

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

1
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Syllabus Content:
20.1 Programming paradigms

 Show understanding of programming paradigm

 Show understanding of the characteristics of a number of programming paradigms

(low-level, imperative (procedural), object-oriented, declarative) –

 low-level programming

Notes and guidance

o understanding of and ability to write low-level code that uses various

addressing modes: immediate, direct, indirect, indexed and relative

 Imperative programming- (procedural programming)

Notes and guidance

o Assumed knowledge and understanding of Structural Programming (see

details in AS content section 11.3)

o understanding of and ability to write imperative (procedural) programming

code that uses variabes, constructs, procedures and functions. See details in

AS Content

 Object-oriented programming (OOP)

Notes and guidance

o Terminology associated with OOP (including objects, properties, methods,

classes, inheritance, polymorphism, containment (aggregation),

encapsulation, getters, setters, instances)

o Solve a problem by designing appropriate classes

o Ability to write code that demonstrates the use of OOP

 Declarative programming

o understanding of and ability to solve a problem by writing appropriate facts

and rules based on supplied information

o understanding of and ability to write code that can satisfy a goal using facts

and rules

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

2
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Programming paradigms

Programming paradigm:

A programming paradigm is a set of programming concepts and is a fundamental style

of programming. Each paradigm will support a different way of thinking and problem

solving. Paradigms are supported by programming language features. Some

programming languages support more than one paradigm. There are many different

paradigms, not all mutually exclusive. Here are just a few different paradigms.

Low-level programming paradigm

 The features of Low-level programming languages give us the ability to manipulate

the contents of memory addresses and registers directly and exploit the architecture

of a given processor.

 We solve problems in a very different way when we use the low-level programming

paradigm than if we use a high-level paradigm.

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

3
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

 Note that each different type of processor has its own programming language. There

are 'families' of processors that are designed with similar architectures and therefore

use similar programming languages.

 For example, the Intel processor family (present in many PC-type computers) uses

the x86 instruction set.

Imperative programming paradigm

 Imperative programming involves writing a program as a sequence of explicit steps

that are executed by the processor. Most of the programs use imperative

programming (Chapters 11 to 15 and Chapters 23 to 26).

 An imperative program tells the computer how to get a desired result, in contrast to

declarative programming where a program describes what the desired result should

be.

 Note that the procedural programming paradigm belongs to the imperative

programming paradigm. There are many imperative programming languages,

Pascal, C and Basic to name just a few.

Object-oriented programming paradigm

 The object-oriented paradigm is based on objects interacting with one another.

These objects are data structures with associated methods.

 Many programming languages that were originally imperative have been developed

further to support the object-oriented paradigm.

 Examples include Pascal (under the name Delphi or Object Pascal) and Visual Basic

(the .NET version being the first fully object-oriented version). Newer languages,

such as Python and Java, were designed to be object-oriented from the beginning

Object Oriented Programming
Object-oriented programming (OOP) is a programming methodology that uses self-

contained objects, which contain programming statements (methods) and data, and

which communicate with each other.

This programming paradigm is often used to solve more complex problems as it

enables programmers to work with real life things.

Many procedural programming languages have been developed to support OOP. For

example, Java, Python and Visual Basic all allow programmers to use either procedural

programming or OOP. Object-oriented programming uses its own terminology, which

we will explore here.

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

4
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Class
A class is a template defining the methods and data of a certain type of object.

The attributes are the data items in a class.

A method is a programmed procedure that is defined as part of a class.

Encapsulation:

Putting data and methods together as a single unit (class), is called encapsulation.

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

5
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Encapsulation:

Putting data and methods together as a single unit in a class, is called encapsulation.

Private attributes & Public methods:

To ensure that only the methods declared can be used to access the data within a

class, attributes need to be declared as private and the methods need to be declared

as public.

For example a Class Shape can be difined by this Class Diagram

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

6
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Object:
When writing a program, an object needs to be declared using a class type that has

already been defined.

