

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

1

Syllabus Content

1.8.1 Database Management Systems (DBMS)

 understanding the limitations of using a file-based approach for the storage and retrieval of data

 describe the features of a relational database & the limitations of a file-based approach

 show understanding of the features provided by a DBMS to address the issues of:
o data management, including maintaining a data dictionary
o data modeling
o logical schema
o data integrity
o data security, including backup procedures and the use of access rights to

individuals/groups of users

 show understanding of how software tools found within a DBMS are used in practice:
o developer interface
o query processor11

 show that high-level languages provide accessing facilities for data stored in a Database

1.8.2 Relational database modeling

 show understanding of, and use, the terminology associated with a relational database model:
entity, table, tuple, attribute, primary key, candidate key, foreign key, relationship, referential
integrity, secondary key and indexing

 produce a relational design from a given description of a system

 use an entity-relationship diagram to document a database design

 show understanding of the normalisation process: First (1NF), Second (2NF) and Third Normal
Form (3NF)

 explain why a given set of database tables are, or are not, in 3NF

 make the changes to a given set of tables which are not in 3NF to produce a solution in 3NF, and
justify the changes made

File-based Systems

A flat file database is a type of database that stores data in a single table. This is unlike
a relational database, which makes use of multiple tables and relations.

 Flat-File databases hold all of their data in one table only.
 They are only suitable for very simple databases.

The patient database is an example of a flat-file as all of the information is stored in one
single table:

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

2

Limitations of a Flat-File Database

The problems with using a flat-file databases are as follows:

 Duplicated Data is often unnecessarily entered.
 Database space is wasted with this duplicated data.
 Duplicated Data takes a long time to enter and update (unnecessarily).

What is Data Redundancy?

Data Redundancy is where you store the same data many times (duplicate data) in your table.

This repeated data needs to be typed in over and over again which takes a long time.

For example:-

The patients database contains several entries of duplicate data:

 Doctor Id
 Dr. Hyde
 Room 03

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

3

What is the solution to Data Redundancy?

To avoid the data redundancy with flat-file databases is to create

 a relational database.

Relational Databases

 Relational Databases use two or more tables linked together

(to form a relationship).
 Relational Databases do not store all the data in the same table.
 Repeated data is moved into it's own table as shown in the image below:

What is a relationship?

 A relationship is formed when our two tables are joined together.

 Relationships make use of key fields and primary keys to allow the two tables
to communicate with each other and share their data.

 Key fields are identified using a primary key as shown in the image below:

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

4

 Once the tables are linked together each one can read data from the other.

 This means that we only need to enter the details of each doctor once instead of
many separate entries.

How do you form the relationship? (link the tables)

 In order to link the tables we need to use a common field.
 A common field is data that appears in BOTH tables.
 If you look at the image below you will see that the common field in the patient

database is Doctor Id:

What is a foreign key and what are they used for?

 A foreign key is a regular field in one table which is being used as the key field in
another table.

 Foreign keys are used to provide the link (relationship) between the tables.

For example:-
In our patient database, Doctor Id is a key field in the Doctor Table but is also being used in
the Patient Table as a foreign key:

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

5

 The foreign key (Doctor Id in the patient table) can then be used to match to the primary
key (Doctor Id in the doctor table) and share the correct data.

 For example:-
A patient with a Doctor Id of 01 will be automatically assigned to Doctor Hyde and
Room 03.

Take another example for comparison between a Flat-File and a relational database.

For example, a library database could have three tables:

1. Customers - when a customer joins the library a record is created. It stores Details such
as name and address and includes a unique Customer ID. This will be stored in a table
along with the details of other customers.

2. Books - each book in the library has a record. It stores details about the book, such as the

author and title and includes a unique book ID. This will be stored in a table along with the
details of other books.

3. Lending - when a customer borrows a book, the lending table stores the customer's

unique ID and the book's unique ID in a record. The record could also include additional
information such as when the book was borrowed and when it's due back.

The customer ID and book ID are both examples of key fields.

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

6

Primary keys

The primary key of a table within a relational database is a field which uniquely identifies each
record in the table. It can be pre-existing data, for example National Insurance Number.

Alternatively it can be generated specifically for use in the database, eg admission number for a
school student.

