

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

1
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

2210 Syllabus Content:
1.1 Data Representation
Candidates should be able to:

 Understand how and why computers use binary to represent all forms of data

 Understand the denary, binary and hexadecimal number systems

 Convert between
o positive denary and positive binary
o positive denary and positive hexadecimal
o positive hexadecimal and positive binary

 Understand how and why hexadecimal is used as a beneficial method of data
representation

 Add two positive 8-bit binary integers

 Understand the concept of overflow and why it occurs in binary addition

 Perform a logical binary shift on a positive 8-bit binary integer and understand the effect
this has on the positive binary integer

 Use two’s complement to represent positive and negative 8-bit binary integers
o Convert a positive binary or denary integer to a two’s complement 8-bit integer

and vice versa
o Convert a negative binary or denary integer to a two’s complement 8-bit integer

and vice versa

 Understand how and why a computer represents text and the use of character sets,
including American standard code for information interchange (ASCII) and Unicode

Denary Number System:

We know decimal or denary number system has (base 10).This uses digits 0 to 9 and has place values below

Binary number system:

The binary system on computers uses combinations of 0s and 1s and has (base
2).

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/3#glossary-zpnqn39

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

2
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Binary place values

You can also break a binary number down into place-value columns, but each
column is a power of two instead of a power of ten.

For example, take a binary number like 1001.

By looking at the place values, we can calculate the equivalent denary number.

That is: (1 x 23) + (0 x 22) + (0 x21) + (1x20) = 8+0+0+1

(1 x 8) + (0 x 4) + (0 x 2) + (1 x 1) = 8 + 1

 = 9

Converting binary to denary

To calculate a large binary number like 10101000 we need more place values

of multiples of 2.

 27 = 128
 26 = 64

 25 = 32

 24 = 16

 23 = 8

 22 = 4
 21 = 2

 20 = 1

In denary the sum is calculated as:

(1x27) + (0 x 26) + (1 x 25) + (0 x 24) + (1 x 23) + (0 x 22) + (0 x21) +
(0x20) = 168

(1 x 128) + (0 x 64) + (1 x 32) + (0 x 16) + (1 x 8) + (0 x 4) + (0 x 2) + (0 x

1) = 128 + 32 + 8 = 168

The table below shows denary numbers down the left with their equivalent

binary numbers marked out below the base 2 columns. Each individual column in
the table represents a different place value equivalent to the base 2 powers

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/4#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/5#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/5#glossary-znfmyrd

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

3
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Convert between denary

Converting denary to binary: Method 1

There are two methods for converting a denary (base 10) number to

binary (base 2). This is method one.

Divide by two and use the remainder

Divide the starting number by 2. If it divides evenly, the binary digit is 0. If it

does not - if there is a remainder - the binary digit is 1.

Worked example: Denary number 83

 83 ÷ 2 = 41 remainder 1

 41 ÷ 2 = 20 remainder 1

 20 ÷ 2 = 10 remainder 0
 10 ÷ 2 = 5 remainder 0

 5 ÷ 2 = 2 remainder 1

 2 ÷ 2 = 1 remainder 0

 1 ÷ 2 = 0 remainder 1

Put the remainders in reverse order to get the final number: 1010011.

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

4
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Converting denary to binary: Method 2

There are two methods for converting a denary (base 10) number to

binary (base 2). This method uses Place Values

Worked example: Denary number 84
We need to check which numbers place values can be added to make 84. We will put 1 under

the numbers to e added and 0 under the numbers which are not added.

1. We select Place value 64 so we put 1 under it.

2. We select place value 16 and put 1 under it

3. We selected place value 4 and put 1 under it.

4. Adding 64+16+4 gives us 84 so our number becomes:

64 32 16 8 4 2 1

1 0 1 0 1 0 0

Adding 64+16+4 = 84

Result: 84 in denary is equivalent to 1010100 in binary.

Bits and binary:

Computers use binary - the digits 0 and 1 - to store data. A binary digit, or bit, is the
smallest unit of data in computing. It is represented by a 0 or a 1.

The circuits in a computer's processor are made up of billions of transistors. A
transistor is a tiny switch that is activated by the electronic signals it receives.
The digits 1 or 0 used in binary reflect the on or off states of a transistor.

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-zsf2fg8
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-zxn7sbk

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

5
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

All software, music, documents, and any other information that is processed by a
computer, is also stored using binary.

Bits and bytes

Bits can be grouped together to

make them easier to work with. A
group of 8 bits is called a byte.

