

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

1
Email: majidtahir61@gmail.com

Contact: 03004003666

Syllabus Content:

10.4 Introduction to Abstract Data Types (ADT)

Candidates should be able to:

 Show understanding that an ADT is a collection of data and a set of operations on those
data.

 Show understanding that a stack, queue and linked list are examples of ADTs
 Describe the key features of a stack, queue and linked list and justify their use for a

given situation
 Use a stack, queue and linked list to store data
 Candidates will not be required to write pseudocode for these structures, but they should

be able to add, edit and delete data from these structures
 Describe how a queue, stack and linked list can be implemented using arrays.

ADTs (Abstract Data Type):

An abstract data type is a collection of data. When we want to use an abstract data type, we
need a set of basic operations:

 create a new instance of the data structure
 find an element in the data structure
 insert a new element into the data structure
 delete an element from the data structure
 access all elements stored in the data structure in a systematic manner.

Abstract Data Types
Definition

An abstract data type is a type with associated operations, but whose representation is hidden.

The definition of ADT only mentions what operations are to be performed but not how these
operations will be implemented. It does not specify how data will be organized in memory and
what algorithms will be used for implementing the operations.

It is called “abstract” because it gives an implementation independent view. The process of
providing only the essentials and hiding the details is known as abstraction.

The user of data type need not know that data type is implemented, for example, we have been
using integer, float, char data types only with the knowledge with values that can take and
operations that can be performed on them without any idea of how these types are
implemented. So a user only needs to know what a data type can do but not how it will do it.

https://wiki.haskell.org/Type
https://www.geeksforgeeks.org/data-types-in-c/

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

2
Email: majidtahir61@gmail.com

Contact: 03004003666

We can think of ADT as a black box which hides the inner structure and design of the data type.

Now we’ll define three ADTs namely Stack ADT, Queue ADT and Linked List ADT.

Stack ADT
A Stack contains elements of same type arranged in sequential order. All operations takes place
at a single end that is top of the stack and following
operations can be performed:

To make a stack, we pile items on top of each other. The
item that is accessible is the one on top of the stack. If we
try to find an item in the stack and take it out, we are likely
to cause the pile of items to collapse.

The BaseofstackPointer will always point to the first slot
in the stack. The TopOfStackPointer will point to the last
element pushed onto the stack.

When an element is removed from the stack, the
TopOfStackPointer will decrease to point to the element now at the top of the stack.

Figure below shows how we can represent a stack when we have added three items in this
order: 1, 2, 3 push() adds the item in stack and pop() picks the item from stack.

The 'STACK' is a Last-In First-Out (LIFO) List. Only the last item in the stack can be accessed directly.

push() – Insert an element at one end of the stack called top.
pop() – Remove and return the element at the top of the stack, if it is not
empty.
peek() – Return the element at the top of the stack without removing it, if the
stack is not empty.
size() – Return the number of elements in the stack.
isEmpty() – Return true if the stack is empty, otherwise return false.
isFull() – Return true if the stack is full, otherwise return false.

https://www.geeksforgeeks.org/stack-data-structure-introduction-program/
https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

3
Email: majidtahir61@gmail.com

Contact: 03004003666

To Setup a Stack in pseudocode see the code below:

To add an item in STACK

To remove an item from STACK

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

4
Email: majidtahir61@gmail.com

Contact: 03004003666

Stacks in VB

Stack Pop Operation

topPointer points to the top of stack

Stack Push Operation

Queue ADT

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

5
Email: majidtahir61@gmail.com

Contact: 03004003666

Queue is a linear data structure in which the insertion and deletion operations are performed at
two different ends. In a queue data structure, adding and removing of elements are performed
at two different positions.

The insertion is performed at one end and deletion is performed at other end. In a queue data
structure, the insertion operation is performed at a position which is known as 'rear' and the
deletion operation is performed at a position which is known as 'front'.

