Topical Past Paers 9608 with Sir Majid Tahir

Past Papers May/June 2015 to 2018:

LDX 800

Index Register:	0	0	0	0	1	0	0	1
Accumulator:								

9608/11/M/J/16

Majid Tahir

Q.9 The table shows assembly language instructions for a processor which has one general purpose register, the Accumulator (ACC) and an index register (IX).

Ins	truction	Explanation
Op code	Operand	
LDD	<address></address>	Direct addressing. Load the contents of the given address to ACC.
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC.</address>
STO	<address></address>	Store contents of ACC at the given address.
ADD	<address></address>	Add the contents of the given address to ACC.
INC	<register></register>	Add 1 to the contents of the register (ACC or IX).
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX).
CMP	<address></address>	Compare contents of ACC with contents of <address>.</address>
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True.</address>
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False.</address>
JMP	<address></address>	Jump to the given address.
OUT		Output to screen the character whose ASCII value is stored in ACC.
END		Return control to the operating system.

(a) The diagram shows the current contents of a section of main memory and the index register:

0011 0010
0101 1101
0000 0100
1111 1001
0101 0101
1101 1111
0000 1101
0100 1101
0100 0101
0100 0011
)
ſ
0110 1001

(i) Show the contents of the Accumulator after the execution of the instruction:

Topical Past Paers 9608 with Sir Majid Tahir

					LDX	60				
		Accur	ulator							
		Accun	iulator.							
Show how yo	ou obta	ained y	our an	swer.						
										[2]
			6.4			<i>c.</i>				
(II) Show	the co	ntents	of the	Index	registe	er aftei	the ex	ecutio	on of the ir	nstruction:
					DEC 1	x				
									_	
		Index	register:							
										[1]
(b) Complete	the tr	ace tal	ole on	the op	nosite	page	for the	followi	ing assem	bly
language	progra	am.			poono	pago			FO	
									50	LDD 100
IX (Index Be	aristor)		1						52	STO 102
IN (INDEX NE	sylster		-						53	LDX 100
									54	ADD 100
Selected valu	ues fro	m the	ASCIL	chara	nter se	ŧ۰			55	CMP 101
Ociccica van			/.0011	Chara	5101 50	ι.			56	JPE 58
									57	JPN 59
ASCII Code	118	119	120	121	122	123	124	125	58	OUT
			120		122			120	59	INC IX
Character	V	W	X	у	Z	{		}	60	LDX 98
									61	ADD 101
									62	OUT
									63	END
										7
									100	20
									101	100
									102	1

0

Trace table:

Instruction	Working	400		Memory	address	;	IV	
address	space	ACC	100	101	102	103		001901
			20	100	1	0	1	
50								
51								
52								
53								
54								
55								

[7]

Exam-style Questions

Q.2 Complete the trace table below for the following assembly language program.

Trace table:

ACC		Memory	address	
ACC	810	811	812	813
	28	41	0	0

9608/13/M/J/16

Q4 The table shows assembly language instructions for a processor which has one general purpose register, the Accumulator (ACC) and an index register (IX).

Ins	truction	Explanation
Op code	Operand	
LDD	<address></address>	Direct addressing. Load the contents of the given address to ACC.
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC.</address>
STO	<address></address>	Store contents of ACC at the given address.
ADD	<address></address>	Add the contents of the given address to ACC.
INC	<register></register>	Add 1 to the contents of the register (ACC or IX).
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX).
CMP	<address></address>	Compare contents of ACC with contents of <address>.</address>
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True.</address>
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False.</address>
JMP	<address></address>	Jump to the given address.
OUT		Output to screen the character whose ASCII value is stored in ACC.
END		Return control to the operating system.

The diagram shows the contents of the index register:

1

Index register:

(a) Show the contents of the index register after the execution of the instruction:

(b) Complete the trace table on the opposite page for the following assembly language program.

0

Topical Past Paers 9608 with Sir Majid Tahir

Selected values from the ASCII character set:

ASCII Code	65	66	67	68	69	70	71	72
Character	Α	В	С	D	Е	F	G	Н

Trace table:

	Working	400		Memory	address	;		OUTPUT
Instruction	space	ACC	90	91	92	93		001901
			2	90	55	34	2	
20								
21								
22								
23								
24								
25								
26								

20	LDX 90
21	DEC ACC
22	STO 90
23	INC IX
24	LDX 90
25	DEC ACC
26	CMP 90
27	JPE 29
28	JPN 31
29	ADD 90
30	OUT
31	ADD 93
32	STO 93
33	OUT
34	END
:	7
90	2
91	90
92	55
93	34

[7]

9608/11/M/J/17

Q.4/- The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC) and an Index Register (IX).

