

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

1

Syllabus Content:

2.2.3 Files
 show understanding of why fi les are needed
 use Pseudocode for file handling:
 OPENFILE <filename> FOR READ/WRITE/APPEND // Open file (understand the

difference between various file modes)
 READFILE <filename>,<string> // Read a line of text from the file
 WRITEFILE <filename>,<string> // Write a line of text to the file CLOSEFILE

<filename> // Close file
 EOF(<filename>) // function to test for the end of the file
 write program code for simple file handling of a text file, consisting of

several lines of text

2.2.3 Files

Using Text Files

Data need to be stored permanently. One approach is to use a file. For example, any data held
in an array while your program is executing will be lost when the program stops. You can save
the data out to file and read it back in when your program requires it on subsequent executions.

A text file consists of a sequence of characters formatted into lines. Each line is terminated by
an end-of-line marker.

The text file is terminated by an end-of-file marker.

Note: you can check the contents of a text file (or even create a text file required by a program)
by using a text editor such as NotePad.

Accessing special Folders in VB

Locations of files can vary from machine to machine or user to user. The exact location of my
Documents folder changes depending on who has logged on.

VB.net uses special system variables to hold the current users file locations, such as my
documents, desktop, My Music, etc.

To get access to the variables, you must import the system.environment library.

NOTE: Not all locations are available due to system security

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

2

Option Explicit On
Imports System.Environment
Module Module1
 Dim mydocs As String
 Dim mymusic As String
 Dim myfavorites As String
 Sub main()
 mydocs = GetFolderPath(SpecialFolder.MyDocuments)
 mymusic = GetFolderPath(SpecialFolder.MyMusic)
 myfavorites = GetFolderPath(SpecialFolder.Favorites)
 Console.WriteLine(mydocs)
 Console.WriteLine(mymusic)
 Console.WriteLine(myfavorites)
 Console.ReadLine()
 End Sub
End Module

Using folders

To access sub-directories, concatenate the system folder path with the folder path and/or file name:
Option Explicit On
Imports System.Environment
Module Module1
 Dim mydocs As String
 Dim myfiles As String
 Sub main()
 mydocs = GetFolderPath(SpecialFolder.MyDocuments)
 myfiles = mydocs & "\textfiles"
 Console.WriteLine(myfiles)
 Console.ReadLine()
 End Sub
End Module

Opening a Text File in Visual Basic

The first step in working with files in Visual Basic is to open the file.

This is achieved using the Visual Basic FileStream class. The FileStreamconstructor accepts the
file name to be opened as the first parameter, followed by a number of other parameters defining the
mode in which the file is to be opened. These fall into the categories
of FileMode, FileAccess and FileShare. The options available as listed in the following tables:

FileMode Options

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

3

With the above options in mind, the following code excerpt opens 'C:\Temp\text.txt'
in FileMode.OpenOrCreate with FileAccess.ReadWritepermission and no file sharing, and
then closes it:

PSEUDOCODE:

OPENFILE <filename> FOR WRITE // open the file for writing
WRITEFILE <filename >, <stringValue> // write a line of text to the file
CLOSEFILE // close file

VB Code for creating text file
Module Module1
 Sub Main()

Dim textFileStream As New IO.FileStream("E:\test.txt", IO.FileMode.OpenOrCreate,
IO.FileAccess.ReadWrite, IO.FileShare.None)

 textFileStream.Close()
 End Sub
End Module

This code will create a text file in E drive with the name test.txt

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

4

Creating CSV files with WRITELINE

The comma-separated values (CSV) file format is a file formats used to store tabular data in which
numbers and text are stored in plain textual form that can be read in a text editor, spreadsheet or
Database.
Lines in the text file represent rows of a table, and commas in a line separate what are fields in the tables
row.
The following example used the WriteLine statement to create a CSV file with 3 variables:

Module module1
 Sub Main()
 Dim Field1 As String
 Dim Field2 As Integer
 Dim field3 As Double
 Field1 = "Some Text"
 field2 = 7
 field3 = 42.7
 FileOpen(1, "E:\MyFile.txt", OpenMode.Output)
 Filesystem.WriteLine(1, Field1, field2, field3)
 FileClose(1)
 End Sub
End Module

The above code created a CSV file in E drive with these values in it.