The primary key of a table may also be linked to a foreign key. This allows two tables to be
linked. Special care must be taken while inserting data and removing data from the foreign key

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

7

column, as a careless deletion or insertion might destroy the relationship between the two
tables.

For example, in the library example, tables for books and customers can be linked to the
table lending by introducing foreign keys that refer to the book ID in the books table and
customer ID in the customers table.

The customer ID column exists in both customers and lendingtables, while the Book ID
column exists in both the books and lending tables.

These become foreign keys, referring to the primary keys in the customers and books tables.

Surrogate key

When an entity (table) does not have a naturally occurring primary key it is possible to create a
new field that will serve as the primary key. It is not uncommon to use an autonumber field to
automatically allocate a unique number to each record in a table. Use of autonumber usually
happens when there is no other unique value that would naturally exist in a table and is an
example of making use of a surrogate key.

Composite key

A composite key is a specific type of primary key which uses the contents of two or more fields
to create a unique value.

Consider the number of times certain footballers scored a goal during a tournament.

Team Squad number Goals

Aberdeen 9 4

Hearts 8 3

Celtics 8 5

Queen of the South 11 6

Aberdeen 8 5

In the above example a single field would not create a set of unique values, eg there are two
Aberdeen players, and there are three players with the squad number 8.

However, if you combine the Team and Squad number fields, a primary key is created,
allowing each player to be uniquely identified. This is an example of a composite key.

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

8

Compound key

A compound key is similar to a composite key in that two or more fields are needed to create

a unique value. However, a compound key is created when two or more primary keys from
different tables are present as foreign keys within an entity. The foreign keys are used together
to uniquely identify each record.

Compound keys are always made up of two or more primary keys from other tables In .

their own tables, both of these keys uniquely identify data but in the table using the compound
key they are both needed to uniquely identify data.

For example, a database about school may already contain, a student table with student
number as the primary key. There may be a second table for each course with a primary key
called course number. Class registers could be held in a table called enrolment, with the unique
identifier for enrolment in a class being the combination of the student id and the course id.

Types of relationships

The relationship between two linked tables can be described in one of three ways:

 One-to-one
 One-to-many
 Many-to-many

 One-to-one cardinality

One-to-one relationships occur when there is a direct one to one link between data held on two
different tables. For example, each pupil in Scotland has their own unique Scottish Candidate
Number. It is not possible for a pupil to have more than one number and it is not possible for the
same number to be allocated to two different pupils. This is a one-to-one relationship:

Pupil entity

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

9

Candidate number First name Surname Date of Birth

SCN2312345 Harry Wilson 04/03/2000

SCN4565432 Jenny McMillan 17/11/1998

SCN5565532 Hamish Moore 30/07/1999

Candidate Number entity

Candidate number Date of registration

SCN2312345 15/08/2012

SCN4565432 13/08/2010

SCN5565532 19/08/2011

There is a direct one-to-one relationship between a pupil and a candidate number. One
to one relationships are illustrated by the following notation(s):

This is how the relationship would be shown on an entity relationship diagram:

One-to-one relationships are usually unnecessary, as combining the data held in both
entities is often possible without resulting in any duplication of data.

In this example the data could be combined into one entity.

Candidate Entity

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

10

Candidate number First name Surname Date of Birth Date of Registration

SCN2312345 Harry Wilson 04/03/2000 15/08/2012

SCN4565432 Jenny McMillan 17/11/1998 13/08/2010

SCN5565532 Hamish Moore 30/07/1999 19/08/2011

Candidate Number is the primary key in the Candidate entity.

One-to-many cardinality

One-to-many relationships exist where one instance of an entity can exist lots of times
in another entity.

A good example relates to Pastoral Care or Guidance teachers in school. Here is an
entity holding details on each Pastoral Care/Guidance teacher.

Pastoral Care Teacher entity

PastoralID First name Surname House group

PC001 Maria McLuskey Kelso

PC002 Craig Bell Iona

PC003 Sean Blake Melrose

PastoralID is the primary key in the Pastoral Care Teacher entity.

One Pastoral Care/Guidance teacher will have many pupils in their care. If we add a
field to our ‘Candidate’ entity, we can see that one Pastoral Care teacher can be
responsible for many pupils. We have added the primary key from the pastoral care
teacher entity. When we add a primary key from another table, it becomes a foreign key
in this table.

