

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

1
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Syllabus Content:

1.1.1 Number representation
 show understanding of the basis of different number systems and use the

binary, denary and hexadecimal number system

 convert a number from one number system to another

 express a positive or negative integer in two’s complement form

 show understanding of, and be able to represent, character data in its internal
binary form depending on the character set used (Candidates will not be
expected to memorise any particular character codes but must be familiar with
ASCII and Unicode.)

 express a denary number in Binary Coded Decimal (BCD) and vice versa

 describe practical applications where BCD is used

 Binary, Denary & Hexadecimal

The binary system on computers uses combinations of 0s and 1s.

In everyday life, we use numbers based on combinations of the digits between 0
and 9.

This counting system is known as decimal, denary or base 10.

(0 1 2 3 4 5 6 7 8 9)10

A number base indicates how many digits are available within a numerical
system. Denary is known as base 10 because there are ten choices of digits
between 0 and 9.

For binary numbers there are only two possible digits available:

(0 or 1)2

The binary system is also known as base 2.

All denary numbers have a binary equivalent and it is possible to
convert between denary and binary.

http://www.bbc.co.uk/education/guides/zwsbwmn/revision/3#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/3#glossary-znfmyrd

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

2
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Place values

Denary place values

Using the denary system, 6432 reads as six thousand, four hundred and thirty
two. One way to break it down is as:

 six thousands
 four hundreds
 three tens
 two ones

Each number has a place value which could be put into columns. Each column
is a power of ten in the base 10 system:

Or think of it as:
(6 x 1000) + (4 x 100) + (3 x 10) + (2 x 1) = 6432

Binary place values

You can also break a binary number down into place-value columns, but each
column is a power of two instead of a power of ten.
For example, take a binary number like 1001. The columns are arranged in
multiples of 2 with the binary number written below:

By looking at the place values, we can calculate the equivalent denary number.

That is: (1 x 23) + (0 x 22) + (0 x21) + (1x20) = 8+0+0+1

http://www.bbc.co.uk/education/guides/zwsbwmn/revision/4#glossary-znfmyrd
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/4#glossary-zpnqn39

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

3
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

(1 x 8) + (0 x 4) + (0 x 2) + (1 x 1) = 8 + 1 = 9

Converting binary to denary

To calculate a large binary number like 10101000 we need more place values of
multiples of 2.

 27 = 128
 26 = 64
 25 = 32
 24 = 16
 23 = 8
 22 = 4
 21 = 2
 20 = 1

In denary the sum is calculated as:

(1x27) + (0 x 26) + (1 x 25) + (0 x 24) + (1 x 23) + (0 x 22) + (0 x21) + (0x20) = 168
(1 x 128) + (0 x 64) + (1 x 32) + (0 x 16) + (1 x 8) + (0 x 4) + (0 x 2) + (0 x 1) =
128 + 32 + 8 = 168

Converting denary to binary: Method 1

There are two methods for converting a denary (base 10) number to
binary (base 2). This is method one.

http://www.bbc.co.uk/education/guides/zwsbwmn/revision/5#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/5#glossary-znfmyrd
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/6#glossary-znfmyrd
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/6#glossary-zpnqn39

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

4
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Divide by two and use the remainder

Divide the starting number by 2. If it divides evenly, the binary digit is 0. If it

does not - if there is a remainder - the binary digit is 1.

Play

A method of converting a denary number to binary

Worked example: Denary number 83

1. 83 ÷ 2 = 41 remainder 1
2. 41 ÷ 2 = 20 remainder 1
3. 20 ÷ 2 = 10 remainder 0
4. 10 ÷ 2 = 5 remainder 0
5. 5 ÷ 2 = 2 remainder 1
6. 2 ÷ 2 = 1 remainder 0
7. 1 ÷ 2 = 0 remainder 1

Put the remainders in reverse order to get the final number: 1010011.

