

P3 Sec 3.4.1)Purpose of an operating system Computer Science 9608

with Majid Tahir

1

Syllabus Content:
3.4.1 Purposes of an operating system (OS)

 show understanding of how an OS can maximise the use of resources
 describe the ways in which the user interface hides the complexities of the hardware

from the user
 show understanding of processor management: multitasking, including:

o the concept of multitasking and a process
o the process states: running, ready and blocked
o the need for scheduling
o the concept of an interrupt
o how the kernel of the OS acts as the interrupt handler and how interrupt

handling is used to manage low-level scheduling
 show understanding of paging for memory management: including:

o the concepts of paging and virtual memory
o the need for paging
o how pages can be replaced – how disk thrashing can occur

Purpose of an operating systems

The purpose of an operating system (or 'OS') is to control the general operation of a computer,
and provides an easy way for user to interact with machine and run applications.
The operating system performs several key functions:

 interface - provides a user interface so it is easy to interact with the computer

 CPU management- runs applications and executes and cancels processes

 multitasking - allows multiple applications to run at the same time

 Memory management - transfers programs into and out of memory, allocates free space

between programs, and keeps track of memory usage

 manages peripherals - opens, closes and writes to peripheral devices such
as storage attached to the computer

 organizes file system - creates a file system to organise files and directories

 security - provides security through user accounts and passwords

 utilities - provides tools for managing and organising hardware

Operating system maximizes the use of computer resources:

When the computer is first powered on, it takes its start-up instruction from ROM.
The computer has BIOS basic input output system stored in ROM,which starts a bootstrap

program.
Bootstrapping: It is the bootstrap program that loads the part of operating system into main
memory (RAM) from the Hard disk drive (HDD) or Solid state drive (SSD). Operating system
when loaded into RAM takes control of all the computer system and sets it running.

 Resource management of the CPU

To maximize the utilization of computer resources, the major resources are considered.
 The CPU
 The memory
 The I/0 (input/output) system.

P3 Sec 3.4.1)Purpose of an operating system Computer Science 9608

with Majid Tahir

2

Resource management relating to the CPU concerns scheduling to ensure efficient usage of

CPU time & resources. Regarding Input / Output operations, OS has to deal with:
 I/O operations that have been initiated by the user.
 I/O operations which are initiated while software is running and resources e.g. printers

of disk drives are requested.
 The I/0 system does not just relate to input and output that directly involves a computer

user. It also includes input and output to storage devices while a program is running.

 Figure below shows a schematic diagram that illustrates the structure of the 1/0 system.

The direct memory access (DMA) controller is needed to allow hardware to access the main

memory independently of the CPU. When the CPU is Carrying out a programmed I/O operation,
it is fully utilised during the entire read/write operations; the DMA frees up the CPU to allow it to

carry out other tasks while the slower 1’O operations are taking place.

 The DMA initiates the data transfers.

 The CPU carries out other tasks while this data transfer operation is taking place.

 Once the data transfer 1s complete, an interrupt signal is sent to the CPU from the DMA.

Table below shows how slow some I/O devices are when compared with a typical computer’s
clock speed of 2.7 GHz.

P3 Sec 3.4.1)Purpose of an operating system Computer Science 9608

with Majid Tahir

3

Multitasking:

Multitasking allows computers to carry out multiple tasks at the same time. Each of these
processes share common resources (memory, processor etc.)

 Multitasking is actually multiple tasks processed at the same time, but actually processor
can process one task at a time, so it has to swap between processes called scheduling.

 Swapping happens so fast that it appears that all processes are running at the same
time.

 When there are too many processes, or some of them are making the CPU work
especially hard, it can look as though some or all of them have stopped.

 Multitasking doesn't mean that an unlimited number of tasks (process) can be juggled at
the same time.

 A process is a program that has started to be executed. A task that is to be executed or
being executed by CPU is called process

 Each task consumes system storage and other resources. As more tasks are started,
the system may slow down or begin to run out of shared storage.

 Multitasking ensures the best use of computer resources by monitoring the state of each
process.

 The processes can be in running, ready or blocked state.

 The Kernel of Operating system overlaps the execution of each process based on
scheduling algorithm.

The job of working out when to swap processes is known as scheduling.

Kernel of Operating system:

The kernel is the most fundamental part of an operating system. It can be thought of as the program
which controls all other programs on the computer. When the computer starts, it goes through some
initialization (booting) functions, such as checking memory. It is responsible for assigning and un
assigning memory space which allows software to run.

 The kernel provides services so programs can request the use of the network card, the disk
or other pieces of hardware.

 The kernel forwards the request to special programs called device drivers which control the
hardware.

 It also manages the file system and sets interrupts for the CPU to enable multitasking.

 Many kernels are also responsible for ensuring that faulty programs do not interfere with the
operation of others by denying access to memory that has not been allocated to them and
restrictin the amount of CPU time they can consume. It is the heart of the operating system.