An object is an instance of a class that is self-contained and includes data and

methods.

Properties of an object are the data and methods within an object that perform named

actions. An occurrence of an object during the execution of a program is called an

instance.

For example, a Class employee is defined and the object myStaff is instanced in these

programs using VB:

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

7
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Another example of Class Car has attributes and methods given below:

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

8
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Concept of OOP:
Previous chapters covered programming using the procedural aspect of our
programming languages. Procedural programming groups related programming
statements into subroutines. Related data items are grouped together into record data
structures. To use a record variable, we first define a record type. Then we declare
variables of that record type.

OOP goes one step further and groups together the record data structure and the
subroutines that operate on the data items in this data structure. Such a group is called
an 'object'.

Encapsulation: combining data and subroutines into a class
Class: a type that combines a record with the methods that operate on the properties in
the record

REMEMER: Example of RECORD Data Type

A car manufacturer and seller wants to store details about cars. These details can be

stored in a record structure

TYPE CarRecord

 DECLARE VehicleID : STRING

 DECLARE Registration : STRING

 DECLARE DateOfRegistration: DATE

 DECLARE EngineSize : INTEGER

 DECLARE PurchasePrice : CURRENCY

END TYPE

We can write program code to access and assign values to the fields of this record. For
example:

PROCEDURE UpdateRegistration(BYREF ThisCar : CarRecord, BYVAL

NewRegistration)

ThisCar.Registration NewRegistration

END PROCEDURE

We can call this procedure from anywhere in our program. This seems a well-regulated

way of operating on the data record. However, we can also access the record fields

directly from anywhere within the scope of ThisCar:

ThisCar.EngineSize 2500

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

9
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Classes in OOP
The idea behind classes in OOP is that attributes can only be accessed through

methods written as part of the class definition and validation can be part of these

methods. The direct path to the data is unavailable. Attributes are referred to as

'private'. The methods to access the data are made available to programmers, so these

are 'public'. Classes are templates for objects. When a class type has been defined it

can be used to create one or more objects of this class type.

Attributes: the data items of a class
Methods: the subroutines of a class
Object: an instance of a class

The first stage of writing an object-oriented program to solve a problem is to design the

classes. This is part of object-oriented design. From this design, a pr9gram can be

written using an object-oriented programming (OOP) language.

The programming languages the syllabus prescribes can be used for OOP: Python 3,

VB.NET and Delphi/ObjectPascal.

Class parts

The parts that make up a class is shown below

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

10
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Class Car
 ' Each attribute must be preceded by PRIVATE

 Private VehicleID As String
 Private Registration As String = " " 'String will be in “ “
 Private DateOfRegistration As Date = #1/1/1900# 'Date between # #

 Private EngineSize As Integer
 Private PurchasePrice As Decimal = 0.0

 'Every public method header must start with Public
'The constructor always has identifier New

 Public Sub New(ByVal n As String, ByVal e As String)
 VehicleID = n
 EngineSize = e

 End Sub

 Public Sub SetPurchasePrice(ByVal p As Decimal)

 PurchasePrice = p
 End Sub

 Public Sub SetRegistration(ByVal r As String)
 Registration = r
 End Sub

 Public Sub SetDateOfRegistration(ByVal d As Date)
 DateOfRegistration = d

 End Sub

 Public Function GetVehicleID() As String

 Return(VehicleID)
 End Function

 Public Function GetRegistration() As String
 Return (Registration)
 End Function

 Public Function GetDateOfRegistration() As Date
 Return (DateOfRegistration)

 End Function

 Public Function GetEngineSize() As Integer

 Return (EngineSize)
 End Function

 Public Function GetPurchasePrice() As Decimal
 Return (PurchasePrice)
 End Function

End Class

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

11
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Advantages of OOP over procedural languages

 The advantage of OOP is that it produces robust code.