Updated candidate entity

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

11

Candidate

number

First

name
Surname

Date of

Birth

Date of

Registration

Pastoral Care

Teacher

SCN2312345 Harry Wilson 04/03/2000 15/08/2012 PC002

SCN4565432 Jenny McMillan 17/11/1998 13/08/2010 PC001

SCN5565532 Hamish Moore 30/07/1999 19/08/2011 PC001

One pastoral care teacher (PC001 - Miss McLuskey) has many pupils. The above table
shows both Hamish and Jenny have Miss McLuskey as their Pastoral Care teacher.
There is a one-to-many relationship between the Pastoral Care Teacher entity and the
candidate entity. One-to-many relationships are illustrated by the following notation(s):

This is how the relationship would be shown on an entity relationship diagram:

Many-to-many cardinality

Most schools offer a variety of extracurricular clubs. Clubs can accommodate many
pupils and pupils can attend many clubs. This is an example of a many-to-many
relationship.

Many-to-many relationships are not good when designing a relational database as they
can lead to unnecessary storage of the same data more than once (duplicated) and can
make it difficult to avoid errors such as update, deletion or insertion anomalies.

Many-to-many relationships should not be present in a relational database but can be
represented on entity relationship diagrams using the following notation(s):

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

12

The many-to-many relationship between clubs and pupils would be represented as
follows on an entity relationship diagram:

For many-to-many relationships it is necessary to create a third entity, called an
associate entity. The new table/entity will have two one-to-many relationships with both
of the current entities.

Resolving many-to-many relationships

In this example a third entity called membership could be created. A compound key
would be used to uniquely identify each record in the new table.

Candidate

Candidate

number

First

name
Surname

Date of

Birth

Date of

Registration

Pastoral Care

Teacher

SCN2312345 Harry Wilson 04/03/2000 15/08/2012 PC002

SCN4565432 Jenny McMillan 17/11/1998 13/08/2010 PC001

SCN5565532 Hamish Moore 30/07/1999 19/08/2011 PC001

Membership

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

13

Candidate Number Club ID

SCN2312345 001

SCN2312345 003

SCN4565432 003

SCN5565532 002

Club

Club ID Name Teacher Day Location

001 Chess Mr Fergusson Wednesday F101

002 Dodgeball Miss Jones Friday Games Hall

003 Volleyball Mrs Ali Monday Gym

The primary key from the Candidate table (Candidate number) and the primary key from
the Club table (Club ID) are present as foreign keys in the Membership table. They
combine to create a compound key which can be used to uniquely identify each
member of each club. We have created two one to many relationships to remove the
many to many relationship from the database. The relationships between the entities
would look like this on an entity relationship diagram:

The relationships are now:

 One pupil (candidate) can have many memberships

 One club can have many members

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

14

The many-to-many relationship has been replaced by two one-to-many relationships.
There is a fully worked example of how to identify the relationship between entities and
create entity relationship diagrams in the Design Notation learner guide.

Degrees of Relationship (Cardinality)

The degree of relationship (also known as cardinality) is the number of occurrences in

one entity which are associated (or linked) to the number of occurrences in another.
There are three degrees of relationship, known as:

1. one-to-one (1:1)
2. one-to-many (1:M)
3. many-to-many (M:N)

The latter one is correct, it is M:N and not M:M.

One-to-one (1:1)

This is where one occurrence of an entity relates to only one occurrence in another
entity.
A one-to-one relationship rarely exists in practice, but it can. However, you may
consider combining them into one entity.
For example, an employee is allocated a company car, which can only be driven by that
employee. Therefore, there is a one-to-one relationship between employee and
company car.

One-to-Many (1:M)

Is where one occurrence in an entity relates to many occurrences in another entity.
For example, taking the employee and department entities shown on the previous page,
an employee works in one department but a department has many employees.
Therefore, there is a one-to-many relationship between department and employee.

