Past Papers May/June 2015 to 2018:

Q\# 1
(a)

Main memory

ACC:
(b)

	100
101	0000

LDX 800

Q. 9 The table shows assembly language instructions for a processor which has one general purpose register, the Accumulator (ACC) and an index register (IX).

Instruction		Explanation	
Op code	Operand		
LDD	<address>	Direct addressing. Load the contents of the given address to ACC.	
LDX	<address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC.	
STO	<address>	Store contents of ACC at the given address.	
ADD	<address>	Add the contents of the given address to ACC.	
INC	<register>	Add 1 to the contents of the register (ACC or IX).	
DEC	<register>	Subtract 1 from the contents of the register (ACC or IX).	
CMP	<address>	Compare contents of ACC with contents of <address>.	
JPE	<address>	Following a compare instruction, jump to <address> if the compare was True.	
JPN	<address>	Following a compare instruction, jump to <address> if the compare was False.	
JMP	<address>	Jump to the given address.	
OUT		Output to screen the character whose ASCII value is stored in ACC.	
END		Return control to the operating system.	

(a) The diagram shows the current contents of a section of main memory and the index register:

60	00110010
61	01011101
62	00000100
63	11111001
64	01010101
65	11011111
66	00001101
67	01001101
68	01000101
69	01000011
1000	01101001

Index register:

(i) Show the contents of the Accumulator after the execution of the instruction:

LDX 60

Show how you obtained your answer.
\qquad
\qquad
\qquad
\qquad
(ii) Show the contents of the index register after the execution of the instruction:

```
DEC IX
```


(b) Complete the trace table on the opposite page for the following assembly language program.
IX (Index Register) 1

Selected values from the ASCII character set:

ASCII Code	118	119	120	121	122	123	124	125
Character	v	w	x	y	z	$\{$	I	$\}$

50	IDD 100
51	ADD 102
52	STO 103
53	IDX 100
54	ADD 100
55	CMP 101
56	JPE 58
57	JPN 59
58	OUT
59	INC IX
60	IDX 98
61	ADD 101
62	OUT
63	END
-••	
100	20
101	100
102	1
103	0

Trace table:

Instruction address	Working space	ACC	Memory address				IX	OUTPUT
			100	101	102	103		
			20	100	1	0	1	
50								
51								
52								
53								
54								
55								

Exam-style Questions

Q. 2 Complete the trace table below for the following assembly language program.

800	LDD	810
801	INC	ACC
802	STO	812
803	LDD	811
804	ADD	812
805	STO	813
806	END	
810	28	
811	41	
812	O	
813	O	

Trace table:

ACC	Memory address				
	810	811	812	813	
	28	41	0	0	

9608/13/M/J/16

Q4 The table shows assembly language instructions for a processor which has one general purpose register, the Accumulator (ACC) and an index register (IX).

Instruction		Explanation
Op code	Operand	
IDD	<address>	Direct addressing. Load the contents of the given address to ACC.
IDX	<address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC.
STO	<address>	Store contents of ACC at the given address.
ADD	<address>	Add the contents of the given address to ACC.
INC	<register>	Add 1 to the contents of the register (ACC or IX).
DEC	<register>	Subtract 1 from the contents of the register (ACC or IX).
CMP	<address>	Compare contents of ACC with contents of <address>.
JPE	<address>	Following a compare instruction, jump to <address> if the compare was True.
JPN	<address>	Following a compare instruction, jump to <address> if the compare was False.
JMP	<address>	Jump to the given address.
OUT		Output to screen the character whose ASCII value is stored in ACC.
END		Return control to the operating system.

The diagram shows the contents of the index register:

(a) Show the contents of the index register after the execution of the instruction:

> INC IX

Index register: \square
(b) Complete the trace table on the opposite page for the following assembly language program.

(P1)Topical Past papers of (1.4.4 Assembly Language \& Processor)

Selected values from the ASCII character set:

ASCII Code	65	66	67	68	69	70	71	72
Character	A	B	C	D	E	F	G	H

Trace table:

Instruction	Working space	ACC	Memory address				IX	OUTPUT
			90	91	92	93		
			2	90	55	34	2	
20								
21								
22								
23								
24								
25								
26								

20	LDX 90
21	DEC ACC
22	STO 90
23	INC IX
24	LDX 90
25	DEC ACC
26	CMP 90
27	JPE 29
28	JPN 31
29	ADD 90
30	OUT
31	ADD 93
32	STO 93
33	OUT
34	END
90	2
91	90
92	55
93	34

[7]
9608/11/M/J/17
Q.4/- The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC) and an Index Register (IX).

