Background

Thyroid cancer is rare in childhood, accounting for about 3% of all pediatric malignancies (3, 7). However, while it is still considered a rare disease, the overall incidence of thyroid cancers in children is increasing (2, 7). In adults, most thyroid nodules found are benign, while in children, the most common thyroid malignancy being papillary thyroid cancer (PTC) (1, 7). Prognostic factors include age of the child, with younger children carrying a worse prognosis, and metastatic disease to include lymph node invasion and distance metastasis (1, 3, 5, 7, 8). There are also thought to be prognostic indicators between the various subtypes of PTC, including increased aggressiveness in classic PTC and solid/trabecular subtypes, and classic PTC carrying a higher association with extensive vascular invasion in 25% of cases (3, 4). Because of this increased incidence of multifocal disease and lymph node invasion, PTC in children is typically treated with a total thyroidectomy (1, 7, 8). This total removal of the thyroid tissue allows for postoperative treatment with Radioactive Iodine (RAI). It has been shown that with total thyroidectomy and RAI results in 97% of disease free survival after 10 years, with total thyroidectomy alone resulting in 40% and 61% relapse after 5 and 10 years respectively (5, 7).

Case

A 12 year-old female with an unremarkable past medical history was found with an enlarged neck mass of unknown time span, and subsequently referred to Langely Otolaryngology for further evaluation and work up. Labs were drawn showing a negative calcitonin, normal thyroid labs, normal calcium, negative thyroglobulin antibodies, but positive for thyroglobulin antibodies. An ultrasound of her thyroid was ordered showing enlarged right thyroid lobe with associated lymphadenopathy. Fine needle aspiration was subsequently performed given the suspicion for possible thyroid malignancy, which showed atypia of undetermined significance. Given the patient’s age and increased risk of thyroid carcinoma, it was decided the patient would undergo a total thyroidectomy for further evaluation.

Research

Newer developments in tumor genetics have shown that most thyroid carcinomas rely on mutations in the RAS-RAF-MEK-ERK pathway (1). Within this pathway, BRAF mutations have been shown to correlate with aggressive tumor characteristics, such as extra-thyroidal extension, advanced tumor stage at presentation, tumor recurrence, and lymph node or distant metastases (6, 7, 9). BRAF mutations have also been associated with a decreased ability of tumors to trap radioiodine during RAI (6).

Complications

Complication rates to include hypocalcemia (both temporary and permanent), vocal cord weakness, and postoperative respiratory distress are significantly more common in children in comparison to adults (10,11,12). Temporary hypocalcemia is the most common complication, defined as lasting less than 6 months, can occur in as much as 32.7% of pediatric patients (11,12). Additionally, up to 7% of pediatric patients require prolonged hospitalization and IV calcium infusion (12). The only recommendation to prevent this potentially life altering complication is to ensure the operation is performed by a surgeon with significant experience in thyroidectomies (10,11,12).

Treatment

Given the increased aggressive nature of thyroid cancer in children, all children diagnosed with thyroid cancer should undergo surgical excision. If diagnosed with PTC, it is generally recommended to undergo total thyroidectomy given the increased incidence of bilateral disease. If nodal disease is detected, modified neck dissection to include at least the level VI neck and potentially level IV and V should also be performed. If residual disease or genetic testing showing increased aggressive disease, patients should also undergo RAI to decrease recurrence rates.

Conclusion

With our patient, it was found that she had PTC. Therefore, she underwent total thyroidectomy with central neck dissection and right level IV neck dissection to remove gross tumor burden. Her pathology revealed the classic subtype of PTC with 19/26 positive lymph nodes and extensive vascular invasion. There was no extra-thyroidal extension identified. Subsequent plain chest film was obtained showing no distant metastatic disease. Given her pathology, she was diagnosed with stage 1 PTC (T2N1B0M0). However, with the suggested childhood classification, she would be diagnosed with high risk of recurrence (1,3). In order to further classify her disease, BRAF mutations could be obtained which may prompt multiple rounds of RAI given possible association with decreased radioiodine update and continued follow up for possible relapse.

It is important to understand the molecular advances in tumor classification and how this could affect future treatment for childhood thyroid malignancies. It is also important to understand that classic treatment of adult thyroid nodules do not correlate with the treatment recommendations of pediatric thyroid nodules because of their higher rate of malignancy, metastatic disease, and local aggressive nature.

References

1. Francis, Gary; Waggonpack, Steven; Bauer, Andrew; et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2015 Jul;25(7):736-59

Disclaimer: The views expressed in this article are those of the author(s) and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the United States Government. We are military service members. This work was prepared as part of our official duties. Title 17 U.S.C. 105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. 106 provides that “This work is prepared as part of our official duties.”