THE STELLAR POPULATIONS AND INTERNAL REDDENING OF SPIRAL GALAXIES

by

Roger Rouse
Outline

• Motivation
• Goals
• Sample, Observations, and Calibration
 – Measurement of the magnesium b triplet, Mgb
 – Measurement of the optical-infrared color, B-K
 – Diagram used to analyze color and population gradients
 – Comparison to Stellar Population Synthesis Models
• Results
• Conclusions and Future Work
MOTIVATION

- Would like to understand the evolution of galaxies. Therefore, need to understand the current state and history of their contents: stars, gas, and dust.

- In the area of stellar populations spiral disks are not as well studied as bulges and ellipticals.

- In particular are color gradients in disks due to reddening or stellar population changes?
COLOR GRADIENTS

- Need a reddening independent measure of the population such as the magnesium b triplet, Mgb, at 5177Å.
- Need a color with large wavelength range such as B-K, an optical infrared color
- Need Mgb and B-K at same locations in a galaxy.
- Need spatial resolution in the spectroscopy.
GOALS

• To image disks in BVRI & JHK.
• To obtain long slit optical spectroscopy.
• To measure B-K gradients and Mgb gradients.
• To use B-K and Mgb to investigate the cause of the color gradients.
Galaxy Selection

- Galaxies were selected from the Aaronson (1982) Tully-Fisher sample.
- The criteria were
 - Size: Small enough to be observed with a 3' long slit.
 - Inclination: Less than 56°
 - Color: Match another galaxy’s $B_T - H_{-0.5}$.
- This resulted in 5 pairs of 10 spiral galaxies.
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>B_T</th>
<th>$\log(D_{25})$</th>
<th>$\log(R_{25})$</th>
<th>$B_T - H_{-0.5}$</th>
<th>$V_0 (\frac{\text{km}}{\text{s}})$</th>
<th>A_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 3782</td>
<td>SAB(s)cd</td>
<td>12.8</td>
<td>1.22</td>
<td>0.19</td>
<td>1.13</td>
<td>739</td>
<td>0.01</td>
</tr>
<tr>
<td>NGC 5204</td>
<td>SA(s)m</td>
<td>11.4</td>
<td>1.70</td>
<td>0.22</td>
<td>1.17</td>
<td>204</td>
<td>0.01</td>
</tr>
<tr>
<td>NGC 4713</td>
<td>SAB(rs)d</td>
<td>11.9</td>
<td>1.43</td>
<td>0.20</td>
<td>1.53</td>
<td>653</td>
<td>0.00</td>
</tr>
<tr>
<td>NGC 2701</td>
<td>SAB(rs)dm</td>
<td>12.4</td>
<td>1.34</td>
<td>0.13</td>
<td>1.58</td>
<td>2326</td>
<td>0.05</td>
</tr>
<tr>
<td>NGC 3338</td>
<td>SA(s)c</td>
<td>10.9</td>
<td>1.77</td>
<td>0.21</td>
<td>1.98</td>
<td>1301</td>
<td>0.06</td>
</tr>
<tr>
<td>NGC 4654</td>
<td>SAB(rs)cd</td>
<td>10.7</td>
<td>1.69</td>
<td>0.24</td>
<td>2.01</td>
<td>1035</td>
<td>0.06</td>
</tr>
<tr>
<td>NGC 772</td>
<td>SA(s)b</td>
<td>11.1</td>
<td>1.86</td>
<td>0.23</td>
<td>2.63</td>
<td>2458</td>
<td>0.16</td>
</tr>
<tr>
<td>NGC 2268</td>
<td>SA(r)bc</td>
<td>12.2</td>
<td>1.51</td>
<td>0.21</td>
<td>2.63</td>
<td>2222</td>
<td>0.21</td>
</tr>
<tr>
<td>NGC 949</td>
<td>SA(rs)b</td>
<td>12.6</td>
<td>1.38</td>
<td>0.27</td>
<td>2.37</td>
<td>612</td>
<td>0.17</td>
</tr>
<tr>
<td>NGC 6384</td>
<td>SAB(r)bc</td>
<td>11.3</td>
<td>1.79</td>
<td>0.18</td>
<td>2.37</td>
<td>1663</td>
<td>0.41</td>
</tr>
</tbody>
</table>
OBSERVATIONS

- BVRI CCD images taken at the MDM 51″ McGraw Hill Telescope.
- JHK NICMOS images collected at the Steward Observatory 61″ at Catalina.
- 3600Å to 6000Å spectral images captured at MMT using the red channel spectrograph with 300l grating (18Å resolution). Spectral images with 600l grating (9Å resolution) were also obtained.
<table>
<thead>
<tr>
<th>Galaxy</th>
<th>Pos1<sup>a</sup></th>
<th>Pos2</th>
<th>Pos1<sup>a</sup></th>
<th>Pos2</th>
<th>B<sup>b</sup></th>
<th>V</th>
<th>R</th>
<th>I</th>
<th>J<sup>c</sup></th>
<th>H</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 772</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>NGC 949</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>NGC 2268</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NGC 2701</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>NGC 3338</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NGC 3782</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NGC 4654</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NGC 4713</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NGC 5204</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>NGC 6384</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

^aColumns marked Pos1 or 2 indicate the number of exposures at that slit position.

