

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

1
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Syllabus Content:

3.3.2 Boolean algebra
• show understanding of Boolean algebra
• show understanding of De Morgan‟s Laws

• perform Boolean algebra using De Morgan‟s Laws
• simplify a logic circuit/expression using Boolean algebra

3.3.1 Logic gates and circuit design

• produce truth tables for common logic circuits including half adders and full adders
• derive a truth table for a given logic circuit

3.3.4 Flip-flops
• show understanding of how to construct a flip-flop (SR and JK)
• describe the role of flip-flops as data storage elements

3.3.2 Boolean algebra

We have met gate logic and combination of gates. Another way of representing gate logic is

through Boolean algebra, a way of algebraically representing logic gates. You should have

already covered the symbols, below is a quick reminder

UBoolean Operations and Expressions

“Variable”, “Complement”, and “Literal” are terms used in Boolean Algebra.

A variable is a symbol used to represent a logical quantity. Any single variable can have
a

“1” or a “0” value

The complement is the inverse of a variable and is indicated by a bar over the

variable. The complement of a variable is not considered as a different

variable.

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

2
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Every occurrence of a variable or its complement is called a Literal. It could be its true

form or its complement, both of them are called Literals

A SUM TERM is the SUM of literals (A+B+C+D)

A sum term is equal to 1 if one or all of its inputs are 1, and is equal to 0 only if

all of its inputs are zero.

A PRODUCT TERM is the PRODUCT of literals (A.B.C.D)

A product term is equal to 1 if all of its inputs are 1. And is equal to 0 if any

one (or all) of its inputs are zero.

Describing Logic Circuits Algebraically:

Any logic circuit, no matter how complex, may be completely described using the Boolean

operations previously defined. Because the OR gate, AND gate, and NOT gate are the basic

building blocks of digital circuits.

Boolean algebra provides a concise way to express the operation of a logic circuit formed by a
combination of logic gates so that the output can be determined for various combinations of
input values.

To derive the Boolean expression for a given logic circuit, begin at the left most inputs and

work towards the final output, writing the expression for each gate.

Laws and Rules of Boolean Algebra:

Equivalent and Complement of Boolean Expressions

Two given Boolean expressions are said to be equivalent if one of them equals “1”

only when the other also equals “1” and same case with “0”

They are said to be complement of each other if one expression equals “1” only

when the other equals “0” and vice versa.

Postulates of Boolean Algebra:

The following are the important postulates of Boolean algebra

1. 1.1 = 1 & 0+0 = 0

2. 1.0 = 0.1 = 0 & 0+1 = 1+0
= 1 3. 0.0 = 0 & 1+1 = 1

4. 1 = 0 & 0 = 1

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

3
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Theorems of Boolean Algebra

Boolean theorems can be useful in simplifying a logic expression. That is, in

reducing the number of terms in the expression.

It is useful in the sense that the number of gates, are reduced which in turn also

reduces heat dissipation from the circuit (saves energy)

When this is done, the reduced expression will produce a circuit that is less

complex than the one which the original expression would have produced.

Commutative Laws

Rule 1:

For Addition:

 X + Y = Y + X

For Multiplication:

 X.Y = Y.X

 Associative Laws:

Rule 2:

 For Addition:

X+(Y+Z) = Y+(Z+X) = Z+(X+Y)

 For Multiplication

X.(Y.Z) = Y.(Z.X) = Z.(X.Y)

Distributive Laws

Rule 3:

 X.(Y+Z) = X.Y + X.Z
 (X.Y) + (X.Z) = X(Y+Z)

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

4
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Operations with „0‟ and „1‟

Rule 4:

 OR Laws:

These laws use the OR operation. Therefore they are called as OR laws.

 0+X = X

 1+X = 1

 AND Laws:

These laws use the AND operation. Therefore they are called as AND laws.

 0.X = 0

 1.X = X

Idempotent or Identity Laws:

RULE 5:

 X.X.X.X………………………X = X

RULE 7:

 X+X+X+X +………………..+X = X

Complementation Law:

RULE 6:

 X.X = 0

RULE 8:

 X+X = 1

 Involution Law / INVERSION law:

RULE 9:

This law uses the NOT operation. The inversion law states that double inversion of a

variable result in the original variable itself.

 X = X or

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

5
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Absorption Law or Redundancy Law:

RULE 10:

o X+X.Y = X

RULE 11:

o X+X.Y = X+Y

RULE 12:

o (X+Y).(X+Z) = X+Z.Y

Explanation of Rule10, Rule 11, Rule12

DeMorgan‟s Theorem

DE Morgan‟s theorems provide mathematical verification of the equivalency of the

NAND and negative-OR gates & the equivalency of the NOR and negative-AND

gates.

