Dated Strata of Irsina Exposure

Based upon correlatlon with other exposures we have dated in the reglon there is at
least 21,000 years of alluvial history exposed in this stream bank. The current 15 m-
deep alluvial cutting is unequalled at any time during the last 21,000 years, and is due to
current land use practices coupled with the change in precipitation timing and intensity.



Baron Spring

A 4,000-year record of Spring Discharge contains at least three major
increased discharge events, that can be correlated with episodes of soil
formation, and periods of increased rainfall.
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Composite diagram showing the relationship between:

1) deposition and erosion stages in the Fossa Bradanica

2) the main European climatic epochs during the Holocene (F. Boenzi et al. (2008) 297-306)
3) related human cultural periods for southern lItaly (M. Piccarreta et al. (2011) 137-147.)

*The ages associated with the red lines are dates that we have from alluvial exposures. The blue date is on the
deepest spring discharge event at Baron Spring and a major regional phase of soil development when there

was also no erosion.



Using the Meso-scale Climate Model (MCM) to Assess the
Impact of Climate Change and Landscape Dynamics

 We are assessing the impact of variations not only of
annual precipitation and temperature, but also of their
seasonal variation.

e Seasonal variation may result in significant changes in the
kind and density of vegetation cover. These changes
impact landscape processes (erosion and deposition).

 We are investigating the evidence of human land use
and its impact upon the landscape.
* Because the surface geology is extremely sensitive to

human activity, we are mapping sites on the landscape and
the type of surface geology that was being impacted.



Applied Bryson and Bryson MCM Physical Climate Model:

Precipitation and Temperature for 40,000 years

Gioia del Colle: Average Seasonal Precipitation
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The relationship between sediment yield (erosion) and effective precipitation
(adjusted for temperature variations; after Langbein and Schumm 1958).




Explanation of Langbein & Schumm'’s

* The relationship between precipitation and sediment yield is not linear
because precipitation has an opposite effect on the two factors which directly
determine sediment yield — stream discharge and sediment concentration.

« Stream discharge increases with greater precipitation.

« Sediment concentration decreases in response to the associated
increase in plant cover.

« The maximum sediment yield observed occurs under semiarid

conditions because a semiarid climate has sufficient precipitation to
promote ample runoff, yet insufficient rainfall to produce a vegetative

cover which will inhibit erosion.



Langbein & Schumm's Curve & Changing Erosion Rates

Interglacial Conditions: .
v’ less precipitation
v’ less vegetation cover
v' less ground surface protection
v' more surface erosion

Interglacial to Glacial Climates: transition to
wetter conditions

1. precipitation increases

2. ground cover increase lags behind the
increased precipitation

3.the increase in ground surface protection also
lags behind the increase in precipitation

4. erosion rates increase until the vegetation
cover and ground surface protection are finally
in equilibrium

5. at that point erosion rates are low because
even though there is abundant precipitation
vegetation cover and ground surface protection
is high

Glacial Conditions:
v' more precipitation
v' more vegetation cover
v' more ground surface protection
v’ less surface erosion

Glacial to Interglacial Climates: transition to
drier conditions

1. precipitation decreases

2. ground cover decrease lags behind the
decreased precipitation

3. fire thins and clears relict glacial vegetation

4. the decrease in ground surface protection
results in increased erosion rates

5. however if the trend is to even lower
amounts of precipitation, even though ground
cover becomes minimal, because
precipitation is minimal, little erosion occurs



Sediment Yield (metric tons/square kilometer/year
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Figure 3. The relation between sediment yield and effective precipitation
(adjusted for temperature variations; after Langbein and Schumm,

Sediment Yield (metric tons/year)
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We have converted the MCM
modeled precipitation to
effective precipitation, and
plotted it with respect to
sediment yield from the
Langbein and Schumm (1958)
model to show predicted
correspondence between
effective precipitation and
erosion cycles in southern Italy.




Bryson MCM Physical Climate Model: Role of Seasonal Precipitation

Gioia del Colle: Average Seasonal Precipitation
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MCM modeled seasonal precipitation for the last 12,500 years. Fall and winter
precipitation have not varied as much as spring and summer precipitation.




Correlation of Model with Alluvial History

Effective Precipitation vs. Sediment Yield
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The model of
predicted erosion
corresponds with
the sum of the
record of
calibrated ages
B.P. of erosion
cycles in the
Mezzogiorno.

Events connected
with yellow lines
are climate
based, whereas
with blue lines are
caused by
intensified land
use.




Overlay of the X~ of Spring and Summer Precipitation

on the X of calibrated dates on erosion cycles.

Gioia del Colle: Average Spring plus Summer Precipitation
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Erosion cycles began after a major decline in spring precipitation during the last 8,000 years. Episodes of erosion
during the last 5,000 years generally begin after the onset of episodes of summer precipitation after a significant

drought.



Gioia del Colle: Average Spring plus Summer Precipitation
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Gioia del Colle: Average Spring Precipitation and Temperature
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significantly 5,500 years ago, I R A
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in a significant increase in
effective precipitation during
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Holocene Pollen from Lago Grande Monticchio

LGM90D PCA last 12,500 cal. yr. B.P.
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Principle component analysis the last 12,500 years of pollen from two Lago Grande Monticchio
cores results in the formation of three statistically significant groups, which coincide with the three

major breaks in Holocene climate revealed in the MCM reconstruction of Gioia dell Colle climate, A)

12,500-10,000; B) 10,000-5,500; C) 5,500-present.



Holocene Pollen from Lago Grande Monticchio

LGM 90D Core: LGM 90D Core: LGM 90D Core:
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Plots of the ratios of pollen in the three PCA groups from the two cores, reveals the three part
division of the Holocene pollen record. Human activity is evidenced by domesticated pollen, it
includes pollen of cereals grasses, olive, and in the case of the LGM 90 core, vitis (grape). The
dominance of domesticated plant pollen increases dramatically during the last 3,000 years.

The increases mirror episodes of greater summer precipitation, but during last 3,000 years its
increases at rates greater than the increase in summer precipitation. These increases mirror the
growing impact of human agriculture.
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Torrential Summer rains following wheat harvest, chaff burning, and plowing in Italy during
July of 2015 carried sediment downslope in low- scale debris flows. Sediment was carried
into streams feeding the Bradano and directly into the Gulf of Taranto. The years 2013, 2014
and 2015 had several episodes of extreme flooding and erosion. These have been triggered
by a shift from gentle winter to high intensity summer storms. This has caused significant
erosion of hillsides and exposure of underlying 3rd interglacial (Riss-Wurm/lpswichian
/ISangamonian) rubified soils, and in many places Pliocene marine marls. The resultant
creation of infertile badlands threatens this important wheat growing region.