64 32 16 8 4 2 1

1 0 1 0 0 1 1

To check that this is right, convert the binary back to denary:
(1 x 64) + (0 x 32) + (1 x 16) + (0 x 8) + (0 x 4) + (1 x 2) + (1 x 1) = 83

Worked example: Denary number 122

1. 122 ÷ 2 = 61 remainder 0
2. 61 ÷ 2 = 30 remainder 1
3. 30 ÷ 2 = 15 remainder 0
4. 15 ÷ 2 = 7 remainder 1
5. 7 ÷ 2 = 3 remainder 1
6. 3 ÷ 2 = 1 remainder 1
7. 1 ÷ 2 = 0 remainder 1

Put the remainders in reverse order to get the final number: 1111010.

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

5
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

128 64 32 16 8 4 2 1

0 1 1 1 1 0 1 0

To check that this is right, convert the binary back to denary:

(1 x 64) + (1 x 32) + (1 x 16) + (1 x 8) + (0 x 4) + (1 x 2) + (0 x 1) = 122

The binary representation of an even number always ends in 0 and an odd

number in 1.

Converting denary to binary: Method 2

There are two methods for converting a denary (base 10) number to
binary (base 2). This is method two.

Take off the biggest 2n value you can

Remove the 2n numbers from the main number and mark up the equivalent
2n column with a 1. Work through the remainders until you reach zero. When you
reach zero, stop and complete the final columns with 0s.

Play

A method of converting a denary number to binary

http://www.bbc.co.uk/education/guides/zwsbwmn/revision/7#glossary-znfmyrd
http://www.bbc.co.uk/education/guides/zwsbwmn/revision/7#glossary-zpnqn39

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

6
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Download Transcript

Worked example: Denary number 84

First set up the columns of base 2 numbers. Then look for the highest 2nnumber
that goes into 84.

1. Set up the columns of base 2 numbers

2. Find the highest 2n number that goes into 84. The highest 2n number is 26
= 64

3. 84 – 64 = 20. Find the highest 2n number that goes into 20. The highest
2n number is 24 = 16

4. 20 - 16 = 4. Find the highest 2n number that goes into 4. The highest
2n number is 22 = 4

5. 4 - 4 = 0

6. Mark up the columns of base 2 numbers with a 1 where the number has
been the highest 2nnumber, or with a 0:

64 32 16 8 4 2 1

1 0 1 0 1 0 0

Result: 84 in denary is equivalent to 1010100 in binary.

To check that this is right, convert the binary back to denary:
(1 x 64) + (0 x 32) + (1 x 16) + (0 x 8) + (1 x 4) + (0 x 2) + (0 x 1) = 84

Binary combinations

These tables show how many binary combinations are available for each bit size.

One bit

Maximum binary number = 1

Maximum denary number = 1

Binary combinations = 2

http://a.files.bbci.co.uk/bam/live/content/zgcpn39/transcript

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

7
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Two bit

Maximum binary number = 11

Maximum denary number = 3

Binary combinations = 4

Three bit

Maximum binary number = 111

Maximum denary number = 7

Binary combinations = 8

Hexadecimal Number System:

We often have to deal with large positive binary numbers. For instance, consider that
computers connect to the Internet using a Network Interface Card (NIC). Every NIC in the
world is assigned a unique 48-bit identifier as an Ethernet address. The intent is that no two
NICs in the world will have the same address. A sample Ethernet address might be:
000000000100011101011110011111111001001000110110

Fortunately, large binary numbers can be made much more compact—and hence easier to
work with—if represented in base-16, the so-called hexadecimal number system. You may
wonder: Binary numbers would also be more compact if represented in base-10—why not
just convert them to decimal? The answer, as you will soon see, is that converting between
binary and hexadecimal is exceedingly easy—much easier than converting between binary
and decimal.

The Hexadecimal Number System
The base 16 hexadecimal has 16 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F). Note
that the single hexadecimal symbol A is equivalent to the decimal number 10, the single

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

8
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

symbol B is equivalent to the decimal number 11, and so forth, with the symbol F being
equivalent to the decimal number 15.