In electrical and computer engineering, De Morgan's laws are commonly written
as:

Theorem 1:

The compliment of the product of 2 variables is equal to the sum of the

compliments of individual variables

Theorem 2:

The compliment of the sum of two variables is equal to the product of the

compliment of each variable

https://en.wikipedia.org/wiki/Electrical_and_computer_engineering

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

6
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

The rules that govern Boolean algebra

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

7
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Syllabus Content:

3.3.1 Logic gates and circuit design
• produce truth tables for common logic circuits including half adders and full adders

• derive a truth table for a given logic circuit

Half Adder:

The simplest circuit that can be used for binary addition is the half adder. This can be
represented by the diagram in the circuit takes two input bits and outputs a sum bit (S)

and a carry bit (C).

With the help of half adder, we can design circuits that are capable of performing
simple addition with the help of logic gates. Let us first take a look at the addition of

single bits.

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 10

These are the least possible single-bit combinations. But the result for 1+1 is 10.
Though this problem can be solved with the help of an EXOR Gate, if you do care about
the output, the sum result must be re-written as a 2-bit output.

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

8
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Thus the above equations can be written as

0+0 = 00

0+1 = 01

1+0 = 01

1+1 = 10

Here the output „1‟of „10‟ becomes the carry-out. The result is shown in a truth-table

below. „SUM‟ is the normal output and „CARRY‟ is the carry-out.

From the equation it is clear that this 1-bit adder can be easily implemented with the help of
EXOR Gate for the output „SUM‟ and an AND Gate for the carry. Take a look at the
implementation below. For complex addition, there may be cases when you have to add two 8-

bit bytes together. This can be done only with the help of full-adder logic.

Full Adder
This type of adder is a little more difficult to implement than a half-adder. The main difference
between a half-adder and a full-adder is that the full-adder has three inputs and two outputs.

The first two inputs are A and B and the third input is an input carry designated as CIN.

The sum shows how we have to deal with CARRY from the previous column. This is why we
need to join two half adders together to form a full adder:

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

9
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

The output carry is designated as COUT and the normal output is designated as S. Take a look
at the truth-table.

From the above truth-table, the full adder logic can be implemented. We can see that the output S
is an EXOR between the input A and the half-adder SUM output with B and CIN inputs. We must

also note that the COUT will only be true if any of the two inputs out of the three are HIGH.

Thus, we can implement a full adder circuit with the help of two half adder circuits. The first will half
adder will be used to add A and B to produce a partial Sum. The second half adder logic can be
used to add CIN to the Sum produced by the first half adder to get the final S output. If any of the
half adder logic produces a carry, there will be an output carry. Thus, COUT will be an OR function
of the half-adder Carry outputs. Take a look at the implementation of the full adder circuit shown

below.

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

10
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

 As with the half adder circuits, different logic gates can be used to produce the full adder
circuit.

 The full adder is the basic building block for multiple binary additions. For example, Figure
below shows how two 4-bit numbers can be summed using four full adder circuits.

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

11
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Syllabus Content:

3.3.4 Flip-flops

• show understanding of how to construct a flip-flop (SR and JK)
• describe the role of flip-flops as data storage elements

Flip-Flop Circuits
All of the logic circuits you have encountered up to now are combination circuits (the output
depends entirely on the input values).

We will now consider a second type of logic circuit, known as a sequential circuit (the output
depends on the input value produced from a previous output value). Examples of sequential

circuits include flip-flop circuits. This chapter will consider two types of flip-flops: SR flip-
flops and JK flip-flops.

SR Flip-Flop

The SR flip-flop, also known as a SR Latch, can be considered as one of the most basic

sequential logic circuit possible. This simple flip-flop is basically a one-bit memory bistable
device that has two inputs, one which will “SET” the device (meaning the output = “1”), and is
labelled S and another which will “RESET” the device (meaning the output = “0”), labelled R.

SR flip-flops SR flip-flops consist of two cross-coupled NAND gates (note: they can equally
well be produced from NOR gates). The two inputs are labelled „S‟ and „R‟, and the two
outputs are labelled „Q‟ and „Q‟ (remember Q is equivalent to NOT Q).

 The Basic SR Flip-flop

We can use SR flip-flop circuits constructed from both NOR gates or NAND gates, as
shown in Figure.

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

12
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

 How SR Flip-flop works:

We will consider SR-Flip Flip using NOR Gates. We will now consider the truth table to match
our SR flip-flop using the initial states of R = 0, S = 1 and Q = 1. The sequence of the stages in

the process is shown in Figure

 We have to start with two inputs given in red colour.

 We can take R = 0 and Q = 0 in First Gate which produces Q=1

 When Q=1 and Set S=1 is input in second gate in green colour, it produces Q = 0

 So in SR Flip-Flop when Set value Q=1, Reset value Q = 0.

 If S=0 and R=0, No change. Flip Flop will remain in present state as shown below

 If S= 1 and R = 1, An invalid condition will happen as Q and Q both have to be
opposite to each other which are same in invalid state.

