

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

1
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Syllabus Content:
3.3.5 RISC processors

 show understanding of the differences between RISC and CISC processors
 show understanding of the importance/use of pipelining and registers in RISC

processors
 show understanding of interrupt handling on CISC and RISC processors

3.3.6 Parallel processing

 show awareness of the four basic computer architectures: SISD, SIMD, MISD,
MIMD

 show awareness of the characteristics of massively parallel computers

3.3.5 RISC Processors:

Background to RISC

Short for Reduced Instruction Set Computing. The diagram below shows the RISC approach

taken to processor design.

Reduced Instruction Set Computer RISC processors were first developed in early 1980s. Their

development however has been slowed by:

 the lack of software which is written to run on RISC processor
 Intel’s dominance in PC computer market using the family of x86 processors

The home is likely to have many RISC-based processor devices. This includes Nintendo Wii,
Microsoft Xbox 360, Sony PlayStation 3, Nintendo DS and many televisions and
smartphones.

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

2
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

However the desktop PC is likely to have a non-RISC processor. The reason of this is that
moving to a new RISC instruction set in the processor would mean that all the existing software
would no longer work.

The assembly language we studies earlier assumed that processor architecture has only one
general-purpose register, the Accumulator. This is simplified scenario as PC processors

generally have around have eight general-purpose registers.

The number of basic machine instructions would be several hundred. These computers were
known as Complex Instruction Set Computers (CISC). The large numbers of instructions

were matched closely to the hardware of the processor and the structures used in high level
language program code.

CISC and RISC processors

The 'architecture' of a processor can be defined in a number of ways. From the point of view of
a sophisticated programmer, the architecture involves the following:

 the instruction set
 the instruction format
 the addressing modes
 the registers accessible by instructions.

The choice of the instruction set is the main factor in deciding on a suitable architecture. One
view is that the instruction set should be chosen so that it can be clearly applied to important
problems, that only simple equipment is required and that important problems are handled
speedily.

An opposing view is that it should be chosen to suit the needs of high-level languages.

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

3
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Early developments in computing led to the latter view becoming dominant. Computer systems
contained what would now be referred to as CISC (Complex Instruction Set Computers)
processors with the complexity increasing with the advent of new systems.

However, the philosophy began to be challenged in the late 1970s. It was argued that RISC
(Reduced Instruction Set Computers) would be a better approach. Table below contains a

number of features that distinguish RISC from CISC.

It can be seen that 'reduced' affects more than just the number of instructions.

The simplicity of the instructions allows data to be stored in registers and manipulated in them
with no resource to memory access other than that necessary for initial loading and possible
final storing. The simplicity also allows hard-wiring inside the control unit with limited complexity
required.

 Comparison of CISC and RISC

RISC CISC

Fewer instructions
(Each instruction takes exactly one clock
cycle)

More instructions
(Clock cycles taken by instruction may vary)

Simpler instructions Complex instructions

Small number of instruction formats Many instruction formats

Single-cycle instructions whenever possible Multi-cycle instructions

Fixed-length instructions Variable-length instructions

Only load and store instructions to address
memory

Many types of instructions to address memory

Fewer addressing modes More addressing modes

Multiple register sets
(Large number of General-purpose registers)

Fewer registers
(Limited number of General-purpose registers)

Hard-wired control unit Micro-programmed control unit

Pipelining easier Pipelining more difficult
Instructions and data held in RAM Extensive use made of Cache Memory

The design emphasis is on the software The design emphasis is on the hardware

Processor chips require fewer transistors Uses the memory unit to allow complex
instructions to be carried out

In contrast, the specialised instructions that can be part of CISC architecture often require repeated
memory access.

The complexity of some of the instructions makes hard-wiring extremely difficult so
microprogramming is the norm.

 Hardwired control units are implemented through use of combinational Hardwired control unit:

logic units, featuring a finite number of gates that can generate specific results based on the
instructions that were used to invoke those responses. No ROM inside CU and no
microprogramming available. Hardwired control units are generally faster than micro-
programmed designs.

