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1  | INTRODUC TION

Worldwide, cancer ranks as a leading cause of death and a crucial 
barrier to increasing life expectancy. An estimated 19.3 million new 
cases and almost 10 million deaths have occurred from cancer in 
2020.1 Despite numerous research efforts in understanding cancer 
and in developing anticancer strategies, cancer remains a major le-
thal disease in people.

Reactive oxygen species (ROS) have been extensively studied in 
various human diseases, including cancers. ROS are normal byprod-
ucts of a wide variety of cellular processes, including oxygen metab-
olism.2,3 The term “ROS” is a collective term referring to unstable, 
reactive, partially reduced oxygen derivatives that include hydrogen 
peroxide (H2O2), superoxide anion (O2

−), hypochlorous acid (HOCl), 

singlet oxygen (1O2), and hydroxyl radical (•OH).4 These act as sec-
ond messengers in cell signaling and are essential for various biolog-
ical processes in normal and cancer cells.5 Accumulating evidence 
suggests that ROS show activity that is a “double-edged sword” in 
cancer cells. At low to moderate levels, ROS act as signaling trans-
ducers to activate cancer cell proliferation, migration, invasion, an-
giogenesis, and drug resistance.2,6,7 In other words, adequate levels 
of ROS are important for cancer cell homeostasis involved in the de-
velopment of cellular processes such as proliferation, differentiation, 
migration, and cell death. In contrast, high levels of ROS are harmful 
to cancer cells and ultimately lead to cell death.8

With regard to the bidirectional nature of ROS, strategies to 
downregulate or upregulate ROS in cancer cells appear to be promis-
ing treatments. Antioxidants are usually considered to be beneficial 
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Abstract
Reactive oxygen species (ROS), a class of highly bioactive molecules, have been 
widely studied in various types of cancers. ROS are considered to be normal byprod-
ucts of numerous cellular processes. Typically, cancer cells exhibit higher basal levels 
of ROS compared with normal cells as a result of an imbalance between oxidants 
and antioxidants. ROS have a dual role in cell metabolism: At low to moderate levels, 
ROS act as signal transducers to activate cell proliferation, migration, invasion, and 
angiogenesis. In contrast, high levels of ROS cause damage to proteins, nucleic acids, 
lipids, membranes, and organelles, leading to cell death. Extensive studies have re-
vealed that anticancer therapies that manipulate ROS levels, including immunothera-
pies, show promising in vitro as well as in vivo results. In this review, we summarize 
molecular mechanisms and oncogenic functions that modulate ROS levels and are 
useful for the development of cancer therapeutic strategies. This review also pro-
vides insights into the future development of effective agents that regulate the redox 
system for cancer treatment.
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for both cancer prevention and treatment as they can quench ROS 
levels, leading to a reduction in oxidative stress. Indeed, we have 
shown that intracellular ROS suppression using deferasirox (DFX), an 
oral iron chelator, induced apoptosis in multiple myeloma (MM) cells. 
Mechanistically, DFX exerts anti-MM activity via the inhibition of 
proline-rich tyrosine kinase 2 phosphorylation accompanied by the 
reduced production of ROS.9 However, in reality, previous studies 
have demonstrated that antioxidants, including N-acetyl l-cysteine 
(NAC) and vitamin E, markedly increased tumor progression and can-
cer metastasis.10,11

In contrast, the production of ROS is reported to be elevated 
in cancer cells as a result of increased metabolic rate, gene muta-
tion, and relative hypoxia.12 Previous studies demonstrated that 
cancer cells adapt to a high level of ROS by activating antioxidant 
pathways resulting in increased ROS clearance.13 The higher en-
dogenous ROS levels in cancer cells endow them with increased 
sensitivity to ROS-inducing therapy. In fact, many chemothera-
peutics are known to increase the production of ROS in cancer 
cells.14-16 We have previously reported that the suppression of cell 
growth accompanied by apoptosis was evoked through increased 
intracellular ROS levels in MM and colorectal cancer cells.17,18 
Therefore, the induction of ROS would be an appropriate strategy 
to combat cancer.

In this review, we initially focus on the molecular mechanisms 
and oncogenic functions of ROS, and subsequently discuss several 
potential therapeutic strategies that modulate ROS levels in cancer 
cells.