Other groupings include:

 Nibble - 4 bits (half a byte)

 Byte - 8 bits

 Kilobyte (KB) - 1024 bytes (or 1024 x 8 bits) = 210

 Megabyte (MB) - 1024 kilobytes (or 1048576 bytes) = 220
 Gigabyte (GB) - 1024 megabytes = 230

 Terabyte (TB) - 1024 gigabytes = 240

 Petabyte (PB) -1024 Terabytes = 250

 Exabyte (EB) -1024 Petabytes = 260
 Zettabyte (ZB)- 1024 Exabytes = 270

 Yottabyte (YB) 1024 Zettabytes = 280

The IEC convention for computer internal memories (including RAM)
becomes:

 1 kilobyte = 1000 byte

 1 megabyte = 1000000 bytes

 1 gigabyte = 1000000000 bytes

 1 terabyte = 1000000000000 bytes and so on.
VS

 1 kibibyte (1 KiB) = 1024 bytes

 1 mebibyte (1 MiB) = 1048576 bytes

 1 gibibyte (1 GiB) = 1073741824 bytes

 1 tebibyte (1 TiB) = 1099511627776 bytes and so on.

However, the IEC terms are not universally used and we still use the more

conventional terms shown above. This also ties up with the Cambridge

International Examinations computer science syllabus which uses the same
terminology as in example above.

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zwsbwmn/revision#glossary-zpj92hv
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/2#glossary-zsf2fg8

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

6
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Binary addition (unsigned binary number)

Adding binary numbers is similar to adding denary numbers.

Example: Adding the binary numbers 011 and 100..

Write the numbers out using the column method. Start from the right, and simply add
the binary number 3 to binary number 4.

111 = 7 if converted back to denary.

Example: Adding two 1s in the same column.

Sometimes a binary addition will require you to carry over values into the next highest
place-value column, eg when finding the sum of the binary numbers 0010 and 0111:

When adding two ones in the same column. In binary, 1+1 = 10 (2 in denary) -

it has to become 0 in sum and with 1 carried over.

1001 = 9 if converted back to denary. 2 + 7 = 9 in denary.

Logical Shift

 A Left Logical Shift of one position moves each bit to the left by one. The vacant
least significant bit (LSB) is filled with zero and the most significant bit (MSB) is
discarded.

 A Right Logical Shift of one position moves each bit to the right by one. The least
significant bit is discarded and the vacant MSB is filled with zero.

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

7
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Fig. 1 Logical Shift by one bit

Effect of Logical Left Shift:

 A Left Logical Shift of one position moves each bit to the left by one. The vacant
least significant bit (LSB) is filled with zero and the most significant bit (MSB) is
discarded.

 If no 1’s are lost (number is doubled) multiplied by 2

Effect of Logical Left Shift:

 A Right Logical Shift of one position moves each bit to the right by one. The least
significant bit is discarded and the vacant MSB is filled with zero.

 If no 1’s are lost (number is halved) divided by 2.

+ve and –ve binary numbers (signed numbers)

When computer stores binary numbers, we have to differentiate +ve binary numbers
from –ve binary numbers. Unfortunately (-) or (+) sign cannot be displayed rather only

0/1 can be used in binary.

(MSB) Most significant bit and LSB least significant bit:

In a binary number, the bit furthest to the left is called the most significant bit (MSB) and
the bit furthest to the right is called the least significant bit (LSB).

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

8
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

The MSB gives the sign of the number (sign bit), 0 for positive and 1 for negative.

 MSB LSB

 0 1 0 1 1 0 1 1

Rules of +ve and –ve binary numbers:

 Positive binary number always starts with 0 in MSB (Most significant bit)

 Negative binary number always starts with 1 in MSB (Most significant bit)

e.g +ve number: 01010010
 -ve number: 10010110

 -128 64 32 16 8 4 2 1 Place Values

Number becomes 0 1 0 1 0 0 1 0 so number is 0+64+16+2 = 82

 Sign bit +ve part of number

Negative binary number always starts with 1 in MSB (Most significant bit)

 -128 64 32 16 8 4 2 1 Place Values

Number becomes 1 0 0 1 0 1 1 0 so number is -128+16+4+2 = -106

 Sign bit +ve part of number

Conversion of –ve denary number to binary:

What is – 65 10 in binary?
Two’s complement allows us to represent signed negative values in binary,

Binary addition
Up until now we have assumed all binary numbers have positive values. There are a
number of methods to represent both positive and negative numbers. We will consider:

 One’s complement
 Two’s complement.

