
 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

1 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

Syllabus Content: 
3.1 Data representation 
3.1.3 Real numbers and normalised floating-point representation 

 describe the format of binary floating-point real numbers 

 convert binary floating-point real numbers into denary and vice versa  

 normalise floating-point numbers & show understanding of the reasons for normalization 

 effects of changing the allocation of bits to mantissa and exponent in a floating-point 

representation 

 how underflow and overflow can occur 

 consequences of a binary representation only being an approximation to the real number it 

represents (in certain cases) 

 show understanding that binary representations can give rise to rounding errors 

 

(Sec.3.1.3) 

 Real numbers:
A real number is one with a fractional part. When we write down a value for a real number in 
the denary system we have a choice. We can use a simple representation or we can use an 
exponential notation (sometimes referred to as scientific notation). In this latter case we 
have options.  
 

For example, the number 25.3 might alternatively be written as: 

 

0.253 x 102 or 2.53 x 101 or 25.3 x 10° or 253 x 10-1 
For this number, the simple expression is best but if a number is very large or very small the 
exponential notation is the only sensible choice. 
 

Fixed-point representations: 
One possibility for handling numbers with fractional parts is to add bits after the decimal point: 
The first bit after the decimal point is the halves place, the next bit the quarter’s place, the next 
bit the eighth’s place, and so on. 

    4       2   1 0.5    0.25      0.125            Place values 

 

                Place Values 

Suppose that we want to represent 1.625(10). We would want 1 in the ones place, leaving us 

with 0.625. Then we want 1 in the halves place, leaving us with 0.625 − 0.5 = 0.125. No 

quarters will fit, so put a 0 there. We want a 1 in the eighths place, and we subtract 0.125 

from 0.125 to get 0. 



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

2 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

 

So the binary representation of 1.625 would be 1.101(2). 

So how fixed number representation stores a fractional number in binary format? See 
explanation below 

A number 40.125 is to be converted into binary. First number 40 has to be converted as a 

normal denary to binary conversion, which gives: 

    40 = 101000  
40 written with sign bit    40 = 0101000 

Now 0.125 has to be converted to binary. We Multiply 0.125 by 2 e.g. 
 
0.125 x 2 = 0.25 this is less than 1 so we put 0 
    0.125x2 = 0.25  0 

0.25 x 2 = 0.5  0 
0.5 x 2   =   1  1 

 

So fractional number 40.125 number becomes 0101000.001 
 
     Sign bit +ve 
Place values          0.5      0.25     0.125     

                   64     32    16     8     4      2      1    .   ½   ¼    1/8 

        0    1   0   1   0   0   0  .  0   0   1 
 

Negative Fixed Point Representation 

Suppose -52.625 has to be converted into binary:   52 = 110100  
50 written with signed bit  52 = 0110100 

Now multiply 0.625 by 2 e.g. 0.625 x 2 = 1.25 so we put 1  

    

    52.625 = 0110100.101 



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

3 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

One’s Compliment   =  1001011.010 (by inverting 0’s to 1 and 1’s to 0) 
Two’s Compliment = -52  =  1001011.011 (by adding 1 in One’s compliment) 

So fractional number -52.625 becomes 1001100.101 

     Sign bit -ve 
In Fixed-Point Representation option, an overall number of bits are chosen with a defined 
number of bits for the whole number part and the remainder for the fractional part. 
 
Some important non-zero values in this representation are shown in Table below. 
(The bits are shown with a gap to indicate the implied position of the binary point.) 
 

 

Floating-Point Number Representation 

 
The alternative is a floating-point representation. The format for a float in g-point number 

can be generalised as:

In this option a defined number of bits are used for what is called the significand or 
mantissa, ±M. The remaining bits are used for the exponent or exrad, E. The radix, R is 
not stored in the representation; it has an implied value of 2. 

 
 

Conversion from +ve Real Number to Binary Number: 

A number 40.125 is to be converted into binary. First number 40 has to be converted as a 

normal denary to binary conversion, which gives: 

    40 = 101000  



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

4 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

40 written in inclusive of sign bit  40 = 0101000 

         Sign bit 

Now 0.125 has to be converted to binary. We Multiply 0.125 by 2 e.g.  

0.125 x 2 = 0.25 this is less than 1 so we put   0

    0.125x2 = 0.25  0 
0.25 x 2 = 0.5  0 
0.5 x 2   =   1  1 

So fractional number 40.125 number becomes 0101000.001 

     Sign bit +ve 
But in binary numbers, decimals cannot be written. Decimal has to be converted into binary 
number too.  