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

4
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

 A comparison of two processors is shown in Table below

 Intel 80486 (CISC) Sun SPARC (RISC)

Number of instructions 235 69

Instruction size (bytes) Between 1 and 11 4

Addressing modes 11 1

General-purpose registers 8 520

However, the increased complexity of instructions for CISC is often because they more closely
match high-level language constructs. This means that compiler writing becomes much easier
for a CISC processor.

One of the major driving forces for creating RISC processors was the opportunity they would
provide for efficient pipelining.

 Pipelining:

Pipelining is an implementation technique where multiple instructions are overlapped in

execution.

Pipelining is a technique used to improve the execution throughput of a CPU by using the
processor resources in a more efficient manner.
The basic idea is to split the processor instructions into a series of small independent stages.
Each stage is designed to perform a certain part of the instruction. At a very basic level, these
stages can be broken down into:

 (IF) Instruction Fetch: Fetches an instruction from memory

 (ID) Instruction Decode: Decodes the instruction be executed

 (IE) Instruction Execute: Executes the instruction

 (IW) Instruction Write: Writes the result back to register or memory

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

5
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

There will be a dedicated CPU module for each of the stages mentioned above. Blue boxes are
for 1st instruction and Red boxes are for second instructions.

In a non-pipelined CPU, when an instruction is being processed at a particular stage, the other
stages are at an idle state – which is very inefficient. If you look at the diagram, when the 1st
instruction is being decoded, the Fetch, Execute and Write Units of the CPU are not being used
and it takes 8 clock cycles to execute the 2 instructions.

The underlying principle of pipelining is that the fetch-decode-execute cycle can be separated
into a number of stages. One possibility is a five-stage model consisting of:

1. instruction fetch (IF)

2. instruction decode (ID)

3. operand fetch (OF)

4. instruction execute (IE)

5. result write back (WB).

To demonstrate how pipelining works, we will consider a program which has six instructions (A,
B, C, D, E and F). Figure above shows the relationship between processor stages and the
number of required clock cycles when using pipelining. It shows how pipelining would be
implemented with each stage requiring one clock cycle to complete.

This functionality clearly requires processors with several registers to store each of the stages.

 Execution of an instruction is split into a number of stages; as each stage completes, the
first stage of the first instruction can now be executed.

 Then the second instruction can start execution before the first one has completed, and
so on, until all six instructions are processed.

 In this example, by the time instruction ‘A’ has completed, instruction ‘F’ is at the first
stage and instructions ‘B’ to ‘E’ are at various in-between stages in the process. As Figure
shows, a number of instructions can be processed at the same time, and there is no need
to wait for an instruction to go through all five cycles before the next one can be
implemented.

 In the example shown, the six instructions require 10 clock cycles to go to completion.
Without pipelining, it would require 30 (6 × 5) cycles to complete (since each of the six
instructions requires five stages for completion).

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

6
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

One issue that has to be dealt with regarding a pipelined processor is interrupt handling. The
discussion in Chapter 5 referred to a processor with instructions handled sequentially. In the
pipelined system described above there will be five instructions in the pipeline when an interrupt
occurs. One option for handling the interrupt is to erase the pipeline contents for the latest four
instructions to have entered. Then the normal interrupt-handling routine can be applied to the
remaining instruction.

The other option is to construct the individual units in the processor with individual program
counter registers. This allows current data to be stored for all of the instructions in the pipeline
while the interrupt is handled.

Problems with pipelining:

Two issues will cause the pipeline to stall:

 dealing with a data dependency between instructions

 branch instructions.

Data dependency:

Progress check

A program contains the following sequence of instructions:

//add the contents of R1 and R2;
store the result in R3

ADD R3, R1, R2
ADD R5, R4, R3

Explain the data dependency
here………………………………………………………………………………………..

