

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

1

Syllabus Content
1.4.4 Assembly language

 show understanding of the relationship between assembly language and
machine code, including symbolic and absolute addressing, directives and
macros

 describe the different stages of the assembly process for a ‘two-pass’ assembler
for a given simple assembly language program

 trace a given simple assembly language program

Machine code:–

Machine code, also known as machine language, is the elemental language of computers,
comprising a long sequence of binary digital zeros and ones (bits).

Simple instructions that are executed directly by the CPU. Each instruction performs a very
specific task, such as a load, a jump, or an ALU operation on a unit of data in a CPU

register or memory.

Every program directly executed by a CPU is made up of a series of such instructions.

Machine code may be regarded as the lowest-level representation of
a compiled or assembled computer program or as a primitive and hardware-
dependent programming language.

While it is possible to write programs directly in machine code, it is tedious and error prone to

manage individual bits and calculate numerical addresses and constants manually. For this
reason machine code is almost never used to write programs.

Different processors have different instruction sets associated with them. Even if two different
processors have the same instruction, the machine codes for them will be different but the
structure of the code for an instruction will be similar for different processors.

A binary code with a defined number of bits that comprises an Machine code instruction:

opcode and, most often, one operand.

For a particular processor, the following components are defined for an individual machine
code instruction:

 The total number of bits or bytes for the whole instruction

 The number of bits that define the opcode

 The number of operands that are defined in the remaining bits

 Whether the opcode occupies the most significant or the least sigr:iificant bits.

Almost all practical programs today are written in higher-level languages or assembly
language. The source code is then translated to executable machine code by utilities such
as interpreters, compilers, assemblers, and/or linkers.

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

2

Assembly language
A programmer might wish to write a program where the actions taken by the processor
are directly controlled. It is argued that this can produce optimum efficiency in a
program.

However, writing a program as a sequence of machine code instructions would be a
very time-consuming and error-prone process. The solution for this type of programming
is to use assembly language. As well as having a uniquely defined machine code
language each processor has its own assembly language.

The essence of assembly language is that for each machine code instruction there is an
equivalent assembly language instruction which comprises:

 a mnemonic (a symbolic abbreviation) for the opcode

 a character representation for the operand.

If a program has been written in assembly language it has to be translated into machine
code before it can be executed by the processor. The translation program is called an
'assembler'

The fact that an assembler is to be used allows a programmer to include some special
features in an assembly language program. Examples of these are:

 comments

 symbolic names for constants

 labels for addresses

 macros

 subroutines

 directives

 System calls.

The first three items on this list are there to directly assist the programmer in writing the
program. Of these, comments are removed by the assembler and symbolic names and
labels require a conversion to binary code by the assembler.

Macro: A macro or a subroutine contains a sequence of instructions that is to be used

more than once in a program.

Directives: and system calls are instructions to the assembler as to how it should
construct the final executable machine code. They can involve directing how memory
should be used or defining files or procedures that will be used. They do not have to be
converted into binary code.

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

3

Assembly Language:

Amongst others, the following instructions are important for all processors:

LDD - Loads the contents of the memory address or integer into the accumulator
ADD - Adds the contents of the memory address or integer to the accumulator
STO - Stores the contents of the accumulator into the addressed location

Assembly code is easy to read interpretation of machine code, there is a one to one
matching; one line of assembly equals one line of machine code:
Machine code Assembly code
000000110101 = Store 53
Let's take a look at a quick coding example using assembly code.

LDM #23: Loads the number 23 into the accumulator.
ADD #42: Adds the number 42 to the contents of the accumulator = 65.
STO 34: Saves the accumulator result to the memory address 34.

The code above is the equivalent of saying x = 23 + 42 in VB language.

 Addressing modes

When an instruction requires a value to be loaded into a register there are different
ways of identifying the value.

These different ways are described as the 'addressing modes'. In Section 6.01, it was
stated that, for our simple processor, two bits of the opcode in a machine code
instruction would be used to define the addressing mode. This allows four different
modes which are described in Table.