Instru	uction						
Op code (mnemonic)	Operand	Op code (binary)	Explanation				
LDM	#n	0000 0001	Immediate addressing. Load the denary number \mathbf{n} to ACC.				
LDD	<address></address>	0000 0010	Direct addressing. Load the contents of the location at the given address to ACC.				
LDI	<address></address>	0000 0101	Indirect addressing. At the given address is the address to be used. Load the contents of this second address to ACC.				
LDX	<address></address>	0000 0110	Indexed addressing. Form the address from <address> + the contents of the Index Register (IX). Copy the contents of this calculated address to ACC.</address>				
LDR	#n	0000 0111	Immediate addressing. Load number n to IX.				
STO	<address></address>	0000 1111	Store the contents of ACC at the given address.				

Contact: 03004003666

Topical Past Paers 9608 with Sir Majid Tahir

The following diagram shows the contents of a section of main memory and the Index Register (IX).

(a) Show the contents of the Accumulator (ACC) after each instruction is executed.

			IX	0	0	0	0	0	0	1	1
(i)	LDM	#500	[4]	1	Addre	ess	Me con	lain mory tents			
	700		[1]	1	4	195	1	L3			
(ii)	LDD	500			4	196	8	36	1		
	ACC		[1]]	4	197	9	92			
(iii)	LDX	500			4	198	4	86			
	100				4	199	4	89			
	ACC		[1]		ţ	500	4	96	1		
(iv)	LDI	500			ţ	501	4	97	1		
	ACC		[1]]	ţ	502	4	99	1		
					ţ	503	5	02			

(b) Each machine code instruction is encoded as 16-bits (8-bit op code followed by an 8-bit operand). Write the machine code for the following instructions:

LDM #17

	DX #97
(c) be ([3] sing an 8-bit operand, state the maximum number of memory locations, in denary, that car rectly addressed.
	[1]
(d) (i)	Write the hexadecimal representation for this instruction:
	0 0 0 0 0 1 1 1 1 1 0 0 0 1 0
	[2]
(ii) .	second instruction has been written in hexadecimal as: 05 3F Write the equivalent assembly language instruction, with the operand in denary.
	[2]

9608/12/M/J/17

Q5 The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instru	iction			
Op code (mnemonic)	Operand	Op code (binary)	Explanation	
LDD	<address></address>	0001 0011	Direct addressing. Load the contents of the location at the given address to the Accumulator (ACC).	
LDI	<address></address>	0001 0100	Indirect addressing. The address to be used is at the given address. Load the contents of this second address to ACC.	
LDX	<address></address>	0001 0101	Indexed addressing. Form the address from <address> + the contents of the Index Register. Copy the contents of this calculated address to ACC.</address>	
LDM	#n	0001 0010	Immediate addressing. Load the denary number n to ACC.	
LDR	#n	0001 0110	Immediate addressing. Load denary number n to the Index Register (IX).	
STO	<address></address>	0000 0111	Store the contents of ACC at the given address.	

The following diagram shows the contents of a section of main memory and the Index Register (IX).

(a) Show the contents of the Accumulator (ACC) after each instruction is executed.

(i) LDD 355

	ACC	[1]
(ii)	LDM	#355

- ACC[1]
- (iv) LDI 355
 - ACC[1]

	Main memory
Address	contents
350	
351	86
352	
353	
354	
355	351
356	
357	22
358	

Topical Past Paers 9608 with Sir Majid Tahir

(b) Each machine code instruction is encoded as 16 bits (8-bit op code followed by an 8-bit operand). Write the machine code for these instructions:

LDM #67

(i) Write the hexadecimal representation for the following instruction.

0	0	0	1	0	1	0	0	0	1	0	1	1	1	1	0

.....[2]

(ii) A second instruction has been written in hexadecimal as:

16 4D

Write the assembly language for this instruction with the operand in denary.

.....[2]

9608/11/O/N/16

Q.8/- The table shows assembly language instructions for a processor which has one general purpose register, the Accumulator (ACC) and an Index Register (IX).

Instruction		
Op code	Operand	
LDD	<address></address>	Direct addressing. Load the contents of the given address to ACC.
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC.</address>
STO	<address></address>	Store contents of ACC at the given address.
ADD	<address></address>	Add the contents of the given address to ACC.
CMP	<address></address>	Compare contents of ACC with contents of <address></address>
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True.</address>
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False.</address>
JMP	<address></address>	Jump to the given address.
OUT		Output to the screen the character whose ASCII value is stored in ACC.
END		Return control to the operating system.