 Now consider what happens if we change the value of S from 1 to 0.

 See when R = 0 and S = 0, No change in Output, its same as previous state.

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

13
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

The reader is left to consider the other options which lead to the truth table, Tablebelow, for
the flip-flop circuit.

 Explanation:

 S = 1, R = 0, Q = 1, Q = 0 is the set state in this example

 S = 0, R = 0, Q = 1, Q = 0 is the re-set state in this example

 S = 0, R = 1, Q = 0, Q = 1 here the value of Q in line (b) remembers the value of Q
from line (a); the value of Q in line (d) remembers the

value of Q in line (c)

 S = 0, R = 0, Q = 0, Q = 1 R changes from 1 to 0 and has no effect on outputs
(these values are remembered from line (c))

 S = 1, R = 1, Q = 0, Q = 0 Invalid case since Q should be the (opposite) of Q.

 The truth table shows how an input value of S = 0 and R = 0 causes no change to the

two output values; S = 0 and R = 1 reverses the two output values; S = 1 and R = 0
always gives Q = 1 and Q = 0 which is the set value.

 The truth table shows that SR flip-flops can be used as a storage/memory device for one

bit; because a value can be remembered but can also be changed it could be used as a
component in a memory device such as a RAM chip.

 It is important that the fault condition in line (e) is considered when designing and

developing storage/memory devices.

The NOR Gate SR Flip-flop

Below are SR flip flops with NOR Gates and NAND Gates along with truth tables, also
showing invalid state:

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

14
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

The NAND Gate SR Flip-Flop

As well as using NOR gates, it‟s also possible to construct simple one-bit SR Flip-flops using

two cross-coupled NAND gates connected in the same configuration. The circuit will work in a
similar way to the NOR gate circuit above, except that the inputs are active HIGH and the
invalid condition exists when both its inputs are at logic level “1”, and this is shown below.

 The only difference is that in NOR Gate SR Flip Flop Invalid Condition happens when
S=1 and R=1 and No-Change happens when S=0 and R=0

 In NAND Gate SR Flip Flop Invalid Condition happens when S=0 and R=0 and No-
Change happens when S=1 and R=1

The SR flip-flop has few problems due to which JK flip-flop has been developed.

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

15
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

The JK flip-flop
The SR flip-flop has the following problems:

 In addition to the possibility of entering an invalid state there is also the potential for a

circuit to arrive in an uncertain state.

 If inputs do not arrive quite at the same time, the circuit can become unstable.

In order to prevent this, the JK flip-flop has been developed. A circuit may include a clock pulse

input to give a better chance of synchronizing inputs and additional gates are added.
The addition of the synchronised input gives four possible input conditions to the JK flip-flop:

 »1

 » 0

 » no change

 » toggle (which takes care of the invalid S, R states).

The JK flip-flop can be illustrated by the symbol shown in Figure
JK flip-flop symbol (left) and JK flip-flop using NAND gates only (right)

Table below is the simplified truth table for the JK flip-flop.

P3: Sec 3.3.1, 3.3.2, 3.3.4) Boolean Algebra, Logic Gates & Flip-Flops
Computer Science 9608

with Majid Tahir

16
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

 »When J = 0 and K = 0, there is no change to the output value of Q.

 » If the values of J or K change, then the value of Q will be the same as the value of J

(Q will be the value of K).

 » When J = 1 and K = 1, the Q-value toggles

after each clock pulse, thus preventing illegal
states from occurring (in this case, toggle
means the flipflop will change from the „Set‟

state to the „Re-set‟ state or the other way
round).

Truth table for a JK flip-flop

 Use of JK flip-flops

 » Several JK flip-flops can be used to produce shift registers in a computer.

 » A simple binary counter can be made by linking up several JK flip-flop circuits (this

requires the toggle function).

References:
AS & A level by Silvia Langfield and Dave Duddell

Cambridge International AS & A level by David Watson and Hellen Williams (Hodder Education)
http://study.com/academy/lesson/how-star-topology-connects-computer-networks-in-
organizations.html

https://www.allaboutcircuits.com/textbook/digital/chpt-7/demorgans-theorems/
https://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://www.electronicshub.org/boolean-algebra-laws-and-theorems/

http://www.electronics-tutorials.ws/sequential/seq_1.html
https://www.elprocus.com/half-adder-and-full-adder/

http://study.com/academy/lesson/how-star-topology-connects-computer-networks-in-organizations.html
http://study.com/academy/lesson/how-star-topology-connects-computer-networks-in-organizations.html
https://www.allaboutcircuits.com/textbook/digital/chpt-7/demorgans-theorems/
https://en.wikipedia.org/wiki/De_Morgan%27s_laws
http://www.electronicshub.org/boolean-algebra-laws-and-theorems/
http://www.electronics-tutorials.ws/sequential/seq_1.html
https://www.elprocus.com/half-adder-and-full-adder/