2  | MOLECUL AR MECHANISM OF ROS 
PRODUC TION IN C ANCER CELL S

2.1 | Generation of ROS

ROS can be generated by multiple endogenous and exogenous fac-
tors.19 Mitochondria are known to produce significant amounts of 
endogenous ROS that contribute to intracellular oxidative stress.20 
At an ultrastructural level, mitochondria have a four-layer structure 
consisting of an outer mitochondrial membrane, intermembrane 
space, inner mitochondrial membrane, and matrix. The generation 
of ROS mainly occurs in the electron transport chain on the inner 
mitochondrial membrane during oxidative phosphorylation, a pro-
cess that creates adenosine triphosphate (ATP) from oxygen and 
simple sugars.21 Five protein complexes contribute to the process: 
NADH:ubiquinone reductase (complex I), succinate:ubiquinone re-
ductase (complex II), ubiquinol:cytochrome c reductase (complex 
III), cytochrome c oxidase (complex IV), and F1F0-ATP synthase 
(complex V).22 The 2 major sites for ROS generation are complexes 
I and III where large changes occur in the potential energy of elec-
trons related to the reduction of oxygen.23 The leakage of elec-
trons at complexes I and III leads to the generation of superoxide. 
Once generated, superoxide is quickly dismutated to hydrogen 
peroxide by superoxide dismutase 1 (SOD1) in the intermembrane 

space or by SOD2 in the matrix. Both superoxide and hydrogen 
peroxide in this process are recognized as ROS that are generated 
in mitochondria.21

Transition metals such as iron can also generate ROS non-
enzymatically via a Fenton reaction.24 The Fenton reaction involves 
Fe2+ reacting with hydrogen peroxide to yield a hydroxy radical, 
which can cause damage to DNA and other biomolecules.25

In addition, multiple external factors induce exogenous ROS, in-
cluding air pollutants, tobacco smoke, radiation, foods, and drugs.26 
For instance, tobacco smoke contains more than 4000 chemicals, 
including superoxide and hydroxyl radicals.27 Ionizing radiation can 
also generate hydroxyl radicals either directly by oxidation of water or 
indirectly by the formation of partial secondary ROS.28Collectively, 
various intracellular and extracellular cues stimulate ROS formation 
in cancer cells (Figure 1).

2.2 | Redox homeostasis

Excessive concentrations of ROS result in cell-cycle arrest and ap-
optosis. To prevent excessive intracellular ROS, cancer cells respond 
to oxidative stress by inducing the transcription of antioxidant en-
zymes.12 The transcription factor, nuclear erythroid 2-related fac-
tor (NRF2), is a pivotal regulator of antioxidant responses in cancer 
cells.29 NRF2 is activated and overexpressed in cancer to promote 
cancer cell survival; the cellular antioxidant system is largely regu-
lated by NRF2 and its associated genes.30 Under normal conditions, 
the expression and activity of NRF2 is tightly degraded by kelch-like 
ECH-associated protein 1 (KEAP1). However, under oxidative condi-
tions, NRF2 dissociates from KEAP1 and translocates to the nucleus 
to bind and activate the antioxidant response element (ARE) in vari-
ous target genes.31 ARE regulates downstream antioxidant enzymes, 
including NAD(P)H quinone dehydrogenase 1, heme oxygenase 1, 
thioredoxin reductase 1, superoxide dismutase, glutathione per-
oxidase, and catalase.32 Therefore, cancer cells defend themselves 
from excessive ROS. Specifically, we have previously reported that 
the six-transmembrane epithelial antigen of the prostate1 (STEAP1), 
which was identified as a cell surface protein and works as an intra-
cellular transporter, is overexpressed in colorectal cancer cells com-
pared with normal counterparts. Knockdown analysis of STEAP1 
using small interfering (si)RNA revealed that it regulates ROS levels 
by manipulating NRF2 and downstream genes in colorectal cancer 
cells (Figure 2).18 Therefore, as in previous reports, NRF2 plays a vital 
role in defending cancer cells from excessive ROS.

3  | ONCOGENIC FUNC TIONS OF ROS

ROS can directly induce oxidative DNA damage. Such damage con-
sists of DNA double-stranded breaks and the formation of muta-
genic 8-oxo-7-hydro-2′-deoxyguanosine (8-oxodG). In particular, 
8-oxodG is a major cause of spontaneous mutagenesis, because it 
induces guanine to thymine transversion through its capacity to pair 
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with both cytosine and adenine.33-35Therefore, the accumulation of 
8-oxodG in cellular genomes leads to carcinogenesis.

As mentioned earlier in Section  2.1, iron is one of the major 
sources of ROS production, and is increasingly recognized as an im-
portant initiator and mediator of cell death in a variety of organisms 
and pathological situations through the regulation of ROS.36 Of note, 

iron-induced oxidative stress has been shown to be a risk factor for 
the development of numerous cancers.37 Our group has investigated 
the clinical impact of excess iron-induced ROS in cancers. We there-
fore focus on the association between iron-induced ROS and car-
cinogenesis in this section.