Just as with decimal notation or binary notation, we again write a number as a string of symbols,
but now each symbol is one of the 16 possible hexadecimal digits (0 through F). To interpret a
hexadecimal number, we multiply each digit by the power of 16 associated with that digit’s
position.

For example, consider the hexadecimal number 1A9B. Indicating the values associated with the
positions of the symbols, this number is illustrated as:

1 A 9 B

16
3

16
2
 16

1
 16

0

The one main disadvantage of binary numbers is that the binary string equivalent of a large

decimal base -10 number, can be quite long. When working with large digital systems, such as

computers, it is common to find binary numbers consisting of 8, 16 and even 32 digits which

makes it difficult to both read and write without producing errors especially when working with

lots of 16 or 32-bit binary numbers. One common way of overcoming this problem is to arrange

the binary numbers into groups or sets of four bits (4-bits). These groups of 4-bits use another

type of numbering system also commonly used in computer and digital systems called

Hexadecimal Numbers.

REPRESENTING INTERGERS AS HEXADECIMAL NUMBERS:

The base 16 notational system for representing real numbers. The digits used to represent

numbers using hexadecimal notation are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

―H‖ denotes hex prefix.

Examples:

(i) 2 816 = 2 8H = 2 × 16 1 + 8 × 160 = 40

= 32 + 8 = 40

(ii) 2 F16 = 2 FH = 2 × 16 +15 × 1= 47

(iii) BC1216 = BC12H = 11×16 3 +12×16 2 +1×16 1 +2×16 0 = 48146

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

9
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Hexadecimal Numbers in Computing

There are two ways in which hex makes life easier.

 The first is that it can be used to write down very large integers in a compact form.

 For example, (A D 4 5)16 is shorter than its decimal equivalent (44357)10 and as values

increase the difference in length becomes even more pronounced.

Converting Binary Numbers to Hexadecimal Numbers.

Let’s assume we have a binary number of: 01010111

The binary number is 01010111

We will break number into 4 bits each as

0101 0111

Then we will start with the right side 4 bits

Starting from extreme right number

for 0101 for 0111

0X23+1X22+0X21+1X20 0X23+1X22+1X21+1X20

0X8+1X4+0X2+1X1 0X8+1X4+1X2+1X1

0+4+0+1=5 0+4+2+1=7

5 7

So Hexadecimal number is 57

Converting Hexadecimal Numbers to Binary Numbers

To convert a hexadecimal number to a binary number, we reverse the above procedure.
We separate every digit of hexadecimal number and find its equivalent binary number
and then we write it together.

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

10
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Example 1.2.4

To convert the hexadecimal number 9F216 to binary, each hex digit is converted into
binary form.

9 F 2 16 = (1001 1111 0010)2
9 =1001 F=1111 2=0010

So Binary equivalent of Hexadecimal number is: 9F2= 100111110010

Problems 1.2.6

Convert hexadecimal 2BF9 to its binary equivalent.
Convert binary 110011100001 to its hexadecimal equivalent. (Below is working area)

Converting a Hexadecimal Number to a (Denary) Decimal Number

To convert a hexadecimal number to a decimal number, write the hexadecimal number as a
sum of powers of 16. For example, considering the hexadecimal number 1A9B above, we

convert this to decimal as:

1 A 9 B

16
3

16
2
 16

1
 16

0

1A9B = 1(16
3
) + A (16

2
) + 9(16

1
) + B (16

0
)

= 4096 + 10(256) + 9(16) + 11(1) = 6811

So 1A9B16 = 681110

Converting a (Denary) Decimal Number into Hexadecimal Number

The easiest way to convert from decimal to hexadecimal is to use the same division algorithm
that you used to convert from decimal to binary, but repeatedly dividing by 16 instead of by 2.
As before, we keep track of the remainders, and the sequence of remainders forms the
hexadecimal representation.

