

P4 Sec 19.2) Recursion
Computer Science 9618

with Majid Tahir

1
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

Syllabus Content:

19.2 Recursion

 show understanding of recursion

Notes and guidance

 Essential features of recursion.

 How recursion is expressed in a programming Language.

 Write and trace recursive algorithms

 Show awareness of what a compiler has to do to translate recursive program code.

Notes and guidance

 Use of stacks and unwinding

Have you ever seen a set of Russian dolls? At first, you
see just one figurine, usually painted wood, that looks
something like this:

When we open the doll, we find another in it little smaller

than the first one, then another one in it and so on. We

started with one big Russian doll, and we saw smaller and

smaller Russian dolls, until we saw one that was so small that it could not

contain another.

What do Russian dolls have to do with algorithms? Just as one Russian doll

has within it a smaller Russian doll, which has an even smaller Russian doll

within it, all the way down to a tiny Russian doll that is too small to contain

P4 Sec 19.2) Recursion
Computer Science 9618

with Majid Tahir

2
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

another, we'll see how to design an algorithm to solve a problem by solving a

smaller instance of the same problem, unless the problem is so small that we

can just solve it directly. We call this technique recursion.

Recursion

A very efficient way of programming is to make the same function work over and over

again in order to complete a task.

One way of doing this is to use 'Recursion'.

Recursion is where a function or sub-routine calls itself as part of the

overall process. Some kind of limit is built in to the function so that

recursion ends when a certain condition is met.

Example

A recursive procedure is one that calls itself. In general, this is

not the most effective way to write Visual Basic code.

The following procedure uses recursion to calculate the factorial of

its original argument.

Step by step, this is what happens. Recursion winds and then unwinds.

A classic computer programming problem that make clever use of recursion is to find

the factorial of a number. i.e. 4 factorial is

4! = 4 x 3 x 2 x 1

Lets see how Recursion winds and unwinds in program given below:

P4 Sec 19.2) Recursion
Computer Science 9618

with Majid Tahir

3
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

P4 Sec 19.2) Recursion
Computer Science 9618

with Majid Tahir

4
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

The factorial function is called with argument 3

 3 is passed as an argument to the factorial function 'fct'
 the test (if n==0) is false and so the else statement is executed
 the statement fct = n * fct(n-1) becomes
 fct = 3 * fct(2)
 In order to resolve this another call is made to factorial with argument 2 this time
 RECURSION happens i.e. the function is calling itself as fct(2)
 2 is passed as an argument to the factorial function 'fct'
 the test (if n==0) is false and so the else statement is executed
 the statement fct = n * fct(2-1) becomes
 fct = 2 * fctl(1)
 In order to resolve this another call is made to factorial with argument 1 this time
 RECURSION happens i.e. the function is calling itself as fct(1)
 1 is passed as an argument to the factorial function 'fct'
 the test (if n==0) is false and so the else statement is executed
 the statement fct = n * factorial(1-1) becomes
 fct = 1 * fct(0)
 In order to resolve this another call is made to factorial with argument 0 this time
 RECURSION happens i.e. the function is calling itself as fctl(0)
 the test (if n==0) is TRUE and so the value 1 is returned to the calling function
 now each function call returns a value to the previous one, until the first function called

returns a value to 'p'.

Programming a recursive subroutine
We can program the function factorial iteratively using a loop:

FUNCTION Fictorial : INTEGER: RETURS INTEGER
 Result 1
 FOR i 1 to n

 Result Result * i
 NEXT
 RETURN Result

END FUNCTION

Or

FUNCTION Fictorial (n : INTEGER) RETURS INTEGER
 IF n = 0
 THEN

 Result 1
 ELSE
 Result n * Fictorial (n-1)

 END IF
 RETURN Result

END FUNCTION

P4 Sec 19.2) Recursion
Computer Science 9618

with Majid Tahir

5
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

Programming a recursive subroutine in VB :
Following is an example that calculates factorial for a given number using a recursive function:

Module Module1
 Function factorial(ByVal num As Integer) As Integer ' local variable
declaration

 Dim result As Integer
 If (num = 0) Then
 Return 1

 Else
 result = factorial(num - 1) * num
 Return result

 End If
 End Function
 Sub Main() 'calling the factorial method

 Dim value As Integer
 Console.WriteLine("Please enter a value for its Factorial")

 value = Console.ReadLine()
 Console.WriteLine("Factorial of " & value & "= " & factorial(value))
 Console.WriteLine("Factorial of 8 is : {0}", factorial(8)) 'Calling

Factorial function with direct value
 Console.ReadLine()
 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

P4 Sec 19.2) Recursion
Computer Science 9618

with Majid Tahir

6
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

Advantage of recursion

 Very efficient use of code if problem is naturally recursive.

Disadvantage of recursion

 A faulty recursive function would never end and would rapidly run out of memory
or result in a stack overflow thus causing the computer to freeze.

 Can be difficult to debug as it can fail many levels deep in the recursion

 Makes heavy use of the stack, which is a very limited resource compared to
normal memory.

Recursion When to Use: You would process the list starting at the head or tail and
then recursively traverse the list using the pointers. A tree is another case
where recursion is often used Recursions are used when you satisfy of these
conditions:

 You have a problem which is naturally recursive.

 The task must be indefinitely repetitive.

 At every round the same decision set must be applicable

 You can guarantee that you won't overflow the stack.

Function of compiler to implement recursion:

To understand this you just need to understand how a compiler interpret a function.
The compiler does not need to know whether the function is recursive or not. It just
make CPU jump to the address of function entry and keep on executing instructions.

And that's why we can use that function even if its definition is not finished. The
compiler just need to know a start address, or a symbol, and then it would know where
to jump. The body of the function could be generated later.

However, you might want to know the Tail Recursion, that is a special case commonly
in functional programming languages. The "tail recursion" means the recursive function
call is the last statement in function definition.

What is tail recursion?

A recursive function is tail recursive when a recursive call is the last thing executed by
the function.

For example the following C++ function print() is tail recursive.

P4 Sec 19.2) Recursion
Computer Science 9618

with Majid Tahir

7
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

Why do we care?

The tail recursive functions considered better than non tail recursive functions as tail-
recursion can be optimized by the compiler.

 Compilers usually execute recursive procedures by using a stack. This
stack consists of all the pertinent information, including the parameter
values, for each recursive call.

 When a procedure is called, its information is pushed onto a stack, and
when the function terminates the information is popped out of the stack.

 Thus for the non-tail-recursive functions, the stack depth (maximum
amount of stack space used at any time during compilation) is more.

 The idea used by compilers to optimize tail-recursive functions is simple,
since the recursive call is the last statement, there is nothing left to do in
the current function, so saving the current function’s stack frame is of no
use.

References:
Computer Science AS & A Level Coursebook by Sylvia Langfield & Dave Duddell
https://www.geeksforgeeks.org/tail-recursion/
https://www.khanacademy.org/computing/computer-science/algorithms/recursive-
algorithms/a/recursion
http://teach-ict.com/as_as_computing/ocr/H447/F453/3_3_6/defining_syntax/miniweb/pg22.htm

https://stackoverflow.com/questions/40796473/how-do-compilers-understand-recursion

http://teach-ict.com/as_as_computing/ocr/H447/F453/3_3_6/defining_syntax/miniweb/pg22.htm
https://stackoverflow.com/questions/40796473/how-do-compilers-understand-recursion