0 1 0 1 0 0 0 . 0 0 1 

 
 
Decimal moved 6 places to left so exponent = 6 
Six in binary is represented as  6 = 110 
 

So the number becomes   0 101000 001   0110  so number is 0101000001 0110 

                 (normalized form) 
    

 
 Past Paper questions: 

Question 1: (9608/32/O/N/16) 

In a particular computer system, real numbers are stored using floating-point representation 
with: 

 8 bits for the mantissa 

 8 bits for the exponent 

 two’s complement form for both mantissa and exponent 
Calculate the floating point representation of + 3.5 in this system. Show your working. 

Solution:  

3.5 has to be converted into binary. First number 3 has to be converted as a normal denary to 

binary conversion, which gives: 3 =  11 

3 written in inclusive of sign bit  3 = 011 

Now 0.5 has to be converted to binary. 0.5 x 2 = 1  



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

5 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

3.5 = 11.1       
   So the number becomes 011.1 

          Sign bit 

011.10000 

0 1 1   .  1     0      0     0      0   
 

(decimal moved 2 places right after sign bit) 

   

So the exponent is 2  so Mantissa and exponent would be 

01110000  00000010 
 
 
    

 Conversion from -ve Real Number to Binary Number:

Question 1: (9608/32/O/N/16) 

In a particular computer system, real numbers are stored using floating-point representation 
with: 

 8 bits for the mantissa 

 8 bits for the exponent 
 two’s complement form for both mantissa and exponent 

Calculate the floating – point representation of -3.5 in this system. Show your working. 

3 written in inclusive of sign bit  Solution:  3 = 11 

Now 0.5 has to be converted to binary. 0.5 x 2 = 1  

3.5 = 11.1 

Now  011.10000 = 3.5 written in whole byte 

0 1 1   .  1     0      0     0      0   
 
(decimal moved 2 places right after sign bit)  

So exponent = 2 which will be binary in 1 byte = 00000010 (exponent) 



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

6 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

01110000  = +3.5 (has to be converted into -3.5) See the process below: 

01110000 = 3.5 
10001111 = 1’s Compliment 
 
      1111        carry bits 
10001111 
            +1 

10010000 = 2’s Compliment = -3.5  

   

 Mantissa expressed in 8 bits and exponent expressed in 8 bits would be 

10010000  00000010 
 
    
 

 Conversion from -ve Real Number to Binary Number:

Suppose -52.625 has to be converted into binary:   52 = 110100  
52 written inclusive of sign bit  52 = 0110100 

When we multiply 0.625 by 2 e.g. 0.625 x 2 = 1.25 so we put 1  

0.625x2 = 1.25  1 
0.25 x 2 = 0.5 0 
 0.5 x 2   =   1 1 

                            52.625 = 0110100.101 

One’s Compliment                     = 1001011.010 (by inverting 0’s to 1 and 1’s to 0) 

Two’s Compliment  -52.625 = 1001011.011 (by adding 1 in One’s compliment) 

So fractional number -52.125 becomes 1001011.011 

     Sign bit -ve 
But in binary numbers, decimals cannot be written. Decimal has to be converted into binary 
number too.  

1 0 0 1 0  1  1 . 0 1 1 

 
 
Decimal moved 6 places to left so exponent = 6 



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

7 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

Seven in binary is represented as 6 = 110 

So the number becomes      1 001011011 110  so number is 1001011011  110 

 
     
 

 Conversion from Binary Number to +ve Real Number: 

Example 1:  9608/31/O/N/15 

Q#1)   In a computer system, real numbers are stored using floating-point representation with: 

 8 bits for the mantissa, followed by 8 bits for the exponent  
 Two’s complement form is used for both mantissa and exponent. 

A real number is stored as the following two bytes: 
     Mantissa     Exponent 

0 0 1 0 1 0 0 0          0 0 0 0 0 0 1 1 
Calculate the denary value of this number. Show your working   

Solution:           sign bit 

As Exponent 0 0 0 0 0 0 1 1 = 3 denary 
Now Mantissa =  0  0 1 0 1 0 0 0 

Decimal is actually after the sign bit 

So decimal would be 0.0101000 
As exponent is 3 so decimal will move three places to right  0 .  0  1   0  1  0  0  0 

    
             Place Values                                             0.5     0.25     0.125     0.0625              

8      4    2    1     .  ½    ¼     1/8      1/16  

0     0   1   0   .  1     0      0       0 
 
     2 . 5   (Calculated as per place values) 

