9608/31/O/N/15 **1** In a particular computer system, real numbers are stored using floating-point representation with: 8 bits for the mantissa, followed by 8 bits for the exponent Two's complement form is used for both mantissa and exponent. (a) (i) A real number is stored as the following two bytes: | | | | | Man | tissa | | | | | | | | Exp | onent | | | | |-------|---|---------|---------|---------------|---------|---------|--------|--------------|--------|----------|---------------|---------------|----------|--------|---------------|---------------|---------| | | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | | | | Calcı | ılate tl | he der | narv v | alue o | f this | numh | er. Sh | ow vo | ur wo | rkina | | | | | | | | | Guiot | aidto ti | 10 001 | iai y v | u,uo 0 | | , ann | , o., o. | .o., ye | , ai 110 | mang. | | | | | | • • • | | | | | | | | | ••••• | | | | | | | | | | • • • | • • • | | ••••• | | | | | ••••• | | | | ••••• | ••••• | | ••••• | ••••• | ••••• | ••••• | | • • • | [3] | | | | | | | | | | | | | | | | | | ii) | Explain why the floating-point number in part (a)(i) is not normalised. | [2] | | | iii |) No | rmalis | se the | floatii | ng-po | int nu | mber | in pa | rt (a) | (i). | | | | | | | | | | | | | Мо | ntissa | | | | | | | | Expo | nent | | | | | | | | | 1 | 111334 | Т | | Т |] | | | | | | \neg | | | | | | | | | | | | | J | | | | | | | |
[2] | | | | | | | positiv | /e nur | nber | that c | an be | e writt | en as | a no | rmalis | ed flo | ating- | point | (-) | | ıu | mbei | r in th | is forr | nat.
Manti | issa | | | | | | | | Expon | ent | | | | | Γ | | | \neg | ,,,,,,,,, | | | | | Γ | | $\overline{}$ | $\overline{}$ | <u> </u> | | $\overline{}$ | $\neg \vdash$ | | | L | | | | | | | | | | | | | | | | | | Topical Past Paers 9608 with Sir Majid Tahir | in this form | | | | e num | iber u | nat ca | an be | WIILLE | en as | a non | | | ating- | point | number | |------------------------------------|-------------|--------------|----------|--------|--------|--------|--------|--------|---------|---------|--------|---------|---------------------|-------|--------| | | | Mar | ntissa | | | | | | | | Expo | onent | (iii) If a pos | sitive | numhe | er is ac | ded t | to the | numh | ner in | nart | (b)(i) | evnlai | in wh: | at will | hann | en | [2] | | (iii) ii a po | | | | | | | | | | - | ••••• | | | | | | | | | | | (c) A stud | | rites a | | | | | | | | | | | | | [2] | | FOR | X ←
OUTP | - 0 т
х + | | 10 | | | | | | | | | | | | | The stud | ent is | surpri | sed to | see t | hat th | e pro | gram | outp | uts the | e follo | wing | seque | ence: | | | | 0.0 0.1 | 0.2 | 0.29 | 99999 | 0.3 | 99999 | 99 | •• | | | | | | | | | | Explain wh | y this | outpu | t has d | occuri | red. | ••••• | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | •••••• | | | •••••• | | | | [0] | | 9608/32/O
1 In a parti
with: | | | ıter sy | stem, | real r | numb | ers a | re sto | red u | sing f | loatin | g-poir | nt repi | resen | tation | | willi. | - | bits fo | | | | ollowe | ed by | | | | | | | | | Two's complement form is used for both mantissa and exponent. Contact: 03004003666 # Topical Past Paers 9608 with Sir Majid Tahir | (a) (i |) ₽ | real | number is | stored | as the | following | 12-bit binary | pattern | |--------|-----|------|-----------|--------|--------|-----------|---------------|---------| |--------|-----|------|-----------|--------|--------|-----------|---------------|---------| | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | |----------------|---------|--------|--------|--------------------|---------|-------------------|---------------|---------|------------|--------|--------|------| | Calcu | ılate t | he de | nary v | alue d | of this | numb | er. Sh | ow yo | ur wor | king. | i) Giv | e the | norm | alised | d bina | ry patt | ern fo | r +3.5 | . Sho | w you | r work | king. | ••••• |
