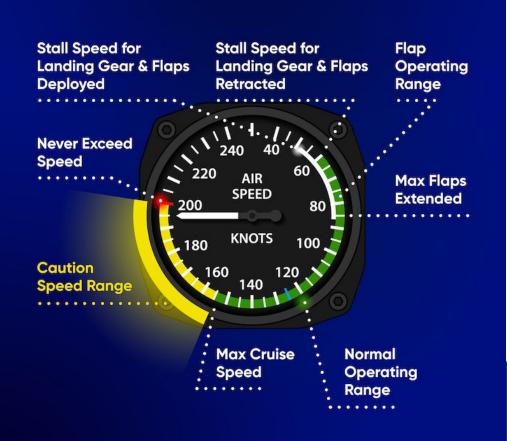
Cross Country Flight Planning Based on Cessna 172M

Essentials

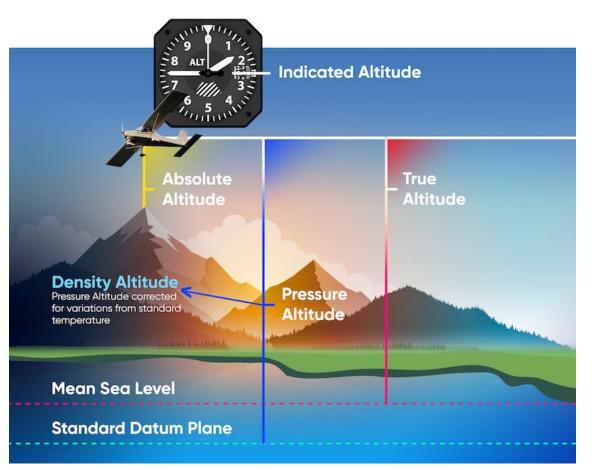
You will need:

- Plotter
- E6B (Digital or Analog)
- EFB (Electronic Flight Bag)(optional)
- VFR Sectional (Electronic or Digital)
- Pencil
- Pick a place you want to go...


Definitions

- **TC**—True Course. Direction of the line connecting two desired points, drawn on the chart and measured clockwise in degrees from TN on the mid-meridian
- WCA—Wind Correction Angle Determined from the wind triangle. (Added to TC if the wind is from the right; subtracted if wind is from the left)
- **TH**—True Heading Direction measured in degrees clockwise from TN, in which the nose of the plane should point to remain on the desired course
- VAR Variation obtained from the isogonic line on the chart (added to TH if west; subtracted if east)
- **MH**—Magnetic Heading an intermediate step in the conversion (obtained by applying variation to TH)
- **DEV –** Deviation obtained from the deviation card on the aircraft (added to or subtracted from MH, as indicated)
- **Compass Heading**—reading on the compass (found by applying deviation to MH) that is followed to remain on the desired course
- **Total Distance**—obtained by measuring the length of the TC line on the chart (using the scale at the bottom of the chart)
- **GS**—obtained by measuring the length of the TC line on the wind triangle (using the scale employed for drawing the diagram)
- ETE Estimated Time enroute. Total distance divided by GS
- Fuel Rate—predetermined gallons per hour used at cruising speed

Airspeed Definitions


- KIAS Knots Indicated Airspeed
- KTAS Knots True Airspeed
- KCAS Knots Calibrated Airspeed
- KEAS Knots Equivalent Airspeed
- MPH Miles Per Hour
- Indicated airspeed read off the instrument
- Calibrated airspeed indicated airspeed corrected for instrument errors
- Equivalent airspeed calibrated airspeed corrected for high-speed compression errors
- True airspeed calibrated or equivalent airspeed corrected for pressure altitude and temperature
- Ground speed true airspeed corrected for wind

Don't Forget about your Airspeed ranges.....

Altitude Definitions

Types of Altitude

- Indicated altitude: altimeter reading
- Absolute altitude: above ground level
- True altitude: above sea level
- Pressure altitude: above the standard datum plane
- Density altitude: air density expressed as an altitude
- Flight level: Pressure altitude in 100s of feet
- Transition Altitude (TA) is the altitude above sea level at which pilots change the altimeter setting from the local to the standard setting and switch from using altitudes to flight levels.
- Transition level (TL) is the lowest flight level above the transition altitude, at which a pilot must switch from the standard to the local altimeter setting and start referring to altitude in feet.

Basic Rates & Formulas

Some Basic Formulas

- $TC \pm WCA = TH \pm VAR = MH \pm DEV = CH$
- Time T = D/GS
- Distance D = GS X T
- GS = D/T
- PA= 1000x (Current Setting 29.92) + 4053 (field elevation)
- DA= Pressure Altitude in Feet + (120 x [OAT°C ISA Temperature °C])
- Weight x Arm = Moment
- Moment / Weight = Arm

Basic Rates

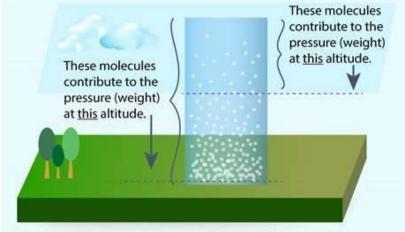
- Temperature: 3.5 °F or 2 °C per thousand feet up to 36,000 feet
 - Standard Temperature at sea level: 15 °C or 59 °F
- Pressure: 1 "Hg per 1,000 feet of altitude gain to 10,000 feet
 - Standard Pressure at sea level: 29.92 inHg 1013.25 hPa

PA & DA Must - Knows

9

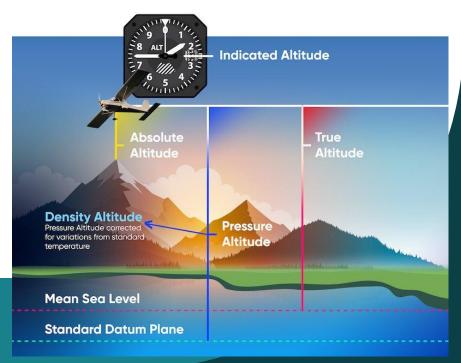
Pressure Altitude

PA= 1000x (Current Setting - 29.92) + 4053 (field elevation)

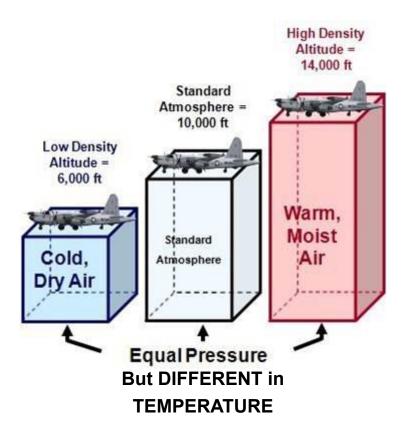

Pressure altitude is the height above the standard datum plane (SDP). Pressure corrected for non-standard pressure

Pressure altitude is the Indicated Altitude you read on your altimeter when it is set to 29.92 Hg —the altitude in the standard atmosphere corresponding to the sensed pressure on a standard day.

Pressure varies from day to day at the Earth's surface - the bottom of the atmosphere. This is, in part, because of unequal heating of the earth surface. Resulting in High and Low pressure systems.


The SDP is a theoretical level at which the pressure of the atmosphere is 29.92 inches of mercury (Hg) and the weight of air is 14.7 psi. As you climb, the weight of air molecules decreases because you lose 1inch of mercury (HG) per 1000 ft.

Pressure altitude is important as a basis for determining aircraft performance, as well as for assigning flight levels to aircraft operating at above 18,000 feet.


surface air pressure = weight of air in column above unit area

Types of Altitude

Density Altitude

DA= Pressure Altitude in Feet + (120 x [OAT°C – ISA Temperature °C])

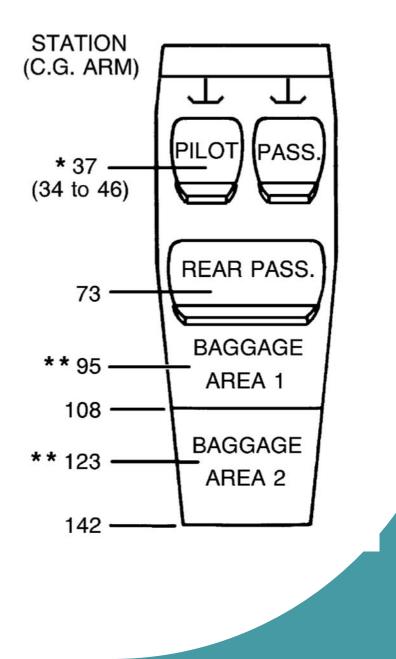
•Density altitude is pressure altitude corrected for nonstandard temperature.