We have previously revealed that a close link exists between 
oxidative DNA damage induced by hepatic iron overload and hepa-
tocarcinogenesis in patients with chronic hepatitis C (CHC). With a 
reduction in therapeutic iron, elevated hepatic ROS, evaluated by 
immunostaining 8-oxodG, significantly decreased to almost nor-
mal levels with a concomitant improvement of hepatitis, followed 
by a lowered risk of the development of hepatocellular carcinoma 
(HCC) in patients with CHC.38,39 Additionally, we found that feed-
ing iron with a high-fat high-cholesterol diet increased the incidence 
of HCC accompanied by the upregulation of ROS in mutY DNA gly-
cosylase (MUTYH), an enzyme that repairs oxidative DNA damage, 
in a deficiency non-alcoholic steatohepatitis (NASH) mouse model. 
Markedly, the development of HCC in this NASH model could be 
suppressed by the administration of NAC.40 Collectively, ROS in-
duced by excess hepatic iron is associated with hepatocarcinogen-
esis in both CHC and NASH (Figure 3).

Apart from hepatocarcinogenesis, we have also reported that 
iron overload-induced ROS and 8-oxodG levels in peripheral blood 
mononuclear cells (PBMC) of patients with myelodysplastic syn-
drome (MDS) were higher than those in healthy volunteers. MDS 
is a disease that is characterized by dysplasia and a high risk of leu-
kemic transformation.41 We conducted iron chelation therapy (ICT) 
using DFX in patients with MDS and showed that 8-oxodG levels 
in PBMC dramatically decreased 3 mo after DFX administration. 
Recently, a randomized study and meta-analysis clarified that pa-
tients who were assigned to an ICT group showed longer survival, 
with low risk of progression to leukemia, compared with a non-ICT 

F I G U R E  1   Generation of reactive 
oxygen species (ROS) and their effects. 
Reactive oxygen species can be generated 
by multiple endogenous and exogenous 
factors, which, in turn, lead to various 
biological consequences. Low levels 
of ROS act as intracellular second 
messengers. Moderate levels of ROS are 
beneficial to cancer cells because they can 
increase cancer metabolism and growth 
signaling, and inhibit antioxidants, which 
contribute to oncogenesis. Conversely, 
high levels of ROS can lead to cell death 
induced by DNA damage

F I G U R E  2   Schematic representation of STEAP1-NRF2 
pathway. Under nonoxidative conditions, nuclear erythroid 
2-related factor (NRF2) is located in the cytoplasm, adjacent to 
kelch-like ECH-associated protein 1 (KEAP1). Oxidative stress 
causes the dissociation of NRF2 from KEAP1. NRF2 enters the 
nucleus and activates several cytoprotective genes for protection 
against oxidative stress. Our previous report suggested that six-
transmembrane epithelial antigen of the prostate 1 (STEAP1) plays 
an important role in upregulating this pathway. ARE, antioxidant 
response element
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group.42,43 Therefore, we concluded that excess iron contributed to 
oxidative DNA damage in patients with MDS and that ICT improved 
survival by inhibiting leukemic change through mitigating oxidative 
DNA damage (Figure 3).

4  | CELL DE ATH INDUCED BY ROS

4.1 | ROS and apoptosis

Excess cellular levels of ROS cause damage to proteins, nucleic acids, 
lipids, membranes, and organelles, which can lead to activation of cell 
death processes such as apoptosis.44 Mitochondria play an important 
role in initiating apoptosis and are considered to be both a source and 
target of ROS. High levels of mitochondrial ROS can initiate intrinsic 
apoptosis leading to the release of cytochrome c into the cytosol from 
the mitochondrial intermembrane space.45 In the cytosol, cytochrome 
c engages the apoptotic protease activating factor-1 (APAF1), fol-
lowed by the formation of an apoptosome, which activates caspase-9. 
Caspase-9, a key player in the intrinsic pathway, then activates effec-
tor caspases, such as caspase-3, -6, and -7, resulting in cleavage of 

cellular proteins and cell death by apoptosis.46 Links between ROS 
and the extrinsic pathway of apoptosis also exist. ROS can activate 
transmembrane death receptors, including Fas, tumor necrosis factor-
related apoptosis inducing ligand (TRAIL-R1/2), and tumor necrosis 
factor receptor 1. Activation of transmembrane death receptors re-
cruits the adaptor proteins, Fas-associated protein with death domain 
(FADD), and procaspase-8 and -10, to the cytoplasmic surface to form 
death-inducing signaling complexes (DISCs), subsequently triggering 
caspase-8 and -10 activation that can directly activate effector cas-
pases and trigger apoptosis. Caspase-8 and -10 also cleave Bid to pro-
duce truncated Bid (tBid), which translocates to mitochondria, blocks 
the anti-apoptotic activity of Bcl-2 and Bcl-XL, and activates Bax and 
Bak. This leads to activation of the mitochondrial pathway of apopto-
sis.44 In summary, ROS promote both intrinsic and extrinsic pathways 
of apoptosis in cancer cells (Figure 4A).

