Time–energy field (energy form used in this work).
EVPD(t) – Dimensionless rescaling: E(t)/E0(t)(t).

9 Conclusion

We presented a time-energy field model where E(t) and VPD describe cosmic expansion. Constrained
by CMB, BAO, lensing, and redshift data, the model suggests new dynamics for cosmology, warranting
further investigation.
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