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

5

NOTE: Strings are enclosed in quotes, numbers are not enclosed in quotes
For other ways of manipulating CSV files, see page 82

PSEUDOCODE:

OPENFILE <filename> FOR WRITE // open the file for writing
WRITEFILE <filename >, <stringValue> // write a line of text to the file
CLOSEFILE // close file

Writing to a File with Visual Basic

Once a file has been opened with the appropriate options, it can be written to using the Visual
Basic StreamWriter class. The StreamWriterconstructor takes a FileStream as the sole parameter.

The Write() and WriteLine() methods of the StreamWriter class are then used to write to the
file. Write() writes the text with no new line appended to the end of each line. WriteLine() on the other
hand, appends a new line to end of each line written to the file.

In the following code excerpt a StreamWriter object is created using the FileStream, and a For loop
writes 11 lines to the file:1

Module module1
 Sub Main()

Dim textFileStream As New IO.FileStream("E:\test.txt", IO.FileMode.OpenOrCreate,
IO.FileAccess.ReadWrite, IO.FileShare.None)

 Dim myFileWriter As New IO.StreamWriter(textFileStream)
 Dim intCounter As Integer

 For intCounter = 0 To 10
 myFileWriter.WriteLine("This is line " & CStr(intCounter))
 Next intCounter

 myFileWriter.Close()
 textFileStream.Close()
 End Sub
End Module

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

6

Writing to a text file

Writing to a text file usually means creating a text file.
The following code examples demonstrate how to open, write to and close a file called
sampleFile.TXT in each of the three languages. If the file already exist s, it is overwritten as
soon as the file handle is assigned by the 'open file' command.

VB Code with Text Files:

 Module module1
 Sub main()
 Dim FileHandle As IO.StreamWriter 'The file is accessed th ro ugh an object (see
 Dim LineOfText As String 'called a StreamWriter.
 FileHandle = New
 IO.StreamWriter("SampleFile . TXT")
 FileHandle.WriteLine(LineOfText)
 FileHandle.Close()
 End Sub
End Module

StreamWriter with text files

Two objects StreamReader and StreamWriter are used to read and write data in a text file.
Both of these commands are stored in the System.IO library, so you will need to import it into
your program.
The following line needs to be added B System.IO by adding before the Module definition

Option Explicit On
Imports System.IO
Imports System.Environment
Module module1
 'create a variable to write a stream of characters to a text file
 Dim CurrentFileWriter As StreamWriter
 Sub Main()
 Dim FileName, TextString As String
 Dim Count As Integer
 FileName = GetFolderPath(SpecialFolder.MyDocuments) & "text.txt"
 CurrentFileWriter = New StreamWriter(FileName)
 Console.WriteLine("File being created")
 CurrentFileWriter.WriteLine("File ceated on " & Now())
 For Count = 1 To 5
 TextString = Rnd() * 100
 Console.WriteLine("Random number " & Count & " is " & TextString)
 CurrentFileWriter.WriteLine("Random number " & Count & " is " & TextString)
 Next
 CurrentFileWriter.Close() ' close file
 Console.WriteLine("File saved")
 Console.ReadLine()
 End Sub
End Module

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

7

Files using Channels

The FILEOPEN command opens a file for input or output. It used the concept of having a filenumber to
link the program to the physical file.

Reading Files (Input)

Reading a line of text

To read a line of text from the opened file

Closing file

Writing a line of Text

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

8

Printing a line of text

The PrintLine writes a string to a text
file opened with a filenumber.

Writing a line of text

The Writeline writes to a textfile opened with a filenumber BUT the string is enclosed in quotes

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

9

PSEUDOCODE:

OPENFILE <filename> FOR READ // open the file for reading
READFILE <filename >, <stringValue> // read a line of text to the file
CLOSEFILE // close file

Reading From a File in Visual Basic

Now that we have created and written to a file the next step is to read some data from the file. This is
achieved using the Visual Basic StreamReader object.

The StreamReader ReadLine() method can be used to read the next line from the file stream including
the new line. The Read() method reads a line from the file but removes the new line.