 The attributes can only be manipulated using methods provided by the class

definition.

 This means the attributes are protected from accidental changes.

 Classes provided in module libraries are thoroughly tested. If you use tried and

tested building blocks to construct your program, you are less likely to introduce

bugs than when you write code from scratch.

Designing classes and objects
When designing a class:

 We need to think about the attributes we want to store.

 We also need to think about the methods we need to access the data and

assign values to the data of an object.

 A data type is a blueprint when declaring a variable of that data type.

 A class definition is a blueprint when declaring an object of that class.

Attributes

The Car class has a number of attributes that can be altered.

 In the above example, the attributes are "colour", "model", "brand", "speed" and

"direction".

 If the value of an attribute can be altered, then it is stored as a variable.

 If you don't want to allow the value to be altered, then it is stored as a constant.

 Attributes are normally 'private' which means only methods within the class can

alter their value.

 It is possible to have 'public' attributes i.e. variables that can be altered directly

by external code, but that kind of loses the point of object orientated

programming.

Instantiation
Creating a new object is known as 'instantiation'.

 Any data that is held about an object must be accessible, otherwise there is no

point in storing it.

 We therefore need methods to access each one of these attributes.

Constructor:
A constructor instantiates the object and assigns initial values to the attributes.

Constructor: a special type of method that is called to create a new object and initialise

its attributes

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

12
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

 A class can have many methods i.e. functions, that use the methods' attributes.

 The most important of these methods is the constructor.

 This is the method that creates an instance of the class i.e. it creates an object.

 When an object is to be created, the contructor is called.

Getters:
These methods are usually referred to as getters.

 They get an attribute of the object.

 When we first set up an object of a particular class, we use a constructor.

Setters:
Any properties that might be updated after instantiation will need subroutines to update

their values.

 These are referred to as setters.

 Some properties get set only at instantiation. These don't need setters.

 This makes an object more robust, because you cannot change properties that

were not designed to be changed.

WORKED EXAMPLE:
Consider the car data from above section

When a car is manufactured it is given a unique vehicle ID that will remain the same

throughout the car's existence. The engine size of the car is fixed at the time of

manufacture. The registration ID will be given to the car when the car is sold.

In our program, when a car is manufactured, we want to create a new car object. We

need to instantiate it using the constructor. Any attributes that are already known at the

time of instantiation can be set with the constructor. In our example, vehicle ID and

Engine size can be set by the constructor. The other attributes are assigned values at

the time of purchase and registration. So we need setters for them. The identifier table

for the car class is shown in Table below:

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

13
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

We can represent this information as a class diagram in Figure

Car Class Diagram

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

14
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Writing object-oriented code
Declaring a class in:

 Attributes should always be declared as 'Private'.

 This means they can only be accessed through the class methods.

 Methods can be called from the main program, so they have to be declared as
'Public'.

 There are other modifiers (such as 'Protected'), but they are beyond the scope
of this book.

 The syntax for declaring classes is quite different for the different programming
languages.

 We will look at the three chosen languages. You are expected to write programs
in one of these.

TASK27.01

 Copy the car class definition into your program editor and write a simple
program to test that each method works.

 A business wants to store data about companies they supply. The data to be
stored includes: company name, email address, date of last contact.

o Design a class Company and draw a class diagram.
o Write program code to declare the class. Company name and email

address are to be set by the constructor and will never be changed.
o Instantiate one object of this class and test your class code works.