In one’s complement, each digit in the binary number is inverted (in other words, 0
becomes 1and 1 becomes 0). For example,
Step 1

65 = 01000001 in binary

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

9
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Step 2: invert 1 to 0 and 0 to 1 we get: 01000001 to its one’s complement as below:

01000001 = 10111110
In two’s complement,binary digit 1 is added to one’s compliment

Step 3: Convert 10111110 Binary to its two’s complement by

adding 1 to the one’s complement.

10111110
+ 1

10111111 = Two's complement

Two’s compliment of a positive number will make it a negative number

 -128 64 32 16 8 4 2 1 Place values

1 0 1 1 1 1 1 1 = Two's complement

 = -128 + 32 +16+8+4+2+1 = - 65

10111111 is - 65 in binary. We know this it true because if we add 01000001

(+65) to 10111111b (-65) and ignore the carry bit, the sum = 0.which is what

we obtain if we add +65 + (-65) = 0.

01000001 +65

+
10111111 - 65

1 00000000
0
denary

^
Ignore the carry bit. What matters is that original number of bits (D7-D0) are all 0.

Two's complement sums:
Using two's complement, the CPU can perform arithmetic using binary addition. For

example: -7 + 7 in two's complement binary would be calculated as:

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

10
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

In two's complement, if the final result overflows the remaining carry number is
simply discarded. For example:

-3 + 4 in two's complement binary would be calculated as:

Methods for converting a negative number expressed in two’s
complement form to the corresponding denary number

Consider the two’s complement binary number 10110001.

Method 1:

 Convert to the 1’s compliment gives 01001110 and keep the minus sign with it

 Converting to two’s complement gives us 01001111.

 You ignore the leading zero in MSB as it is not a positive number and apply one of the
methods to convert the remaining binary to denary which gives 79.

 You add the minus sign to give −79.

Method 2:

Sum the individual place values but treat the most significant bit as a negative value
You follow the approach illustrated in Table 1.02 to convert the original binary number
10110001 as follows:

You now add the values in the bottom row to get −79.

Overflow :-

A CPU with a capacity of 8 bits has a capacity of up to 11111111 in binary. If one
more bit was added there would be an overflow error.

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

11
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Example: 8-bit overflow:

An example of an 8-bit overflow occurs in the binary sum 11111111 + 1 (denary: 255 +
1).

The total is a number bigger than 8 digits, and when this happens the CPU drops the
overflow digit because the computer cannot store it anywhere, and the computer
thinks 255 + 1 = 0.

Overflow errors happen when the largest number that a register can hold is exceeded.
The number of bits that it can handle is called the word size.

Most CPUs use a much bigger word size than 8 bits. Many PCs have a 64-bit CPU. A
64-bit CPU can handle numbers larger than 18 quintillion (18,446,744,073,709,551,615
to be precise).

http://www.majidtahir.com/
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-zr83d2p
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-z4jrq6f
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-zswgjxs

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

12
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Hexadecimal Number System:

We often have to deal with large positive binary numbers. For instance, consider
that computers connect to the Internet using a Network Interface Card (NIC).
Every NIC in the world is assigned a unique 48-bit identifier as an Ethernet
address. The intent is that no two NICs in the world will have the same address.

A sample Ethernet address might be:

000000000100011101011110011111111001001000110110

 Fortunately, large binary numbers can be made much more compact—
and hence easier to work with.

 You may wonder: Binary numbers would also be more compact if
represented in base-10—why not just convert them to decimal?

 The answer, as you will soon see, is that converting between binary and

hexadecimal is exceedingly easy.

The Hexadecimal Number System

 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)16

The base 16 hexadecimal has 16 digits. Note that the single hexadecimal symbol A =10, B=11,
C=12, D=13, E=14 and F=15.

Just as with decimal notation or binary notation, we again write a number as a string
of symbols, but now each symbol is one of the 16 possible hexadecimal digits (0
through F). To interpret a hexadecimal number, we multiply each digit by the power
of 16 associated with that digit’s position.

Hexadecimal Place value:

―H denotes hex prefix.

For example, consider the hexadecimal number 1 A 9 B.

Examples:

 1 A 9 B16 = 1 A 9 BH

 = 1 × 163 + 10 × 16
2
 + 9 ×161 + 11×160

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

13
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

= 4096 + 2560 + 144 + 11 = 681110

(i) 2 F16 = 2 FH = 2 × 16 +15 × 1= 47

(ii) BC1216 = BC12H = 11×16
3
 +12×16

2
 +1×16

1
 +2×16

0
 =

48146

Hexadecimal Numbers in Computing

There are two ways in which hex makes life easier.

