

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

1

Syllabus Content:

4.1.1 Abstraction

 show understanding of how to model a complex system by only including essential

details, using:

functions and procedures with suitable parameters (as in procedural programming, see

Section 2.3)

 ADTs (see Section 4.1.3)

 classes (as used in object-oriented programming, see Section 4.3.1)

 facts, rules (as in declarative programming, see Section 4.3.1)

4.1.2 Algorithms

 write a binary search algorithm to solve a particular problem

 show understanding of the conditions necessary for the use of a binary search

 show understanding of how the performance of a binary search varies according to the
number of data items

 write an algorithm to implement an insertion sort

 write an algorithm to implement a bubble sort

 show understanding that performance of a sort routine may depend on the initial order of
the data and the number of data items

 write algorithms to find an item in each of the following: linked list, binary tree, hash table

 write algorithms to insert an item into each of the following: stack, queue, linked list,
binary tree, hash table

 write algorithms to delete an item from each of the following: stack, queue, linked list

 show understanding that different algorithms which perform the same task can be
compared by

 using criteria such as time taken to complete the task and memory used

4.1.3 Abstract Data Types (ADT)

 show understanding that an ADT is a collection of data and a set of operations on those
data

 show understanding that data structures not available as built-in types in a particular
programming

 language need to be constructed from those data structures which are built-in within the
language

TYPE <identifier1>
DECLARE <identifier2> : <data type>
DECLARE <identifier3> : <data type>

…
ENDTYPE

 show how it is possible for ADTs to be implemented from another ADT

 describe the following ADTs and demonstrate how they can be implemented from
appropriate

 built-in types or other ADTs: stack, queue, linked list, dictionary, binary tree

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

2

Computational thinking and problem-solving:

Computational thinking is a problem-solving process where a number of steps are taken in order
to reach a solution, rather than relying on rote learning to draw conclusions without considering
these conclusions.

Computational thinking involves abstraction, decomposition, data-modelling, pattern recognition
and algorithm design.

Abstraction:

Abstraction is a process where you show only “relevant” data and “hide” unnecessary details of
an object from the user. Abstraction involves filtering out information that is not necessary to
solving the problem.

Consider your mobile phone, you just need to know what buttons are to be pressed to send a
message or make a call, What happens when you press a button, how your messages are sent,
how your calls are connected is all abstracted away from the user.

Abstraction is a powerful methodology to manage complex systems. Abstraction is

managed by well-defined objects and their hierarchical classification.

For example a car itself is a well-defined object, which is composed of several other

smaller objects like a gearing system, steering mechanism, engine, which are again
have their own subsystems. But for humans car is a one single object, which can be
managed by the help of its subsystems, even if their inner details are unknown.

Decomposition:

Decomposition means breaking tasks down into smaller parts in order to explain a process
more clearly.

Decomposition is another word for step-wise refinement.
In structured programming, algorithmic decomposition breaks a process down into well-

defined steps.

 Data modeling:

Data modeling involves analysing and organising data. We met simple data types such as
integer, character and Boolean. The string data type is a composite type: a sequence of
characters. When we have groups of data items we used one-dimensional (lD) arrays to
represent linear lists and two-dimensional (2D) arrays to represent tables or matrices.

We can set up abstract data types to model real-world concepts, such as records, queues or
stacks. When a programming language does not have such data types built-in, we can define
our own by building them from existing data types. There are more ways to build data models.

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

3

Pattern recognition

Pattern recognition means looking for patterns or common solutions to common problems and
exploiting these to complete tasks in a more efficient and effective way. There are many
standard algorithms to solve standard problems, such as insertion sort or binary search.

Algorithm design

Algorithm design involves developing step-by-step instructions to solve a problem

 Use subroutines to modularize the solution to a problem

 Subroutine/sub-program

A subroutine is a self-contained section of program code which performs a specific task and is
referenced by a name.

A subroutine resembles a standard program in that it will contain its own local variables, data
types, labels and constant declarations.

There are two types of subroutine. These are procedures and functions.

Functions and Procedures

Procedure

A procedure is a subroutine that performs a specific task without returning a value to the part of
the program from which it was called.

Function

A function is a subroutine that performs a specific task and returns a value to the part of the
program from which it was called.
Note that a function is „called‟ by writing it on the right hand side of an assignment statement.

