1.3.3 Logic gates \& Logic circuits

Syllabus Content:

1.3.3 Logic gates and logic circuits

use the following logic gate symbols

AND

OR

NAND

NOR

XOR
understand and defi ne the functions of NOT, AND, OR, NAND, NOR and XOR (EOR) gates including the binary output produced from all the possible binary inputs (all gates, except the NOT gate, will have two inputs only) construct the truth table for each of the logic gates above
construct a logic circuit from either:

- - a problem statement
- - a logic expression
© ${ }^{4}$. construct a truth table from either:
- - a logic circuit
- - a logic expression
show understanding that some circuits can be constructed with fewer gates to produce the same outputs

Logic gates and logic circuits

Introduction

Electronic circuits in computers, many new memories and controlling devices are made up of thousands of LOGIC GATES. Logic gates take binary inputs and produce a binary output.

Several logic gates combined together form a LOGIC CIRCUIT and these circuits are designed to carry out a specific function. The checking of the output from a logic gate or logic circuit is done using a TRUTH TABLE.

This chapter will consider the function and role of logic gates, logic circuits and truth tables. Also a number of possible applications of logic circuits will be considered.

A reference to BOOLEAN ALGEBRA will be made throughout the chapter.

Six different logic gates will be considered in this chapter:

Truth tables:

Truth tables are used to trace the output from a logic gate or logic circuit.
The NOT gate is the only logic gate with one input; the other five gates have two inputs.
When constructing truth tables, all possible combinations of 1 s and 0 s which can be input are considered. For the NOT gate (one input) there are only $\mathbf{2}^{1}$ (2) possible binary combinations.

For all other gates (two inputs), there are $\mathbf{2}^{\mathbf{2}}$ (4) possible binary combinations.

Inputs	
A	B
0	0
0	1
1	0
1	1

For logic circuits, the number of inputs can be more than 2;

1.3.3 Logic gates \& Logic circuits

For three inputs give a possible $\mathbf{2}^{3}(8)$ binary combinations.

Inputs		
\mathbf{A}	\mathbf{B}	\mathbf{C}
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	0
1	1	0
1	1	1

And for four inputs, the number of possible binary combinations is $2^{4}(16)$. It is clear that the number of possible binary combinations is a multiple of the number 2 in every case.

Inputs			
A	B	C	D
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

1.3.3 Logic gates \& Logic circuits

NOT \quad| Input | Output |
| :---: | :---: |
| NOT | I |
| 0 | 1 |
| 1 | 0 |

Inputs		Output
A	B	F
0	0	0
1	0	0
0	1	0
1	1	1

NAND

Inputs	Output	
A	B	F
0	0	1
1	0	1
0	1	1
1	1	0

Inputs		Output
A	B	F
0	0	0
1	0	1
0	1	1
1	1	1

Inputs		Output
A	B	F
0	0	1
1	0	0
0	1	0
1	1	0

Inputs		Output
A	B	F
0	0	0
0	1	1
1	0	1
1	1	0

Logic Gates, Boolean Algebra and Truth Tables

Boolean Algebra is the mathematical foundation of digital circuits. Boolean Algebra specifies the relationship between Boolean variables which is used to design combinational logic circuits using Logic Gates. The truth table shows a logic circuit's output response to all of the input combinations.

- Boolean Algebra

[^0]
1.3.3 Logic gates \& Logic circuits

The function of the logic gates

NOT gate

Input	Output
A	X
0	1
1	0

X = NOT A
$\mathrm{X}=\overline{\mathrm{A}}$
AND gate

Input A	Input B	Output X
0	0	0
0	1	0
1	0	0
1	1	1

$X=A$ AND B (logic notation)
$X=A \quad$ - B (Boolean algebra)
NAND gate

Input A	Input B	Output X
0	0	1
0	1	1
1	0	1
1	1	0

$X=A$ AND B (logic notation)
$X=\overline{A \cdot B}$ (Boolean algebra)