In queue data structure, the insertion and deletion operations are performed based on FIFO
(First In First Out) principle.
A Queue contains elements of same type arranged in sequential order. Operations takes place
at both ends, insertion is done at end and deletion is done at front. Following operations can be
performed:

enqueue() – Insert an element at the end of the queue.
dequeue() – Remove and return the first element of queue, if the queue is not empty.
peek() – Return the element of the queue without removing it, if the queue is not empty.
size() – Return the number of elements in the queue.
isEmpty() – Return true if the queue is empty, otherwise return false.
isFull() – Return true if the queue is full, otherwise return false.

Queue after inserting 25, 30, 51, 60 and 85.

From these definitions, we can clearly see that the definitions do not specify how these ADTs
will be represented and how the operations will be carried out. There can be different ways to
implement an ADT, for example, the List ADT can be implemented using arrays, or singly linked
list or doubly linked list. Similarly, stack ADT and Queue ADT can be implemented using arrays
or linked lists.

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

6
Email: majidtahir61@gmail.com

Contact: 03004003666

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

7
Email: majidtahir61@gmail.com

Contact: 03004003666

Queue Operations in VB:

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

8
Email: majidtahir61@gmail.com

Contact: 03004003666

Empty Queue with no items and variables, set to public for subroutine access.

Queue Enqueue (adding an item to queue)

Queue Enqueue (adding an item to queue)

Linked lists

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

9
Email: majidtahir61@gmail.com

Contact: 03004003666

Earlier we used an array as a linear list. In an Array (Linear list), the list items are stored in
consecutive locations. This is not always appropriate.

Another method is to store an individual list item in whatever location is available and link the
individual item into an ordered sequence using pointers.

An element of a list is called a node. A
node can consist of several data items
and a pointer, which is a variable that
stores the address of the node it points
to.
A pointer that does not point at anything
is called a null pointer. It is usually rep

resented by ϕ. A variable that stores the

address of the first element is called a
start pointer.

In Figure below, the data value in the node box represents the key field of that node. There are
likely to be many data items associated with each node. The arrows represent the pointers.

It does not show at which address a node is stored, so the diagram does not give the value of
the pointer, only where it conceptually links to.
Suppose StartPointer points to B, B points to D and D points to L, L Points to NULL

Add a node at the front: (A 4 steps process)
A new node, A, is inserted at the beginning of the list.
The content of startPointer is copied into the new node's pointer field and startpointer
is set to point to the new node, A.

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

10
Email: majidtahir61@gmail.com

Contact: 03004003666

Add a node after a given node:
We are given pointer to a node, and the new node is inserted after the given node.

To insert a new node, C, between existing nodes, Band D (Figure 23.10), we copy the
pointer field of node B into the pointer field of the new node, C. We change the pointer
field of node B to point to the new node, C.

Add a node at the end:
In Figure 23.07, a new node, P, is inserted at the end of the list. The pointer field of
node L points to the new node, P. The pointer field of the new node, P, contains the null
pointer.

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

11
Email: majidtahir61@gmail.com

Contact: 03004003666

Deleting the First node in the list:
To delete the first node in the list (Figure 23.08), we copy the pointer field of the node to
be deleted into StartPointer

Deleting the Last node in the list:
To delete the last node in the list (Figure 23.09), we set the pointer field for the previous
node to the null pointer.

Deleting a node within the list:
To delete a node, D, within the list (Figure 23.11), we copy the pointer field of the node
to be deleted, D, into the pointer field of node B.

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

12
Email: majidtahir61@gmail.com

Contact: 03004003666

 Remember that, in real applications, the data would consist of much more than a
key field and one data item.

 When list elements need reordering, only pointers need changing in a linked list.
In an Array (linear list), all data items would need to be moved.

 This is why linked lists are preferable to Arrays (linear lists).

 Linked lists saves time, however we need more storage space for the pointer
fields.

Using Linked Lists:

 We can store the linked list in an array of records. One record represents a
node and consists of the data and a pointer.

 When a node is inserted or deleted, only the pointers need to change. A
pointer value is the array index of the node pointed to.

 Unused nodes need to be easy to find.

 A suitable technique is to link the unused nodes to form another linked list: the
free list. Figure 23.12 shows our linked list and its free list.

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

13
Email: majidtahir61@gmail.com

Contact: 03004003666

 When an array of nodes is first initialised to work as a linked list, the linked list
will be empty.