ow you | | | | | | | | | | | | | | - | 'ho n | ımbor | of hit | e avai | lahla + | o ropr | ocon t | a rool | numb | or ic i | noroo | end to | . 16 | | | | | | | • | | | | oer is i | | | | | | | | | e to us
n be re | | | 4 bits | for the | e man | tissa, | state | what | (ii) If the system were to use the extra 4 bits for the exponent instead, state what the effect would be on the numbers that can be represented. | |--| | [| | (c) A student enters the following expression into an interpreter: | | OUTPUT (0.1 + 0.2) | | The student is surprised to see the following output: | | 0.30000000000001 | | Explain why this output has occurred. | | | | | | | | | | [3] | | 9608/31/O/N/16 1 In a particular computer system, real numbers are stored using floating-point representation | | with: 12 bits for the mantissa | | 4 bits for the exponent | | two's complement form for both mantissa and exponent | | (a) Calculate the floating-point representation of + 2.5 in this system. Show your working. Mantissa Exponent | | | | | | | | | | | | [3] | (b) Calculate the floating-point representation of ${\bf -2.5}$ in this system. Show your working. | | | | | Man | tissa | l | | | | | | | Exp | onen | t | |------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------|--------|------|--------|-------|-------|--------| | • | | | | | | | | | | |] | | | | | | | <u> </u> | | J | ind the | dena | arv va | alue fo | or the | follov | vina k | oinarv | , float | ina-p | oint n | umbe | er. Sh | ow vo | our w | orkinc | | | | , | | | | Ü | · | | 0. | | | | • | | | | | | | | Man | tissa | | | | | | | | Expo | nent | | | • 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | ••••• | | | | | | | | | | | | |) State | whe | ther t | he flo | ating- | -point | num | ber gi | iven i | n part | (c) is | norr | nalise | ed or | not n | ormali | | | | | | | | | | | | | | | | | | | Justify | your | answ | er giv | en in | part | (d)(i) | | | | | | | | | | | , | , | | Ü | | | | | | | | | | | | | | | | | •••• | he sys
te two | | | | | | | | | | | | nussa | a and | ine e | xpone | Exponent ### 9608/31/M/J/18 **1** In a computer system, real numbers are stored using normalised floating-point representation with: 12 bits for the mantissa 4 bits for the exponent Mantissa Two's complement form for both mantissa and exponent. (a) Find the denary value for the following binary floating-point number. | | | | | | | | | | | | | | | | | • | | | | |-----|-------|-------|-------|-------|------|-----|---|---|---|-------|---|---|---------|------|---|---|---|---|-----| | | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | | | 0 | 1 | 0 | 1 | | | Sho | ow yo | our w | orkii | ng. V | Vork | ing | ı | | | | | | | | | | | | | | | |
 | of 5.25 | | | | | | [O] | | IOW | king | ••••• | | | |
 | | | | | • | Mantissa | Exponent | | | | | | |--|-----------------------|--|--|--|--|--| | | [3] | | | | | | | (c) The size of the mantissa is decreased and the size of the exponent this affects the range and precision of the numbers that the computer s | system can represent. | | | | | | | | | | | | | | | 9608/32/M/J/18 3 In a computer system, real numbers are stored using normalised-float with: 8 bits for the mantissa 4 bits for the exponent two's complement form for both mantissa and exponent. (a) Calculate the normalised floating-point representation of + 21.75 in working. | | | | | | | | Working | | | | | | | | Mantissa Expo | nent | | | | | | **(b)** Find the denary value for the following binary floating-point number. | | | | | | Ma | anti | ssa | | | | | | | | | | E | xpo | nen | t | |------|---|--------|-------|-------|-------|-------|-------|-------|--------|--------|------|-------|-------|------|-----|-------|---|-----|------|-----| | | | 