Parameter

A parameter is a value that is „received‟ in a subroutine (procedure or function).
The subroutine uses the value of the parameter within its execution.

The action of the subroutine will be different depending upon the parameters that it is passed.
Parameters are placed in parenthesis after the subroutine name.
For example: Square(5) „passes the parameter 5 – returns 25

 By Ref vs. By Val

Parameters can be passed by reference (byref) or by value (byval).

If you want to pass the value of the variable, use the ByVal syntax. By passing the value of the
variable instead of a reference to the variable, any changes to the variable made by code in the

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

4

subroutine or function will not be passed back to the main code. This is the default passing
mechanism when you don‟t decorate the parameters by using ByVal or ByRef.
If you want to change the value of the variable in the subroutine or function and pass the revised
value back to the main code, use the ByRef syntax. This passes the reference to the variable
and allows its value to be changed and passed back to the main code.

Example Program in VB – Procedures & Functions

Module Module1
'this is a procedure
Sub timestable(ByRef number As Integer)

For x = 1 To 10
 Console.WriteLine(number & " x " & x & " = " & (number * x))
 Next
End Sub

'this is a function (functions return a value)
Function adder(ByRef a As Integer, ByVal b As Integer)

 adder = a + b
 Return adder
End Function

Sub Main()
timestable(7) 'this is a call (executes a procedure or function)
timestable(3)'this is a second call to the same procedure but now with different data
timestable(9)
Console.ReadKey()
Console.Clear()

Dim x As Integer

x = adder(2, 3) 'call to function adder which returns a value
Console.WriteLine("2 + 3 = " & x)
Console.WriteLine("4 + 6 = " & adder(4, 6)) 'you can simply then code by

putting the call directly into the print statement
 Console.ReadKey()
End Sub
End Module

 ADTs (Abstract Data Type):
An abstract data type is a collection of data. When we want to use an abstract data type, we
need a set of basic operations:

 create a new instance of the data structure
 find an element in the data structure
 insert a new element into the data structure
 delete an element from the data structure
 access all elements stored in the data structure in a systematic manner.

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

5

Abstract Data Types

Definition

An abstract data type is a type with associated operations, but whose representation is hidden.

The definition of ADT only mentions what operations are to be performed but not how these
operations will be implemented. It does not specify how data will be organized in memory and
what algorithms will be used for implementing the operations.

It is called “abstract” because it gives an implementation independent view. The process of
providing only the essentials and hiding the details is known as abstraction.

The user of data type need not know that data type is implemented, for example, we have been
using integer, float, char data types only with the knowledge with values that can take and

operations that can be performed on them without any idea of how these types are
implemented. So a user only needs to know what a data type can do but not how it will do it.

We can think of ADT as a black box which hides the inner structure and design of the data type.

Now we‟ll define three ADTs namely List ADT, Stack ADT, Queue ADT.

List ADT

A list contains elements of same type arranged in sequential
order and following operations can be performed on the list.

get() – Return an element from the list at any given position.
insert() – Insert an element at any position of the list.
remove() – Remove the first occurrence of any element

from a non-empty list.
removeAt() – Remove the element at a specified location
from a non-empty list.
replace() – Replace an element at any position by another

element.
size() – Return the number of elements in the list.
isEmpty() – Return true if the list is empty, otherwise return

false.
isFull() – Return true if the list is full, otherwise return false.

https://wiki.haskell.org/Type
https://www.geeksforgeeks.org/data-types-in-c/
https://www.geeksforgeeks.org/linked-list-set-1-introduction/
https://www.geeksforgeeks.org/stack-data-structure-introduction-program/
https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

6

Stack ADT
A Stack contains elements of same type arranged in sequential order. All operations takes place
at a single end that is top of the stack and following
operations can be performed:

To make a stack, we pile items on top of each other. The
item that is accessible is the one on top of the stack. If we
try to find an item in the stack and take it out, we are likely
to cause the pile of items to collapse.

The BaseofstackPointer will always point to the first slot in
the stack. The TopOfStackPointer will point to the last

element pushed onto the stack.

When an element is removed from the stack, the
TopOfStackPointer will decrease to point to the element now at the top of the stack.

Figure below shows how we can represent a stack when we have added three items in this

order: 1, 2, 3 push() adds the item in stack and pop() picks the item from stack.

