

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

1
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

Syllabus Content:
13. Data representation
13.1- User-defined data types

 Show understanding of why user-defined types are necessary

 Define and use non-composite types

 Define and use composite data types

 Choose and design an appropriate user-defined data type for a given problem
Notes and guidance

 Including enumerated, pointer (Non-Composite)
 Including set, record and class / object (composite)

13.2 File organisation and access

 Show understanding of the methods of file organisation and select an
appropriate method of file organisation and file access for a given problem

 Show understanding of methods of file access

 Show understanding of hashing algorithms
Notes and guidance

 Including serial, sequential (using a key field), random (using a record
key)

 Sequential access for serial and sequential files
 Direct access for sequential and random files

User defined Data Type
You have already met a variety of built-in data types with integers, strings, chars and
more. But often these limited data types aren't enough and a programmer wants to build
their own data types. Just as an integer is restricted to "a whole number from -
2,147,483,648 through 2,147,483,647", user-defined data types have limits placed on
their use by the programmer.

A user defined data type is a feature in most high level programming languages which

allows a user (programmer) to define data type according to his/her own requirements

There are two categories of user defined data types.:

1. Non-composite data type

a. Enumerated data type

b. Pointer data type

2. Composite

a. Record data type

b. Set data type

c. Objects and classes

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

2
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

Non-composite user-defined data type:

A non-composite data type is defined without referencing another data type. They don’t
combine different built-in data types in one data type. Non-Composite data types are:

 Enumerated data type

 Pointers

Enumerated data type

An enumerated data type defines a list of possible values. The following pseudocode

shows two examples of type definitions:

Pseudocode of data Type for Working Days can be declared as TWdays:

Variables can then be declared and assigned values, for example:

It is important to note that the values of the enumerated type look like string values but
they are not. They must not be enclosed in quote marks.This makes the second

TYPE TWdays = (Monday, Tuesday, Wednesday, Thursday, Friday)

Types names are normally start with T to facilitate the programmer

These values are not strings so not enclosed in “quotation marks”

TYPE <identifier> = (value1, value2, value3, …)

DECLARE Workdays : TWdays

DECLARE thisday : TWdays

DECLARE nextday : TWdays

 today Monday

 nextday Monday + 1

nextday is now set to Tuesday by applying mathematical operator +

These values are ordinal and you can use mathematical and

comparison operators on them.

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

3
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

example much more useful because the ordering can be put to many uses in a
program. For example, a comparison statement can be used with the values and
variables of the enumerated data type:

Enumerated data type in vb.net

Enum Example

When you are in a situation to have a number of constants that are logically related to each
other, you can define them together these constants in an enumerator list. An enumerated type
is declared using the enum keyword.

Syntax:

Enumerated declaration in VB (Sample Program)

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

4
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

When the code is executed, following output will be produced:

An enumeration data type has a name, an underlying data type, and a set of members.

Each member represents a constant.

It is useful when you have a set of values that are functionally significant and fixed.

Another example of Enumerated Data Type in Visual Basic is given

below:

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

5
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

Pointer Data Type:

A pointer data type is used to reference a memory location.

This data type needs to have information about the type of data that will be stored in

the memory location. In pseudocode the type definition has the following structure,

in which ^ shows that the type being declared is a pointer and <TYPENAME> is the

type of data to be found in the memory location: for example INTEGER or REAL: or

any user-defined data type.

For example: a pointer for months of the year could be defined as follows:

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

6
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

Or for example

TYPE TmonthPointer = ^Tmonth //Tmonth will hold integer Data ^Integer

e.g as displayed in pastpaper question 9608/32/M/J/17

A pointer is a variable that stores the address of a variable of a particular type.

It could then be used as follows:

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

7
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

If the contents of the memory location are required rather than the address of the

memory location: then the pointer can be dereferenced. For example: myMonth can

be set to the value stored at the address monthpointer is pointing to:

DECLARE myMonth : month myMonth e-monthPointer

monthPointer has been dereferenced

 The pointer data type is unique among the FreeBasic numeric data types.

 Instead of containing data, like the other numeric types, a pointer

contains the memory address of data.

The main non-composite, derived type is the pointer, a data type whose value refers
directly to (or "points to") another value stored elsewhere in the computer
memory using its address.

It is a primitive kind of reference. (In everyday terms, a page number in a book could
be considered a piece of data that refers to another one). Pointers are often stored in a
format similar to an integer; however, attempting to dereference or "look up" a pointer
whose value was never a valid memory address would cause a program to crash. To
ameliorate this potential problem, pointers are considered a separate type to the type
of data they point to, even if the underlying representation is the same.

As you can see there are three basic steps to using pointers.