The ReadToEnd() method can be used to read from the current line in the file to the end of the file.

The following code excerpt further extends our example to read the data back from the file after it has
been written and display the contents in a MessageBox:

Dim textFileStream As New IO.FileStream("E:\test.txt", IO.FileMode.OpenOrCreate,
IO.FileAccess.ReadWrite, IO.FileShare.None)
Dim myFileWriter As New IO.StreamWriter(textFileStream)
Dim myFileReader As New IO.StreamReader(textFileStream)
Dim intCounter As Integer
Dim strFileContents As String
 For intCounter = 0 To 10
 myFileWriter.WriteLine("This is line " & CStr(intCounter))
 Next intCounter
strFileContents = myFileReader.ReadToEnd()
MsgBox(strFileContents)
myFileWriter.Close()
myFileReader.Close()
textFileStream.Close()

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

10

StreamReader with text files in VB

The StreamReader can either read the contents of the whole file into a variable, or read one line at a
time.
ReadToEnd reads the entire file into a variable
ReadLine reads a single line (up to the CR code)

Option Explicit On
Imports System.IO
Imports System.Environment
Module Module1
 Dim CurrentFileReader As StreamReader
 Sub Main()
 Dim FileName, TextString As String
 TextString = ""
 FileName = GetFolderPath(SpecialFolder.MyDocuments) & "text.txt"
 CurrentFileReader = New StreamReader(FileName) 'opens the file
 If File.Exists(FileName) Then
 TextString = CurrentFileReader.ReadToEnd
 Else
 Console.WriteLine("File does not exist")
 End If
 CurrentFileReader.Close() ' close file
 Console.WriteLine(TextString)
 Console.ReadLine()
 End Sub
End Module

Appending to a text file

Sometimes we may wish to add data to an existing file rather than creating a new file. This can
be done in Append mode. It adds the new data to the end of the existing file.
The following pseudocode statements provide facilities for appending to a file:

PSEUDOCODE:

OPENFILE <filename> FOR APPEND // open the file for append
WRITEFILE <filename >, <stringValue> // write a line of text to the file
CLOSEFILE // close file

Dim FileHandle As IO.StreamWriter 'The file is accessed through a StreamWriter.The extra
parameter True tells the system to append to the object.
 FileHandle = New
 IO.StreamWriter(" SampleFile . TXT", True) '
 FileHandle.WriteLine(LineOfText)
 FileHandle.Close()

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

11

The end-of-file (EoF) marker

If we want to read a file from beginning to end we can use a conditional loop. Text files contain a
special marker at the end of the file that we can test for. Testing for this special end-of- file
marker is a standard function in programming languages. Every time th is function is called it will
test for this marker.

The function will return FALSE if the end of the file is not yet reached and will return TRUE if the
end -of-file marker has been reached. In pseudocode we call this function EOF(). We can use
the construct REPEAT ... UNTIL EOF().

If it is possible that the fi le contains no data, it is better to use the construct WHILE NOT EOF()

For example, the following pseudocode statements read a text file and output its contents:

OPENFILE "Test .txt" FOR READ
WHILE NOT EOF("Test.txt")
READFILE "Test. txt", TextString
OUTPUT TextString
ENDWHILE
CLOSEFILE "Test. txt"

VB Code

The following code examples demonstrate how to output the contents of a file in each of the VB.

 Dim LineOfText As String
 Dim FileHandle As System.IO.StreamReader
 FileHandle = New
 System.I(O.StreamReader("Test. txt"))

 Do Until FileHandle.EndOfStream
 LineOfText = FileHandle.ReadLine()
 Console.WriteLine(LineOfText)
 Loop

 FileHandle.Close()

References:

 Cambridge International AS & A level Computer Science Course book by Sylvia Langfield and Dave Duddell

Paper 2. Sec 2.2.3) FILES (Using Text Files) Computer Science 9608

with Majid Tahir

12

 Visual Basics Console Cook Book
 https://www.techotopia.com/index.php/Working_with_Files_in_Visual_Basic
 VB.NET Console Book by Dough Semple

https://www.techotopia.com/index.php/Working_with_Files_in_Visual_Basic