The 'STACK' is a Last-In First-Out (LIFO) List. Only the last item in the stack can be accessed directly.

push() – Insert an element at one end of the stack called top.
pop() – Remove and return the element at the top of the stack, if it is not

empty.
peek() – Return the element at the top of the stack without removing it, if the
stack is not empty.
size() – Return the number of elements in the stack.
isEmpty() – Return true if the stack is empty, otherwise return false.
isFull() – Return true if the stack is full, otherwise return false.

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

7

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

8

Stacks in VB

Stack Pop Operation

topPointer points to the top of stack

Stack Push Operation

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

9

 Queue ADT

Queue is a linear data structure in which the insertion and deletion operations are performed at
two different ends. In a queue data structure, adding and removing of elements are performed
at two different positions.

The insertion is performed at one end and deletion is performed at other end. In a queue data
structure, the insertion operation is performed at a position which is known as 'rear' and the
deletion operation is performed at a position which is known as 'front'.

In queue data structure, the insertion and deletion operations are performed based on FIFO
(First In First Out) principle.

A Queue contains elements of same type arranged in sequential order. Operations takes place
at both ends, insertion is done at end and deletion is done at front. Following operations can be
performed:

enqueue() – Insert an element at the end of the queue.
dequeue() – Remove and return the first element of queue, if the queue is not empty.
peek() – Return the element of the queue without removing it, if the queue is not empty.
size() – Return the number of elements in the queue.
isEmpty() – Return true if the queue is empty, otherwise return false.
isFull() – Return true if the queue is full, otherwise return false.

Queue after inserting 25, 30, 51, 60 and 85.

From these definitions, we can clearly see that the definitions do not specify how these ADTs
will be represented and how the operations will be carried out. There can be different ways to
implement an ADT, for example, the List ADT can be implemented using arrays, or singly linked
list or doubly linked list. Similarly, stack ADT and Queue ADT can be implemented using arrays
or linked lists.

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

10

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

11

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

12

Queue Operations in VB:

Empty Queue with no items and variables, set to public for subroutine access.

Queue Enqueue (adding an item to queue)

Queue Enqueue (adding an item to queue)

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

13

 Linked lists

Earlier we used an array as a linear list. In an Array (Linear list), the list items are stored in

consecutive locations. This is not always appropriate.

Another method is to store an individual list item in whatever location is available and link the

individual item into an ordered sequence using pointers.

An element of a list is called a node. A

node can consist of several data items
and a pointer, which is a variable that
stores the address of the node it points
to.
A pointer that does not point at anything
is called a null pointer. It is usually rep

resented by ϕ. A variable that stores the

address of the first element is called a
start pointer.

In Figure below, the data value in the node box represents the key field of that node. There are
likely to be many data items associated with each node. The arrows represent the pointers.

It does not show at which address a node is stored, so the diagram does not give the value of
the pointer, only where it conceptually links to.
Suppose StartPointer points to B, B points to D and D points to L, L Points to NULL

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

14

 Add a node at the front: (A 4 steps process)

A new node, A, is inserted at the beginning of the list.
The content of startPointer is copied into the new node's pointer field and startpointer
is set to point to the new node, A.

 Add a node after a given node:

We are given pointer to a node, and the new node is inserted after the given node.

To insert a new node, C, between existing nodes, Band D (Figure 23.10), we copy the
pointer field of node B into the pointer field of the new node, C. We change the pointer
field of node B to point to the new node, C.

Add a node at the end:

In Figure 23.07, a new node, P, is inserted at the end of the list. The pointer field of
node L points to the new node, P. The pointer field of the new node, P, contains the null

pointer.

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

15

 Deleting the First node in the list:

To delete the first node in the list (Figure 23.08), we copy the pointer field of the node to
be deleted into StartPointer

 Deleting the Last node in the list:

To delete the last node in the list (Figure 23.09), we set the pointer field for the previous
node to the null pointer.

 Deleting a node within the list:

To delete a node, D, within the list (Figure 23.11), we copy the pointer field of the node
to be deleted, D, into the pointer field of node B.

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

16

 Remember that, in real applications, the data would consist of much more than a
key field and one data item.

 When list elements need reordering, only pointers need changing in a linked list.
In an Array (linear list), all data items would need to be moved.

 This is why linked lists are preferable to Arrays (linear lists).

 Linked lists saves time, however we need more storage space for the pointer
fields.

Using Linked Lists:

 We can store the linked list in an array of records. One record represents a
node and consists of the data and a pointer.