Example 2: 
Q#2) Floating Point Binary representation uses 4 bits for Mantissa and 4 bits for exponent 
 Convert 0110 0010  

Solution:            

  As Exponent = 0 0 1 0 = 2 denary     sign bit

 
Now Mantissa =  0  1 1 0 

Decimal is actually after the sign bit 

So decimal would be 0.110 
 
As exponent is 2 so decimal will move two places to right   0 .  1     1     0  

 
 011 . 0 
+  3  . 0   (Calculated as per place values) 

 



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

8 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

 Conversion from Binary Number to -ve Real Number:

Example 1: 
Floating Point Binary representation uses 4 bits for Mantissa and 4 bits for exponent 
 

Convert  1001  0001  

Solution:           sign bit 

 As Exponent = 0 0 0 1  = 1 denary 
Now Mantissa =  1 0 0 1 

Decimal is actually after the sign bit 

 
So decimal would be 1.001 
As exponent is 1 so decimal will move one place to right  1 . 0   0  1  

   2   1     ½ ¼ (place Values)  
1 0 .  0   1  

 sign bit

-2   + ¼    (Calculated as per place values)      

      = -2   +  0.25  
(-2 is –ve and +0.25 is +ve, so by adding 0.25 in -2, we get)  = - 1 . 75 (Answer) 

 

9608/32/M/J/18 

 Binary Number to -ve Real Number with –ve Exponent:

3 In a computer system, real numbers are stored using normalised-floating point representation 
with:  

 8 bits for the mantissa  

 4 bits for the exponent  

 two’s complement form for both mantissa and exponent. 

 

 
Now we first solve the Exponent   

      Place Value           -  8   4  2     1

1    1    1    0 

Exponent is -2 

Now solving Mentissa 
 

1 0 1 1 0 0 0 0 
 
 



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

9 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

We know decimal lies after sign bit so number becones 
1   .     0 1 1 0 0 0 0 

Now take 1’s compliment   

   0   .  1 0 0 1 1 1 1 Number becomes

   Carry     1 1 1 1 
0   .     1 0 0 1 1 1 1 

Now 2’s Compliment Add 1             + 1 
 
     0   . 1 0 1 0 0 0 0  

 

Now because our exponent was -2 we have to shift decimal two places left 

   
    0 0 0   . 1 0 1 0 0 0 
 

Because our number was negative so number with sign is 

 
Place values   1 0.5    0.25    0.125    0.0625       0.03125  
 

Number becomes        -  0     .   0        0       1         0          1    

     1/2      1/4      1/8        1/16        1/32 

 
 

   -5/32  By solving denary number is either

Or 

       -0.15625 

 
 
 
 
 
 
 

A floating-point number is typically expressed in the scientific notation, with a fraction (F) or 
Mantissa (M), and  exponent (E) of a certain radix (R), in the form of  
 
 
 

+M×RE or -M×RE 

 
Denary numbers use radix 10 (M×10E); while binary numbers use radix of 2 (M×2E). 
 
Representation of floating point number is not unique. For example, the number 55.66 can be 
represented as 5.566×101, 0.5566×102, 0.05566×103, and so on.  



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

10 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

 
The fractional part can be normalized. In the normalized form, there is only a single non-
zero digit before the radix point.  
 
For example, decimal number 123.4567 can be normalized as 1.234567×102; binary 
number 1010.1011 can be normalized as 1.0101011×23. 

 

Precision and normalization: 
 
In floating-point representation, decision has to be made for the total number of bits to be used 
and split between those representing the mantissa and the exponent.  
 
In practice, a choice for the total number of bits to be used will be available as an option when 
the program is written.  
 
However, the split between the two parts of the representation will have been determined by 
the floating-point processor.  

 

 

If you have a choice you would base a decision on the fact that increasing the number of 

bits for the mantissa would give better precision for a value stored but would leave 

fewer bits for the exponent so reducing the range of possible values. 

 
In order to achieve maximum precision, it is necessary to normalise a floating-point number. 
 
Since precision increases with an increasing number of bits for the mantissa it follows that 
optimum precision will only be achieved if full use is made of these bits.  
In practice, that means using the largest possible magnitude for the value represented by the 
mantissa. To illustrate this we can consider the eight-bit representation used in Tables below.  
 
Table below shows possible representations for denary 2 using this representation. 
 

 

Representation of denary number 2, using four bits for mantissa and four bits exponent. 

 

For a negative number we can consider representations for -4 as shown in Table Below 



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

11 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

 

  

Representation of denary number -4, using four bits for mantissa and four bits exponent. 