For example, to convert the decimal number 746 to hexadecimal, we proceed as follows:

 ` Remainder

 16 | 746
 | 46 10 = A
 | 2 14 = E
 | 0 2

We read the number as last is first and first is last.

2EA

So, the decimal number 746 = 2EA in hexadecimal

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

11
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Conversion of –Ve Denary number to Binary:

What is – 65 10 in binary?

Two’s complement allows us to represent signed negative values in binary, so here is

an introductory demonstration on how to convert a negative decimal value to its

negative equivalent in binary using two’s complement.

Step 1: Convert 65d to binary. Ignore the sign for now. Use the absolute value. The

absolute value of -65 is 65.

65 --> 01000001 binary

Step 2: Convert 01000001 to its one’s complement.

01000001 --> 10111110

Step 3: Convert 10111110b to its two’s complement by adding 1 to the one’s

complement.

 10111110
 + 1

 10111111 <--- Two's complement

10111111b is -65 in binary. We know this it true because if we add 01000001 (+65) to

10111111b (-65) and ignore the carry bit, the sum is 0, which is what we obtain if we

add +65 + (-65) = 0.

 01000001 +65
 + 10111111 -65

 100000000b 0 denary
 ^
Ignore the carry bit for now. What matters is that original number of bits (D7-D0) are all 0.

We will examine signed binary values in more detail later. For now, understand the

difference between one’s complement and two’s complement and practice converting

between them.

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

12
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

One’s Complement

If all bits in a byte are inverted by changing each 1 to 0 and each 0 to 1, we have

formed the one’s complement of the number.

Original One's Complement

10011001 --> 01100110
10000001 --> 01111110
11110000 --> 00001111
11111111 --> 00000000

00000000 --> 11111111 Converting to one’s complement.

And that is all there is to it! One’s complement is useful for forming the two’s

complement of a number.

 Two’s Complement (Binary Additive Inverse)

The two’s complement is a method for representing positive and negative integer values

in binary. The useful part of two’s complement is that it automatically includes the sign

bit. Rule: To form the two’s complement, add 1 to the one’s complement.

Begin with the original binary value Step 1:

 10011001 Original byte

Find the one's complement Step 2:

 01100110 One's complement

: Add 1 to the one's complement Step 3

 01100110 One's complement
 + 1 Add 1

 01100111 <--- Two's complement

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

13
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

USE OF HEXADECIMAL NUMBER IN COMPUTER REGISTERS AND

 MAIN MEMORY:

Computers are comprised of chips, registers, transistors,
resistors, processors, traces, and all kinds of things. To get
the binary bits from one place to the next, software
programmers convert binary to hex and move hex values
around. In reality, the computer is still shoving 1's and 0's
along the traces to the chips.

There are two important aspects to the beauty of using
Hexadecimal with computers: First, it can represent 16-bit
words in only four Hex digits, or 8-bit bytes in just two; thus,

https://delightlylinux.files.wordpress.com/2014/10/l12-2.png
https://delightlylinux.files.wordpress.com/2014/10/l12-2.png
https://delightlylinux.files.wordpress.com/2014/10/l12-2.png
https://delightlylinux.files.wordpress.com/2014/10/l12-2.png
https://delightlylinux.files.wordpress.com/2014/10/l12-2.png
https://delightlylinux.files.wordpress.com/2014/10/l12-2.png
https://delightlylinux.files.wordpress.com/2014/10/l12-2.png

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

14
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

by using a numeration with more symbols, it is both easier to work with (saving paper
and screen space) and makes it possible to understand some of the vast streams of
data inside a computer merely by looking at the Hex output. This is why programs such
as DEBUG, use only Hexadecimal to display the actual Binary bytes of a Memory Dump
rather than a huge number of ones and zeros!