Low Density Altitude, molecules are more densely compacted

- More dense air, the aircraft feels like its flying a low altitude
- Caused by low altitude, low temperature, high pressure, and low humidity
- Results:
 - The propeller produces more thrust
 - Wing generates more lift
 - More power is produced
 - Great performance

•High Density Altitude, molecules are more spaced out

- Remember For every 1k ft climb, we lose 2°C
- Less dense, aircraft feels like its flying higher altitude
- · Caused by high altitude, high temp, high pressure, high humidity
- As air becomes less dense, it reduces:
 - · Power, because the engine takes in less air
 - Thrust, because the propeller is less efficient in thin air
 - · Lift, because the thin air exerts less force on the airfoils

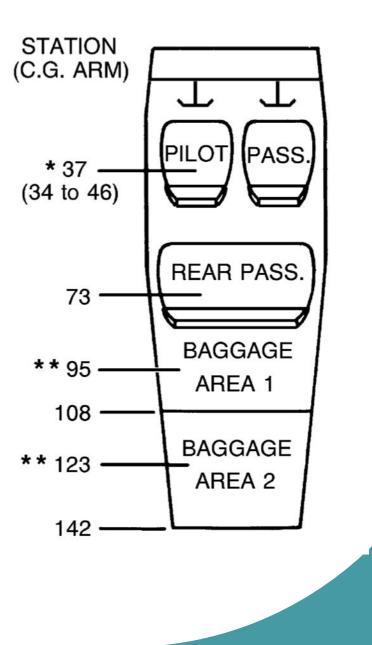

•Under standard conditions, pressure altitude and density altitude identify the same level.

Weight & Balance

Datum

A set point on the airplane from which all relative distances are measured.

Datum location depends on airplane, each model will be different (reference POH), for our Cessna 172, the datum is the firewall.


Arm

The distance from the datum.

The longer the arm, the further from the datum the position is.

Usually expressed in inches aft of datum.

Stations are set points in the aircraft where weight in the aircraft will be (ie-front seat, rear seat, baggage areas).

Moment

A product of a *weight multiplied by the arm*.

Expressed in pound-inches. Sometimes may be divided by 100 or 1000- called moment index.

Total moment is the weight of the airplane multiplied by the distance between the datum and the center of gravity.

Weight × Arm = Moment

Center of Gravity (CG)

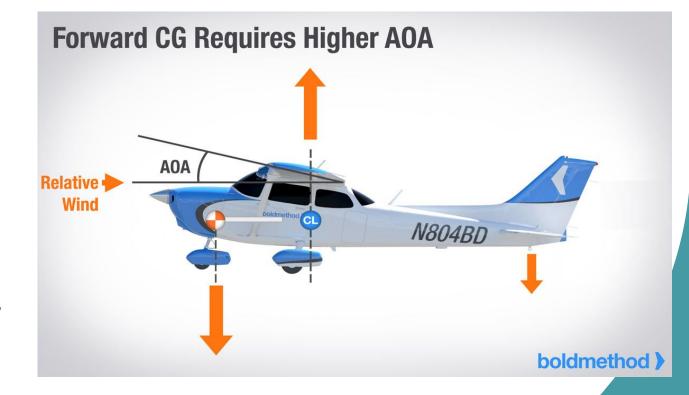
The point about which the aircraft would balance if it were possible to suspend it at that point

Typically expressed as inches from the datum. May also be seen expressed as a percent of mean aerodynamic chord (MAC)

Mean aerodynamic chord: the average distance from the leading edge to the trailing edge of the wing

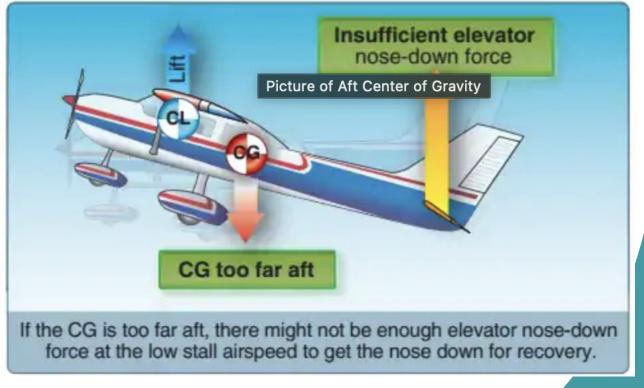
Effect of Weight & Balance on Performance: Weight

Takeoff and Landing: Heavier airplanes require more runway to takeoff and require more runway to land


Stall Speeds: Heavier airplanes will stall at a higher airspeed. The reason is because when the airplane is flying with more weight, the wing has to fly at a greater angle of attack (AOA). This results in the stall occuring at a higher airspeed

Load Factor: Maximum and minimum structural loads are only computed for allowable ranges of airplane weights. Exceeding these weights may lead to structural failure in flight

Maneuvering Speed: Heavier airplane, higher AOA, Lighter airplane, lower AOA. A lighter airplane's wing will produce more lift before it stalls, so the maneuvering speed is set lower. A heavier airplane will have a higher maneuvering speed.


Effects of Forward Center of Gravity

- Increased longitudinal stability (pitch stability)
- Lower cruise speed: Wing flies at a higher AOA to create more lift to counter added downward force produced by the tail, therefore wing produces more induced drag
- Higher stall speed: Wing flies at a higher AOA to 'hold up' heavier nose. This results in the wing stalling at a higher airspeed

Effects of Aft Center of Gravity

- Decreased Longitudinal stability (pitch)
 - (CG is closer to the CL)
- Higher cruise speed- Wing doesn't have to produce as much lift as forward CG since the tail is not having to provide as much downward force
- Lower stall speed
- Poor stall/spin recovery

Date:		Aircraft ID:					
Plot 1:		Pilot 2:					
1	√eight & Balance	Calculations	28				
ltem	Weight (lbs)	Arm - CG (in)	Moment (lbs-in)				
Basic Empty Weight							
Front Seats							
Rear Seats			1				
Baggage 1							
Baggage 2							
Zero Fuel Weight		Ĵ.					
Fuel (6lb/gal)			1				
Ramp Weight (max 2300lbs Fuel Start, Taxi, and Run- Up 1.4 gal	;) 						
Takeoff Weight (max 2300)	bs)						
Estimated Fuel Burn							
Estimated Landing Weight (max 2300lbs)	6						
	Current Co	nditions					
ATIS Information:		Crosswind Con	nponent:				
Time of ATIS Information:		Headwind Com	ponent:				
Surface Wind:		Airport Elevation:					
Temperature:		Pressure Altitude:					
Altimeter Setting:		Density Altitude					
	Performan	ce Data					
Expected Runway:		Runway Length:					
Takeoff Dist. (ground roll):		Takeoff Dist. (50' Obstacle):					
VR (Short Field):		Landing Dist. (5	0' Obstacle):				
Obstacle Speed:		Approach Spee	d:				
VX:		Landing Dist. (ground roll):					
VY:		VA: (at existing	weight):				
	Multi Engi	ne Only					
VXSE:		SE Service Ceil	ing:				
VYSE:		SE Absolute Ce	eiling:				
VY Gear Down & Rate):		SE Climb Rate i	& Field Elev.:				
Drift Down Rate:		Accelerate Sto	o Dist.:				