^bColumns B, V, R, & I are the number of exposures taken in that filter.

^cColumns J, H, & K are the number of sequences of exposures taken in that filter.
CALIBRATION

• BVRI CCD images reduced in the standard way.
• Landolt standards at range of airmass, times, and colors used to determine photometric solution.
• JHK images collected and reduced in the usual way that accounts for large sky brightness.
• Not photometric so previous photometry of galaxies used to determine zero points.
• The spectral images reduced in standard way.
• IDS line standards used to confirm transformation to Lick System.
TRANSFORMING TO STANDARD MAGNITUDES

- To form B-K the B and K magnitudes must be on the standard system.
- The B imagery was obtained on a photometric run. The photometric solution is used to assign B magnitudes to galaxy measurements.
- Because the K data was not photometric comparison to previous photometry of the galaxies gives the zero points.
- However, previous photometry is in H. So a fiducial H-K is needed. That is provided by 2MASS.
THE LICK SYSTEM

- A system of 21 standard line indices.
- Based on IDS observations of many line standard stars.
- The model outputs line indices on the Lick System.
TRANSFORMING TO LICK SYSTEM

- The main difference between instrumental EWs and the Lick EWs is the difference in resolution between the MMT spectra and the IDS spectra.

- The effect of broadening on the EW has been determined by González (1993). I use this relationship to determine a scale factor that compensates for the difference in resolution.

- My corrected EW(Mgb), $3.9 \pm 0.25\text{Å}$, differs insignificantly from the Lick value, $4.0 \pm 0.2\text{Å}$ (Worthey 1993) measured in the line standard SA103-95.

- No other corrections are applied.
EW(Mgb)_{rouse} = 3.9 \pm 0.25 \text{Å}

EW(Mgb)_{lick} = 4.0 \pm 0.2 \text{Å}
MODEL SELECTION

• Bruzual & Charlot, Worthey, and Bressan (Padova) models agree within 25-30% (Charlot et al. 1996).

• This work uses Worthey's (1994) evolutionary synthesis.

• A wide range in age and metallicity is provided.

• Many basic observable quantities are provided such as standard magnitudes, colors, Lick line indices.

• Used successfully to analyze ellipticals (González 1993, Trager et al. 2000)
$\text{EW(Mgb)} = 1.5 \pm 0.2 \, \text{Å} (\text{Aperture} = -0.7''$)

$\text{EW(Mgb)} = \Delta \lambda (1 - F_1/F_c)$
NGC 5204 Position One

 EW(Mgb) (Å) vs Position ("")

 B-K vs Position ("")
CONCLUSIONS

- The faint regions of spiral disks have been observed in the optical bands, near infrared bands and spectroscopically with spatial resolution.
- This forms a very unique data set that has many uses.
- The galaxies analyzed were very different in their internal character.
- NGC 4654 shows a decrease in reddening outward with little or no population gradient.
- NGC 6384 shows a population gradient that increases in age and metallicity towards the center. There is a decrease in reddening outward in the outer disk.
CONCLUSIONS CONTINUED

• NGC 5204 resembles NGC 4654 although no gradients were detected.

• NGC 6384 is in the field. NGC 4654 and NGC 5204 are cluster galaxies.

• Perhaps the differences seen here are due to their different environments.

• Apparently one age or metallicity is not sufficient to describe NGC 6384.

• Simple stellar populations are very useful in analyzing the disks. However, they are insufficient to describe disks.

• Very old metal rich nor very metal poor populations of any age contribute to the integrated light of the three galaxies.
FUTURE WORK

• Look at the other slit positions & galaxies.
• Look at other colors to estimate the internal reddening law.
• Look at other lines to see if reddening is confirmed.
• Separation of emission from absorption in H to get better separation of age and metallicity
• Bulge-disk decompositions & surface brightness distributions
• Color distributions & true color images
• Test galaxy evolution models
• Are large Tully-Fisher residuals related to internal properties?