The second aspect is closely related: Whenever it is necessary to convert the Hex
representation back into the actual Binary bits, the process is simple enough to be done
in your own mind.

For example, FAD7 hex is 1111 1010 1101 0111 (F=1111, A=1010, D=1101, 7=0111)
in Binary. The reason one might wish to do this is in order to work with "logical" (AND,
OR or XOR) or "bit-oriented" instructions (Bit tests, etc.) which may make it easier (at
times) for a programmer to comprehend.

For example, if you wanted to logically AND the hex number FAD7 with D37E, you
might have a difficult time without first changing these numbers into Binary. If you jot
them out in Binary on scratch paper, the task

will be much easier:

FAD7(hex) 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1

D37E(hex) 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0

ANDing gives 1 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0

Answer (in hex) D 2 5 6

 Converting Between Bases
To convert from denary to hexadecimal, it is recommended to just convert the number
to binary first, and then use the simple method above to convert from binary to
hexadecimal.

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

15
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

BCD Binary Coded Decimals:

In computing and electronic systems, binary-coded decimal (BCD) is a class of binary
encodings of decimal numbers where each decimal digit is represented by a fixed
number of bits, usually four or eight. Special bit patterns are sometimes used for a sign
or for other indications (e.g., error or overflow).

BCD was used in many early decimal computers, and is implemented in the instruction
set of machines such as the IBM System/360 series and its descendants
and Digital's VAX. Although BCD per se is not as widely used as in the past and is no
longer implemented in computers' instruction sets[dubious – discuss], decimal fixed-
point and floating-point formats are still important and continue to be used in financial,
commercial, and industrial computing

As most computers deal with data in 8-bit bytes, it is possible to use one of the following
methods to encode a BCD number:

 : each numeral is encoded into one byte, with four bits representing the Unpacked

numeral and the remaining bits having no significance.

 : two numerals are encoded into a single byte, with one numeral in the least Packed

significant nibble (bits 0 through 3) and the other numeral in the most significant
nibble

 The Denary number 8 5 0 3 could be represented by one BCD digit per

byte
 00001000 00000101 00000000 000000011 (Unpacked)
 Denary Number 8 5 0 3 represented by One BCD per nibble

1000 0101 0000 0011 (Packed as 1000010100000011)

e.g. 398602 in BCD

Answer: 3 = 0011 9 = 1001 8 = 1000 6 = 0110 0 = 0000 2 = 0010

So 398602 = 001110011000011000000010 (in BCD)

Note: All the zeros are essential otherwise you can’t read it back.

But do not get confused, binary coded decimal is not the same as hexadecimal.
Whereas a 4-bit hexadecimal number is valid up to F16 representing binary 11112,
(decimal 15), binary coded decimal numbers stop at 9 binary 10012

https://en.wikipedia.org/wiki/Decimal_computer
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/Wikipedia:Disputed_statement
https://en.wikipedia.org/wiki/Talk:Binary-coded_decimal#Dubious
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Nibble

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

16
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Application

The BIOS in many personal computers stores the date and time in BCD because the
MC6818 real-time clock chip used in the original IBM PC AT motherboard provided the
time encoded in BCD. This form is easily converted into ASCII for display.

There are a number of applications where BCD can be used. The obvious type of

application is where denary digits are to be displayed, for instance on the screen of a

calculator or in a digital time display.

A somewhat unexpected application is for the representation of currency values. When

a currency value is written in a format such as $300.25 it is as a fixed-point decimal

number (ignoring the dollar sign). It might be expected that such values would be stored

as real numbers but this cannot be done accurately.

IBM and BCD IBM used the terms binary-coded decimal and BCD for six-bit alphameric

codes that represented numbers, upper-case letters and special characters. Some

variation of BCD was used in most early IBM computers, including the IBM 1620, IBM

1400 series, and non-Decimal Architecture members of the IBM 700/7000 series. With

the introduction of System/360, IBM replaced BCD with 8-bit EBCDIC

ASCII code:
If text is to be stored in a computer it is necessary to have a coding scheme that

provides a unique binary code for each distinct individual component item of the text.