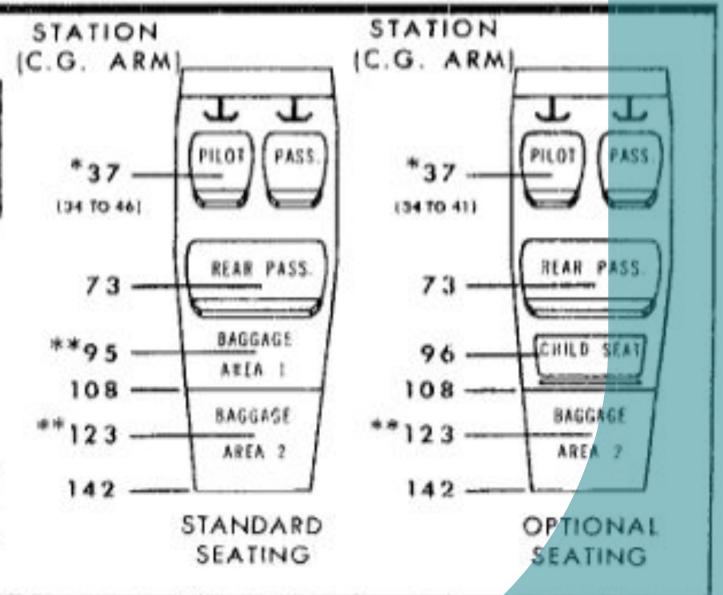
Weight & Balance Sheet

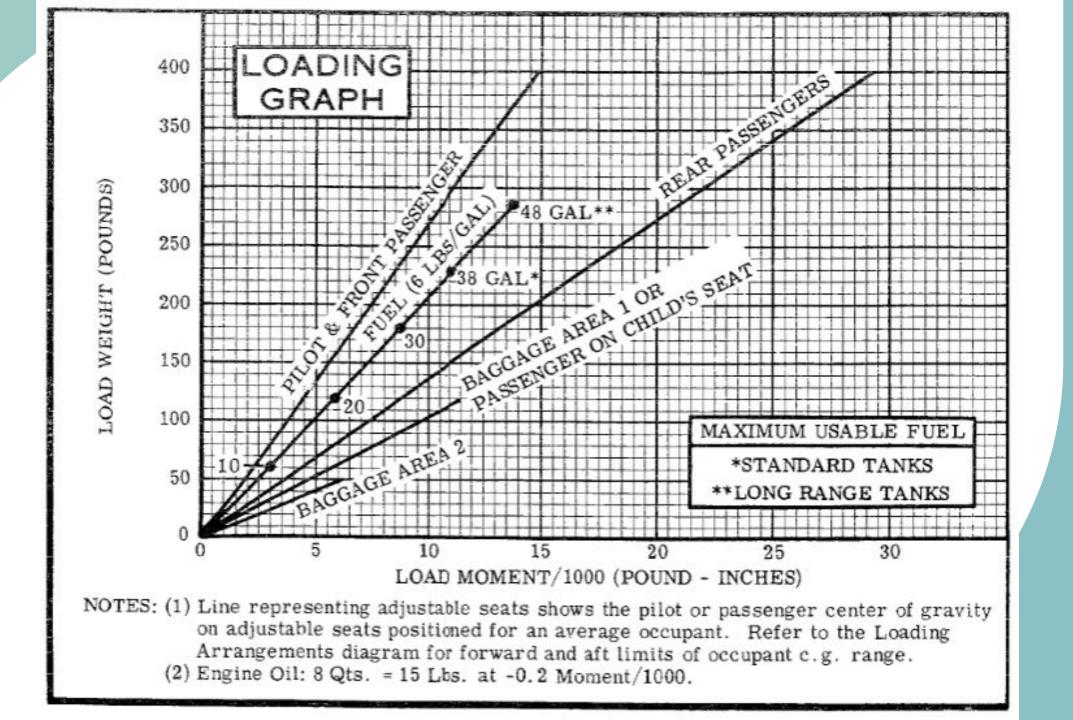
- Basic Empty Weight includes unusable fuel, oil, and the empty airplane
- Ramp weight = Basic Empty Weight +Front Seats + Rear Seats + Baggage +Baggage
- Takeoff Weight = Ramp Weight Fuel to start, taxi, and Runup
- Landing Weight = Takeoff Weight Estimate Fuel burn

Pilots Operating Handbook

MORE PEOPLE BUY AND FLY CESSNA AIRPLANES THAN ANY OTHER MAKE

1975

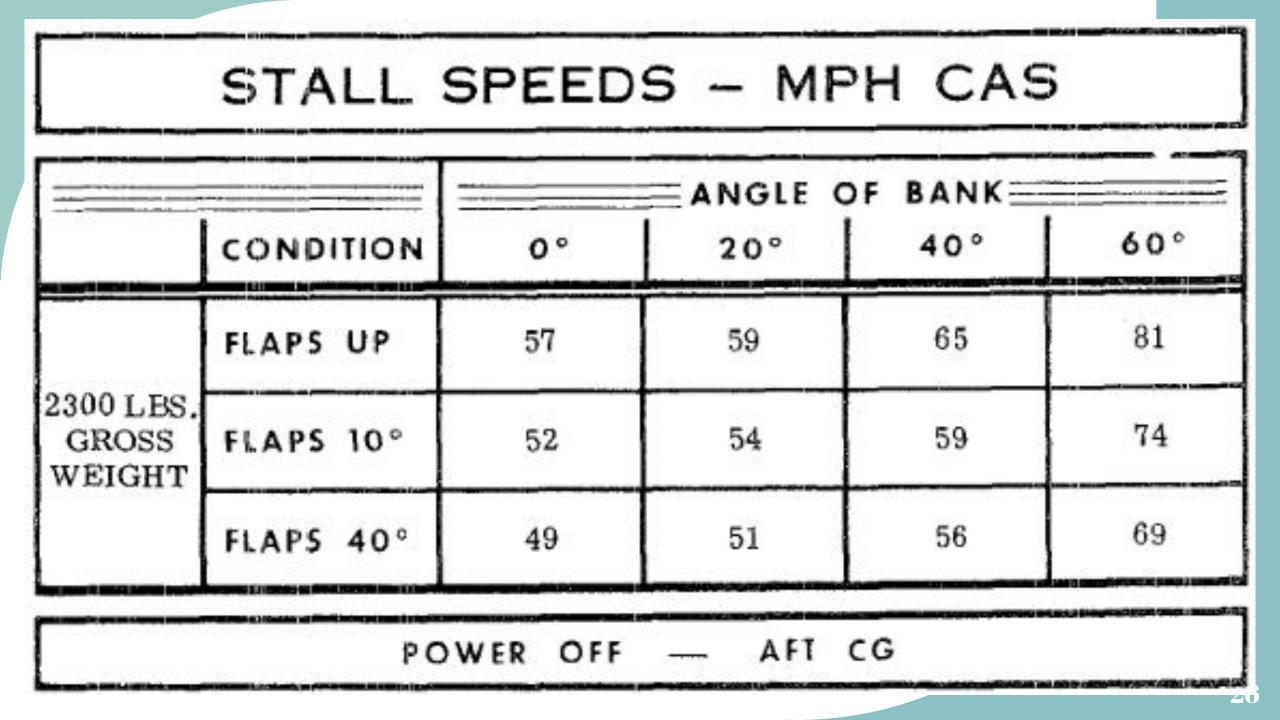

WORLD'S LARGEST PRO-DUCER OF GENERAL AVIATION AIRCRAFT SINCE 1956



OWNER'S MANUAL

LOADING

- * Pilot or passenger center of gravity on adjustable seats positioned for average occupant. Numbers in parentheses indicate forward and aft limits of occupant center of gravity range.
- ^{kip} Arm measured to the center of the areas shown.
- NOTE: The rear cabin wall (approximate station 108) or aft baggage wall (approximate station 142) can be used as convenient interior reference points for determining the location of baggage area fuseluge stations.



AIRSPEED CORRECTION TABLE													
	IAS	40	50	60	70	80	90	100	110	120	130	140	
FLAPS UP	CAS	53	58	64	72	79	88	97	107	117	127	137	
FLAPS DOWN	CAS	49	55	63	72	81	90	100	•	•	•	•	

Figure 6-1.

TAKE-OFF DATA

TAKE-OFF DISTANCE FROM HARD SURFACE RUNWAY WITH FLAPS UP

			AT SEA LEVEL & 59°F		AT 2500 FT. & 50°F		AT 5000	FT. & 41°F	AT 7500 FT. & 32°F		
VEIGHT AT	IAS AT 50' MPH	HEAD WIND KNOTS	GROUND RUN	TOTAL TO CLEAR 50 FT OBS	GROUND RUN	TOTAL TO CLEAR 50 FT OBS	GROUND RUN	TOTAL TO CLEAR 50 FT OBS	GROUND RUN	TOTAL TO CLEAR 50 FT OBS	
2300	68	0 10 20	865 615 405	1525 1170 850	1040 750 505	1910 1485 1100	1255 920 630	2480 1955 1480	1565 1160 810	3855 3110 2425	
2000	63	0 10 20	630 435 275	1095 820 580	755 530 340	1325 1005 720	905 645 425	1625 1250 910	1120 810 595	2155 1685 1255	
1700	58	0 10 20	435 290 175	780 570 385	520 355 215	920 680 470	625 430 270	1095 820 575	765 535 345	1370 1040 745	

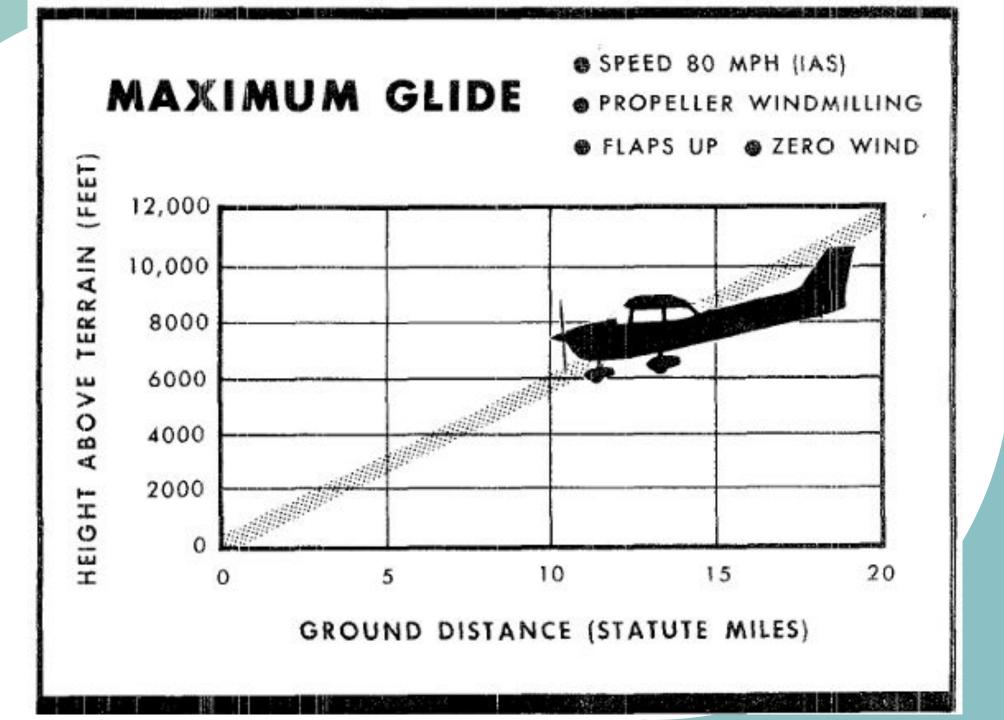
NOTES: 1. Increase distance 10% for each 25°F above standard temperature for particular altitude.