Topical Past Paers 9608 with Sir Majid Tahir

The diagram shows the contents of the main memory:

(a) (i) Show the	conter	nts of th	ne Accu	umulat	or afte	r execu	ution of	the in	struction:	Main memory
			0.00						800	0110 0100
		ססד	802						801	0111 1100
Accumulator:							7		802	1001 0111
								[1]	803	0111 0011
								1.7	804	1001 0000
(ii) Show the cor	ntents	of the /	Accum	ulator	after e	xecutio	n of th	e instru	uction: 805	0011 1111
									806	0000 1110
			LDX 8	00					807	1110 1000
									808	1000 1110
Index Register:	0	0	0	0	1	0	0	1	809	1100 0010
									:	J
Accumulator:									:	ſ
									2000	1011 0101
Explain how you arrived at your answer										
			•••••	•••••				•••••		[ა]
				•						·

(b) (i) Complete the trace table below for the following assembly language program. This program contains denary values

\$ Selected values from the ASCII character set:						
ASCII code	40	50	80	90	100	
Character	(2	Р	Z	d	

Trace table:

400		OUTPUT			
ACC	800	801	802	803	001901
	40	50	0	90	

(P1)Topical Past papers of (1.4.4 Assembly Lanauaae & Processor)	Topical Past Paers 9608
	with Sir Majid Tahir

(ii) There is a redundant instruction in the code in part (b)(i).
State the address of this instruction.
[1]

Q#1 Answer:

(a) Answer:	
-------------	--

0	1	0	0	1	0	1	1

- Memory address 103 contains the value 107
- So address 107 is the address from which to load the data

(b) Answer:

Accumulator:	1	1	0	0	0	0	1	0
--------------	---	---	---	---	---	---	---	---

- Index Register contains: **00001001 = 9**
- 800 + 9 = 80**9**

9608/11/M/J/16

Q.

9 (a) (i) One mark for the contents of the accumulator and one mark for the reason. [2] Accumulator contents: 0100 0101

Reason:

Address is 60 Contents of the index register is 8 And 60 + 8 = 68 in denary gives the address The contents of which is 0100 0101 in binary.

(ii) 0000 0111 [1]

(b)

One mark for each shaded block.

- Contents of the Accumulator in first 2 lines (instruction addresses 50 and 51)
- Updating address 103
 (instruction 52)
- Loading the Accumulator and addition (instructions 53 and 54)Not executing instruction 58
- Incrementing the index register (instruction 59)
- Loading the Accumulator and addition (instructions 60 and 61)
- Correct output of 'x' (instruction 62)

Instruction	Working space	ACC	Memory address				IX	OUTPUT
address			100	101	102	103		
			20	100	1	0	1	
50		20						
51		21						
52						21		
53		100						
54		120						
55								
56								
57								
59							2	
60		20						
61		120						
62								'x'
63								

9608/13/M/J/16 Answer

4 (a) 11001110

(b)

Instruction	Working		M	emory	addre	SS	IV	OUTDUT
msuucuon	space	ACC	90	91	92	93		OUIPUI
			2	90	55	34	2	
20		55						
21		54						
22			54					
23							3	
24		34						
25		33						
26								
27								
28								
31		67						
32						67		
33								'C'
34								

Q.2 Answer

- LDD 810 (28 Loaded in ACC)
- **INC ACC** (Accumulator incremented with 28++1 = 29, 29 written in ACC)
- STO 812 (29 Stored at Memory Location 812)
- LDD 811 (Loaded contents of memory location 811 in ACC)
- ADD 812 (Added 41 with 29, Contents of ACC added with memory loc 812)
- **STO 813** (Stored contents of ACC in 813 memory location)

	Memory address								
ACC	810	811	812	813					
	28	41	0	0					
28									
29									
			29						
41									
70									
				70					

[1]

[7]

Answer 9608/11/M/J/17 Q.4/-

Question	Answer	Marks
4(a)(i)	500	1
4(a)(ii)	496	1
4(a)(iii)	502	1
4(a)(iv)	86	1
4(b)	0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1	3
4(c)	256	1
4(d)(i)	07 C2 07 1	2
4(d)(ii)	LDI 63 LDI 63 1 63 1	2

9608/12/M/J/17 Q5

<u> </u>		
5(a)(i)	351	1
5(a)(ii)	355	1
5(a)(iii)	22	1
Question	Answer	Marks
5(a)(iv)	86	1
5(b)	Op code Operand	3
	0 0 0 1 0 0 1 0 0 1 0 0 0 1 1	
	0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1	
	Both correct op codes 1 Operand 0100 0011 1 Operand 0000 0111 1	
5(c)(i)	14 5E	2
	14 1 5E 1	
5(c)(ii)	LDR #77	2
	LDR 1 #77 1	

Topical Past Paers 9608 with Sir Majid Tahir

9608/11/0/N/16 Answer Q.8/-

8 (a) (i)

Accumulator: 1 0 0 1 0 1 1 1 1 [1]

(ii) One mark for answer and two marks for explanation

- Index Register contains 1001 = 9
- 800 + 9 = 809

[3]

(b) (i) ONE mark for each correct row.

ACC					
	800	801	802	803	001201
	40	50	0	90	
40					
90			90		
90			90		
					Z

(ii) 107

[4]

[1]