 A Kernel is the central part of an operating system. It manages the operations of the
computer and the hardware, most notably memory and CPU time.

P3 Sec 3.4.1)Purpose of an operating system Computer Science 9608

with Majid Tahir

4

Scheduling:

 The OS must have a strategy for deciding which program is next given use of the
processor.

 This process of deciding on the allocation of processor usage is known as low-level
scheduling.

 We need to be careful when using the term “scheduling”.

 The allocation of processor time is strictly called low-level scheduling.

 The term scheduling can also be used to describe the order in which new programs are
loaded into primary memory. This is high-level scheduling.

 Scheduling algorithms:

Although the long-term or high-level scheduler will have decisions to make when choosing

which program should be loaded into memory, we concentrate here on the options for the short-
term or low-level scheduler.
A scheduling algorithm can be preemptive or non-preemptive.
 Preemptive algorithm:

 A preemptive algorithm can halt a process that would otherwise continue running
undisturbed.

 If an algorithm is preemptive it may involve prioritising processes.
Non-preemptive algorithm.

 The simplest possible algorithm is first come first served (FCFS).

 This is a non-preemptive algorithm and can be implemented by placing the processes in
a first-in first-out (FI FO) queue.

 It will be very inefficient if it is the only algorithm employed but it can be used as part of a
more complex algorithm.

Round-Robin algorithm:

 A round-robin algorithm allocates a time slice to each process and is therefore
preemptive, because a process will be halted when its time slice has run out.

 It can be implemented as a FIFO queue. It normally does not involve prioritising
processes.

 However, if separate queues are created for processes of different priorities then each
queue could be scheduled using a round-robin algorithm.

 A priority-based scheduling algorithm is more complicated. One reason for this is that
every time a new process enters the ready queue or when a running process is halted,
the priorities for the processes may have to be re-evaluated.

 The other reason is that whatever scheme is used to judge priority level it will require
some computation. Possible criteria are:

o estimated time of process execution
o estimated remaining time for execution length of time already spent in the ready

queue
o Whether the process is I/0 bound or CPU bound.

More than one of these criteria might be considered. Clearly, estimating a time for execution
may not be easy. Some processes require extensive I/0, for instance printing wage slips for
employees. There is very little CPU usage for such a process so it makes sense to allocate it a

P3 Sec 3.4.1)Purpose of an operating system Computer Science 9608

with Majid Tahir

5

high priority so that the small amount of CPU usage can take place. The process will then

change to the waiting state while the printing takes place.

Process states:

Process can be in three possible states:

 Running

 Ready (also called Runnable)

 Blocked (also called Waiting or Suspended state)

It was described earlier that a process can be defined as 'a program being executed'.
Process Control Block (PCB) is a data structure which contains all the data needed for a

process to run.
When the program first arrives in memory, at this stage a process control block (PCB) can be
created in memory ready to receive data when the process is executed.

PCB stores:

 Current process state (running, ready or blocked)

 Process privileges (such as which resources it is allowed to access)

 Register values (PC, MAR, MDR, CIR and Accumulator)

 Process priority and any scheduling information

 The amount of CPU time to complete the process

 Process ID to uniquely identify each process

Once in memory the state of the process can change.
The transitions between the states shown in Figure below and can be described as follows:

 A new process arrives in memory and a PCB is created; it changes to the ready state.

 A process in the ready state is given access to the CPU by the dispatcher; it changes to
the running state.

 A process in the running state is halted by an interrupt; it returns to the ready state.

 A process in the running state cannot progress until some event has occurred (1/0
perhaps); it changes to the blocked state (sometimes called the 'suspended' or
'waiting' state).

P3 Sec 3.4.1)Purpose of an operating system Computer Science 9608

with Majid Tahir

6

Interrupt handling:

Some interrupts are caused by errors that prematurely terminate a running process. Otherwise

there are two reasons for interrupts:

 The interrupt mechanism is used when a process in the running state makes a system

call requiring an I/0 operation, and running process has to change to the blocked state.

 The scheduler decides to halt the process for one of several reasons.

Whatever the reason for an interrupt, the OS kernel must invoke an interrupt-handling routine.

This may have to decide on the priority of an interrupt.

One required action is that the current values stored in registers must be recorded in the

process control block. This allows the process to continue execution when it eventually

returns to the running state.

CPU will check for interrupt signals. The system will enter the kernel mode if any of the

following type of interrupt signals are sent:

 Device interrupts (for example, printer out of paper, device not present and so on…)

 Exceptions (for example, instruction fault such as division by zero, unidentified Opcode,

stack fault and so on)

 Traps/ Software Interrupt (for example, process requesting a resource such as disk

drive).

When an interrupt is received, the kernel will consult the interrupt dispatch table (IDT). This

table links a device description with the appropriate interrupt routine.

The Kernel will save the state of interrupt process on the kernel stack and the process state is

restored once interrupt task is serviced. A process is suspended only if the interrupt priority

level (IPL) is greater than current running task.