Declaring a class in Visual Basic:
Module Module1
 Class Car

' Each attribute must be preceded by PRIVATE
 Private VehicleID As String

 Private Registration As String = " " 'String will be in “ “
 Private DateOfRegistration As Date = #1/1/1900# 'Date between # #
 Private EngineSize As Integer

 Private PurchasePrice As Decimal = 0.0

 'Every public method header must start with Public

'The constructor always has identifier New

 Public Sub New(ByVal n As String, ByVal e As String)
 VehicleID = n
 EngineSize = e

 End Sub

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

15
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

 Public Sub SetPurchasePrice(ByVal p As Decimal)
 PurchasePrice = p

 End Sub

 Public Sub SetRegistration(ByVal r As String)

 Registration = r
 End Sub

 Public Sub SetDateOfRegistration(ByVal d As Date)
 DateOfRegistration = d
 End Sub

 Public Function GetVehicleID() As String
 Return(VehicleID)

 End Function

 Public Function GetRegistration() As String

 Return (Registration)
 End Function

 Public Function GetDateOfRegistration() As Date
 Return (DateOfRegistration)
 End Function

 Public Function GetEngineSize() As Integer
 Return (EngineSize)

 End Function

 Public Function GetPurchasePrice() As Decimal

 Return (PurchasePrice)
 End Function
End Class

Sub Main()

 Dim ThisCar As New Car("ABC1234", 2500)

 ThisCar.SetPurchasePrice(12000)
 Console.WriteLine(ThisCar.GetVehicleID())
 Console.ReadLine()

 ThisCar = Nothing ' garbage collection

 End Sub

End Module

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

16
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

TASK27.01

 A business wants to store data about companies they supply. The data to be
stored includes: company name, email address, date of last contact.

o Design a class Company and draw a class diagram.
o Write program code to declare the class. Company name and email

address are to be set by the constructor and will never be changed.
o Instantiate one object of this class and test your class code works.

Module Module1
 Class Company

 Private CompanyName As String

 Private EmailAddress As String

 Private DateOfLastContact As Date

 Public Sub New(ByVal n, ByVal e) 'constructor

 CompanyName = n

 EmailAddress = e

 DateOfLastContact = #1/1/1900#

 End Sub

 Public Sub SetDateOfLastContact(ByVal d)

 DateOfLastContact = d

 End Sub

 Public Function GetCompanyName()

 Return (CompanyName)

 End Function

 Public Function GetEmailAddress()

 Return (EmailAddress)

 End Function

 Public Function GetDateOfLastContact()

 Return (DateOfLastContact)

 End Function

 End Class

 Sub Main()

Dim ThisCompany As New Company("SLimited", "abc@slimited.cie")

 ThisCompany.SetDateOfLastContact(#1/2/2016#)

 Console.WriteLine(ThisCompany.GetDateOfLastContact())

 Console.ReadLine()

 End Sub

End Module

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

17
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Instantiating a class
To use an object of a class type in a program the object must first be instantiated. This
means the memory space must be reserved to store the attributes.
The following code instantiates an object Thiscar of class car.

Using a method
To call a method in program code, the object identifier is followed by the method

identifier and the parameter list.

The following code sets the purchase price for an object ThisCar of class Car.

The following code gets and prints the vehicle ID for an object ThisCar of class Car.

Inheritance
The advantage of OOP is that we can design a class (a base class or a superclass)
and then derive further classes (subclasses) from this base class.

Inheritance is the process by which the methods and data from one class, a
superclass or base class, are copied to another class, a derived class.

This means that we write the code for the base class only once and the subclasses
make use of the attributes and methods of the base class, as well as having their own
attributes and methods.

This is known as inheritance and can be represented by an inheritance diagram

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

18
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Inheritance: all attributes and methods of the base class are copied to the subclass

Inheritence diagram for parTime, fullTime and employee class

WORKED EXAMPLE
Implementing a library system
Consider the following problem:

 A college library has items for loan.

 The items are currently books and CDs.

 Items can be borrowed for three weeks.

 If a book is on loan, it can be requested by another borrower.
Table below shows the information to be stored.

The information to be stored about books and CDs needs further analysis. Note that we
could have a variable Title, which stores the book title or the CD title, depending on
which type of library item we are working with. There are further similarities (shown in
above table).