……
…………………………

……
…………………………

The detail of pipelining of the two istructions is as follows:

 When instruction 2 is at its Decode process, the processor will read the value of R3 and R4
 Instruction 1 is one step ahead, so at this time the contents of R1 and R2 are being added,

but will not yet have been written to R3
 Therefore the second instruction is unable to read the R3 value it needs.
 The pipeline is stalled and loaded with a number of empty instructions called ‘bubbles’

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

7
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

One technique for dealing with data-dependent instructions is for them to be identified by the
compiler which will then attempt to re-order the instructions.

Branch instructions:

Consider the following sequence of instructions

Loop: ADD R3, R2, R1 // add R1 to R2 and store in R3

 ADD R6, R5, R4 // add R4 to R5 and store in R6

 JPE R3, R6, LOOP // compare R3 and R6 –if equal jump to address LOOP

The issue is same here as Progress check, the third instruction has to know the values in
Register R3 and R6. These are not known as neither instruction 1 or instruction 2 has yet written
the value to the register. This can cause the pipeline to stall.

One strategy that pipelining can use to deal with this branch prediction. The processor makes a
guess at the outcome of the condition Research has shown that if the branch instruction is at the
bottom of the loop, the execution will go back to the start of the loop in around 90% cases.
Conditions at the start of loop are true in 50% cases. Therefore the strategy is to assume the
condition is true in the first case and not true in the second case. If the guess proves to be wrong
then the processor must re-instate the register contents and start the pipeline again with correct
instructions.

 Interrupt handling on CISC & RISC processors:

The use of interrupt on a RISC processor is no different. The same definition of an interrupt
holds: a signal sent to the processor from hardware device to indicate that device needs
attention.

The use of interrupts avoids the processor having to regularly check to see if a hardware device
needs its attention. This strategy (called pooling) was in use before interrupts.

The system uses vectored interrupts. Every device is assigned a device number that
corresponds to bits sent to an interrupt register. Hence from the number, the processor knows
the source of interrupt.

Once the interrupt is received, the state of all registers must be saved and the appropriate
interrupt service routine (ISR) code executed.

 Parallel processing:

Parallel processing means that the architecture has more than one processor. Different
processors are responsible for different parts of tasks. The programmer must design the code so
that specific code is used for processing of the task’s component parts. Each task is then
processed by different processor. The software will integrate the data produced to provide the
final software solution

Four variants of parallel processing are:

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

8
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

 SISD Single Instruction Single Data
 SIMD Single Instruction Multiple Data
 MISD Multiple Instruction Single Data
 MIMD Multiple Instruction Multiple Data

SISD (Single Instruction Single Data stream) :

SISD (Single Instruction Single Data stream) is the typical arrangement found in early personal
computers. There is a single processor with one data source which works on a single algorithm,
so no processor parallelism. The single data stream just means one memory.
 Each task is processed in a sequential order. Since there is a single processor, this architecture
does not allow for parallel processing.

SIMD (Single Instruction Multiple Data stream) :

SIMD (Single Instruction Multiple Data stream) describes how an array or vector processor
works.
SIMD (single instruction multiple data) uses many processors. Each processor executes the
same instruction but uses different data inputs – they are all doing the same calculations but on
different data at the same time.

SIMD are often referred to as array processors; they have a particular application in graphics
cards. For example, suppose the brightness of an image made up of 4000 pixels needs to be
increased. Since SIMD can work on many data items at the same time, 4000 small processors
(one per pixel) can each alter the brightness of each pixel by the same amount at the same time.

This means the whole of the image will have its brightness increased consistently. Other
applications include sound sampling – or any application where a large number of items need to
be altered by the same amount (since each processor is doing the same calculation on each
data item).

This is an appropriate architecture for problems which need to do an analysis of the large dataset
using the same criteria. The several processors each have its own local cache memory. This

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

9
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

makes possible a single program instruction which performs the same action simultaneously on
several data items.