 So the start pointer will be the null pointer.

 All nodes need to be linked to form the free list.

 Figure 23.13 shows an example of an implementation of a linked list before any
data is inserted into it.

We now code the basic operations discussed using the conceptual diagrams in Figures 23.05 to 23.12.

Create a new linked list
CONSTANT NullPointer=0 //NullPointer should be set to -1 if using array element with index O

1

TYPE ListNode // Declare record type to store data and pointer

DECLARE Data STRING

DECLARE Pointer INTEGER

ENDTYPE

DECLARE StartPointer : INTEGER // Declare start pointer to point to first item in list

DECLARE FreeListPtr : INTEGER // Declare free pointer to add data in free memory slot.

DECLARE List[l:7] OF ListNode

PROCEDURE InitialiseList

StartPointer NullPointer // set start pointer, start of list

FreeListPtr 1 // set starting position of free list

FOR Index 1 TO 6 // link all nodes to make free list

List[Index].Pointer Index + 1

NEXT

List[7].Pointer Null Pointer //last node of free list

END PROCEDURE

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

14
Email: majidtahir61@gmail.com

Contact: 03004003666

Create a new linked list in Visual Studio

Module Module1
 ' NullPointer should be set to -1 if using array element with index 0
 Const NULLPOINTER = -1 ' Declare record type to store data and pointer

 Structure ListNode
 Dim Data As String

 Dim Pointer As Integer
 End Structure

 Dim List(7) As ListNode
 Dim StartPointer As Integer
 Dim FreeListPtr As Integer

 Sub InitialiseList()
 StartPointer = NULLPOINTER ' set start pointer

 FreeListPtr = 0 ' set starting position of free list
 For Index = 0 To 7 'link all nodes to make free list
 List(Index).Pointer = Index + 1

 Next
 List(7).Pointer = NULLPOINTER 'last node of free list
 End Sub

Insert a new node into an ordered linked list

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

15
Email: majidtahir61@gmail.com

Contact: 03004003666

Insert a new node into an ordered linked list
DECLARE startpointer : INTEGER

DECLARE heapStartPointer : INTEGER

DECLARE itemAdd : INTEGER

DECLARE tempPointer : INTEGER

CONSTANT nullPointer = -1

PROCEDURE

PROCEDURE InsertNode(Newitem)

IF FreeListPtr <> NullPointer

THEN // there is space in the array

NewNodePtr FreeListPtr //take node from free list and store data item

List[NewNodePtr].Data Newitem

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

16
Email: majidtahir61@gmail.com

Contact: 03004003666

FreeListPtr List[FreeListPtr].Pointer

// find insertion point

ThisNodePtr StartPointer // start at beginning of list

WHILE ThisNodePtr <> NullPointer // while not end of list

AND List[ThisNodePtr].Data < Newitem

PreviousNodePtr ThisNodePtr //remember this node

//follow the pointer to the next node

ThisNodePtr List[ThisNodePtr].Pointer

ENDWHILE

IF PreviousNodePtr = StartPointer

THEN //insert new node at start of list

List[NewNodePtr].Pointer StartPointer

StartPointer NewNodePtr

ELSE //insert new node between previous node and this node

List[NewNodePtr].Pointer List[PreviousNodePtr].Pointer

List[PreviousNodePtr].Pointer NewNodePtr

ENDIF

ENDIF

END PROCEDURE

After three data items have been added to the linked list, the array contents are as

shown in Figure 23.14.