1 | 0 | 1 | 1 | L | 0 | 0 | 0 | 0 | | | | | | 1 | | 1 | 1 | 0 | | | | - | ır wo | | _ | An | Answer[3] | 1 lı | 9608/31/M/J/19 1 In a computer system, real numbers are stored using normalised floating-point representation with: twelve bits for the mantissa four bits for the exponent. | The | e ma | antiss | sa an | d exp | one | nt ar | re bo | th in | two's | com | plen | nent | form | | | | | | | | | | Calorking | | e the | dena | ary v | alue | for t | he fo | llowii | ng bir | ary | float | ing-p | oint | nun | nber. | S | how | your | | | | | | | | ı | Man | tissa | ı | | | | | | | | | | Ехр | oner | nt | | [| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | | | | [| 0 | 1 | 1 | 1 | | Wo | orkin | g | Working | An | swei | r | | | | | | | | | | | | | | | | | | [3] | (b) Calculate the normalised floating-point representation of +1.5625 in this system. Show your Topical Past Paers 9608 with Sir Majid Tahir | Wor | king | | | | | | | | | | | ••• | | | | | | |--------|----------------|---------|---------|--------|--------|------------|--------|--------|--------|-------|--------|---------|----------------------|--------|----------|--------|----------| | ••••• | | | | ••••• | | | | | | | | ••• | | ••••• | | | •••• | | | | | | | | | | | | | | ••• | Man | tiss | a | | | | | | | Ex | poner | nt | | | | | Т | Τ | | \top | П | Π | Τ | \top | Т | Т | | Γ | \top | | \top |] | | | | | | | | | | | | | | _ | | | | | [3] | | (c) (i | i) \//r | ita th | a lar | neet | nositi | iva n | umh | ar tl | hat c | an h | a str | ⊃r4 | ed as a normalise | d floa | tina-na | oint | | | | | | this | | | IVC I | IUITIK | ו אכו | ilat C | and | ie sit | J1 (| ed as a normanser | u iioa | ung-po | או וונ | | | | | | | | Mant | issa | l | | | | | | | Exp | ponen | t | | | | | | | | | | | | | | | 7 | | | | | | | _ | | | | | | | | | | | _ | _ | | | | _ | [2] | | (ii) V | Vrite | the s | smalle | est n | on-ze | ero p | ositi | ive n | umb | er th | nat ca | ar | n be stored as a no | ormal | ised flo | oatin | g- | | poin | t nun | nber | using | - | form | | | | | | | | | _ | | | | | _ | | | | ' | Manti | ıssa
—— | | | | | | _ | | | onent | :
— | [2] | | (d) T | he d | evel | oper | of a ı | new p | orog | ramı | ming | , lanç | guag | je de | ci | des that all real nu | umbe | rs will | now | be | | store | ed us | ing 2 | 20-bit | norn | nalise | ed flo | oatin | ıg-po | oint r | epre | sent | tat | tion. She must dec | cide h | ow ma | any b | its to | | use | for th | e ma | antiss | a an | id hov | w ma | any l | bits 1 | for th | ne ex | pone | er | nt. | - | | | | | | | ing 6 | eithe | r a la | arge | num | nb | er of bits for the m | antis | sa, or | a larç | је | | num | ber c | of bits | s for t | he e | xpon | ent. | | | | | | | | | | | | | | | ••••• | | ••••• | | | | | ••••• | | ••••• | | | ••••• | | | | | ••••• | | ••••• | | ••••• | | | | | ••••• | | ••••• | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | ••••• | | ••••• | | ••••• | ••••• | | | | ••••• | | ••••• | | | ••••• | | | | | ••••• | | | | | | | | | | | | • • • • | | | | ا | ีเว1
 | ### Answers 9608/31/O/N/15 | 9608/31/ | O/N/15 | | | |------------------|-------------------|---|---------------------------| | 1 | (a) (i | 00101000 00000011
= <u>0.0101</u> × 2 †3
=10.1
=2.5 | [1]
[1]
[1] | | | (ii | For a positive number (mantissa starts with a zero) bit after binary point (second bit from left) should be | [1]
a one [1] | | | (iii | 00101000 00000011
= 01010000 00000010 | [1+1] | | | (b) (i | 01111111 0111111 | [1+1] | | | (ii | 01000000 1000000 | [1+1] | | | (iii | number will become too large to represent which will result in overflow | [1]
[1] | | | (c) A | ny point 1 mark | | | | O.