You might notice that some instructions use”#” and others don't
= number, [No hash] = address

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

4

Let's take a look at a quick example:

All questions will assume there is only one general purpose register available (Accumulator)
ACC denotes Accumulator
IX denotes Index Register
denotes immediate addressing
B denotes a binary number, e.g. B01001010
& denotes a hexadecimal number, e.g. &4A

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

5

Let's take a look at doing this without the hashes:

Data movement:

These types of instruction can involve loading data into a register or storing data in memory.

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

6

Arithmetic operation:

Comparisons and jumps:

A program might require an unconditional jump or might only need a jump if a condition is met.
In the latter case, a compare instruction is executed first and the result of the comparison is
recorded by a flag in the status register.
The execution of the conditional jump instruction begins by checking whether or not the flag bit
has been set.

Assemblers:

A computer program that translates programming code written in Assembly language to
machine code is known as assemblers.
Assemblers can be One-Pass Assembler or Two-Pass Assembler

Two-Pass Assembler:

1st Pass

1. Data items are converted to their binary equivalent
2. Any directives are acted upon
3. Any symbolic addresses are added to the symbolic address table

 2nd Pass

1. Forward references are resolved
2. Any symbolic address is replaced by an absolute address.

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

7

Two-Pass Assembler explanation:

Consider an assembler instruction like the following

 JMP LATER
 ...
 ...
LATER:

This is known as a forward reference.

 If the assembler is processing the file one line at a time, then it doesn't know where
LATER is when it first encounters the jump instruction.

 So, it doesn't know if the jump is a short jump, a near jump or a far jump. There is a
large difference amongst these instructions.

 They are 2, 3, and 5 bytes long respectively.

 The assembler would have to guess how far away the instruction is in order to
generate the correct instruction.

 If the assembler guesses wrong, then the addresses for all other labels later in the
program would be wrong, and the code would have to be regenerated. Or, the
assembler could always choose the worst case.

 But this would mean generating inefficiency in the program, since all jumps would be
considered far jumps and would be 5 bytes long, where actually most jumps are
short jumps, which are only 2 bytes long.

So how it solves the problem by Two-Pass Assembler?

Answer:

 Scan the code twice.

 The first time (One-Pass) , just count how long the machine code instructions will
be, just to find out the addresses of all the labels.

 Also, create a table that has a list of all the addresses and where they will be in the
program. This table is known as the symbol table.

 On the second scan (Second-Pass), generate the machine code, and use the

symbol table to determine how far away jump labels are, and to generate the most
efficient instruction.

This is known as a two-pass assembler. Each pass scans the program,

The first pass generates the symbol table and the second pass generates the machine
code. I have created a listing of an assembler program that has the machine code
listed, and the symbol table listed.

http://users.cis.fiu.edu/~downeyt/cop3402/listing.htm

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

8

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

9

Exam Style Questions:

Indirect Addressing:

Answer:

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

10

Indexed Addressing

Answer:

 Index Register contains: 00001001 = 9

 800 + 9 = 809

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

11

Exam-style Questions
Q. Complete the trace table below for the following assembly language program.

Answer on next page

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

12

Answer:

 LDD 810 (28 Loaded in ACC)

 INC ACC (Accumulator incremented with 28++1 = 29, 29 written in ACC)

 STO 812 (29 Stored at Memory Location 812)

 LDD 811 (Loaded contents of memory location 811 in ACC)

 ADD 812 (Added 41 with 29, Contents of ACC added with memory loc 812)

 STO 813 (Stored contents of ACC in 813 memory location)

P1- Sec 1.4.4.) Assembly Language Computer Science 9608

with Majid Tahir

13

PastPaper Questions
9608/13/M/J/15

2. Assemblers translate from assembly language to machine code. Some assemblers
scan the assembly language program twice; these are referred to as two-pass
assemblers.
The following table shows five activities performed by two-pass assemblers.
Write 1 or 2 to indicate whether the activity is carried out during the first pass or during
the second pass.

Answer

References:
http://users.cis.fiu.edu/~downeyt/cop3402/two-pass.htm
(Wikipedia)
(AS & A level Course book by Sarah Langfield and Dave Duddell)
(ZAK)

(Cambridge International Examinations Past papers)

http://users.cis.fiu.edu/~downeyt/cop3402/two-pass.htm