 For operation on a dry, grass runway, increase distances (both "ground run" and "total to clear 50 ft. obstacle") by 7% of the "total to clear 50 ft. obstacle" figure.

MAXIMUM RATE-OF-CLIMB DATA

	AT SE	AT SEA LEVEL & 59°F			AT 5000 FT. & 41°F			AT 10,000 FT. & 23°F			AT 15,000 FT. & 5°F			
GROSS WEIGHT POUNDS	ias MPH	RATE OF CLIMB FT/MIN	GAL. OF FUEL USED	LAS MPH	RATE OF CLIMB FT/MIN	FROM S.L. FUEL USED	ias Mph	RATE OF CLIMB FT/MIN	FROM S.L. FUEL USED	IAS MPH	RATE OF CLIMB FT/MIN	FROM S.L. FUEL USED		
2300	91	645	1.0	85	435	2.6	80	230	4.8	73	20	11.5		
2000	88	840	1.0	81	610	2.2	75	380	3.6	68	155	6.3		
1700	83	1085	1,0	77	825	1.9	70	570	2.9	64	315	4.4		

Gross Weight- 2300 Lbs. Standard Conditions


Zero Wind Lean Mixture

NOTE: Maximum cruise is normally limited to 75% power. Cruise speeds for the standard Model 172 are 1 to 3 MPH lower than shown with the maximum difference occurring at higher powers.

					38 GAL (N	O RESERVE)	48 GAL (N	O RESERVE)
ALTITUDE	RPM	% BHP	TAS MPH	GAL/ HOUR	ENDR. HOURS	RANGE MILES	ENDR. HOURS	RANGE MILES
2500	2700	87	139	9.6	3.9	545	5.0	690
	2600	78	133	8.6	4.4	590	5.6	745
	2500	70	128	7.7	4.9	630	6.2	795
	2400	63	122	7.1	5.3	655	6.7	825
	2300	57	116	6.6	5.7	665	7.2	840
	2200	51	109	6.2	6.1	665	7.7	840
5000	2700 2600 2500 2400 2300 2200	81 73 66 60 54 48	138 133 128 121 114 107	8.9 8.1 7.4 6.8 6.4 6.0	4.3 4.7 5.1 5.6 5.9 6.3	585 630 655 675 675 675 675	5,4 6,0 6,5 7,0 7,5 8,0	740 795 830 850 855 855
7500	2700	76	138	8.4	4.5	630	5.7	795
	2600	69	133	7.6	5.0	660	6.3	835
	2500	63	126	7.1	5.4	675	6.8	855
	2400	57	119	6.6	5.8	685	7.3	865
	2300	51	112	6.2	6.1	685	7.8	865
10.000	2700	72	138	7.9	4.8	665	6.1	840
	2600	66	131	7.3	5.2	685	6.6	860
	2500	59	124	6.8	5.6	695	7.1	875
	2400	54	117	6.4	6.0	700	7.5	880
	2300	48	110	6.0	6.3	700	8.0	889
12,500	2650	65	132	7.2	5.3	695	6.6	880
	2500	56	122	6.5	5.8	710	7.3	895
	2400	51	115	6.2	6.2	710	7.8	895

29

LANDING DATA LANDING DISTANCE ON HARD SURFACE RUNWAY NO WIND - 40° FLAPS - POWER OFF											
GROSS APPROACH		AT SEA LI	EVEL & 59°F	AT 2500 FT. & 50°F		AT 5000	FT. & 41°F	AT 7500 FT. & 32°F			
WEIGHT LBS.	IAS MPH	GROUND ROLL	TOTAL TO CLEAR 50' OBS.	GROUND ROLL	TOTAL TO CLEAR 50' OBS.	GROUND ROLL	TOTAL TO CLEAR 50' OBS	GROUND ROLL	TOTAL TO CLEAR 50' OBS.		
2300	70	520	1250	560	1310	605	1385	650	1455		

CRUISE.

Normal cruising is done between 65% and 75% power. The power settings required to obtain these powers at various altitudes and outside air temperatures can be determined by using your Cessna Power Computer or the OPERATIONAL DATA, Section VI.

Cruising can be done more efficiently at high altitudes because of lower air density and therefore higher true airspeeds for the same power. This is illustrated in the Maximum Cruise Speed Performance table, which shows performance at 75% power at various altitudes.

To achieve lean mixture fuel consumption figures shown in Section VI, the mixture should be leaned as follows: pull mixture control out until RPM peaks and begins to fall off, then enrichen slightly back to peak RPM.

Carburetor ice, as evidenced by an unexplained drop in RPM, can be removed by application of full carburetor heat. Upon regaining the origi-

AXIMUM CRU	JISE SPEED 75% POWER	PERFORMANC
ALTITUDE	RPM	TRUE AIRSPEED
Sea Level	2500	128
4000 Feet	2600	133
8000 Feet	2700	138

nal RPM (with heat off), use the minimum amount of heat (by trial and error) to prevent ice from forming. Since the heated air causes a richer mixture, readjust the mixture setting when carburetor heat is to be used continuously in cruise flight.

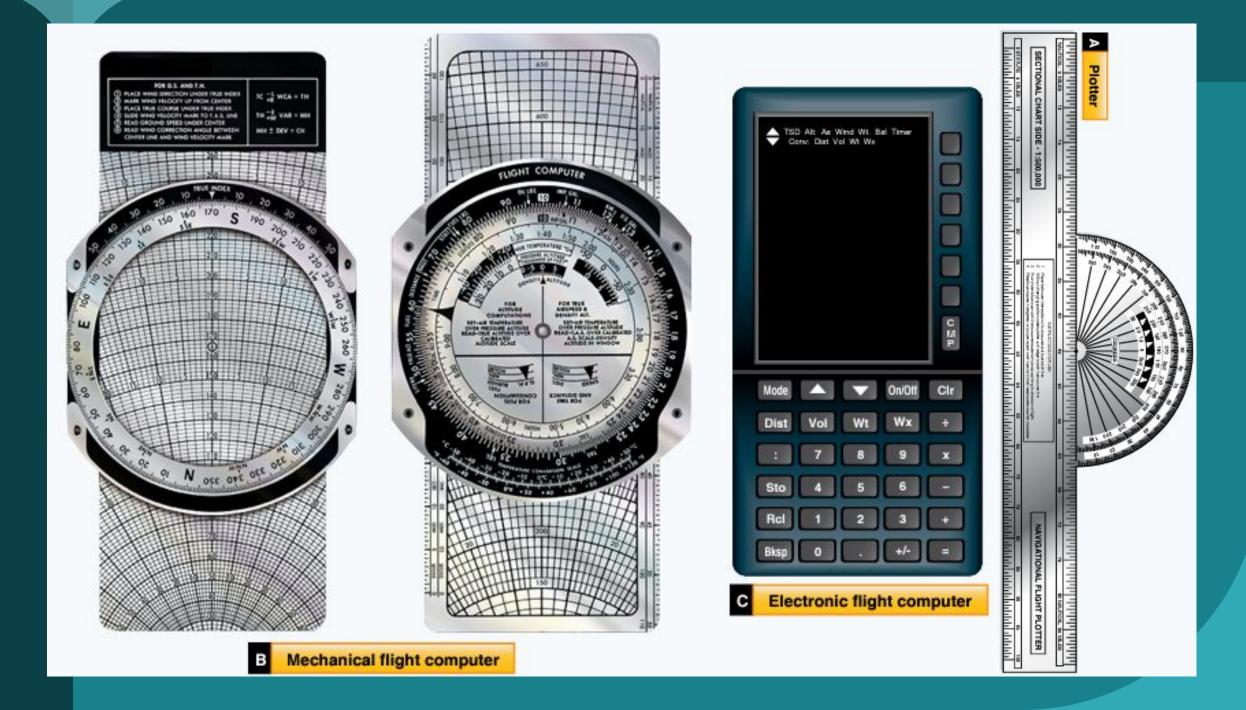
The use of full carburetor heat is recommended during flight in heavy rain to avoid the possibility of engine stoppage due to excessive water ingestion or carburetor ice. The mixture setting should be readjusted for smoothest operation.