 The first is that it can be used to write down very large integers in a compact
form.

 For example, (A D 4 5)16 is shorter than its decimal equivalent

(44357)10 and as values increase the difference in length

becomes even more pronounced.

Converting Binary Numbers to Hexadecimal
Numbers.

Let’s assume we have a binary number of: 01010111

The binary number is 01010111

We will break number into 4 bits each as

0101 0111

Then we will start with the right side 4 bits

Starting from extreme right number

for 0101 for 0111

0X2
3
+1X2

2
+0X2

1
+1X2

0
0X2

3
+1X2

2
+1X2

1
+1

X2
0

0X8+1X4+0X2+1X1
0X8+1X4+1X2+1X
1

0+4+0+1=5 0+4+2+1=7

5 7

So Hexadecimal number is 57

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

14
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Converting Hexadecimal Numbers to Binary
Numbers

To convert a hexadecimal number to a binary number, we reverse the above
procedure. We separate every digit of hexadecimal number and find its
equivalent binary number and then we write it together.

Example 1:

To convert the hexadecimal number 9F216 to binary, each hex digit is
converted into binary form.

9 F 2 16 = (1001 1111 0010)2

9 =1001 F=1111 2=0010

So Binary equivalent of Hexadecimal number is: 9F2= 100111110010

Work on the given question below :

Convert hexadecimal 2BF9 to its binary equivalent.

Convert binary 110011100001 to its hexadecimal equivalent.

Converting a Hexadecimal Number to a (Denary) Decimal Number

To convert a hexadecimal number to a decimal number, write the hexadecimal number as a
sum of powers of 16. For example, considering the hexadecimal number 1A9B above, we
convert this to decimal as:

 1 A 9 B

16
3
 16

2
16

1
 16

0

 1A9B = 1(163) + A (162) + 9(161) + B (160)

 = 4096 + 10(256) + 9(16) + 11(1) = 6811

So 1A9B16 = 681110

Converting a (Denary) Decimal Number into Hexadecimal Number

The easiest way to convert from decimal to hexadecimal is to use the same
division algorithm that you used to convert from decimal to binary, but repeatedly
dividing by 16 instead of by 2. As before, we keep track of the remainders.

For example, to convert the decimal number 746 to hexadecimal, we proceed as follows:

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

15
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

` Remainder

16 | 746

| 46

10 = A

| 2 14 = E

| 0 2

We read the number as last is first and first is last. The denary 746 = 2EA in hexadecimal

Converting Between Bases

To convert from denary to hexadecimal, it is recommended to just convert the number to
binary first, and then use the simple method above to convert from binary to
hexadecimal.

ASCII code:
If text is to be stored in a computer it is necessary to have a coding scheme that

provides a unique binary code for each distinct individual component item of the

text.

Such a code is referred to as a character code.

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

16
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

 The scheme which has been used for the longest time is the ASCII (American

Standard Code for Information Interchange) coding scheme.

 This is an internationally agreed standard. There are some variations on ASCII

coding schemes but the major one is the 7-bit code. It is customary to

present the codes in a table for which a number of different designs have

been used.

 The full table shows the 27 (128) different codes available for a 7-bit code.

You should not try to remember any of the individual codes but there are

certain aspects of the coding scheme which you need to understand.

 Computers store text documents, both on disk and in memory, using ASCII
codes. For example, if you use Notepad in Windows OS to create a text file
containing the words, "Four score and seven years ago," Notepad would use
1 byte of memory per character (including 1 byte for each space character
between the words

 It is worth emphasizing here that these codes for numbers are exclusively
for use in the context of stored, displayed or printed text.

 All of the other coding schemes for numbers are for internal use in a
computer system and would not be used in a text.

 There are some special features that make the coding scheme easy to use in
certain circumstances.

o The first is that the codes for numbers and for letters are in
sequence in each case so that, for example,

o if 1 is added to the code for seven the code for eight is produced.
o The second is that the codes for the upper-case letters differ from

the codes for the corresponding lower-case letters only in the value
of bit 6.

o This makes conversion of upper case to lower case, or the reverse, a
simple operation.

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

17
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Extended ACSII codes:
Extended ASCII codes use 8 bits per character allowing 256 codes
including 128 codes of ASCII and some other symbols for other
languages.