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

19
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

There are some items of data that are different for books and CDs. Books can be
requested by a borrower. For CDs, the genre is to be stored.

We can define a class Libraryitem and derive a Book class and a CD class from it. We

can draw the inheritance diagrams for the Libraryitem, Book and CD classes as in

Figure below

Inheritance diagram for Library Item, Book and CD classes

Analysing the attributes and methods required for all library items and those only

required for books and only for CDs, we arrive at the class diagram in Figure below

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

20
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

A base class that is never used to create objects directly is known as an abstract class.
Libraryitem is an abstract class.

Abstract class: a base class that is never used to create objects directly

Declaring a base class and derived classes (subclasses) in VB.NET

The code below shows how a base class and its subclasses are declared in VB.NET.

Class LibraryItem

 Private Title As String

 Private Author_Artist As String

 Private ItemID As Integer

 Private OnLoan As Boolean = False

 Private DueDate As Date = Today

 Sub Create(ByVal t As String, ByVal a As String, ByVal i As Integer)

 Title = t

 Author_Artist = a

 ItemID = i

 End Sub

 Public Function

 GetTitle() As String.Return (Title)

 End Function

 ' other Get methods go here

 Public Sub Borrowing()

 OnLoan = True

 DueDate = DateAdd(DateInterval.Day, 21, Today()) '3 wee ks from today

 End Sub

 Public Sub Returning()

 OnLoan = False

 End Sub

 Sub PrintDetails()

 Console.WriteLine(Title & “” , “” & ItemID & “” , “” & OnLoan & “” , “” & DueDate)
 End Sub

End Class

Class Book 'A subclass definition

Inherits LibraryItem 'The Inherits statement is first statementof subClass definition

Private Isrequested As Boolean = False

 Public Function GetisRequested() As Boolean

 Return (Isrequested)

 End Function

 Public Sub SetisRequested()

 Isrequested = True

 End Sub

End Class

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

21
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Class CD

Inherits LibraryItem 'The Inherits statement is first statementof subClass definition

 Private Genre As String

 Public Function GetGenre() As String

 Return (Genre)

 End Function

 Public Sub SetGenre(ByVal g As String)

 Genre = g

 End Sub

End Class

Instantiating a subclass
Creating an object of a subclass is done in the same way as with any class (See Section 27.03).

Using a method
Using an object created from a subclass is exactly the same as an object created from
any class.

TASK 27.02
Copy the class definitions for Libraryitem, Book and CD into your program editor. Write the
additional get methods. Write a simple program to test that each method work

Module Module1

 Class LibraryItem

 Private Title As String

 Private Author_Artist As String

 Private ItemID As Integer

 Private OnLoan As Boolean = False

 Private DueDate As Date = Today

 Sub Create(ByVal t As String, ByVal a As String, ByVal i As Integer)

 Title = t

 Author_Artist = a

 ItemID = i

 End Sub

 Public Function GetTitle() As String

 Return (Title)

 End Function

 Public Function GetAuthor_Artist() As String

 Return (Author_Artist)

 End Function

 Public Function GetItemID() As Integer

 Return (ItemID)

 End Function

 Public Function GetOnLoan() As Boolean

 Return (OnLoan)

 End Function

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

22
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

 Public Function GetDueDate() As Date

 Return (DueDate)

 End Function

 Public Sub Borrowing()

 OnLoan = True

 DueDate = DateAdd(DateInterval.Day, 21, Today()) '3 weeks from today

 End Sub

 Public Sub Returning()

 OnLoan = False

 End Sub

 Public Sub PrintDetails()

 Console.Write(Title & "; " & ItemID & "; " & OnLoan & "; ")

 Console.WriteLine(DueDate)

 End Sub

 End Class

 Class Book

 Inherits LibraryItem

 Private IsRequested As Boolean = False

 Public Function GetIsRequested() As Boolean

 Return (IsRequested)

 End Function

 Public Sub SetIsRequested()