In extremely heavy rain, the use of partial carburetor heat (control approximately 2/3 out), and part throttle (closed at least one inch), may be necessary to retain adequate power. Power changes should be made cautiously followed by prompt adjustment of the mixture for smoothest operation.

AIRSPEED LIMITATIONS (CAS).

The following is a list of the certificated calibrated airspeed (CAS) limitations for the aircraft.

Never Exceed Speed (glide or dive, smooth air)			182 MPH
Maximum Structural Cruising Speed			145 MPH
Maximum Speed, Flaps Extended			100 MPH
*Maneuvering Speed			112 MPH


*The maximum speed at which you may use abrupt control travel.

Dead Reckoning vs Pilotage

Dead Reckoning is navigation solely by means of computations based on time, airspeed, distance, and direction. The products derived from these variables, when adjusted by wind speed and velocity, are heading and GS.

Pilotage is navigation by reference to landmarks or checkpoints. It is a method of navigation that can be used on any course that has adequate checkpoints, but it is more commonly used in conjunction with dead reckoning and VFR radio navigation.

The Manual E6B

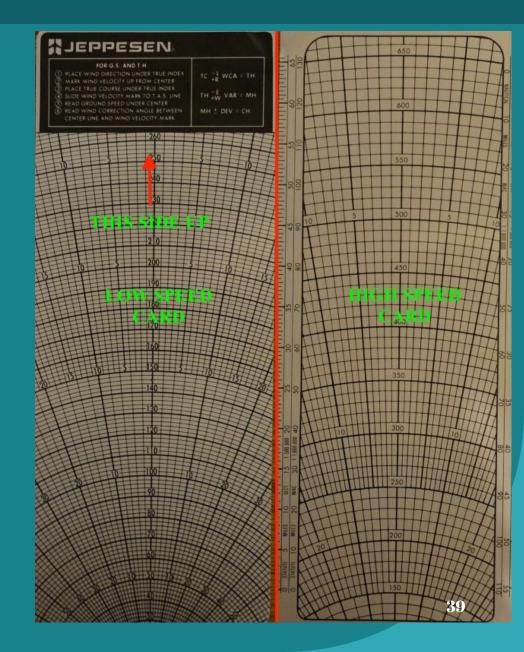
SCALE A – The outer scale marked in red has a few purposes. It provides a way to input and reference data with pointers (kind of like the buttons on a calculator). It is also where you will read all variables except time.

SCALE B – The middle scale is used to read time in minutes or seconds. It can also be used for multiplication and division.

SCALE C – The inner scale is only used to determine time in hours

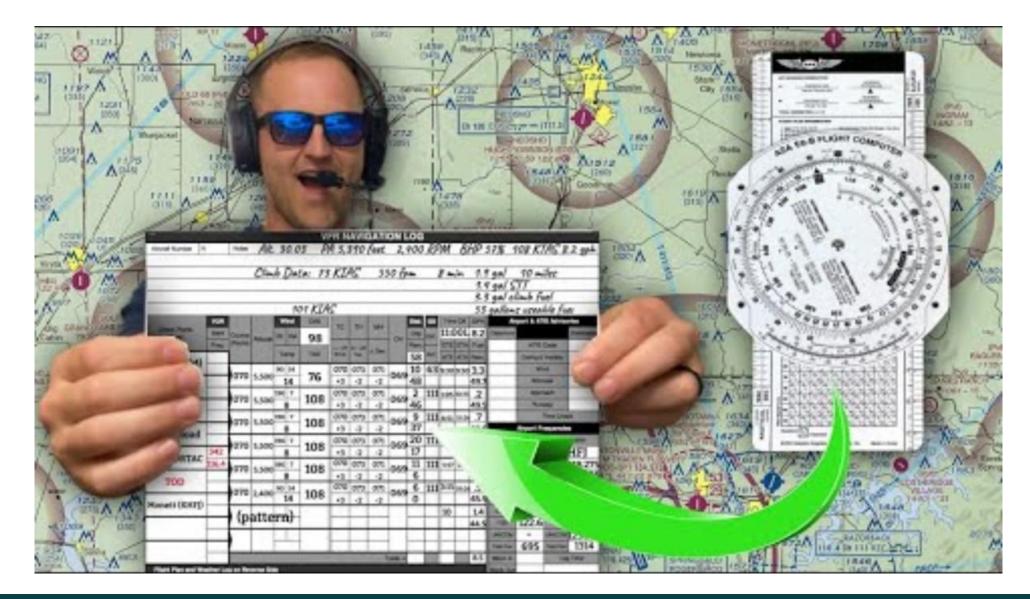
Manual E6B: Pointers

Pointers are the input method of the E6B. Different pointers will give you outputs in different units or bases.

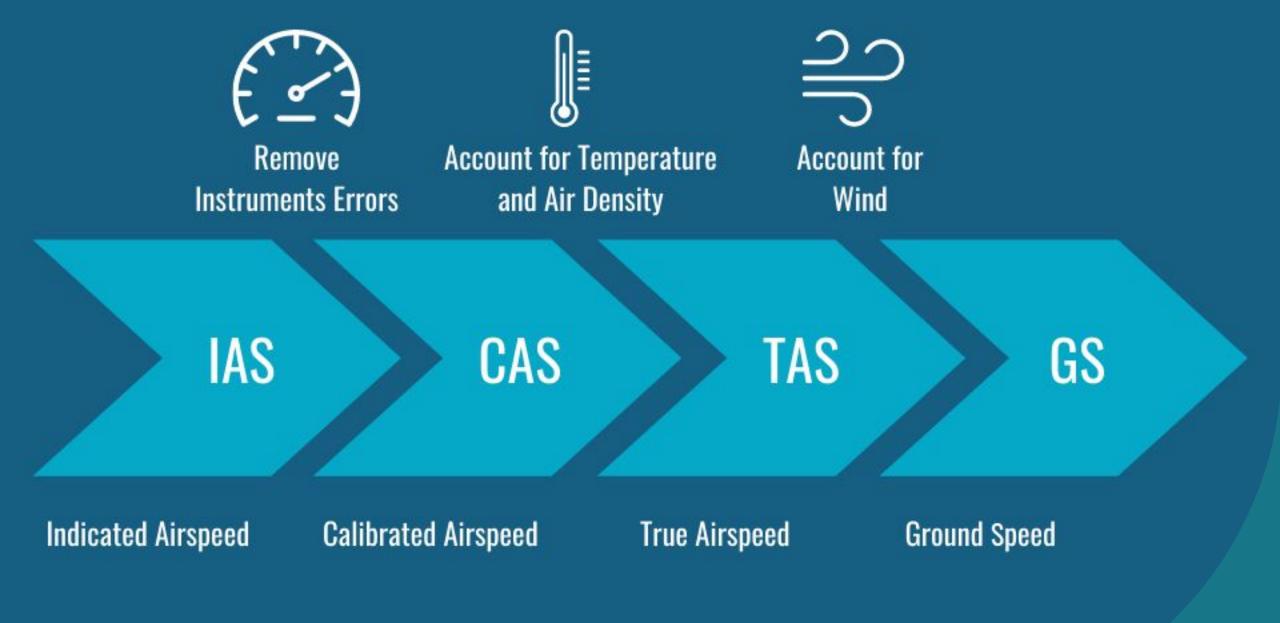

MULTIPLICATION AND DIVISION POINTER – This tiny pointer that extends from the center of the "10" in a black box is used to perform multiplication and division problems like 5×7 or 22×37.5 .

SECOND POINTER – This little pointer above the "E" in SECONDS allows you work with seconds. It lies on the "36" because there are 3600 seconds in one hour.

MINUTE/HOUR POINTER – This big triangular pointer is the most commonly used pointer on the E6B. It allows you to work with minutes and hours or do anything in base 60.


The Windage side of the E6B

On the backside of the E6B, you will notice a rotating dial and a metal slider. The metal slider is reversible and has one side for low speed aircraft (like light training planes) and one side for high speed aircraft (like jets). Before getting started, make sure you are using the correct side and that your card is facing right-side up.



Navigation Log

Airspeed Conversions

Indicated Airspeed (IAS)

•The direct instrument reading obtained from the Airspeed Indicator (ASI), uncorrected for variations in atmospheric density, installation error, or instrument error.

•The Airspeed Indicator (ASI) measures the difference between the static pressure from the aircraft's static ports, and the ram pressure (dynamic + static) from the pitot tube. This difference is the dynamic pressure, which translates into a reading.

•Manufacturers use this airspeed as the basis for determining aircraft performance.