Many-to-Many (M:N)

This is where many occurrences in an entity relate to many occurrences in another
entity.
The normalisation process discussed earlier would prevent any such relationships but
the definition is included here for completeness.

https://www.bbc.com/education/guides/z3yc9j6/revision

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

15

As with one-to-one relationships, many-to-many relationships rarely exist. Normally they
occur because an entity has been missed.
For example, an employee may work on several projects at the same time and a project
has a team of many employees.
Therefore, there is a many-to-many relationship between employee and project.

However, in the normalisation process this many-to-many is resolved by the entity
Project Team.

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

16

Optional Relationships

A relationship may also be optional. Either end of the relationship can include zero occurrences as
an option. This is defined by the business rules of the system being implemented.
Taking the three examples above, the business rules may allow for the following.

 Not all employees are allocated a company car.
 A car is defined as a pool car and not allocated to a specific employee.
 A new department is created but, as yet, there are no employees working within it.
 A new project is defined but as yet the team has not been established.
 A new employee starts within the company but, as yet, is not assigned to a project.

Taking the first business rule, graphically this can be shown as:

The circle (O) represents optionality.

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

17

More Symbols
An optional relationship is denoted by a circle (O) placed at the optional end of the relationship,
ie the 'may' part of the name. Using our previous example:

An employee may be allocated a company car.
A company car is always assigned to an employee.
It is possible to have optionally at both ends of the relationship, eg

An employee may be allocated a company car.

A company car may be assigned to an employee (eg a pool car).
Finally, the relationship is named. A relationship should be given two names, the name
of the relationship between the first entity and the second and, conversely, the name of
the relation between the second entity and the first, eg:

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

18

This is read clockwise and states: A department may have one or more employees.
This optionality allows for a newly created department which, currently, does not have
any employees.
An employee works in one department.
You may also find it useful to show the primary and foreign keys on the data model.

However the data model can get quite 'busy' with relationship names and keys and,
consequently, difficult to read. In this case you may consider omitting naming of the
keys and any obvious relationship names.

Normalisation of Database

Database Normalisation is a technique of organizing the data in the database.
Normalization is a systematic approach of decomposing tables to eliminate data
redundancy and undesirable characteristics like Insertion, Update and Deletion Anamolies.
It is a multi-step process that puts data into tabular form by removing duplicated data from
the relation tables.
Normalization is used for mainly two purpose,
 Eliminating redundant (useless) data.
 Ensuring data dependencies make sense i.e data is logically stored.

Problem Without Normalization

Without Normalization, it becomes difficult to handle and update the database, without
facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if Database
is not Normalized.

Database Normalization Examples -

Assume a video library maintains a database of movies rented out. Without any
normalization, all information is stored in one table as shown below.

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

19

Here you see Movies Rented column has multiple values.

 Database Normal Forms

Now let's move into 1st Normal Forms

1NF (First Normal Form) Rules

 Each table cell should contain a single value.

 Each record needs to be unique.

The above table in 1NF-

1NF Example

Let's move into second normal form 2NF

2NF (Second Normal Form) Rules

 Rule 1- Be in 1NF

 Rule 2- Single Column Primary Key

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

20

It is clear that we can't move forward to make our simple database in 2nd Normalization
form unless we partition the table above.

We have divided our 1NF table into two tables viz. Table 1 and Table2. Table 1 contains
member information. Table 2 contains information on movies rented.
We have introduced a new column called Membership_id which is the primary key for
table 1. Records can be uniquely identified in Table 1 using membership id

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

21

Why do you need a foreign key?
Suppose an idiot inserts a record in Table B such as
You will only be able to insert values into your foreign key that exist in the unique key in
the parent table.

This helps in referential integrity.

The above problem can be overcome by declaring membership id from Table2 as
foreign key of membership id from Table1

Now, if somebody tries to insert a value in the membership id field that does not exist in
the parent table, an error will be shown!

What are transitive functional dependencies?

A transitive functional dependency is when changing a non-key column, might cause
any of the other non-key columns to change

Consider the table 1. Changing the non-key column Full Name may change Salutation.

Let's move into 3NF

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

22

3NF (Third Normal Form) Rules

 Rule 1- Be in 2NF

 Rule 2- Has no transitive functional dependencies
To move our 2NF table into 3NF, we again need to again divide our table.

We have again divided our tables and created a new table which stores Salutations.