 

 
It can be seen that when the number is represented with the highest magnitude for the 
mantissa, the two most significant bits are different. This fact can be used to recognise 
that a number is in a normalised representation. 
 
The values in these tables also show how a number could be normalised.  

Normalizing the Mantissa 

Before a floating-point binary number can be stored correctly; its mantissa must be 

normalized. The process is basically the same as when normalizing a floating-point 

decimal number.  

For example, decimal 1234.567 is normalized as 1.234567 x 103 by moving the decimal 

point so that only one digit appears before the decimal. The exponent expresses the 

number of positions the decimal point was moved left (positive exponent) or moved 

right (negative exponent).Similarly, the floating-point binary value 1101.101 is 

normalized as 1.101101 x 23 by moving the decimal point 3 positions to the left, and 

multiplying by 23. Here are some examples of normalizations: 

Normalization of a +Ve binary Number: 

For a positive number, the bits in the mantissa are shifted left until the most significant bits are 

0 followed by 1. For each shift left the value of the exponent is reduced by 1. 

 



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

12 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

Normalization of a –Ve binary Number: 

 
 

The same process of shifting is used for a negative number until the most significant bits are 

1 followed by 0. In this case, no attention is paid to the fact that bits are falling off the 

most significant end of the mantissa. 

What are Overflow and Underflow? 
Overflow occurs when calculations produce results exceeding the capacity of the result. 
 
Example: 
16-bit integers can hold numbers in the range -32768...32767. So what happens when you 
add 20000 to 20000? 
 

    1  111   1 (carry digits)  

   0100111000100000 

 + 0100111000100000    

 

   1001110001000000     
The sixteenth bit contains a '1' as a result of adding the two numbers. Yet, numbers 
with a '1' in the leading position are interpreted as negative numbers, so instead of 
'40000', the result is interpreted as '-25536'. 

Overflow can also occur in the exponent of a floating point number, when the exponent 
has become too large to be represented using the given representation for floating-
point numbers (e.g, 7 bits for 32-bit integers, or exponents larger than 63). 

Underflow: 



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

13 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

A calculation resulting in a number so small that the negative number used for the 
exponent is beyond the number of bits used for exponents is called underflow (e.g, 7 
bits for 32-bit integers, or exponents smaller than -64). 

The term arithmetic underflow (or "floating point underflow", or just "underflow") 

is a condition in a computer program where the result of a calculation is a number of 

smaller absolute value than the computer can actually store in memory. 

Overflow: 
A CPU with a capacity of 8 bits has a capacity of up to 11111111 in binary. If one more bit 

was added there would be an overflow error. 

An explanation of binary overflow errors 
Download Transcript 

Example: 8-bit overflow 

An example of an 8-bit overflow occurs in the binary sum 11111111 + 1 (denary: 255 + 1). 

 

 

The total is a number bigger than 8 digits, and when this happens the CPU drops the 
overflow digit because the computer cannot store it anywhere, and the computer thinks 
255 + 1 = 0. 

 

http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-z7mkxnb
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-zsf2fg8
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-zpnqn39
http://www.bbc.co.uk/education/guides/zjfgjxs/revision/3#glossary-zmhjpv4
https://bam.files.bbci.co.uk/bam/live/content/zc9sfg8/transcript


 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

14 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

Rounding errors 
Because floating-point numbers have a limited number of digits, they cannot represent 
all real numbers accurately: when there are more digits than the format allows, the 
leftover ones are omitted - the number is rounded. There are three reasons why this 
can be necessary: 

 Large Denominators: In any base, the larger the denominator of an 

(irreducible) fraction, the more digits it needs in positional notation. A sufficiently 

large denominator will require rounding, no matter what the base or number of 

available digits is. For example, 1/1000 cannot be accurately represented in less 

than 3 decimal digits, nor can any multiple of it (that does not allow simplifying 

the fraction). 

 Periodical digits: Any (irreducible) fraction where the denominator has a prime 

factor that does not occur in the base requires an infinite number of digits that 

repeat periodically after a certain point. 

 For example, in decimal 1/4, 3/5 and 8/20 are finite, because 2 and 5 are the 

prime factors of 10. But 1/3 is not finite, nor is 2/3 or 1/7 or 5/6, because 3 and 

7 are not factors of 10. Fractions with a prime factor of 5 in the denominator can 

be finite in base 10, but not in base 2 - the biggest source of confusion for most 

novice users of floating-point numbers. 

 Non-rational numbers Non-rational numbers cannot be represented as a 

regular fraction at all, and in positional notation (no matter what base) they 

require an infinite number of non-recurring digits. 