The process with lower interrupt priority level (IPL) is saved in interrupt register and is

serviced when IPL level falls to a certain value lower than running process.

Examples of Interrupt Priority Level include:

 Power fail interrupt

 Clock interrupt

 Input / Output devices

Figure below explains the process when Interrupt occurs and is serviced.

P3 Sec 3.4.1)Purpose of an operating system Computer Science 9608

with Majid Tahir

7

Memory management:

As with the storage of data on a hard disk, processes carried out by the CPU may also become
fragmented. To overcome this problem, memory management will determine which processes
should be in main memory and where they should be stored (this is called optimisation); in
other words, it will determine how memory is allocated when a number of processes are
competing with each other.
When a process starts up, it is allocated memory; when it is completed, the OS deallocates
memory space.
We will now consider the methods by which memory management allocates memory to
processes programs and data.

Single (contiguous) allocation:

With this method, all of the memory is made available to a single application. This leads to
inefficient use of main memory.

Paged memory/paging:

Paging is a memory management scheme by which a computer stores and retrieves data
from secondary storage for use in RAM.
In this scheme, the operating system retrieves data from secondary storage in same-
size blocks called pages.
Paging is an important part of virtual memory implementations in modern operating systems,
using secondary storage to let programs exceed the size of available physical memory.

 In paging, the memory is split up into partitions (blocks) of a fixed size.

 The partitions are not necessarily in sequence.

 The physical memory and logical memory are referenced up into the same fixed-size
memory blocks.

 Physical memory blocks are known as frames

 Fixed-size logical memory blocks are known as pages.

P3 Sec 3.4.1)Purpose of an operating system Computer Science 9608

with Majid Tahir

8

 A program is allocated a number of pages that is usually just larger than what is actually
needed.

 In process execution, process pages from logical memory are loaded into frames in
physical memory.

 A page table is used; it uses page number as the index.

 Each process has its own separate page table that maps logical addresses to physical
addresses.

 The page table will show page number, flag status, page frame address, and the time of
entry (for example, in the form 08:25:55:08).

 The time of entry is important when considering page replacement algorithms. Some of
the page table status flags are shown in Table

The following diagram shows page numbers and frame numbers. Each entry in a page table
points to physical address that is then mapped to virtual memory address.

Segmentation/segmented memory

 In segmented memory, logical address space is broken up into variable-size memory
blocks’ partitions called segments.

 Each segment has a name and size.

 For execution to take place, segments from logical memory are loaded into physical
memory.

 The address is specified by the user which contains the segment name and offset value

(a value which can go through some computation to get the memory location).

 The segments are numbered (called segment numbers) rather than using a name and
this segment number is used as the index in a segment map table.

 The offset value decides the size of the segment:

P3 Sec 3.4.1)Purpose of an operating system Computer Science 9608

with Majid Tahir

9

The segment map table in Figure contains the segment number, segment size and the start
address in physical memory.

Note that the segments in logical memory do not need to be contiguous, but once loaded into
physical memory, each segment will become a contiguous block of memory.

Segmentation memory management works in a similar way to paging, but the segments are
variable sized memory blocks rather than all the same fixed size.

Below is summary of differences between paging and segmentation:

P3 Sec 3.4.1)Purpose of an operating system Computer Science 9608

with Majid Tahir

10

Virtual memory:

The most flexible approach to memory management is to use virtual memory based on paging
but with no requirement for all pages to be in memory at the same time.

 In a virtual memory system, the address space that the CPU uses is larger than the
physical main memory space.

 This requires the CPU to transfer address values to a memory management unit that
allocates a corresponding address on a page.

 The starting situation is that the set of pages comprising the process are stored on disk.

 One or more of these pages is loaded into memory when the process is changing to the
ready state.

 When the process is dispatched to the running state, the process starts executing.

 At some stage, it will need access to pages still stored on disk which means that a page
needs to be taken out of memory first.

 This is when a page replacement algorithm is needed.

 A simple algorithm would use a FIFO first-in first-out method.

 A more sensible method would be the least recently-used page but this requires
statistics of page use to be recorded.

Advantages:

 One of the advantages of the virtual memory approach is that a very large program can
be run when an equally large amount of memory is unavailable.

 Another advantage is that only part of a program needs to be in memory at any one
time.

o For example, the index tables for a database could be permanently in memory
but the full tables could be brought in only when required.

 Disadvantages:

 The system overhead in running virtual memory can be a disadvantage.

 The worst problem is 'disk thrashing': when part of a process on one page requires

another page which is on disk.

 When that page is loaded it almost immediately requires the original page again.

 This can lead to almost perpetual loading and unloading of pages.

 Algorithms have been developed to guard against this but the problem can still occur,
fortunately only rarely.

Refrences:

 Cambridge Computer Science AS & A level by Sylvia Langfield and Dave Duddell

 Cambridge International AS & A level Computer Science by David Watson and Hellen

Williams (Hodder Education)

 Wikipedia.