1.3.3 Logic gates \& Logic circuits

OR gate

Input A	Input B	Output X
0	0	0
0	1	1
1	0	1
1	1	1

$X=A$ OR B (logic notation)
$X=A+B$ (Boolean algebra)
NOR gate

Input A	Input B	Output X
0	0	1
0	1	0
1	0	0
1	1	0

$X=A$ NOR B (logic notation)
$X=\overline{A+B}$ (Boolean algebra)
XOR gate

Input A	Input B	Output X
0	0	0
0	1	1
1	0	1
1	1	0
X = A XOR B (logic notation)		

$X=A \cdot \bar{B}+\bar{A} \cdot B$ (Boolean algebra)

1.3.3 Logic gates \& Logic circuits

Logic circuits:

When logic gates are combined together to carry out a particular function, such as controlling a robot, they form a logic circuit. The output from the logic circuit is checked using a truth table.
There now follows three examples which show:
©. how to produce a truth table
© how to design a logic circuit from a given logic statement/Boolean algebra
© how to design a logic circuit to carry out an actual safety function.

Example 1

Produce a truth table for the following logic circuit (note the use of \cdot at junctions):

There are three inputs to this logic circuit, therefore there will be eight possible binary values which can be input.
To show step-wise how the truth table is produced, the logic circuit has been split up into three parts and intermediate values are shown as P, Q and R.

R

1.3.3 Logic gates \& Logic circuits

The truth table for the logic circuit will look like this:

Input values			Intermediate values			Output
A	B	C	P	Q	R	X
0	0	0	0	1	1	1
0	0	1	0	0	0	1
0	1	0	0	0	0	0
0	1	1	0	0	0	1
1	0	0	0	1	1	1
1	0	1	0	0	0	1
1	1	0	1	0	1	1
1	1	1	1	0	1	0

Example 2:

A safety system uses three inputs to a logic circuit. An alarm, X, sounds if input A represents $O N$ and input B represents OFF; or if input B represents $O N$ and input C represents OFF.

Produce a logic circuit and truth table to show the conditions which cause the output X to be 1 .

The first thing to do is to write down the logic statement representing the scenario in this example. To do this, it is necessary to recall that $\mathrm{ON}=1$ and $\mathrm{OFF}=0$ and also that 0 is usually considered to be NOT 1 . So we get the following logic statement:

$$
X=1 \text { if } \quad(A=1 \text { AND } B=\text { NOT } 1) \quad O R \quad(B=1 \text { AND } C=\text { NOT } 1)
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { The two parts } \\
\text { are connected by } \\
\text { the OR gate }
\end{array} \\
& \begin{array}{c}
\text { This equates to: } \\
\mathrm{A} \text { is } \mathrm{ON} \text { and } \mathrm{B} \text { is OFF }
\end{array} \quad \mathrm{B} \text { is ON AND } \mathrm{C} \text { is OFF }
\end{aligned}
$$

Note: this statement can also be written in Boolean algebra as:

$$
(\mathrm{a} \cdot \overline{\mathrm{~b}})+(\mathrm{b} \cdot \overline{\mathrm{c}})
$$

1.3.3 Logic gates \& Logic circuits

The logic circuit is made up of three parts as shown in the logic statement. We will produce the logic gate for the first part and the third part. Then join both parts together with the OR gate.

Now combining both parts with the OR gate gives us:

Inputs			Intermediate values		Output
A	B	C	$(\mathrm{A}=1$ AND B=NOT 1)	(B=1 AND C=NOT 1)	X
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	0	1
1	1	0	0	1	1
1	1	1	0	0	0

1.3.3 Logic gates \& Logic circuits

Example 3:

A wind turbine has a safety system which uses three inputs to a logic circuit. A certain combination of conditions results in an output, X, from the logic circuit being equal to 1 . When the value of $X=1$ then the wind turbine is shut down.

The following table shows which parameters are being monitored and form the three inputs to the logic circuit.