Insert a new node into an ordered linked list in Visual Studio:

Sub InsertNode(ByVal NewItem)

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

17
Email: majidtahir61@gmail.com

Contact: 03004003666

Dim TempPtr, NewNodePtr, PreviousNodePtr As Integer ' TemportatryPointer, NextNode

Pointer and PreviousPointer to Swap values of pointers
 If FreeListPtr <> NULLPOINTER Then ' there is space in the array, take node from

free list and store data item

 NewNodePtr = FreeListPtr

 List(NewNodePtr).Data = NewItem
 FreeListPtr = List(FreeListPtr).Pointer ' find insertion point

 PreviousNodePtr = NULLPOINTER

 TempPtr = StartPointer ' start at beginning of list
 Try

 Do While (TempPtr <> NULLPOINTER) And (List(TempPtr).Data < NewItem) '

while not end of list
 PreviousNodePtr = TempPtr ' remember this node follow the pointer to

the next node

 TempPtr = List(TempPtr).Pointer
 Loop

 Catch ex As Exception

 End Try

 If PreviousNodePtr = NULLPOINTER Then ' insert new node at start of list

 List(NewNodePtr).Pointer = StartPointer

 StartPointer = NewNodePtr

 Else : List(NewNodePtr).Pointer = List(PreviousNodePtr).Pointer ' insert new

node between previous node and this node
 List(PreviousNodePtr).Pointer = NewNodePtr

 End If

 Else : Console.WriteLine("no space for more data")

 End If
 End Sub

Find an element in an ordered linked list

FUNCTION FindNode(Dataitem) RETURNS INTEGER // returns pointer to node

CurrentNodePtr StartPointer //start at beginning of list

WHILE CurrentNodePtr <> NullPointer //not end of list

AND List[CurrentNodePtr].Data <> Dataitem // item not found

//follow the pointer to the next node

CurrentNodePtr List [CurrentNodePtr].Pointer

ENDWHILE

RETURN CurrentNodePtr // returns NullPointer if item not found

END FUNCTION

Finding an element Visual Studio Code:
Function FindNode(ByVal DataItem) As Integer ' returns pointer to node
Dim CurrentNodePtr As Integer
CurrentNodePtr = StartPointer ' start at beginning of list

Try
Do While CurrentNodePtr <> NULLPOINTER And List(CurrentNodePtr).Data <>

DataItem ' not end of list,item(Not found)

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

18
Email: majidtahir61@gmail.com

Contact: 03004003666

 ' follow the pointer to the next node
CurrentNodePtr = List(CurrentNodePtr).Pointer

Loop
Catch ex As Exception
Console.WriteLine("data not found")

End Try
Return (CurrentNodePtr) ' returns NullPointer if item not found
End Function

Delete a node from an ordered linked list
PROCEDURE DeleteNode(Dataitem)

ThisNodePtr StartPointer //start at beginning of list

WHILE ThisNodePtr <> NullPointer //while not end of list

AND List[ThisNodePtr].Data <> Dataitem //and item not found

PreviousNodePtr ThisNodePtr //remember this node

// follow the pointer to the next node

ThisNodePtr List[ThisNodePtr].Pointer

ENDWHILE

IF ThisNodePtr <> NullPointer //node exists in list

THEN

IF ThisNodePtr = StartPointer //first node to be deleted

THEN

StartPointer List[StartPointer].Pointer

ELSE

List[PreviousNodePtr] List[ThisNodePtr].Pointer

ENDIF

ENDIF

 List[ThisNodePtr].Pointer FreeListPtr

 FreeListPtr ThisNodePtr

END PROCEDURE

VB Code
Sub DeleteNode(ByVal DataItem)

 Dim ThisNodePtr, PreviousNodePtr As Integer

 ThisNodePtr = StartPointer

 Try ' start at beginning of list

 Do While ThisNodePtr <> NULLPOINTER And List(ThisNodePtr).Data <>

DataItem ' while not end of list and item not found

 PreviousNodePtr = ThisNodePtr ' remember this node

 ' follow the pointer to the next node

 ThisNodePtr = List(ThisNodePtr).Pointer

 Loop

 Catch ex As Exception

 Console.WriteLine("data does not exist in list")

 End Try

 If ThisNodePtr <> NULLPOINTER Then ' node exists in list

 If ThisNodePtr = StartPointer Then ' first node to be deleted

 StartPointer = List(StartPointer).Pointer

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

19
Email: majidtahir61@gmail.com

Contact: 03004003666

 Else : List(PreviousNodePtr).Pointer = List(ThisNodePtr).Pointer

 End If

 List(ThisNodePtr).Pointer = FreeListPtr

 FreeListPtr = ThisNodePtr

 End If

 End Sub

Access all nodes stored in the linked list

PROCEDURE OutputAllNodes

CurrentNodePtr StartPointer //start at beginning of list

WHILE CurrentNodePtr <> NullPointer //while not end of list

OUTPUT List[CurrentNodePtr].Data //follow the pointer to the next node

CurrentNodePtr List[CurrentNodePtr].Pointer

ENDWHILE

ENDPROCEDURE

VB Code
Sub OutputAllNodes()