MISD (Multiple Instruction Single Data stream) :

Many processors perform operations on same data value. The data may be one value from an
array. One strategy for MISD is the parallel input of data value through a network of processor
nodes. The nodes (whose behavior is programmable with software) will merge or sort the data
values into final result.
MISD (multiple instruction single data) uses several processors. Each processor uses different
instructions but uses the same shared data source. MISD is not a commonly used architecture
(MIMD tends to be used instead). However, the American Space Shuttle flight control system did
make use of MISD processors

MIMD (Multiple Instruction Multiple Data stream) :

MIMD (multiple instruction multiple data) uses multiple processors. Each one can take its
instructions independently, and each processor can use data from a separate data source (the
data source may be a single memory unit which has been suitably partitioned). The MIMD
architecture is used in multicore systems (for example, by super computers or in the architecture
of multi-core chips).

MIMD has examples in modern personal computers which are of the symmetric multiprocessor
type using identical processors. In this case, each processor executes a different individual
instruction. The multiple data stream can be provided by a single memory suitably partitioned.
Each processor might have a dedicated cache memory.

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

10
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Characteristics of massively parallel computers

Parallel computer systems Examples of one type of multicomputer system are called massively
parallel computers. These are the systems used by large organisations for computations
involving highly complex mathematical processing. They are the latest in an evolution of what
have traditionally been called 'supercomputers'.

Massively parallel computers

The major difference in architecture is that instead of having a bus structure to support multiple
processors there is a network infrastructure to support multiple computer units. The programs
running on the different computers can communicate by passing messages using the network.

An alternative type of multicomputer system is cluster computing, where a very large number of
PCs are networked.

The processor from each computer forms part of a larger pseudo-parallel system which can act
like a super computer. Some textbooks and websites also refer to this as grid computing.
Massively parallel computers have evolved from the linking together of a number of computers,

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

11
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

effectively forming one machine with several thousand processors. This was driven by the need
to solve increasingly complex problems in the world of science and mathematics.

By linking computers (processors) together in this way, it massively increases the processing
power of the ‘single machine’. This is subtly different to cluster computers where each computer
(processor) remains largely independent. In massively parallel computers, each processor will
carry out part of the processing and communication between computers is achieved via
interconnected data pathways. Figure shows this simply.

 Exam-style Questions

1 (a) Computer systems are now often constructed with RISC processors.

(i) State what the acronym RISC stands for. [1]
(ii) State four characteristics to be expected of a RISC system. [4]

 (b) A RISC processor is likely to be 'hard-wired'.

i. Explain what this term means and which specific part of the processor will be hard-wired.
 [3]

ii. State what the alternative to hard-wiring is and what hardware component is needed to
be part of the processor to allow this alternative to be implemented. [2]

2 (a) Parallelism can be achieved in a number of ways.

i. Identify three different types of parallelism. [3]
ii. Identify which type pipelining belongs to. [1]
iii. Using a diagram, explain how pipelining works. [5]

b. Interrupt handling is not so straightforward in a pipelined system. Explain why this is so and

give a brief account of how problems can be avoided. [3]

P3: (3.3.4 RISC Processors, 3.3.6 Parallel processing) Computer Science 9608

with Majid Tahir

12
Email: majidtahir61@gmail.com www.majidtahir.com Contact: +923004003666

Progress answer:

The second instruction needs the value in register R3. If instruction1 has not completed, this
value will not be available to instruction 2.

Answer of exam style questions:

Exam-style Questions (with mark allocation in brackets)

References:

 Computer Science Course Book by Sylvia Langfield & Dave Duddell
 Cambridge international AS & A level by david Watson & Hellen Williams (Hodder

education)
 AS & A level Computer Science Teacher’s resource CD
 Computer Science Revision Guide by Tony Piper
 Teacher Support Guide (CIE Resource)
 https://whatis.techtarget.com/definition/pipelining
 http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/pipe_title.html
 https://stackpointer.io/hardware/how-pipelining-improves-cpu-performance/113/

https://whatis.techtarget.com/definition/pipelining
http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/pipe_title.html
https://stackpointer.io/hardware/how-pipelining-improves-cpu-performance/113/