 IsRequested = True

 End Sub

 End Class

 Class CD

 Inherits LibraryItem

 Private Genre As String = ""

 Public Function GetGenre() As String

 Return (Genre)

 End Function

 Public Sub SetGenre(ByVal g As String)

 Genre = g

 End Sub

 End Class

 Sub Main()

 Dim ThisBook As New Book()

 Dim ThisCD As New CD()

 ThisBook.Create("Computing", "Sylvia", 1234)

 ThisCD.Create("Let it be", "Beatles", 2345)

 ThisBook.PrintDetails()

 ThisCD.PrintDetails()

 Console.ReadLine()

 End Sub

End Module

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

23
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

TASK27.03
Write code to define a Borrower class as shown in the class diagram in Figure 27.05

The constructor should initialise ItemsOnLoan too. UpdateitemsOnLoa·no should increment
ItemsOnLoan by an integer passed as parameter.
Write a simple program to test the methods

Module Module1

 Class Borrower

 Private BorrowerName As String

 Private EmailAddress As String

 Private BorrowerID As Integer

 Private ItemsOnLoan As Integer

 Public Sub Create(ByVal n As String, ByVal e As String, ByVal b As Integer)

 BorrowerName = n

 EmailAddress = e

 BorrowerID = b

 ItemsOnLoan = 0

 End Sub

 Public Function GetBorrowerName() As String

 GetBorrowerName = BorrowerName

 End Function

 Public Function GetEmailAddress() As String

 GetEmailAddress = EmailAddress

 End Function

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

24
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

 Public Function GetBorrowerID() As Integer

 GetBorrowerID = BorrowerID

 End Function

 Public Function GetItemsOnLoan() As Integer

 GetItemsOnLoan = ItemsOnLoan

 End Function

 Public Sub UpdateItemsOnLoan(ByVal n As Integer)

 ItemsOnLoan += n

 End Sub

 Public Sub PrintDetails()

 Console.WriteLine("Borrower : " & BorrowerName)

 Console.WriteLine("ID : " & BorrowerID)

 Console.WriteLine("email : " & EmailAddress)

 Console.WriteLine("Items on loan: " & ItemsOnLoan)

 End Sub

 End Class

 Sub Main()

 Dim NewBorrower As New Borrower()

 NewBorrower.Create("Sylvia", "adc@cie", 123)

 NewBorrower.UpdateItemsOnLoan(3)

 NewBorrower.PrintDetails()

 NewBorrower.UpdateItemsOnLoan(-1)

 NewBorrower.PrintDetails()

 Console.ReadLine()

 End Sub

End Module

Polymorphism:

 The constructor method of the base class is redefined in the subclasses.

 The constructor for the Book class calls the constructor of the Libraryitem class

and also initialises the IsRequested attribute.

 The constructor for the CD class calls the constructor of the Libraryitem class

and also initialises the Genre attribute.

 The PrintDetails method is currently only defined in the base class.

 This means we can only get information on the attributes that are part of the base

class.

 To include the additional attributes from the subclass, we need to declare the

method again.

 Although the method in the subclass will have the same identifier as in the base

class, the method will actually behave differently.

 This is known as polymorphism.

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

25
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Polymorphism is when methods are redefined for derived classes. Overloading is

when a method is defined more than once in a class so it can be used in different

situations.

Example of polymorphism: A base class shape is defined, and the derived classes

rectangle and circle are defined. The method area is redefined for both the rectangle

class and the circle class. The objects myRectangle and myCircle are instanced in

these programs.