Such a code is referred to as a character code.

The scheme which has been used for the longest time is the ASCII (American Standard

Code for Information Interchange) coding scheme. This is an internationally agreed

standard. There are some variations on ASCII coding schemes but the major one is the

7-bit code. It is customary to present the codes in a table for which a number of different

designs have been used.

The full table shows the 27 (128) different codes available for a 7-bit code. You should

not try to remember any of the ind ividua l codes but the re are certain aspects of the

coding scheme which you need to understand.

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

17
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Computers store text documents, both on disk and in memory, using ASCII codes. For
example, if you use Notepad in Windows OS to create a text file containing the words,
"Four score and seven years ago," Notepad would use 1 byte of memory per character
(including 1 byte for each space character between the words

It is worth emphasising here that these codes for numbers are exclusively for use in the
context of stored, displayed or printed text. All of the other coding schemes for numbers
are for internal use in a computer system and would not be used in a text.

There are some special features that make the coding scheme easy to use in certain
circumstances. The first is that the codes for numbers and for letters are in sequence in
each case so that, for example, if 1 is added to the code for seven the code for eight is
produced.

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

18
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

The second is that the codes for the upper-case letters differ from the codes for the
corresponding lower-case letters only in the value of bit 5. This makes conversion of
upper case to lower case, or the reverse, a simple operation.

Unicode

Despite still being widely used, the ASCII codes are far from adequate for many
purposes.

Unicode is an international encoding standard for use with different languages
and scripts.

It works by providing a unique number for every character, this creates a consistent
encoding, representation, and handling of text.

Basically Unicode is like a Universal Alphabet that covers the majority of different
languages across the world, it transforms characters into numbers.

It achieves this by using character encoding, which is to assign a number to every
character that can be used.

What’s an example of a Unicode?

Unicode has its own special terminology. For example, a character code is referred to
as a 'code point'. In any documentation there is a special way of identifying a code
point. An example is U+0041 which is the code point corresponding to the alphabetic
character A.

The 0041 are hexadecimal characters representing two bytes. The interesting point is
that in a text where the coding has been identified as Unicode it is only necessary to
use a one-byte representation for the 128 codes corresponding to ASCII. To ensure
such a code cannot be misinterpreted, the codes where more than one byte is needed
have restrictions applied.

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

19
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

At its core, Unicode is like ASCII: a list of characters that people want to type into a
computer. Every character gets a numeric codepoint, whether it’s capital A,
lowercase lambda, or ―man in business suit levitating.‖

A = 65

λ = 923

So Unicode says things like, ―Allright, this character exists, we assigned it an official
name and a codepoint, here are its lowercase or uppercase equivalents (if any), and
here’s a picture of what it could look like. Font designers, it’s up to you to draw this
in your font if you want to.‖

http://emojipedia.org/man-in-business-suit-levitating/

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

20
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Just like ASCII, Unicode strings (imagine ―codepoint 121, codepoint 111…‖) have to

be encoded to ones and zeros before you can store or transmit them. But unlike

ASCII, Unicode has more than a million possible codepoints, so they can’t possibly

all fit in one byte. And unlike ASCII, there’s no One True Way to encode it.

What can we do? One idea would be to always use, say, 3 bytes per character.

That would be nice for string traversal, because the 3rd codepoint in a string would

always start at the 9th byte. But it would be inefficient when it comes to storage

space and bandwidth.

Instead, the most common solution is an encoding called UTF-8.

UTF-8 :

UTF-8 gives you four templates to choose from: a one-byte template, a two-byte

template, a three-byte template, and a four-byte template.

0xxxxxxx
110xxxxx 10xxxxxx
1110xxxx 10xxxxxx 10xxxxxx
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Each of those templates has some headers which are always the same (shown
here in red) and some slots where your codepoint data can go (shown here as
―x‖s).