Parameter description	Parameter	Binary value	Description of condition
turbine speed	S	0	$<=1000 \mathrm{rpm}$
		1	$>1000 \mathrm{rpm}$
bearing temperature	T	0	$<=80^{\circ} \mathrm{C}$
		1	$>80^{\circ} \mathrm{C}$
wind velocity	W	0	$<=120 \mathrm{kph}$
		1	$>120 \mathrm{kph}$

The output, X , will have a value of 1 if any of the following combination of conditions occur:
e either turbine speed $<=1000 \mathrm{rpm}$ and bearing temperature $>80^{\circ} \mathrm{C}$
© or turbine speed $>1000 \mathrm{rpm}$ and wind velocity $>120 \mathrm{kph}$
e or bearing temperature $<=80^{\circ} \mathrm{C}$ and wind velocity $>120 \mathrm{kph}$.
Design the logic circuit and complete the truth table to produce a value of $X=1$ when any of the three conditions above occur.

This is a different type of problem to those covered in Examples 1 and 2. This time a real situation is given and it is necessary to convert the information into a logic statement and then produce the logic circuit and truth table.

Stage 1:

The first thing to do is to convert each of the three statements into logic statements. Use the information given in the table and the three condition statements to find how the three parameters, S, T and W, are linked.

We usually look for the key words AND, OR and NOT when converting actual statements into logic. We end up with the following three logic statements:

1.3.3 Logic gates \& Logic circuits

1. turbine speed $<=1000 \mathrm{rpm}$ and bearing temperature $>80^{\circ} \mathrm{C}$ logic statement: ($\mathrm{S}=\mathrm{NOT} 1$ AND $\mathbf{T}=1$)
2. turbine speed $>1000 \mathrm{rpm}$ and wind velocity $>120 \mathrm{kph}$ logic statement: ($\mathrm{S}=1$ AND W = 1)
3. bearing temperature $<=80^{\circ} \mathrm{C}$ and wind velocity $>120 \mathrm{kph}$ logic statement: ($\mathbf{T}=$ NOT 1 AND $\mathbf{W}=1$)

We will start by joining (1) and (2) together using an OR gate:

Finally, we connect the logic circuit in 1,2 to $\mathbf{3}$ to obtain the answer:

1.3.3 Logic gates \& Logic circuits

The final part is to produce the truth table. We will do this using the original logic statement. This method has the bonus of allowing an extra check to be made on the logic circuit to see whether or not it is correct.
It is possible, however, to produce the truth table straight from the logic circuit. There were three parts to the problem, so the truth table will first evaluate each part.

Then, by applying OR gates, as shown below, the final value, X, is obtained:
i. $\quad(S=$ NOT 1 AND $T=1)$
ii. $\quad(S=1$ AND $W=1)$
iii. $\quad(T=$ NOT 1 AND $W=1)$

We find the outputs from parts (i) and (ii) and then OR these two outputs together to obtain a new intermediate, which we will label part (iv). We then OR parts (iii) and (iv) together to get the value of X.

Inputs			Intermediate values				Output
\mathbf{S}	\mathbf{T}	W	(i) (S=NOT 1 AND T=1)	(ii) (S=1 AND $\mathbf{W = 1)}$	(iii) (T=NOT 1 AND W=1)	(iv)	\mathbf{X}
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	1
0	1	0	1	0	0	1	1
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	1	0	1	1	1	1
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

Electronics companies need to consider the cost of components, ease of fabrication and time constraints when designing and building logic circuits.

We will mention two possible ways electronics companies can review logic circuit design:

One method is to use 'off-the-shelf' logic units and build up the logic circuit as a number of 'building blocks'.
© Another method involves simplifying the logic circuit as far as possible; this may be necessary where room is at a premium (e.g. in building circuit boards for use in satellites to allow space exploration).

1.3.3 Logic gates \& Logic circuits

Using logic ‘building blocks’

One very common 'building block' is the NAND gate. It is possible to build up any logic gate, and therefore any logic circuit, by simply linking together a number of NAND gates.