•Takeoff, landing, and stall speeds listed in the Aircraft Flight Manual (AFM) / Pilot's Operating Handbook (POH) are IAS and do not normally vary with altitude or temperature.

Calibrated Airspeed (CAS)

Calibrated Airspeed is Indicated Airspeed (IAS) corrected for installation error and instrument error.

Although manufacturers attempt to keep airspeed errors to a minimum, it is not possible to eliminate all errors throughout the airspeed operating range.

At certain airspeeds and with certain flap settings, the installation and instrument errors may total several knots. This error is generally greatest at low airspeeds.

In the cruising and higher airspeed ranges, IAS and CAS are approximately the same.

You can find the calibrated airspeed for your airplane in the calibration chart of the aircraft manual.

Calibrated airspeed is the same as true airspeed when you are flying at sea level under International Standard Atmosphere (ISA) conditions.

The POH for CAS

AIRSPEED CORRECTION TABLE

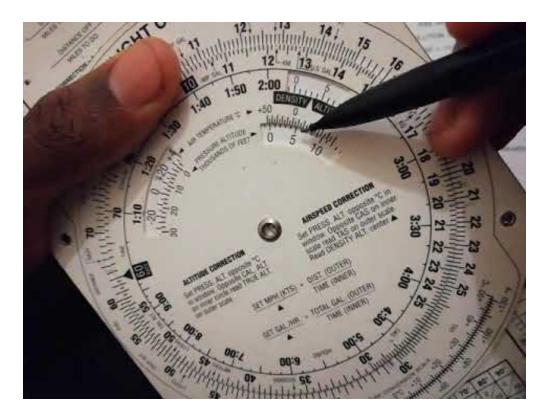
	IAS	40	50	60	70	80	90	100	110	120	130	140
FLAPS UP	CAS	53	58	64	72	79	88	97	107	117	127	137
FLAPS DOWN	CAS	49	55	63	72	81	90	100	٠	•	•	•

Figure 6-1.

True Airspeed (TAS)

True Airspeed is Calibrated Airspeed (CAS) corrected for altitude and nonstandard temperature.

Because air density decreases with an increase in altitude, an aircraft has to be flown faster at higher altitudes to cause the same pressure difference between pitot impact pressure and static pressure.

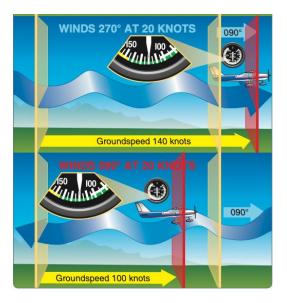

Therefore, for a given CAS, TAS increases as altitude increases; or for a given TAS, CAS decreases as altitude increases.

A pilot can find TAS by two methods. The most accurate method is to use a conventional or electronic flight computer.

A second method, which is a rule of thumb, provides the approximate TAS. Simply add 2 percent to the CAS for each 1,000 feet of altitude. At 10,000 feet, you are flying approximately 20% faster than your indicated airspeed.

The TAS is used for flight planning and when filing a flight plan.

E6B to get TAS

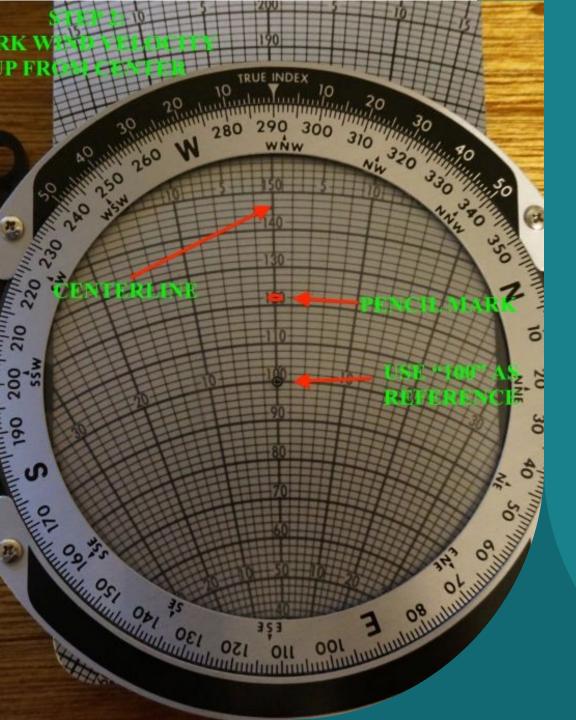


- Calculating True Airspeed
- To calculate your true airspeed (TAS), set your pressure altitude across from the temperature in Celsius in the air temperature window in the center of the E6B.
- If needed, use the temperature conversion chart at the bottom of the instrument that can be used to convert Fahrenheit into Celsius.
- Opposite the calibrated airspeed (CAS) on the B scale note the true airspeed (TAS) on the A scale.

More info on How to Use your manual E6B

Ground Speed

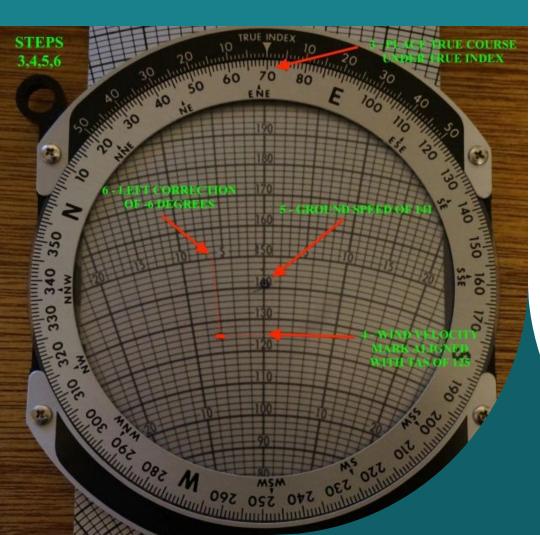
- Groundspeed is the actual speed of the airplane over the ground. It is the True Airspeed (TAS) adjusted for wind.
- While not an airspeed, GS is important for navigation and has a major impact on the time it takes to get to a destination.
- GS decreases with a headwind and increases with a tailwind.



Calculating Knots / MPH: Groundspeed

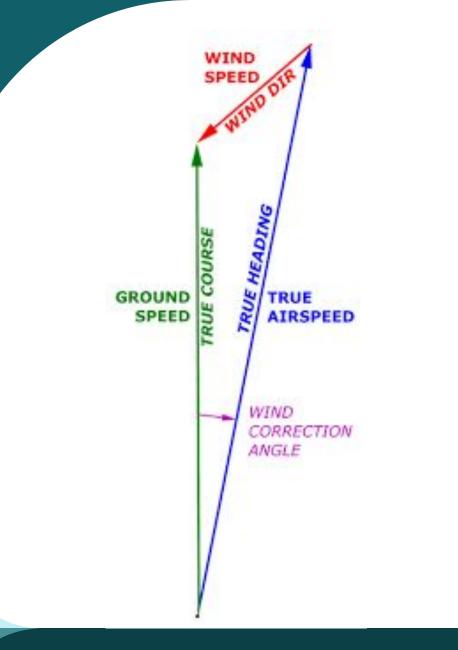
- Calculating ground speed, be it in knots or mph, can be done by finding the distance traveled and the time it took to travel that distance. This is known as a ground speed check. To do this, you need to know the distance from ground checkpoint to ground checkpoint. This information is written down in the nav log. The pilot obtains this information by measuring the distance on the sectional by using the nautical miles scale on either the plotter or on the ruler marked sides of the E6B.
- Let's say the aircraft is over Big Lake and your next checkpoint is College Campus. You measured the distance and have determined it is 15 nm. You started the timer in the aircraft when you were over Big Lake. When you reached College Campus, you note it took 8 minutes to get there.
- Line up 15 on the A scale over the 8.0 on the B scale.
- Now note the pointer is lined up with 11.2 on the A scale. Here's where we use some common sense again—11 mph or 11 knots wouldn't make sense—but a ground speed of 112, does, and that's the answer.

