

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

1
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

ByRef vs. ByVal
Parameters can be passed by reference (ByRef) or by value (ByVal).

If you want to pass the value of the variable, use the ByVal syntax. By passing
the value of the variable instead of a reference to the variable, any changes to
the variable made by code in the subroutine or function will not be passed back
to the main code.

This is the default passing mechanism when you don’t decorate the parameters
by using ByVal or ByRef.

If you want to change the value of the variable in the subroutine or function and
pass the revised value back to the main code, use the ByRef syntax. This
passes the reference to the variable and allows its value to be changed and
passed back to the main code.

Syllabus Content:
11.3. Structured programming
• use a procedure
• explain where in the construction of an algorithm it would be appropriate to use a procedure

– a procedure may have none, one or more parameters
– a parameter can be passed by reference or by value

• show understanding of passing parameters by reference
• show understanding of passing parameters by value

– a call is made to the procedure using CALL <identifier> ()
• use a function
• explain where in the construction of an algorithm it is appropriate to use a function
• use the terminology associated with procedures and functions: procedure/function header,
procedure/ function interface, parameter, argument, return value

– given pseudocode will use the following structure for function definitions:
– a function is used in an expression, for example

• write programs containing several components and showing good use of resources

11.3. Structured programming

Subroutines & Procedures
Initially, a program was written as one monolithic block of code. The program started at the first
line of the program and continued to the end.

Program languages have now been developed to be structured. A problem can be divided into a
number of smaller subroutines (also called procedures). From within one subroutine, another
subroutine can be called and executed:

Subroutine
A subroutine is a self-contained section of program code that performs a specific task, as part of
the main program.

Procedure

Procedure is giving a group of statements a name. When we want to program a procedure we
need to define it before the main program. We call it in the main program when we want the
statements in the procedure body to be executed.

Pseudocode

PROCEDURE <identifier>
<statement (s)>
ENDPROCEDURE

PROCEDURE <identifier> (BYREF <identifier>: <data type>)
<statement (s)>
ENDPROCEDURE

PROCEDURE <identifier> (BYVALUE <identifier>: <datatype>)
<statement (s)>
ENDPROCEDURE

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

2
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

PSEUDOCODE FOR ABOVE PROCEDURE
PROCEDURE timestable(ByREF number As INTEGER) //This is a Procedure
 FOR count = 1 To 20

 OUTPUT(number & " X " & count & " = " & count * number)
 NEXT
END PROCEDURE

BEGIN
OUTPUT("PLEASE Input number for TimesTable") //asking for number(in

procedure) from user
CALL timestable //CALL to procedure to execute it in the main Program
END

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

3
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Example Program – Procedures

Module Module

 Dim num1 As Integer
 Dim num2 As Integer

 Dim answer As Integer

Sub input_sub()
Console.Clear()

Console.WriteLine("Enter number 1")

num1 = Console.ReadLine
Console.WriteLine("Enter number 2")

num2 = Console.ReadLine

 End Sub

 Sub Calculation()

 answer = num1 * num2
 End Sub

 Sub output_sub()

Console.Write("the product of " & num1 & " and " & num2 & " is ")
Console.WriteLine(answer)

Console.ReadLine()

End Sub

 Sub Main()

 input_sub()
 Calculation()

 output_sub()

 End Sub

End Module

DECLARE num1, num2, answer As Integer

PROCEDURE input_sub()

OUTPUT("Enter number 1")
INPUT num1 = Console.ReadLine

OUTPUT("Enter number 2")

INPUT num2

 END PROCEDURE

 PROCEDURE Calculation()

 answer = num1 * num2
 END PROCEDURE

 Sub output_sub()
Console.Write("the product of " & num1 & " and " & num2 & " is ")

Console.WriteLine(answer)

Console.ReadLine()
End Sub

 Sub Main()

 input_sub()

 Calculation()
 output_sub()

 End Sub

End Module

Global Variables declared

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

4
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Parameter
A parameter is a value that is ‘received’ in a subroutine (procedure or function).
The subroutine uses the value of the parameter within its execution.