Module Program

 Class shape

 Protected areaValue As Decimal

 Protected perimeterValue As Decimal
 Overridable Sub area()

 Console.WriteLine("Area is: " & areaValue)

 End Sub

 Overridable Sub perimeter()

 Console.WriteLine("Perimeter is : " & perimeterValue)
 End Sub

 End Class

 Class rectangle : Inherits shape
 Private length As Decimal

 Private breadth As Decimal

 Public Sub New(ByVal l As Decimal, ByVal b As Decimal)

 length = l

 breadth = b

 End Sub
 Overrides Sub Area()

 areaValue = length * breadth

 Console.WriteLine("Area = " & areaValue)
 End Sub

 End Class

 Class circle : Inherits shape

 Private radius As Decimal
 Public Sub New(ByVal r As Decimal)

 radius = r

 End Sub
 Overrides Sub Area()

 areaValue = radius * radius * 3.142

 Console.WriteLine("Area = " & areaValue)
 End Sub

 End Class

 Sub main()

 Dim myCircle As New circle(20)
 myCircle.Area()

 Dim myRectangle As New rectangle(10, 17)

 myRectangle.Area()
 Console.ReadKey()

 End Sub

End Module

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

26
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Garbage collection
When objects are created they occupy memory. When they are no longer needed, they
should be made to release that memory, so it can be re-used. If objects do not let go of
memory, we eventually end up with no free memory when we try and run a program.
This is known as 'memory leakage'.
How do our programming languages handle this?

In VB.NET we used Class Car earlier

When we want to reclaim memory we use following code for Garbage collection:

ThisCar = Nothing ' garbage collection

Exception handling

Run-time errors can occur for many reasons.

 Some examples are division by zero, invalid array index or trying to open a non-
existent file.

 Run-time errors are called 'exceptions'.

 They can be handled (resolved) with an error subroutine (known as an
'exception handler'), rather than let the program crash.

Using pseudocode, the error-handling structure is:

TRY
 <statementsA>
EXCEPT
 <statementsB>
END TRY

Any run-time error that occurs during the execution of <statementsA> is caught and
handled by executing <statementsB>. There can be more than one EXCEPT block,
each handling a different type of exception. Sometimes a FINALLY block follows the
exception handlers. The statements in this block will be executed regardless of whether
there was an exception or not.
VB.NET is designed to treat exceptions as abnormal and unpredictable erroneous
situations. You may find you need to include exception handling in the code for Worked
Example 26.02. Otherwise the end of file is encountered and the program crashes.

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

27
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

TASK 26.03

Add exception-handling code to your programs for Task 26.01 or Task 26.02. Test your
code handles exceptions without the program crashing

Solution code is written below:
Module Module1

 Class Borrower

 Private BorrowerName As String

 Private EmailAddress As String

 Private BorrowerID As Integer

 Private ItemsOnLoan As Integer

 Public Sub Create(ByVal n As String, ByVal e As String, ByVal b As Integer)

 BorrowerName = n

 EmailAddress = e

 BorrowerID = b

 ItemsOnLoan = 0

 End Sub

 Public Function GetBorrowerName() As String

 GetBorrowerName = BorrowerName

 End Function

 Public Function GetEmailAddress() As String

 GetEmailAddress = EmailAddress

 End Function

 Public Function GetBorrowerID() As Integer

 GetBorrowerID = BorrowerID

 End Function

 Public Function GetItemsOnLoan() As Integer

 GetItemsOnLoan = ItemsOnLoan

 End Function

 Public Sub UpdateItemsOnLoan(ByVal n As Integer)

 ItemsOnLoan += n

 End Sub

 Public Sub PrintDetails()

 Console.WriteLine("Borrower : " & BorrowerName)

 Console.WriteLine("ID : " & BorrowerID)

 Console.WriteLine("email : " & EmailAddress)

 Console.WriteLine("Items on loan: " & ItemsOnLoan)

 End Sub

 End Class

 Sub Main()

 Dim NewBorrower As New Borrower()

 NewBorrower.Create("Sylvia", "adc@cie", 123)

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

28
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

.