Unicode:
Despite still being widely used, the ASCII codes are far from adequate
for many purposes.

Unicode is an international encoding standard for use with
different languages and scripts.

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

18
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

It works by providing a unique number for every character, this creates a
consistent encoding, representation, and handling of text.

Basically Unicode is like a Universal Alphabet that covers the majority
of different languages across the world, it transforms characters into
numbers.

It achieves this by using character encoding, which is to assign a
number to every character that can be used.

What’s an example of a Unicode?

Unicode has its own special terminology. For example, a character code is
referred to as a 'code point'.

In any documentation there is a special way of identifying a code point. An
example is U+0041 which is the code point corresponding to the alphabetic
character A.

The 0041 are hexadecimal characters representing two bytes. The
interesting point is that in a text where the coding has been identified as
Unicode it is only necessary to use a one-byte representation for the 128
codes corresponding to ASCII. To ensure such a code cannot be
misinterpreted, the codes where more than one byte is needed have
restrictions applied.

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

19
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

At its core, Unicode is like ASCII: a list of characters that people want to type
into a computer. Every character gets a numeric codepoint, whether it’s
capital A, lowercase or lambda.

A = 65

λ = 923

So Unicode says things like, ―Allright, this character exists, we assigned it an
official name and a codepoint, here are its lowercase or uppercase equivalents
(if any), and here’s a picture of what it could look like. Font designers, it’s up
to you to draw this in your font if you want to.

Just like ASCII, Unicode strings (imagine ―codepoint 121, codepoint 111…‖)
have to be encoded to ones and zeros before you can store or transmit them.

But unlike ASCII, Unicode has more than a million possible codepoints, so

http://www.majidtahir.com/

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

20
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

they can’t possibly all fit in one byte. And unlike ASCII, there’s no One True
Way to encode it.

What can we do? One idea would be to always use, say, 3 bytes per

character. That would be nice for string traversal, because the 3rd codepoint

in a string would always start at the 9th byte. But it would be inefficient

when it comes to storage space and bandwidth.Instead, the most common

solution is an encoding called UTF-8.

UTF-8 :

UTF-8 gives you four templates to choose from: a one-byte template, a

two-byte template, a three-byte template, and a four-byte template.

0xxxxxxx

110xxxxx 10xxxxxx

1110xxxx 10xxxxxx 10xxxxxx

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Each of those templates has some headers which are always the same
(shown here in red) and some slots where your code point data can go

(shown here as black).

The four-byte template gives us 21 bits for our data, which would let us

represent 2,097,151 different values. There are only about 128,000
codepoints right now, so UTF-8 can easily encode any Unicode codepoint

for the foreseeable future.Unicode to represent any possible text in code

form.

Unicode is a computing industry standard for the consistent
encoding, representation, and handling of text expressed in most of
the world's writing systems.

Developed in conjunction with the Universal Coded Character Set (UCS)
standard and published as The Unicode Standard, the latest version of
Unicode contains a repertoire of more than 128,000 characters covering
135 modern and historic scripts, as well as multiple symbol sets..

As of June 2016, the most recent version is Unicode 9.0. The standard is
maintained by the Unicode Consortium.

Unicode's success at unifying character sets has led to its widespread and
predominant use in the internationalization and localization of computer
software. The standard has been implemented in many recent technologies,

http://www.majidtahir.com/
https://en.wikipedia.org/wiki/Unicode_Consortium

Ch.1 Data Representation
CS(2210) with Majid Tahir

at www.majidtahir.com

21
 majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

including modern operating systems, XML, Java (and other programming
languages), and the .NET Framework

References:

http://www.bfoit.org/itp/ComputerContinuum/RobotComputer.html

https://en.wikibooks.org/wiki/GCSE_Computer_Science/Binary_representation

http://bssbmi.com/olevel/computer-science-2210/class-9/binary-systems/
http://www.math10.com/en/algebra/systems-of-counting/binary-system.html
Reference: http://www.bbc.co.uk/education/guides/zjfgjxs/revision/6

https://byjus.com/maths/binary-subtraction

http://www.majidtahir.com/
http://www.bfoit.org/itp/ComputerContinuum/RobotComputer.html
https://en.wikibooks.org/wiki/GCSE_Computer_Science/Binary_representation
http://bssbmi.com/olevel/computer-science-2210/class-9/binary-systems/
http://www.math10.com/en/algebra/systems-of-counting/binary-system.html
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/6
https://byjus.com/maths/binary-subtraction