4.2 | ROS and autophagy

Autophagy is a self-digestion process aimed at recycling cellular com-
ponents and damaged organelles in response to diverse conditions 

F I G U R E  3   Iron overload leads to 
ROS and 8-oxodG. Reactive oxygen 
species (ROS) can be induced by 
iron and contribute to the formation 
of mutagenic 8-oxo-7-hydro-2′-
deoxyguanosine (8-oxodG), which 
leads to hepatocarcinogenesis (HCC) 
in patients with chronic hepatitis C 
(CHC)/non-alcoholic steatohepatitis 
(NASH), and leukemic transformation 
in myelodysplastic syndrome (MDS). 
Therapeutic iron reduction contributes to 
inhibiting both hepatocarcinogenesis in 
CHC/NASH and leukemic transformation 
in MDS
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of stress.47 In cancer cells, autophagy plays dual roles in tumor pro-
motion and suppression.48 The tight interaction between ROS and 
autophagy is reflected in 2 ways: the induction of autophagy by 
oxidative stress and the reduction of ROS by autophagy.49 Induction 
of autophagy following nutrient starvation requires the production 
of hydrogen peroxide that oxidizes autophagy-related (ATG)4. Of 
ATG proteins, ATG4 is the sole protease that regulates autophagy by 
processing and deconjugating ATG8.50 The oxidization modification 
mainly inactivates the delipidation activity of ATG4 leading to in-
creased formation of light chain 3-associated autophagosomes.51,52 
In addition to the above, which is regarded as a direct mechanism, an 
indirect induction of autophagy by ROS can also occur. Adenosine 
monophosphate (AMP)-activated protein kinase (AMPK), which can 
suppress the activity of the mammalian target of rapamycin (mTOR), 
is activated by ROS and leads to the induction of autophagy.53 In 

summary, a close relationship exists between ROS and autophagy in 
cancer cells (Figure 4B).

5  | ROS IN C ANCER TRE ATMENT

5.1 | ROS and cancer chemotherapy

Chemotherapy has been widely used to treat cancer patients in a 
clinical setting. Most chemotherapeutic agents produce ROS, and 
many can alter redox homeostasis in cancer cells.4 Anthracyclines 
(doxorubicin, epirubicin, and daunorubicin), alkylating agents, plati-
num coordination complexes (cisplatin, carboplatin, and oxaliplatin), 
and camptothecins (topotecan and irinotecan) are the major drugs 
that increase ROS in cancer cells.54 The generation of mitochondrial 

F I G U R E  4   Schematic representation 
of cell death induced by ROS. A, 
Reactive oxygen species (ROS) can 
lead to activation of apoptosis. High 
levels of mitochondrial ROS can release 
cytochrome c into the cytosol from the 
mitochondrial intermembrane space. 
In the cytosol, cytochrome c engages 
apoptotic protease activating factor-1 
(APAF1) and activates caspase-9. 
Furthermore, as the extrinsic pathway, 
ROS can activate transmembrane death 
receptors, including Fas, tumor necrosis 
factor-related apoptosis inducing 
ligand (TRAIL-R1/2), Fas-associated 
protein with death domain (FADD), and 
procaspase-8 and -10 at the cytoplasmic 
surface to form death-inducing signaling 
complexes (DISCs), subsequently 
triggering caspase-8 and -10 activation, 
and apoptosis. Caspase-8 and -10 also 
cleave Bid to produce truncated (t)Bid, 
which translocates to mitochondria, 
blocks Bcl-2 and Bcl-XL, and activates 
Bax and Bak. B, ROS can regulate 
autophagy induction in cells. Increased 
ROS leads to oxidation and inactivation 
of autophagy-related (ATG)4. Inactivation 
of ATG4 results in promoting lipidation 
of ATG8, an essential step in autophagy. 
ROS also directly activate adenosine 
monophosphate (AMP)-activated protein 
kinase (AMPK), upstream of mammalian 
target of rapamycin (mTOR), to suppress 
its phosphorylation, resulting in the 
induction of autophagy
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ROS and inhibition of the cellular antioxidant system are 2 major 
reasons for the elevation of ROS in response to chemotherapeutic 
agents.4 For example, cisplatin, which is one of the most effective 
and widely used chemotherapeutic agents for various cancers, in-
duces mitochondria-dependent ROS that contributes to cell death 
via the formation of nuclear DNA damage. Cisplatin-related ROS 
generation occurs as a result of a direct effect on mitochondrial 
DNA, resulting in the impairment of the synthesis of electron trans-
port chain proteins.55