 Dim CurrentNodePtr As Integer

 CurrentNodePtr = StartPointer ' start at beginning of list

 If StartPointer = NULLPOINTER Then

 Console.WriteLine("No data in list")

 End If

 Do While CurrentNodePtr <> NULLPOINTER ' while not end of list

 Console.WriteLine(CurrentNodePtr & " " & List(CurrentNodePtr).Data)

' follow the pointer to the next node

 CurrentNodePtr = List(CurrentNodePtr).Pointer

 Loop

 End Sub

VB Program for Linked Lists
Module Module1

 ' NullPointer should be set to -1 if using array element with index 0

 Const NULLPOINTER = -1 ' Declare record type to store data and pointer

 Structure ListNode
 Dim Data As String

 Dim Pointer As Integer

 End Structure

 Dim List(7) As ListNode

 Dim StartPointer As Integer
 Dim FreeListPtr As Integer

 Sub InitialiseList()

 StartPointer = NULLPOINTER ' set start pointer

 FreeListPtr = 0 ' set starting position of free list

 For Index = 0 To 7 'link all nodes to make free list

 List(Index).Pointer = Index + 1
 Next

 List(7).Pointer = NULLPOINTER 'last node of free list

 End Sub

 Function FindNode(ByVal DataItem) As Integer ' returns pointer to node

 Dim CurrentNodePtr As Integer
 CurrentNodePtr = StartPointer ' start at beginning of list

 Try

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

20
Email: majidtahir61@gmail.com

Contact: 03004003666

 Do While CurrentNodePtr <> NULLPOINTER And List(CurrentNodePtr).Data <>

DataItem ' not end of list,item(Not found)
 ' follow the pointer to the next node

 CurrentNodePtr = List(CurrentNodePtr).Pointer

 Loop

 Catch ex As Exception
 Console.WriteLine("data not found")

 End Try

 Return (CurrentNodePtr) ' returns NullPointer if item not found
 End Function

 Sub DeleteNode(ByVal DataItem)
 Dim ThisNodePtr, PreviousNodePtr As Integer

 ThisNodePtr = StartPointer

 Try ' start at beginning of list

 Do While ThisNodePtr <> NULLPOINTER And List(ThisNodePtr).Data <> DataItem

' while not end of list and item not found

 PreviousNodePtr = ThisNodePtr ' remember this node

 ' follow the pointer to the next node
 ThisNodePtr = List(ThisNodePtr).Pointer

 Loop

 Catch ex As Exception
 Console.WriteLine("data does not exist in list")

 End Try

 If ThisNodePtr <> NULLPOINTER Then ' node exists in list

 If ThisNodePtr = StartPointer Then ' first node to be deleted

 StartPointer = List(StartPointer).Pointer
 Else : List(PreviousNodePtr).Pointer = List(ThisNodePtr).Pointer

 End If

 List(ThisNodePtr).Pointer = FreeListPtr
 FreeListPtr = ThisNodePtr

 End If

 End Sub

 Sub InsertNode(ByVal NewItem)

 Dim ThisNodePtr, NewNodePtr, PreviousNodePtr As Integer
 If FreeListPtr <> NULLPOINTER Then ' there is space in the array

 ' take node from free list and store data

item

 NewNodePtr = FreeListPtr

 List(NewNodePtr).Data = NewItem

 FreeListPtr = List(FreeListPtr).Pointer ' find insertion point
 PreviousNodePtr = NULLPOINTER

 ThisNodePtr = StartPointer ' start at beginning of list

 Try

 Do While (ThisNodePtr <> NULLPOINTER) And (List(ThisNodePtr).Data <
NewItem) ' while not end of list