1. Declare a pointer variable.
2. Initialize the pointer to a memory address.
3. Dereference the pointer to manipulate the data at the pointed-to memory

location.

This isn't really any different than using a standard variable, and you use pointers in

much the same way as standard variables. The only real difference between the two is

that in a standard variable, you can access the data directly, and with a pointer you

must dereference the pointer to interact with the data.

A pointer references a location in memory, and obtaining the value stored at that

location is known as dereferencing the pointer. As an analogy, a page number in a

book's index could be considered a pointer to the corresponding page; dereferencing

https://en.wikipedia.org/w/index.php?title=Pointer_(c_programming)&action=edit&redlink=1
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Reference_(computer_science)
https://en.wikipedia.org/wiki/Dereference_operator

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

8
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

such a pointer would be done by flipping to the page with the given page number and

reading the text found on the indexed page.

Pseudocode for the definition of a pointer is illustrated by:

Declaration of a variable of pointer type does not require the caret symbol ^ to be used:

A special use of a pointer variable is to access the value stored at the address pointed to. The pointer variable is said

to be 'dereferenced'

Composite user-defined data types

A composite user-defined data type has a definition with reference to at least one other type.
Three examples are considered here.

Record data type
A record data type is the most useful and therefore most widely used. It allows the
programmer to collect together values with different data types when these form a coherent
whole.

As an example, a record could be used for a program using employee data. Pseudocode
for defining the type could be:

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

9
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

An individual data item can th en be accessed using a dot notation:

A particular use of a record is for the implementation of a data structure where one or
possibly two of the variables defined are pointer variables.

Records in VB:

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

10
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

Sample code of Record Data Type in VB and its Output below:

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

11
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

Record Data type with Arrays in VB.net:

What is Set Data Structure?
In computer science, a set data structure is defined as a data structure that stores a
collection of distinct elements
It is a fundamental Data Structure that is used to store and manipulate a group of
objects, where each object is unique. The Signature property of the set is that it
doesn’t allow duplicate elements

The most useful property of a set is the fact that duplicate values are not allowed.

Set data type:
A set data type allows a program to create sets and to apply the mathematical
operations defined in set theory. The following is a representative list of the operations
to be expected:

 Union
 Difference
 Intersection

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

12
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

13
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

How to create a set in PYTHON?

A set is created by placing all the items (elements) inside curly braces { }, separated by

comma or by using the built-in function set().
It can have any number of items and they may be of different types (integer, float, tuple,
string etc.). But a set cannot have a mutable element, like list, set or dictionary, as its
element.

You can try creating SET and its operations online on below link:

https://www.programiz.com/python-programming/set#operations

Python Set Operations
Sets can be used to carry out mathematical set operations like union, intersection,
difference and symmetric difference. We can do this with operators or methods.

Let us consider the following two sets for the following operations.

1. >>> A = {1, 2, 3, 4, 5}
2. >>> B = {4, 5, 6, 7, 8}

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/dictionary
https://www.programiz.com/python-programming/set#operations

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

14
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

Union of A and B is a set of all elements from both sets.

Union is performed using | operator. Same can be accomplished using the

method union().

Set Intersection

Intersection of A and B is a set of elements that are common in both sets.
Intersection is performed using & operator. Same can be accomplished using the
method intersection().

(Paper 3 - Sec. 13) Data Representation
Computer Science 9618

with Majid Tahir

15
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com

Objects and classes

In object-oriented programming, a program defines the classes to be used - they are all
user-defined data types. Then for each class the objects must be defined. Chapter 27
(Section 27.03) has a full discussion of this subject.

Why are user-defined data types necessary?

When object-oriented programming is not being used a programmer may choose not to
use any user-defined data types. However, for any reasonably large program it is likely
that their use will make a program more understandable and less error-prone. Once the
programmer has decided because of this advantage to use a data type that is not one
of the built-in types then user-definition is inevitable. The use of, for instance, an
integer variable is the same for any program. However, there cannot be a built-in
record type because each different problem will need an individual definition of a
record.

Refrences

 Book: AS and A-level Computer Science by

 http://www.bbc.co.uk/education/guides/zjfgjxs/revision/1

 https://www.tutorialspoint.com/vb.net/vb.net_constants.htm

 https://www.cs.drexel.edu/~introcs/F2K/lectures/5_Scientific/overflow.html

 https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Data/underflow.html

http://www.bbc.co.uk/education/guides/zjfgjxs/revision/1
https://www.tutorialspoint.com/vb.net/vb.net_constants.htm
https://www.cs.drexel.edu/~introcs/F2K/lectures/5_Scientific/overflow.html
https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Data/underflow.html