 NewBorrower.UpdateItemsOnLoan(3)

 NewBorrower.PrintDetails()

 NewBorrower.UpdateItemsOnLoan(-1)

 NewBorrower.PrintDetails()

 Console.ReadLine()

 End Sub

End Module

Containment, or aggregation:
Containment is the process by which one class can contain other classes. This can be
presented in a class diagram. When the class ‘aeroplane’ is defined, and the definition
contains references to the classes – seat, fuselage, wing, cockpit – this is an example of
containment.

Containment {aggregation}

 Containment means that one class contains other classes.
 For example, a car is made up of different parts and each part will be an object based on

a class.
 The wheels are objects of a different class to the engine object.
 The engine is also made up of different parts.
 Together, all these parts make up one big object.

Containment Diagram

Containment: a relationship in which one class has a component that is of another class type.

WORKED EXAMPLE:

Using containment:

A college runs courses of up to 50 lessons. A course may end with an· assessment.
Object-oriented programming is to be used to set up courses. The classes required are
shown in figure:

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

29
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

WORKED EXAMPLE solution VB.NET :

Module Module1 'CONTAINMENT

 Class Assessment

 Private AssessmentTitle As String
 Private MaxMarks As Integer

 Public Sub Create(ByVal t As String, ByVal m As Integer)
 AssessmentTitle = t

 MaxMarks = m

 End Sub

 Public Sub OutputAssessmentDetails()

 Console.Write(AssessmentTitle & "Marks: " & MaxMarks)
 End Sub

 End Class

 Class Lesson
 Private LessonTitle As String

 Private DurationMinutes As Integer

 Private RequiresLab As Boolean

 Public Sub Create(ByVal t As String, ByVal d As Integer, ByVal r As Boolean)

 LessonTitle = t
 DurationMinutes = d

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

30
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

 RequiresLab = r

 End Sub

 Public Sub OutputLessonDetails()

 Console.WriteLine(LessonTitle & " " & DurationMinutes)

 End Sub
 End Class

 Class Course
 Private CourseTitle As String

 Private MaxStudents As Integer

 Private NumberOfLessons As Integer = 0
 Private CourseLesson(50) As Lesson

 Private CourseAssessment As Assessment

 Public Sub Create(ByVal t As String, ByVal m As Integer)

 CourseTitle = t

 MaxStudents = m

 End Sub

 Sub AddLesson(ByVal t As String, ByVal d As Integer, ByVal r As Boolean)

 NumberOfLessons = NumberOfLessons + 1
 CourseLesson(NumberOfLessons) = New Lesson

 CourseLesson(NumberOfLessons).Create(t, d, r)

 End Sub

 Public Sub AddAssessment(ByVal t As String, ByVal m As Integer)

 CourseAssessment = New Assessment

 CourseAssessment.Create(t, m)
 End Sub

 Public Sub OutputCourseDetails()
 Console.Write(CourseTitle)

 Console.WriteLine("Maximum number of students: " & MaxStudents)

 For i = 1 To NumberOfLessons
 CourseLesson(i).OutputLessonDetails()

 Next

 End Sub
 End Class

 Sub Main()

 Dim MyCourse As New Course
 MyCourse.Create("Computing", 10) ' sets up a new course

 MyCourse.AddAssessment("Programming", 100) ' adds an assessment

 ' add 3 lessons

 MyCourse.AddLesson("Problem Solving", 60, False)

 MyCourse.AddLesson("Programming", 120, True)

 MyCourse.AddLesson("Theory", 60, False)
 MyCourse.OutputCourseDetails()'check it all works

 Console.ReadLine()

 End Sub

End Module

http://www.majidtahir.com/

20.1 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9618

with Majid Tahir

31
Email: majidtahir61@gmail.com Contact: 03004003666 www.majidtahir.com

Refrecences:

 Cambridge AS & A level Coursebook

 Cambridge AS & A level Teacher’s Resource

 AS & A level Computer Science by HODDER EDUCATION

http://www.majidtahir.com/