 PreviousNodePtr = ThisNodePtr ' remember this node

 ' follow the pointer to the next node
 ThisNodePtr = List(ThisNodePtr).Pointer

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

21
Email: majidtahir61@gmail.com

Contact: 03004003666

 Loop

 Catch ex As Exception
 End Try

 If PreviousNodePtr = NULLPOINTER Then ' insert new node at start of list

 List(NewNodePtr).Pointer = StartPointer
 StartPointer = NewNodePtr

 Else : List(NewNodePtr).Pointer = List(PreviousNodePtr).Pointer
 ' insert new node between previous node and this node

 List(PreviousNodePtr).Pointer = NewNodePtr

 End If
 Else : Console.WriteLine("no space for more data")

 End If

 End Sub

 Sub OutputAllNodes()

 Dim CurrentNodePtr As Integer

 CurrentNodePtr = StartPointer ' start at beginning of list
 If StartPointer = NULLPOINTER Then

 Console.WriteLine("No data in list")

 End If
 Do While CurrentNodePtr <> NULLPOINTER ' while not end of list

 Console.WriteLine(CurrentNodePtr & " " & List(CurrentNodePtr).Data)
' follow the pointer to the next node

 CurrentNodePtr = List(CurrentNodePtr).Pointer

 Loop

 End Sub

 Function GetOption()

 Dim Choice As Char
 Console.WriteLine("1: insert a value")

 Console.WriteLine("2: delete a value")

 Console.WriteLine("3: find a value")
 Console.WriteLine("4: output list")

 Console.WriteLine("5: end program")

 Console.Write("Enter your choice: ")
 Choice = Console.ReadLine()

 Return (Choice)

 End Function

 Sub Main()

 Dim Choice As Char

 Dim Data As String

 Dim CurrentNodePtr As Integer

 InitialiseList()
 Choice = GetOption()

 Do While Choice <> "5"

 Select Case Choice

 Case "1"
 Console.Write("Enter the value: ")

 Data = Console.ReadLine()

 InsertNode(Data)
 OutputAllNodes()

P2 10.4) Introduction to Abstract Data Types (ADT) Computer Science 9618

with Majid Tahir

22
Email: majidtahir61@gmail.com

Contact: 03004003666

 Case "2"

 Console.Write("Enter the value: ")
 Data = Console.ReadLine()

 DeleteNode(Data)

 OutputAllNodes()

 Case "3"
 Console.Write("Enter the value: ")

 Data = Console.ReadLine()

 CurrentNodePtr = FindNode(Data)
 Case "4"

 OutputAllNodes()

 Console.WriteLine(StartPointer & " " & FreeListPtr)
 For i = 0 To 7

 Console.WriteLine(i & " " & List(i).Data & " " &

List(i).Pointer)
 Next

 End Select

 Choice = GetOption()

 Loop
 End Sub

End Module

References:
Computer Science AS & A Level Coursebook by Sylvia Langfield & Dave Duddell
https://www.geeksforgeeks.org/abstract-data-types/
https://www.geeksforgeeks.org/linked-list-set-2-inserting-a-node/
http://btechsmartclass.com/DS/U2_T7.html
http://www.teach-
ict.com/as_as_computing/ocr/H447/F453/3_3_5/data_structures/miniweb/pg15.htm
https://www.geeksforgeeks.org/binary-tree-set-1-introduction/
https://www.thecrazyprogrammer.com/2017/08/difference-between-tree-and-graph.html
https://www.codeproject.com/Articles/4647/A-simple-binary-tree-implementation-with-VB-NET

https://www.geeksforgeeks.org/abstract-data-types/
https://www.geeksforgeeks.org/linked-list-set-2-inserting-a-node/
http://btechsmartclass.com/DS/U2_T7.html
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_5/data_structures/miniweb/pg15.htm
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_5/data_structures/miniweb/pg15.htm
https://www.geeksforgeeks.org/binary-tree-set-1-introduction/
https://www.thecrazyprogrammer.com/2017/08/difference-between-tree-and-graph.html
https://www.codeproject.com/Articles/4647/A-simple-binary-tree-implementation-with-VB-NET