 When a node is inserted or deleted, only the pointers need to change. A
pointer value is the array index of the node pointed to.

 Unused nodes need to be easy to find.

 A suitable technique is to link the unused nodes to form another linked list: the
free list. Figure 23.12 shows our linked list and its free list.

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

17

 When an array of nodes is first initialised to work as a linked list, the linked list
will be empty.

 So the start pointer will be the null pointer.

 All nodes need to be linked to form the free list.

 Figure 23.13 shows an example of an implementation of a linked list before any
data is inserted into it.

We now code the basic operations discussed using the conceptual diagrams in Figures 23.05 to 23.12.

Create a new linked list

CONSTANT NullPointer=0 //NullPointer should be set to -1 if using array element with index O
1
TYPE ListNode // Declare record type to store data and pointer

DECLARE Data STRING
DECLARE Pointer INTEGER
ENDTYPE

DECLARE StartPointer : INTEGER // Declare start pointer to point to first item in list
DECLARE FreeListPtr : INTEGER // Declare free pointer to add data in free memory slot.
DECLARE List[l:7] OF ListNode

PROCEDURE InitialiseList

StartPointer NullPointer // set start pointer, start of list
FreeListPtr 1 // set starting position of free list
FOR Index 1 TO 6 // link all nodes to make free list

List[Index].Pointer Index + 1
NEXT
List[7].Pointer Null Pointer //last node of free list

END PROCEDURE

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

18

Create a new linked list in Visual Studio

Module Module1
 ' NullPointer should be set to -1 if using array element with index 0
 Const NULLPOINTER = -1 ' Declare record type to store data and pointer

 Structure ListNode
 Dim Data As String
 Dim Pointer As Integer
 End Structure

 Dim List(7) As ListNode
 Dim StartPointer As Integer
 Dim FreeListPtr As Integer

 Sub InitialiseList()
 StartPointer = NULLPOINTER ' set start pointer
 FreeListPtr = 0 ' set starting position of free list
 For Index = 0 To 7 'link all nodes to make free list
 List(Index).Pointer = Index + 1
 Next
 List(7).Pointer = NULLPOINTER 'last node of free list
 End Sub

Insert a new node into an ordered linked list

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

19

Insert a new node into an ordered linked list

DECLARE startpointer : INTEGER
DECLARE heapStartPointer : INTEGER
DECLARE itemAdd : INTEGER
DECLARE tempPointer : INTEGER

CONSTANT nullPointer = -1
PROCEDURE
PROCEDURE InsertNode(Newitem)

IF FreeListPtr <> NullPointer
THEN // there is space in the array

NewNodePtr FreeListPtr //take node from free list and store data item

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

20

List[NewNodePtr].Data Newitem
FreeListPtr List[FreeListPtr].Pointer
// find insertion point
ThisNodePtr StartPointer // start at beginning of list

WHILE ThisNodePtr <> NullPointer // while not end of list
AND List[ThisNodePtr].Data < Newitem
PreviousNodePtr ThisNodePtr //remember this node

//follow the pointer to the next node
ThisNodePtr List[ThisNodePtr].Pointer
ENDWHILE

IF PreviousNodePtr = StartPointer

THEN //insert new node at start of list
List[NewNodePtr].Pointer StartPointer
StartPointer NewNodePtr
ELSE //insert new node between previous node and this node
List[NewNodePtr].Pointer List[PreviousNodePtr].Pointer
List[PreviousNodePtr].Pointer NewNodePtr

ENDIF
ENDIF

END PROCEDURE

After three data items have been added to the linked list, the array contents are as
shown in Figure 23.14.

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

21

Insert a new node into an ordered linked list in Visual Studio:

Sub InsertNode(ByVal NewItem)

Dim TempPtr, NewNodePtr, PreviousNodePtr As Integer ' TemportatryPointer, NextNode
Pointer and PreviousPointer to Swap values of pointers
 If FreeListPtr <> NULLPOINTER Then ' there is space in the array, take node from
free list and store data item
 NewNodePtr = FreeListPtr
 List(NewNodePtr).Data = NewItem
 FreeListPtr = List(FreeListPtr).Pointer ' find insertion point
 PreviousNodePtr = NULLPOINTER
 TempPtr = StartPointer ' start at beginning of list
 Try
 Do While (TempPtr <> NULLPOINTER) And (List(TempPtr).Data < NewItem) '
while not end of list
 PreviousNodePtr = TempPtr ' remember this node follow the pointer to
the next node
 TempPtr = List(TempPtr).Pointer
 Loop
 Catch ex As Exception
 End Try
 If PreviousNodePtr = NULLPOINTER Then ' insert new node at start of list