th | cannot be represented exactly in binary represented here by a value just less than 0.1 e loop keeps adding this approximate value to counter ntil all accumulated small differences become significar | | | Answers 9608/32/ | | | | | 1 | | 01101000 0011
= <u>0.1101</u> (or <u>1/2 + 1/4 + 1/16</u>) × 21 <u>3</u>
= 110.1
= 6.5 | [1+1]
[1] | | | (ii) | +3.5
= 11.1
= 0.111 × 212 (or indication of moving binary point
= 01110000 0010 | [1]
correctly) [1] | | | (iii) | 01110000 Allow f.t. from (ii) 10001111 One's complement on mantissa 10001111 +1 Two's complement = 10010000 0010 | [1]
[1] | | | (b) (i) | Precision/accuracy of numbers represented will inc | rease [1] | | | (ii) | Range of numbers represented will increase | [1] | | | (c) An | y point, 1 mark (max. 3) | | | | 0.1
jus
ade | /0.2 cannot be represented exactly in binary // round represented by a value just greater than 0.1 // 0.2 ret greater than 0.2 ding two representations together adds the two differnmed difference significant enough to be seen | epresented by a value [1] | www.majidtahir.com ### Answers 9608/31/O/N/16 | 1 | (a) | +2.5
= 010100000000 0010
Give full marks for correct answer (normalised or not normalised) | [3] | |-----|------|--|-----------------------| | | | = 10.1 = 0.101 \times 2 2 // evidence of shifting binary point appropriately | [1]
[1] | | | | | [Max 3] | | (b) | | 5
1100000000 0010
ve full marks for correct answer | | | | | e's complement of 12-bit mantissa of +2.5 to get two's complement | [1]
[1] | | (c) | | ve full marks for correct answer | [Max 3]
[3] | | | | 0.011 X 2 ³ // exponent is 3
11.0 // (1/4+1/8) * 8 | [1]
[1] | | (d) | (i) | Not normalised | [Max 3]
[1] | | | (ii) | First two bits should be different for normalised number
// because the number starts with 00 | [1] | | e) | | uced accuracy
reased range | [1]
[1 | ### 9608/31/M/J/18 www.majidtahir.com | Question | Answer | Marks | |----------|--|-------| | 1(a) | 1 mark per bullet max 2 □ 0101 = 5 (conversion of exponent to denary) □ 1.01110011010 = -0.10001100110 (conversion of mantissa to negative binary number) □ -10001.100110 (binary value)// -0.54980469 (denary value of mantissa) // -563/1024 Or □ Use exponent to denormalise mantissa 1 mark for correct answer □ = -17 19/32 // -17.59375 | 3 | | 1(b) | 1 mark per bullet 5.25 = 101.01 (conversion to binary) 0 = 0.10101 · 2³ (evidence of shifting binary point appropriately) 010101000000 0011 (stored as mantissa and exponent) | 3 | | 1(c) | mark per bullet | 2 | ### Answers 9608/32/M/J/18 | Question | Answer | Marks | |----------|--|-------| | 3(a) | 1 mark per bullet | 3 | | | 21.75 = 010101.11 (conversion to correct binary) 0.1010111 × 2⁵ (evidence of shifting binary point appropriately) 01010111 0101 (stored as mantissa and exponent) | | | 3(b) | 1 mark per bullet, max 2 | 3 | | | 1110 = -2 (conversion of exponent to denary) 1.011000 = -0.101 (conversion of mantissa to negative binary number)// – 0.625 (denary value of mantissa)// –5/8 -0.00101 (binary value) // | | | | Or Use exponent to denormalise mantissa | | | | 1 mark for correct answer
-5/32 // -0.15625 | | ### Answers 9608/31/M/J/19 | Question | Answer | Marks | |----------|---|-------| | 1(a) | 2 marks for working shown 1 mark for the correct answer | 3 | | | Working: ☐ Correct calculation of negative value (any method) (= –0.11010001101) ☐ Correctly moving the binary point 7 places (= –01101000.1101) // Exponent 7 | | | | Answer: □ -104.8125 // -104 \frac{13}{16} | | | 1(b) | 2 marks for working shown 1 mark for the correct answer | 3 | | | Working: ☐ Correct conversion to binary (01.1001) ☐ Correct calculation of exponent (1) | | | | Answer: (Mantissa) 0110 0100 0000 (Exponent) 0001 | | | 1(c)(i) | 1 mark per bullet point | 2 | | | ☐ Mantissa = 0111 1111 1111 ☐ Exponent = 0111 | | | 1(c)(ii) | 1 mark per bullet point | 2 | | | ☐ Mantissa = 0100 0000 0000 ☐ Exponent = 1000 | | # Topical Past Paers 9608 with Sir Majid Tahir | 1(d) | 1 mark per bullet point to max 3 | 3 | |------|---|---| | | The trade-off is between range and precision Any increase in the number of bits for the mantissa, means fewer bits available for the exponent // Any decrease in the number of bits for the mantissa, means more bits available for the exponent More bits used for the mantissa will result in better precision More bits used for the exponent will result in a larger range of numbers Fewer bits used for the mantissa will result in worse precision Fewer bits used for the exponent will result in a smaller range of numbers | | www.majidtahir.com Contact: 03004003666 Email: majidtahir61@gmail.com