Instruction			Explanation
Op code (mnemonic)	Operand	Op code (binary)	
LDM \#n	00000001	Immediate addressing. Load the denary number n to ACC.	
LDD <address>	00000010	Direct addressing. Load the contents of the location at the given address to ACC.	
LDI <address>	00000101	Indirect addressing. At the given address is the address to be used. Load the contents of this second address to ACC.	
LDX <address>	00000110	Indexed addressing. Form the address from <address> + the contents of the Index Register (IX). Copy the contents of this calculated address to ACC.	
LDR \#n	00000111	Immediate addressing. Load number n to IX.	
STO <address>	00001111	Store the contents of ACC at the given address.	

The following diagram shows the contents of a section of main memory and the Index Register (IX).
(a) Show the contents of the Accumulator (ACC) after each instruction is executed.

(b) Each machine code instruction is encoded as 16-bits (8-bit op code followed by an 8 -bit operand). Write the machine code for the following instructions:

LDM \#17

LDX \#97

(c) Using an 8-bit operand, state the maximum number of memory locations, in denary, that can be directly addressed.
(d) Computer scientists often write binary representations in hexadecimal.
(i) Write the hexadecimal representation for this instruction:

| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(ii) A second instruction has been written in hexadecimal as:

05 3F
Write the equivalent assembly language instruction, with the operand in denary.

9608/12/M/J/17

Q5 The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction			Explanation Op code (mnemonic)
LDD <address>	00010011	Op code (binary)	
LDI <address>	00010100	Indirect addressing. The address to be used is at the given address. Load the contents of this second address to ACC.	
LDX <address>	00010101	Indexed addressing. Form the address from <address>+ the contents of the Index Register. Copy the contents of this calculated address to ACC.	
LDM \#n	00010010	Immediate addressing. Load the denary number n to ACC.	
LDR \#n	00010110	Immediate addressing. Load denary number n to the Index Register (IX).	
STO <address>	00000111	Store the contents of ACC at the given address.	

The following diagram shows the contents of a section of main memory and the Index Register (IX).
(a) Show the contents of the Accumulator (ACC) after each instruction is executed.

(i) $\operatorname{LDD} 355$

ACC
[1]
(ii) LDM \#355

ACC
(iii) LDX 351

ACC
(iv) LDI 355

ACC [1]

Address	Main memory contents
350	
351	86
352	
353	
354	
355	351
356	
357	22
358	

(b) Each machine code instruction is encoded as 16 bits (8-bit op code followed by an 8-bit operand). Write the machine code for these instructions:

LDM \#67

LDX \#7

(c) Computer scientists often write binary representations in hexadecimal.
(i) Write the hexadecimal representation for the following instruction.

| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(ii) A second instruction has been written in hexadecimal as:

$$
164 \mathrm{D}
$$

Write the assembly language for this instruction with the operand in denary.

9608/11/O/N/16

Q.8/- The table shows assembly language instructions for a processor which has one general purpose register, the Accumulator (ACC) and an Index Register (IX).

Instruction		
Op code	Operand	
IDD	<address>	Direct addressing. Load the contents of the given address to ACC.
LDX	<address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC.
STO	<address>	Store contents of ACC at the given address.
ADD	<address>	Add the contents of the given address to ACC.
CMP	<address>	Compare contents of ACC with contents of <address>
JPE	<address>	Following a compare instruction, jump to <address> if the compare was True.
JPN	<address>	lollowing a compare instruction, jump to <address> if the compare was False.
JMP	<address>	Jump to the given address.
OUT		Output to the screen the character whose ASCII value is stored in ACC.
END		Return control to the operating system.

(P1)Topical Past papers of (1.4.4 Assembly Language \& Processor)

The diagram shows the contents of the main memory:
(a) (i) Show the contents of the Accumulator after execution of the instruction:
LDD 802

Accumulator: | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(ii) Show the contents of the Accumulator after execution of the instruction:

800	$0110 \quad 0100$
	$0111 \quad 1100$
802	$1001 \quad 0111$
803	$0111 \quad 0011$
804	$1001 \quad 0000$
805	$0011 \quad 1111$
806	$0000 \quad 1110$
807	$1110 \quad 1000$
808	$1000 \quad 1110$
809	$1100 \quad 0010$

Accumulator:

Explain how you arrived at your answer.
\qquad
\qquad
\qquad
(b) (i) Complete the trace table below for the following assembly language program. This program contains denary values

Selected values from the ASCII character set:

100	LDD 800
101	ADD 801
	STO 802
102	IDD 803
104	CMP 802
105	JPE 107
106	JPN 110
107	STO 802
108	OUT
109	JMP 112
110	LDD 801
111	OUT
112	END
800	40
801	50
802	0
803	90

(ii) There is a redundant instruction in the code in part (b)(i).