For example, the AND, OR, NOT and XOR gates can be built from these gates as shown below:

The AND gate using NAND Gates:

The OR gate using NAND Gates only:

The NOT gate using NAND Gate:

The XOR gate using NAND Gates:

Exclusive OR (XOR)

1.3.3 Logic gates \& Logic circuits

Exam questions:

Q. 1 A system is monitored using sensors. The sensors output binary values corresponding to physical conditions, as shown in the table:

Parameter	Description of parameter	Binary value	Description of condition
	oil pressure	1	pressure $>=3$ bar
		0	pressure <3 bar
\mathbf{T}	temperature	1	temperature $>=200^{\circ} \mathrm{C}$
		0	temperature $<200^{\circ} \mathrm{C}$
\mathbf{R}	rotation	1	rotation $<=1000$ revs per minute (rpm)
		0	rotation >1000 revs per minute (rpm)

The outputs of the sensors form the inputs to a logic circuit. The output from the circuit, X , is 1 if any of the following three conditions occur:
either oil pressure $>=3$ bar and temperature $>=200^{\circ} \mathrm{C}$
or oil pressure < 3 bar and rotation > 1000 rpm
or temperature $>=200^{\circ} \mathrm{C}$ and rotation $>1000 \mathrm{rpm}$
(a) Draw a logic circuit to represent the above system.
\square

1.3.3 Logic gates \& Logic circuits

(b) Complete the truth table for this system.

\mathbf{P}	\mathbf{T}	\mathbf{R}		Workspace
$\mathbf{0}$	$\mathbf{0}$	0		\mathbf{X}
$\mathbf{0}$	0	1		
0	1	0		
0	1	1		
$\mathbf{1}$	0	0		
1	0	1		
1	1	0		
1	1	1		

9608/13/M/J/18

Q. 5 (a) A student needs to design a logic circuit to model the requirements for membership of a snooker club. Membership (X) depends on four criteria, as shown in the table:

Parameter	Description of parameter	Binary value	Condition
	Over 18	1	True
		0	False
B	Recommended	1	True
		0	False
C	Full-time	1	True
		0	False
D	Retired	1	True
		0	False

Membership is approved $(X=1)$ if the person:

- is over the age of 18 and has been recommended by a pre-existing member and
- either is working full-time or is retired, but not both.

Draw a logic circuit to represent the membership requirements.

1.3.3 Logic gates \& Logic circuits

9608/11/M/J/18
Q4 (a) An alarm system (X) is enabled and disabled using either a switch (A) or a remote control (B). There are two infra-red sensors (C, D) and one door pressure sensor (E).

Parameter	Description of parameter	Binary value	Condition
A	Switch		Switch enabled
		0	Switch disabled
B	Remote control	$\mathbf{1}$	Remote enabled
		0	Remote disabled
C	Infra-red sensor	$\mathbf{1}$	Activated
		0	Not activated
D	Infra-red sensor	$\mathbf{1}$	Activated
		0	Not activated
E	Door pressure sensor	$\mathbf{1}$	Activated
		0	Not activated

The alarm sounds $(X=1)$ if the alarm is enabled and any one or more of the sensors is activated. Draw a logic circuit to represent the alarm system.

Answers on the next page

1.3.3 Logic gates \& Logic circuits

Answer:
9608/13/M/J/18
Q.5.

Question	Answer					Marks
5(a)	1 mark per correct gate with correct inputs					3
5(b)	1 mark for each correct pair of lines					4
	A	B	c	Working space	X	
	0	0	0		0	
	0	0	1		0	
	0	1	0		1	
	0	1	1		0	
	1	0	0		1	
	1	0	1		0	
	1	1	0		0	
	1	1	1		0	

1.3.3 Logic gates \& Logic circuits

9608/11/M/J/18
Q5

References:

IGCSE Computer Science by Hodder Education.

Past papers.

http://electronics-course.com/logic-gates

[^0]: e
 e
 e
 A Boolean Variable takes the value of either 0 (False) or 1 (True).
 Symbols are used to represent Boolean variables e.g. A, B, C, X, Y, Z
 There are three basic logic operations AND, OR, NOT
 © The Boolean Operators are $\cdot+^{-}$

 - A + B means A OR B
 - A•B means A AND B
 - Ā means NOT A
 e. Nodes in a circuit are represented by Boolean Variables