The four-byte template gives us 21 bits for our data, which would let us represent
2,097,151 different values. There are only about 128,000 codepoints right now, so
UTF-8 can easily encode any Unicode codepoint for the foreseeable future.

 Unicode to represent any possible text in code form.

 Unicode is a computing industry standard for the consistent encoding,
representation, and handling of text expressed in most of the world's writing
systems.

 Developed in conjunction with the Universal Coded Character Set (UCS) standard
and published as The Unicode Standard, the latest version of Unicode contains a
repertoire of more than 128,000 characters covering 135 modern and
historic scripts, as well as multiple symbol sets..

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

21
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

 As of June 2016, the most recent version is Unicode 9.0. The standard is maintained
by the Unicode Consortium.

 Unicode's success at unifying character sets has led to its widespread and
predominant use in the internationalization and localization of computer software.
The standard has been implemented in many recent technologies, including
modern operating systems, XML, Java (and other programming languages), and
the .NET Framework

Practice Questions

Convert to one’s complement:

1. 1010
2. 11110000
3. 10111100 11000000
4. 10100001

Convert to two’s complement:

1. 1010
2. 11110000
3. 10000000
4. 011111111

Convert these negative decimal values to negative binary using two’s

complement:

1. -192d
2. -16d
3. -1d
4. -0d

https://en.wikipedia.org/wiki/Unicode_Consortium

(Paper 1. Sec 1.1.1) Number representation Computer Science 9608

with Majid Tahir

22
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Answers

One’s complement:
1. 0101
2. 00001111
3. 01000011 00111111
4. 01011110

Two’s complement:
1. 0110 (1010 –> 0101 + 1 = 0110)
2. 00010000
3. 10000000 (Result is the same as the original value.)
4. 10000001

Negative decimal to negative binary:
1. 01000000b (192d = 11000000b –> 00111111 + 1 = 01000000b)
2. 11110000b (16d = 00010000b –> 11101111 + 1 = 11110000b)
3. 11111111b (1d = 00000001b –> 11111110 + 1 = 11111111b) Tricky? Before

converting from binary to decimal, we must know ahead of time if the binary value
is signed or not because a signed binary value will not convert properly using the
place value chart we have seen so far. If seen by itself, 11111111b = 255d, not -1d.
As a rule, assume that a binary value, such as 11111111b, is a positive integer
unless context specifies otherwise. Since we are dealing with negative binary
values in this problem set, then 11111111b is -1d, not 255d.

4. 0. There is no such thing as negative zero (-0). Nothing is always nothing and does
not have a sign. We can convert anyway: 0d = 00000000 –> 11111111 + 1 = 1
00000000b. We still arrive at 0 in binary for the eight relevant bits. Ignore the ninth
carry bit.

References:
http://www.bfoit.org/itp/ComputerContinuum/RobotComputer.html
https://en.wikibooks.org/wiki/GCSE_Computer_Science/Binary_representation
http://bssbmi.com/olevel/computer-science-2210/class-9/binary-systems/
http://www.math10.com/en/algebra/systems-of-counting/binary-system.html
http://www.answers.com/Q/What_are_the_applications_of_BCD_Code
https://en.wikipedia.org/wiki/Binary-coded_decimal
https://commons.wikimedia.org/wiki/File:CPT-Numbers-Conversion.svg

http://www.bfoit.org/itp/ComputerContinuum/RobotComputer.html
https://en.wikibooks.org/wiki/GCSE_Computer_Science/Binary_representation
http://bssbmi.com/olevel/computer-science-2210/class-9/binary-systems/
http://www.math10.com/en/algebra/systems-of-counting/binary-system.html
http://www.answers.com/Q/What_are_the_applications_of_BCD_Code
https://en.wikipedia.org/wiki/Binary-coded_decimal
https://commons.wikimedia.org/wiki/File:CPT-Numbers-Conversion.svg