Many new programmers become aware of binary floating-point after seeing their 
programs give odd results: ―Why does my program print 0.10000000000000001 when I 
enter 0.1?‖; ―Why does 0.3 + 0.6 = 0.89999999999999991?‖; ―Why does 6 * 0.1 not 
equal 0.6?‖ Questions like these are asked every day, on online forums 
like stackoverflow.com. 
 
The answer is that most decimals have infinite representations in binary. Take 0.1 for 
example. It’s one of the simplest decimals you can think of, and yet it looks so 
complicated in binary: 

http://floating-point-gui.de/formats/fp/
http://en.wikipedia.org/wiki/Real_number
http://floating-point-gui.de/formats/binary/
http://www.exploringbinary.com/floating-point-questions-are-endless-on-stackoverflow-com/
http://stackoverflow.com/


 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

15 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

  

 
Decimal 0.1 in Binary (To 1369 Places) 
The bits go on forever; no matter how many of those bits you store in a computer, you will never 
end up with the binary equivalent of decimal 0.1. 

0.1 In Binary 
0.1 is one-tenth, or 1/10. To show it in binary — that is, as a bicimal — divide binary 1 by 
binary 1010, using binary long division: 

 
Computing One-Tenth In Binary 
The division process would repeat forever — and so too 
the digits in the quotient — because 100 (―one-zero-
zero‖) reappears as the working portion of the dividend. 
Recognizing this, we can abort the division and write the 
answer in repeating bicimal notation, as 0.00011. 

Summary 
In pure math, every decimal has an equivalent bicimal. In 
floating-point math, this is just not true. 
 

 
Even with 10, 20, or 100 digits, you would need to 

do some rounding to represent an infinite number in 

a finite space. If you have a lot of digits, your 

rounding error might seem insignificant. But consider 

what happens if you add up these rounded numbers 

repeatedly for a long period of time. If you round 

1/7 to 1.42 x 10-1 (0.142) and add up this 

representation 700 times, you would expect to get 

100. (1/7 x 700 = 100) but instead you get 99.4 

http://www.exploringbinary.com/bicimals/
http://www.exploringbinary.com/binary-division/
http://www.exploringbinary.com/converting-a-bicimal-to-a-fraction-subtraction-method/


 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

16 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

(0.142 x 700). 

 

Relatively small rounding errors like the example above can have huge impacts. 
Knowing how these rounding errors can occur and being conscious of them will help 
you become a better and more precise programmer. 

Errors due to rounding have long been the bane of analysts trying to solve equations 
and systems. Such errors may be introduced in many ways, for instance: 

 inexact representation of a constant 
 integer overflow resulting from a calculation with a result too large for the word 

size 
 integer overflow resulting from a calculation with a result too large for the 

number of bits used to represent the mantissa of a floating-point number 
 accumulated error resulting from repeated use of numbers stored inexactly 

Summary 

Rounding error is a natural consequence of the representation scheme used for integers 
and floating-point numbers in digital computers. Rounding can produce highly 
inaccurate results as errors get propagated through repeated operations using 
inaccurate numbers. Proper handling of rounding error may involve a combination of 
approaches such as use of high-precision data types and revised calculations and 
algorithms. Mathematical analysis can be used to estimate the actual error in 
calculations. 

 
 
 
 
 
 
 
 
 
 
 
Past Paper question:  9608/33/O/N/15 



 

 

   

(Paper 3. Sec 3.1) Data Representation Computer Science 9608  

with Majid Tahir 

17 
Email: majidtahir61@gmail.com Contact: +923004003666 www.majidtahir.com 

 

Solution: 

Any one of the below mentioned answers: 
o cannot be represented exactly in binary 
o 0.1 represented here by a value just less than 0.1 
o the loop keeps adding this approximate value to counter 
o until all accumulated small differences become significant enough to be 

seen 
 

Refrences 

 Book: AS and A-level Computer Science by  

 http://www.bbc.co.uk/education/guides/zjfgjxs/revision/1  

 https://www.tutorialspoint.com/vb.net/vb.net_constants.htm 

 https://www.cs.drexel.edu/~introcs/F2K/lectures/5_Scientific/overflow.html  

 https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Data/underflow.html 

 

http://www.bbc.co.uk/education/guides/zjfgjxs/revision/1
https://www.tutorialspoint.com/vb.net/vb.net_constants.htm
https://www.cs.drexel.edu/~introcs/F2K/lectures/5_Scientific/overflow.html
https://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Data/underflow.html