ROS also play an important role in multidrug resistance. Such 
resistance is one of the major reasons for the failure of chemo-
therapy in cancer treatment.56 P-glycoprotein (P-gp) and other 
related transporter-based efflux pumps in the plasma membrane 
are strongly associated with multidrug resistance in cancer cells.57 
P-gp which is encoded by the MDR1/ABCB1 gene, is a member of 
the large ATP-binding cassette family of proteins and acts as a 
barrier to the uptake of xenobiotics, including chemotherapeutic 
agents.58 As mentioned previously, NRF2 is activated and overex-
pressed in cancer cells as a protective mechanism against exces-
sive ROS MDR1/ABCB1 is an NRF2 target gene that contributes 
to the increased expression of P-gp and multidrug resistance in 
cancer cells.59,60 In short, increased ROS levels in response to che-
motherapy are crucial for damaging cancer cells and also play a 
vital role in multidrug resistance.

5.2 | ROS in cancer immunity

In this section, we focus on impacts of CD4+Foxp3+ regulatory T 
(Treg) cells and dendritic cells (DCs) in anti-tumor immune responses 
as both cell types play essential roles in the tumor microenvironment 
(TME).

Growing evidence has shown that Treg cells are recruited into 
the TME and behave as powerful immunosuppressors.61,62 It is well 
documented that the TME, comprised of many different cell types, 
such as cancer cells, cancer-associated fibroblasts and numerous im-
mune cells, creates a field with a high concentration of ROS.63 In the 
TME, the high ROS level is one of the major mechanisms responsible 
for refractoriness to immunotherapies, including immune check-
point blockades.64,65 Tumor-infiltrating Treg cells undergo apopto-
sis in the high ROS concentration existing within the TME. Of note, 
tumor-infiltrating apoptotic Treg cells, which are highly vulnerable to 
ROS due to their weak NRF2-associated antioxidant system, subvert 
programmed death-ligand 1–blockade-mediated anti-tumor T cell 
immunity by converting ATP to adenosine. Intriguingly, the immu-
nosuppressive effect of apoptotic Treg cells is more powerful com-
pared with live Treg cells.65 In line with this scenario, the suppression 
of ROS in the TME can lead to ameliorating immunotherapies for 
cancer. Indeed, a novel nano-scavenger anchoring on the extracellu-
lar matrix relieved suppressive immunogenic cell death via the elim-
ination of ROS.66

Aside from Treg cells, ROS are also critical metabolic regulators in 
DC-mediated and cytotoxic T cell-mediated anti-tumor immunity.67,68 

In terms of DCs, ROS play an essential role in the initiation of a stimula-
tor of interferon (STING)-induced DC anti-tumor response in a SUMO-
specific protease 3 (SENP3)-dependent fashion.69 Mechanistically, ROS 
induces SENP3 accumulation in DCs, followed by the promotion of a 
SENP3-interferon inducible (IFI)204 interaction and IFI204 deSUMOy-
lation, which elicits STING-mediated anti-tumor activities. Therefore, 
ROS drive the anti-tumor immune responses of DCs, unlike Treg cells. 
Conversely, ROS can blunt anti-tumor immunity through endoplasmic 
reticulum (ER) stress-XBP1 signaling in DCs.70

Overall, the relationship between ROS and cancer immunity is 
still elusive, underlining the continuing need to explore this to im-
prove the efficacies of immunotherapies.

6  | CONCLUSION

Convincing evidence suggests that ROS are virtually indispensable 
in understanding the pathophysiology of cancer. Initially, ROS were 
thought to be an evil for cancer cells. However, increasing reports 
have highlighted the vital roles of ROS in cancer cell survival. In con-
trast, high levels of ROS can be lethal for cancer cells. Markedly, ROS 
also act as a double-edged sword in cancer immunity. Even though 
these distinct paradoxes make this difficult, targeting ROS manipula-
tions may offer a new approach to cancer therapy.
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