Flying Magazine on Flight Planning Calculations



Crab Angle & Ground Speed Adjusted for Wind

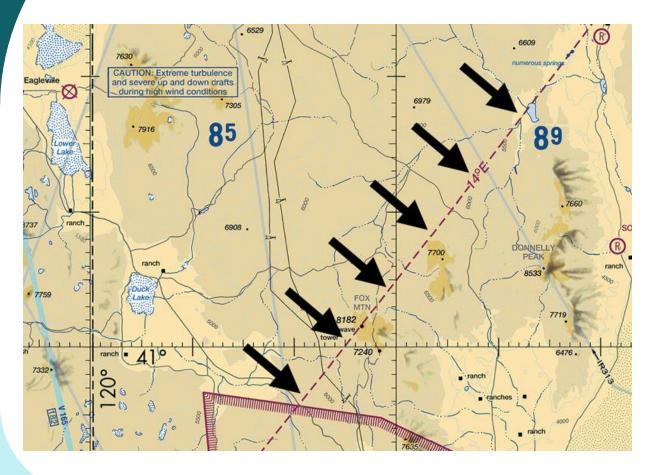
For this example, we will use: True Airspeed of 125kts True Course of 070 Winds from 290@22kts


- **I.** Just like the Jeppesen instructions say, rotate the dial the place the wind direction under the true index (the little pointer on top).
- The instructions on the E6B are vague for step 2. The objective is to place a small pencil mark on the plastic pencil-friendly surface to identify the wind velocity. If you look down the center of the E6B, you will notice a bold center-line and some numbers from about 30 at the bottom to 260 at the top for the low speed card. You will also notice a grid which marks increments of 2 units between the numbers. These numbers and the grid will be used to reference speed later. For now they will be used as a guide to mark the wind velocity.
 - I. Place the small hole in the center of the plastic directly over the "100" mark. For now, the 100 has no meaning other than to make it easy to count the wind units on the grid.
 - 2. Count the units upwards and place a mark on the plastic that corresponds to the wind speed. For example, for 22kts of wind, you would place the mark at "122".

Crab Angle & Ground Speed Adjusted for Wind Cont.

- 3. Rotate the dial to place the true course under the true index.
- 4. Now slide the metal slider so that the pencil mark you made lines up with your ground speed. In this example, this will mean that the mark will be left of the center-line.
- 5. Read the groundspeed corrected for wind at the center-line. In this example, the ground speed is 141kts
- 6. Find the wind correction angle by counting the units between the pencil mark and the centerline. In this example you will get about 6 degrees. If you pencil mark falls to the left of the centerline, subtract the value from your True Course to get your True Heading. If your mark falls to the right add the value.
- So after all of that, you should arrive at a **groundspeed of 141kts** and a **True Course of 64 degrees**.

Course & Heading Conversions


$TC \pm WCA = TH$

- TC—True Course. Direction of the line connecting two desired points, drawn on the chart and measured clockwise in degrees from TN on the mid-meridian
- WCA (wind correction angle) is achieved by taking True Course and adding or subtracting based on E6B calculations of where the wind will blow you. This will give you True Heading. We apply this before variation because the winds aloft are true, not magnetic.

Remember:

- Wind adjustment converts course to heading.
- Variation adjustment converts true to magnetic
- Deviation adjusts for errors in the compass caused by airplane systems.

$TH \pm VAR = MH$

Magnetic variation around us is 14 degrees E, so we subtract 14 from True Course to get Magnetic Course or -14 from True Heading to get Mag Heading. These lines are long dashed magenta strewn across the sectional charts.

Remember:

- Wind adjustment converts course to heading.
- Variation adjustment converts true to magnetic
- Deviation adjusts for errors in the compass caused by airplane systems.

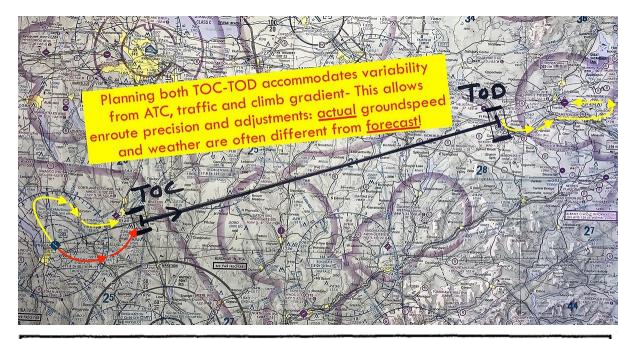
$\mathbf{MH} \pm \mathbf{DEV} = \mathbf{CH}$

Correcting for deviation as laid out by the compass deviation card gives you your course heading.

•Think of it this way, you adjust your heading indicator every 15mins, so, if you lose your heading indicator you have a compass to follow.

Remember:

- Wind adjustment converts course to heading.
- Variation adjustment converts true to magnetic
- Deviation adjusts for errors in the compass caused by airplane systems.


TOC, Climb, & TOD

Reminder... VFR Cruising Altitudes

If your magnetic course (ground track) is:	And you are more than 3,000 feet above the surface but below 18,000 feet MSL, fly:	And you are above 18,000 feet MSL to FL 290, fly:
0° to 179°	Odd thousands MSL, plus 500 feet (3,500; 5,500; 7,500, etc.)	Odd Flight Levels plus 500 feet (FL 195; FL 215; FL 235, etc.)
180° to 359°	Even thousands MSL, plus 500 feet (4,500; 6,500; 8,500, etc.)	Even Flight Levels plus 500 feet (FL 185; FL 205; FL 225, etc.)

Top of Climb

- Use winds aloft chart to get winds and temperature for climb out to utilize the 2/3rds rule of TOC
- Utilize the POH climb charts to get time fuel and distance

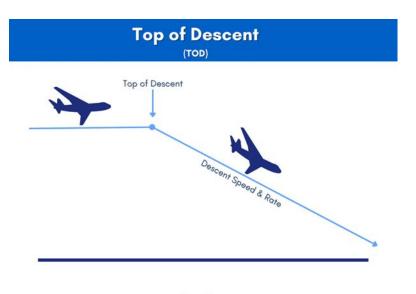
MAXIMUM RATE-OF-CLIMB DATA

	AT SE	A LEVEL &	59°F	AT 5	000 FT. &	41°F	AT 10	,000 FT. &	23°F	AT 15,000 FT. & 5°F			
GROSS WEIGHT POUNDS	IAS MPH	RATE OF CLIMB FT/MIN	GAL, OF FUEL USED	LAS MPH	RATE OF CLIMB FT/MIN	FROM S.L. FUEL USED	LAS MPH	RATE OF CLIMB FT/MIN	FROM S.L. FUEL USED	IAS MPH	RATE OF CLIMB FT/MIN	FROM S.L. FUEL USED	
2300	91	645	1.0	85	435	2,6	80	230	4.8	73	20	11.5	
2000	88	840	1.0	81	610	2.2	75	380	3.6	68	155	6.3	
1700	83	1085	1.0	77	825	1.9	70	570	2.9	64	315	4.4	

 For hot weather, decrease rate of climb 20 ft./min. for each 10°F above standard day temperature for particular altitude.

temperature for particular altitude.

Flight Planning CFI Notebook


NOTE: Maximum cruise is normally limited to 75% power. Cruise speeds for the standard Model 172 are 1 to 3 MPH lower than shown with the maximum difference occurring at higher powers.

					38 GAL (N	O RESERVE)	48 GAL (N	O RESERVE)
ALTITUDE	RPM	% BHP	TAS MPH	GAL/ HOUR	ENDR. HOURS	RANGE MILES	ENDR. HOURS	RANGE MILES
2500	2700 2600 2500 2400 2300 2200	87 78 70 63 57 51	139 133 128 122 116 109	9.6 8.6 7.7 7.1 6.6 6.2	3.9 4.4 4.9 5.3 5.7 6.1	545 590 630 655 665 665	5.0 5.6 6.2 6.7 7.2 7.7	690 745 795 825 840 840
5000	2700 2600 2500 2400 2300 2200	81 73 66 60 54 48	138 133 128 121 114 107	8.9 8.1 7.4 6.8 6.4 6.0	4.3 4.7 5.1 5.6 5.9 6.3	585 630 655 675 675 675 675	5.4 6.0 6.5 7.0 7.5 8.0	740 795 830 850 855 855 850
7500	2700 2600 2500 2400 2300	76 69 63 57 51	138 133 126 119 112	8.4 7.6 7.1 6.6 6.2	4.5 5.0 5.4 5.8 6.1	630 660 675 685 685	5.7 6.3 6.8 7.3 7.8	795 835 855 865 865
10.000	2700 2600 2500 2400 2300	72 66 59 54 48	138 131 124 117 110	7.9 7.3 6.8 6.4 6.0	4.8 5.2 5.6 6.0 6.3	665 685 695 700 700	6.1 6.6 7.1 7.5 8.0	840 860 875 880 880
12,500	2650 2500 2400	65 56 51	132 122 115	7.2 6.5 6.2	5.3 5.8 6.2	695 710 710	6.6 7.3 7.8	

Cruise

- Measure the mileage and utilize time fuel distance calculations with the Cruise chart in the POH (example to the left)
- Time T = D/GS
- Distance D = GS X T
- GS = D/T

Top of Descent

pilotmall.com

- Time = [Current ALT Final ALT] / Descent Rate
- Distance = [Current ALT Final ALT] / Descent Rate x Ground Speed / 60
- Or
- base it on 1000 fpm descent rate. Since on average you will be travelling around 2 miles/minute (120 kts, certainly close enough for this purpose), take the altitude to lose and multiply by 2. ie 4000 ft = 8 nm
- Or
- 3 to 1 formula. This means that it takes 3 NM to descend 1,000 feet. If an airplane is at FL 310 and the approach gate or initial approach fix is at 6,000 feet, the initial descent requirement equals 25,000 feet (31,000–6,000).