State the address of this instruction.

Q\#1 Answer:

(a) Answer:

0	1	0	0	1	0	1	1

- Memory address 103 contains the value 107
- So address 107 is the address from which to load the data
(b) Answer:

Accumulator: | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Index Register contains: $00001001=9$
- $\mathbf{8 0 0}+\mathbf{9}=\mathbf{8 0 9}$

9608/11/M/J/16

Q.

9 (a) (i) One mark for the contents of the accumulator and one mark for the reason. [2] Accumulator contents: 01000101

Reason:

Address is 60 Contents of the index register is 8 And $60+8=68$ in denary gives the address The contents of which is 01000101 in binary.
(ii) 00000111 [1]
(b)

One mark for each shaded block.

- Contents of the Accumulator in first 2 lines (instruction addresses 50 and 51)
- Updating address 103 (instruction 52)
- Loading the Accumulator and addition (instructions 53 and 54)Not executing instruction 58
- Incrementing the index register (instruction 59)
- Loading the Accumulator and addition (instructions 60 and 61)
- Correct output of 'x' (instruction 62)

Instruction address	Working space	ACC	Memory address				IX	OUTPUT
			100	101	102	103		
			20	100	1	0	1	
50		20						
51		21						
52						21		
53		100						
54		120						
55								
56								
57								
59							2	
60		20						
61		120						
62								'x'
63								

9608/13/M/J/16
Answer
4 (a) 11001110
(b)

Instruction	Working space	ACC	Memory address				IX	OUTPUT
			90	91	92	93		
			2	90	55	34	2	
20		55						
21		54						
22			54					
23							3	
24		34						
25		33						
26								
27								
28								
31		67						
32						67		
33								'C'
34								

Q. 2 Answer

- LDD 810 (28 Loaded in ACC)
- INC ACC (Accumulator incremented with $28++1=$ 29, 29 written in ACC)
- STO 812 (29 Stored at Memory Location 812)
- LDD 811 (Loaded contents of memory location 811 in ACC)
- ADD 812 (Added 41 with 29, Contents of ACC added with memory loc 812)
- STO 813 (Stored contents of ACC in 813 memory location)

ACC	Memory address				
	810	811	812	813	
28	28	41	0	0	
29					
			29		
41					
70				70	

Answer

9608/11/M/J/17
Q.4/-

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Question \& \multicolumn{16}{|c|}{Answer} \& Marks \\
\hline 4(a)(i) \& \multicolumn{16}{|l|}{500} \& 1 \\
\hline 4(a)(ii) \& \multicolumn{16}{|l|}{496} \& 1 \\
\hline 4(a)(iii) \& \multicolumn{16}{|l|}{502} \& 1 \\
\hline 4(a)(iv) \& \multicolumn{16}{|l|}{86} \& 1 \\
\hline 4(b) \& \begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline 0 \& 0 \\
\hline 0 \& 0 \\
\hline
\end{tabular} \\
Both co Operan Operan
\end{tabular} \& 0
0

0 \& $$
\begin{gathered}
0 \\
\hline 0 \\
\hline \text { pco } \\
000 \\
008
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 0 \\
& \hline 0 \\
& \hline 1
\end{aligned}
$$
\] \& 0

1 \& $$
\frac{0}{1}
$$ \& 1 \& \[

$$
\begin{aligned}
& 0 \\
& \hline 0 \\
& \hline
\end{aligned}
$$

\] \& \& \[

0
\]

$$
1
$$ \& - \& \[

0
\] \& - \& \& \& 1

1
1 \& 3

\hline 4(c) \& \multicolumn{16}{|l|}{256} \& 1

\hline 4(d)(i) \& \multicolumn{15}{|l|}{| 07 | 1 |
| :--- | :--- |
| C 2 | 1 |} \& \& 2

\hline 4(d)(ii) \& \multicolumn{15}{|l|}{\[
LDI 63

\]} \& | LDI | 1 |
| :--- | :--- |
| 63 | 1 | \& 2

\hline
\end{tabular}

9608/12/M/J/17

Q5

9608/11/0/N/16

Answer Q.8/-
8 (a) (i)

Accumulator: | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(ii) One mark for answer and two marks for explanation

- Index Register contains $1001=9$
- $800+9=809$
[3]
(b) (i) ONE mark for each correct row.

ACC	Memory address				
	$\mathbf{8 0 0}$	$\mathbf{8 0 1}$	$\mathbf{8 0 2}$	$\mathbf{8 0 3}$	
	40	50	0	90	
40					
90			90		
90			90		
					Z

(ii) 107