The action of the subroutine will be different depending upon the parameters that it is passed.
Parameters are placed in parenthesis after the subroutine name.
For example: Square(5) ‘passes the parameter 5 – returns 25

ByRef vs. ByVal
Parameters can be passed by reference (ByRef) or by value (ByVal).

If you want to pass the value of the variable, use the ByVal syntax. By passing the value of the variable
instead of a reference to the variable, any changes to the variable made by code in the subroutine or
function will not be passed back to the main code.

This is the default passing mechanism when you don’t decorate the parameters by using ByVal or
ByRef. If you want to change the value of the variable in the subroutine or function and pass the revised
value back to the main code, use the ByRef syntax. This passes the reference to the variable and allows
its value to be changed and passed back to the main code.

Variable Scope
A variable holds data while the program is running. The scope of a variable defines where it can be seen.
They are classifies as either global or local

Global Variable
A global variable is declared in a module and is accessible from any procedure or function within that module.

Local Variables
A local variable is declared in a procedure or function and is only accessible within that procedure of function.

Parameters
As mentioned above, local variables only have a lifespan of the procedure. Sometimes it is useful to pass
a value from one procedure to another. This is done by using parameters (or arguments)
A parameter can be passed from one procedure to another by value or by reference.

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

5
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

6
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

By Value
The word ByVal is short for "By Value". What it means is that you are passing a copy of a variable to your
Subroutine. You can make changes to the copy and the original will not be altered.

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

7
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

By Reference
ByRef is the alternative. This is short for By Reference. This means that you are not handing over a copy
of the original variable but pointing to the original variable. Any change you make to the variable within
your subroutine will effect the variable itself.

A procedure is a group of statements that together perform a task when called. After the
procedure is executed, the control returns to the statement calling the procedure. VB.Net has
two types of procedures:

 Functions

 Sub procedures or Subs

Functions return a value, whereas Subs do not return a value.

Defining a Function

The Function statement is used to declare the name, parameter and the body of a function.

The syntax for the Function statement is:

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

8
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

ByRef vs. ByVal
Parameters can be passed by reference (ByRef) or by value (ByVal).

If you want to pass the value of the variable, use the ByVal syntax. By passing
the value of the variable instead of a reference to the variable, any changes to
the variable made by code in the subroutine or function will not be passed back
to the main code.

This is the default passing mechanism when you don’t decorate the parameters
by using ByVal or ByRef.

If you want to change the value of the variable in the subroutine or function and
pass the revised value back to the main code, use the ByRef syntax. This
passes the reference to the variable and allows its value to be changed and
passed back to the main code.

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

Functions
Functions are similar to subroutines, except that they always return a value. They are normally used in
either assignments (A:=TaxA(370);) or expressions (IF taxA(15000) THEN….)
The function names doubles as a procedure name and a variable.

Module Module1

 Function square(ByVal x As Integer) As Integer
 square = x * x

 End Function

End Module

Square is the function name, that is expecting an
integer to be passed (byref) to it.

The result is assigned to the function name which is
dimensioned as an integer. The function name can
be used as a variable containing the result within
other procedures.

Pseudocode

FUNCTION <identifier> RETURNS <datatype>

<statement (s)>

ENDFUNCTION

FUNCTION <identifier> (<identifier> : <datatype>)

RETURNS <data type> // function has one or more parameters
<statement(s)>

ENDFUNCTION

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

9
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Example Program in VB - Functions

Example Program – Functions

Module Module1

 Function square(ByVal x As Integer) As Integer

 square = x * x

 End Function

 Function sum(ByRef a As Integer, ByRef b As Integer) As Integer

 sum = a + b

 End Function

 Sub Main()

 Dim number As Double = 5

 Console.WriteLine("x = " & number)

 Console.WriteLine("Square of x is " & square(number))

 Console.WriteLine(sum(3, 7))

 Console.WriteLine(square(sum(16, 9)))

 Console.ReadLine()

 End Sub

End Module

Programming languages, such as VB.net and spreadsheets, have many functions built-in.
Examples include

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

10
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

SUM(range) Spreadsheet: to add a block of cell values.
LCASE(string) VB: converts a string to upper case
ROUND(integer) Round the integer up
RANDOM Generate a random number

Example
Following code snippet shows a function FindMax that takes two integer values and returns the
larger of the two.

Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As Integer ' local

variable declaration
 Dim result As Integer

 If (num1 > num2) Then

 result = num1
 Else

 result = num2

 End If
 FindMax = result

End Function

Function Returning a Value
In VB.Net, a function can return a value to the calling code in two ways:

 By using the return statement

 By assigning the value to the function name

The following example demonstrates using the FindMax function:

Module module1
 Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then
 result = num1

 Else

 result = num2
 End If

 FindMax = result

 End Function
 Sub Main()

 Dim a As Integer

 Console.WriteLine("Write value number 1")
 a = Console.ReadLine()

 Dim b As Integer

 Console.WriteLine("Write value number 2")

 b = Console.ReadLine()
 Dim res As Integer

 res = FindMax(a, b)

 Console.WriteLine("Max value is : {0}", res)
 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it takes value 1 & value 2 as input and
produces the maximum value for example:

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

11
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Recursive Function

A function can call itself. This is known as recursion. Following is an example that calculates
factorial for a given number using a recursive function:

Module myfunctions

 Function factorial(ByVal num As Integer) As Intege ' local variable declaration */

 Dim result As Integer
 If (num = 1) Then

 Return 1

 Else
 result = factorial(num - 1) * num

 Return result

 End If

 End Function

 Sub Main()

 'calling the factorial method

 Console.WriteLine("Factorial of 6 is : {0}", factorial(6))
 Console.WriteLine("Factorial of 7 is : {0}", factorial(7))

 Console.WriteLine("Factorial of 8 is : {0}", factorial(8))

 Console.ReadLine()
 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

12
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Calling a Function

You call a Function procedure by using the procedure name, followed by the argument list in

parentheses, in an expression. You can omit the parentheses only if you aren't supplying any
arguments. However, your code is more readable if you always include the parentheses.

You call a Function procedure the same way that you call any library function such

as Sqrt , Cos , or ChrW .

You can also call a function by using the Call keyword. In that case, the return value is ignored.

Use of the Call keyword isn't recommended in most cases. For more information, see Call

Statement.

Visual Basic sometimes rearranges arithmetic expressions to increase internal efficiency. For

that reason, you shouldn't use a Function procedure in an arithmetic expression when the

function changes the value of variables in the same expression.

Syntax

 [Call] procedureName [(argumentList)]

Parts

procedureName

Required. Name of the procedure to call.

argumentList

Optional. List of variables or expressions representing arguments that are passed to the
procedure when it is called. Multiple arguments are separated by commas. If you

include argumentList , you must enclose it in parentheses.

Remarks

You can use the Call keyword when you call a procedure. For most procedure calls, you aren’t
required to use this keyword.

You typically use the Call keyword when the called expression doesn’t start with an identifier.
Use of the Call keyword for other uses isn’t recommended.

If the procedure returns a value, the Call statement discards it.

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/call-statement
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/call-statement

Paper 2. Sec 11.3) Structured Programming Computer Science 9618

with Majid Tahir

13
Email: majidtahir61@gmail.com www.majidtahir.com Contact: 03004003666

Example

The following code shows two examples where the Call keyword is necessary to call a

procedure. In both examples, the called expression doesn't start with an identifier.

Sub TestCall()

 Call (Sub() Console.Write("Hello"))()

 Call New TheClass().ShowText()

End Sub

Class TheClass

 Public Sub ShowText()

 Console.Write(" World")

 End Sub

End Class

References:

Visual Basics Console Cook Book by
VB.NET Console Book by Dough Semple
https://www.tutorialspoint.com/vb.net/vb.net_functions.htm
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/function-statement

https://www.tutorialspoint.com/vb.net/vb.net_functions.htm
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/function-statement