Flight Planning Considerations

Flight Planning Considerations

Day before flight:

- 1. Gather current charts, A/FD, navigation log, POH performance data, flight computer, etc.
- 2. Spread out charts and eyeball approximate route of flight considering the following:
- Route: Try to choose the most direct route but consider terrain during the climb, en route and descent. Use victor airways, obvious landmarks, and
 navigation aids if available. Make sure there are easily identified checkpoints along the route. Power lines, private airports, and train tracks are usually
 not easily identifiable!
- Airspace: Avoid restricted airspace and MOA's. Plan for appropriate clearances, weather minima, and equipment required for class B, C, & D airspaces.
- Terrain: Make sure you don't have terrain along your proposed route that is higher than the aircraft's service ceiling. For safety make sure you have at least 2000 foot obstacle/terrain clearance.
- • Airports: Make sure there are appropriate (runway lengths & available services) airports for needed, planned or unplanned stops.
- Fuel: Do you need a fuel stop? At what fuel indication would you divert for fuel? How much are you landing with? Does your destination have fuel services and available 24 hours?
- Emergencies: In case of an in-flight emergency make sure there are suitable landing sites (on and off airport). Don't fly long distances over lakes or open water.
- Night: Cities and highways are most of your visual references at night. Be especially alert to mountainous terrain, instrument conditions, airport lighting availability, and emergency landing sites. Pack a flashlight, extra batteries, and emergency supplies.

Flight Planning Considerations Cont.

- 3. Use plotter and pencil to draw intended route of flight. 4
- . In your navigation log, begin to enter the structure of the flight plan. Some of the details will be added later with current weather. For now, start with the departure airport in the first "Checkpoint" box.
- 5. The first checkpoint should be an easily identifiable point approximately 10-15 miles from the departure airport. It usually goes along with the "Top of Climb." The Top of Climb is
 the point at which the airplane reaches its initial cruising altitude. This point is determined from the climb performance charts in the POH. The Top of Climb will be determined
 when you get the weather for the flight, as it is determined by winds and temperatures.
- 6. Identify and mark an "X" at each checkpoint along the route. The check points should be evenly spaced along the route and have clearly visible references (freeways, airports, tall towers, cities, etc.). The route should have checkpoints approximately every 15-20 miles. If your airplane's airspeed indicator is in MPH instead of KTS, you should use statute miles for distance but will need to convert winds aloft from KTS to MPH.
- 7. In the "Checkpoint" box enter or draw a description for each checkpoint you identified, i.e. intersection of roads, which airport, height of tower, etc. and the distance to the next checkpoint.
- 8. If the checkpoint is identified by a VOR, NDB, cross radials, etc., enter each Nav Aid name, Frequency, OBS setting, and note whether there will be a "To" or "From" indication.
- 9. If communications are required (transitioning airspace, flight following, flight service station, etc.), write who you'll need to contact and the frequency in the "Comm" and "Freq" box.
- 10. For each checkpoint, enter the Route and Altitude you plan to fly to each checkpoint and enter that information in the "Route" and "Alt" boxes.
- 11. Use plotter to find the True Course you'll fly to each checkpoint and enter the value in the "TC" box. Use longitude lines and try to measure the True Course near the midpoint of the leg.
- 12. After you find the True Course to the checkpoints, use the plotter to find the distance between checkpoints and enter the value in the "Leg Dist" box. Make sure you use the correct scale (Sectional or VFR Terminal, NM or SM). You can do this for each checkpoint except for the Top of Climb (Because you don't know where this is yet) and the checkpoint following the Top of Climb.
- 13. Use the chart to find the Magnetic Variation for each leg and enter that information in the "Mag Var" box. If the variation is not a whole number (i.e. 13° 30"), round to nearest number.
- 14. Choose Altitude in reference to Magnetic Course (E is odd +500' from 0-179° and W is even + 500' from 180-359°), Winds Aloft, Airspace, Duration of Flight, Performance, Terrain, Emergencies etc.
- 15. List airport information and draw small diagram. Write important info like "Twy A closed," which you found in NOTAMs. Draw traffic patterns in relation to which direction you will be arriving from. This helps you determine how to enter the pattern for whichever runway is in use.

Flight planning Considerations Cont.

Day of the flight:

- 1. Go to www.aviationweather.gov . Under the "Tools" tab, select "Standard Briefing" and review all.
- 2. Use METARs, TAFs, and Winds Aloft to calculate takeoff, climb, en route and decent performance, WCA, and GS. * Remember that winds aloft are given in True Course and in Knots. Convert to magnetic and/or miles per hour if needed.
- 3. Refer to NOTAMs, TFRs, Area Forecast, Prog charts, Airmets, Sigmets, Convective Sigmets, Pireps, and TAFs en route to determine if flight can be accomplished.
- 4. Calculate when/where TOC will occur and complete flight plan boxes for ground speed, time, fuel burn, and magnetic heading. Calculate when you will need to begin decent to TPA (TOD).
- 5. Once you have determined Mag Heading (MH) and know which airplane you will fly, calculate Compass Heading (CH) by applying Deviation from the "Compass Deviation Card" of that airplane.
- 6. Do your Performance Sheet and your Weight & Balance for each leg.
- 7. Calculate Groundspeed, CH, MH, time between waypoints, time enroute, fuel consumption, fuel required, etc. Note which power setting (RPM) you selected for cruise so you set it in flight.
- 8. Finalize your Sectional Chart by marking the route of flight in color (e.g. yellow marker). Circle your checkpoints in a different color.
- 9. File your flight plan and obtain a weather briefing. Review NOTAMs, TFRs, and all pertinent data.
- 10. If you are a student pilot, get endorsement(s) from your Flight Instructor and leave a copy with them

VFR NAVLOG

					V	FR N	AVI	GATI	ON I	LOG	ľ.							
Aircraft Number	N	Notes																
22		92 																
	-										· · · ·							
Check Points	VOR			Wind	CAS	тс	TH	MH	64 2	Dist.	GS	Tim	e Off	GPH	NAME AND ADDRESS OF TAXABLE PARTY.	port & A	TIS Advise	No. of Concession, Name
(Fixes)	Ident	Course	Altitude	Dir. Vel.			100.00	100000	СН	Leg	Est.				Departure			Destination
1999-1994 I.	Freq.	(Route)		Temp	TAS	-L/+R WCA	-E / +W	± Dev.		Rem.		10.010	1000	Fuel	00		S Code	
				remp	IAS	WCA	Var.				Act.	ATE	ATA	Rem.			& Visibility	
			5		9 3		-		8							10	Vind	<u> </u>
	-									-		2 52		·		Altimeter Approach		-
			ś	3	8 0	<u> </u>	8	2	81 4	()	÷	2 20	(t) - 5		(X. 23)	1	-	
			-	1			2	-						-	<u>3</u>	- HL	inway Time Che	ak
		•	i i	- 3		<u> </u>	2 3		8			2 - 83 5 - 83	3 - 3 3 - 3		S. 55	Airport	Frequencie	832
			5 - 3					1				0 00 9 00				arture		tination
			3		8. S		2	5	8 8	-		1.1	22-0		pr			
	()		· ·				-	: · · ·				5 68	с <u>і —</u>		ATIS	35- 	ATIS	
		1	5		6 3		÷	÷	8 8	i i	0	1 2	8 ÷	-	Ground	ă.	Approach	
															Tower		Tower	
		1													Departure		Ground	
					2								a		CTAF	0	CTAF	
															FSS		FSS	
							8					5 - S)	3 - 3		UNICOM	35	UNICOM	(;
					1				8 - 3			10	3 - 3		Field Elev	3	Field Elev	0
								Т	otals »			8 G		2 	Block In	29	Lo	g Time
Flight Plan and W	eather Lo	g on Rev	verse Sid	le											Block Out	22		

- First, remember that this log is for your use. No sense in filling it with so much info it is unreadable. Second, flight planning is done primarily to calculate fuel, time, distance, and navigation to get from one place to another.
- Now let's talk about the boxes: what they mean and how to use them.
- The top section can be used for performance and is fairly self-explanatory. You'll get this information from the POH, but use temperatures and pressures from the day of the flight.
- Checkpoints: Your departure airport should be the first checkpoint. TOC (top of climb) is generally the second checkpoint. If you make a turn before TOC, then enter a location or landmark where the turn will be made and move TOC to the third checkpoint box. Checkpoints should be noted approximately every 10-15 minutes (approx 15-20 miles).
- VOR Freq/Ident: If you are using VORs for navigation, either on airways or as checkpoints, enter the VORs frequency in the top half of the box and the name of the station (i.e. SNS, SJC, etc.) in the bottom half of the box.
- Course: Magnetic course determines our altitude (E is odd 500', W is even + 500') and is also what VORs use.
 Magnetic course is derived by taking true course +/- magnetic variation (TC VAR = MC)

66