There are no transitive functional dependencies, and hence our table is in 3NF

In Table 3 Salutation ID is primary key, and in Table 1 Salutation ID is foreign to primary
key in Table 3

Now our little example is at a level that cannot further be decomposed to attain higher
forms of normalization. In fact, it is already in higher normalization forms. Separate
efforts for moving into next levels of normalizing data are normally needed in complex
databases. However, we will be discussing next levels of normalizations in brief in the
following.

Further normalization forms are not in syllabus, but just explaining them briefly below

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

23

Boyce-Codd Normal Form (BCNF)

Even when a database is in 3rd Normal Form, still there would be anomalies resulted if it
has more than one Candidate Key.

Sometimes is BCNF is also referred as 3.5 Normal Form.

4NF (Fourth Normal Form) Rules
If no database table instance contains two or more, independent and multivalued data
describing the relevant entity, then it is in 4th Normal Form.

5NF (Fifth Normal Form) Rules

A table is in 5th Normal Form only if it is in 4NF and it cannot be decomposed into any
number of smaller tables without loss of data.

6NF (Sixth Normal Form) Proposed

6th Normal Form is not standardized, yet however, it is being discussed by database
experts for some time. Hopefully, we would have a clear & standardized definition for
6th Normal Form in the near future...

That's all to Normalization!!!

The advantage of removing transtive dependency is,

 Amount of data duplication is reduced.
 Data integrity achieved.

Complex database operations

Database operations allow us to retrieve information from a database more efficiently,
amend its contents or present/output the contents of that database in a variety of ways.
Most commonly this is by use of:

 forms
 queries
 reports

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

24

 Forms

Forms are created with the purpose of generating a user friendly interface for data
entry. Forms may use programmable buttons that perform various commands for
viewing, entering, and editing data in the tables.

Forms also allow the database creator to control how other users interact with the data
in the database. For example, you can create a form that shows only certain fields and
allows only certain operations to be performed. This helps protect data and to ensure
that the data is entered properly.

Queries

Queries allow users to search and sort data held in a database. There are two different
ways to create queries. The first is to use the built in query generator that comes with
most database software.

The example below shows a complex query searching two tables to find any student
named Smith who is taught Spanish. This query has been created using an in built
query generator.

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

25

More advanced users may want to create some code to perform queries. SQL is an
example of a language used to create queries within database applications. The same
query in SQL could be written as:

SELECT surname, forename, tutor, language, cost p/h

FROM Students, Tutors;

WHERE Students.Surname ='Smith’ AND Tutors.Language = 'spanish';

Learning SQL is not required but having an understanding of how the database system
generates queries can be used to enhance your knowledge and ability to use
computational thinking.

Complex database operations

Calculations

Queries also allow users to perform calculations when using in built query generators or
SQL. Many database packages include functions to let users quickly use these
calculations.

Common calculations include:

P1 Sec 1.8.1) Database Management System(DBMS) Computer Science 9608

with Majid Tahir

26

SUM Will add within a column/field

AVERAGE Will find the average value in a column/field

COUNT Counts the number of occurrences in a column/field

MAXIMUM Finds the maximum value in a column/field

MINIMUM Find the minimum value in a column/field

Summary fields are also a feature of some database packages that allow the result of
calculations to appear on reports.

Reports

Reports allow data to be summarised and output from a database. Reports are often
constructed based on the results of queries. Reports can be set up to display only
specific information rather than the full result of a query or all of the data held in tables.

Each report can be formatted to present the information in the most readable way
possible. A report can be run at any time, and will always reflect the current data in the
database. Reports are usually formatted to be printed out, but they can also be viewed
on the screen, exported to another program, or sent as an attachment to an e-mail
message.

It is important to be able to look at a report and determine the fields used in its creation.
These fields are often used within a query, with the results of the query used to
generate a report.

References:

http://www.sqa.org.uk/e-learning/SoftDevRDS02CD/page_55.htm#Act11

https://www.ictlounge.com/html/types_of_databases.htm

https://www.guru99.com/database-normalization.html

http://www.sqa.org.uk/e-learning/SoftDevRDS02CD/page_55.htm#Act11
https://www.ictlounge.com/html/types_of_databases.htm
https://www.guru99.com/database-normalization.html