 List(NewNodePtr).Pointer = StartPointer
 StartPointer = NewNodePtr

 Else : List(NewNodePtr).Pointer = List(PreviousNodePtr).Pointer ' insert new
node between previous node and this node
 List(PreviousNodePtr).Pointer = NewNodePtr
 End If
 Else : Console.WriteLine("no space for more data")
 End If
 End Sub

 Find an element in an ordered linked list

FUNCTION FindNode(Dataitem) RETURNS INTEGER // returns pointer to node
CurrentNodePtr StartPointer //start at beginning of list
WHILE CurrentNodePtr <> NullPointer //not end of list
AND List[CurrentNodePtr].Data <> Dataitem // item not found
//follow the pointer to the next node
CurrentNodePtr List [CurrentNodePtr].Pointer
ENDWHILE

RETURN CurrentNodePtr // returns NullPointer if item not found
END FUNCTION

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

22

 Finding an element Visual Studio Code:

Function FindNode(ByVal DataItem) As Integer ' returns pointer to node
Dim CurrentNodePtr As Integer
CurrentNodePtr = StartPointer ' start at beginning of list

Try
Do While CurrentNodePtr <> NULLPOINTER And List(CurrentNodePtr).Data <>
DataItem ' not end of list,item(Not found)
 ' follow the pointer to the next node
CurrentNodePtr = List(CurrentNodePtr).Pointer
Loop
Catch ex As Exception
Console.WriteLine("data not found")
End Try
Return (CurrentNodePtr) ' returns NullPointer if item not found
End Function

Delete a node from an ordered linked list

PROCEDURE DeleteNode(Dataitem)
ThisNodePtr StartPointer //start at beginning of list

WHILE ThisNodePtr <> NullPointer //while not end of list
AND List[ThisNodePtr].Data <> Dataitem //and item not found
PreviousNodePtr ThisNodePtr //remember this node

// follow the pointer to the next node
ThisNodePtr List[ThisNodePtr].Pointer

ENDWHILE
IF ThisNodePtr <> NullPointer //node exists in list
THEN

IF ThisNodePtr = StartPointer //first node to be deleted
THEN

StartPointer List[StartPointer].Pointer
ELSE

List[PreviousNodePtr] List[ThisNodePtr].Pointer
ENDIF

ENDIF
 List[ThisNodePtr].Pointer FreeListPtr
 FreeListPtr ThisNodePtr
END PROCEDURE

VB Code
Sub DeleteNode(ByVal DataItem)
 Dim ThisNodePtr, PreviousNodePtr As Integer
 ThisNodePtr = StartPointer
 Try ' start at beginning of list

 Do While ThisNodePtr <> NULLPOINTER And List(ThisNodePtr).Data <>
DataItem ' while not end of list and item not found

 PreviousNodePtr = ThisNodePtr ' remember this node

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

23

 ' follow the pointer to the next node
 ThisNodePtr = List(ThisNodePtr).Pointer
 Loop
 Catch ex As Exception
 Console.WriteLine("data does not exist in list")
 End Try
 If ThisNodePtr <> NULLPOINTER Then ' node exists in list

 If ThisNodePtr = StartPointer Then ' first node to be deleted

 StartPointer = List(StartPointer).Pointer
 Else : List(PreviousNodePtr).Pointer = List(ThisNodePtr).Pointer
 End If
 List(ThisNodePtr).Pointer = FreeListPtr
 FreeListPtr = ThisNodePtr
 End If
 End Sub

Access all nodes stored in the linked list

PROCEDURE OutputAllNodes
CurrentNodePtr StartPointer //start at beginning of list

WHILE CurrentNodePtr <> NullPointer //while not end of list
OUTPUT List[CurrentNodePtr].Data //follow the pointer to the next node
CurrentNodePtr List[CurrentNodePtr].Pointer

ENDWHILE
ENDPROCEDURE

VB Code

Sub OutputAllNodes()
 Dim CurrentNodePtr As Integer
 CurrentNodePtr = StartPointer ' start at beginning of list
 If StartPointer = NULLPOINTER Then
 Console.WriteLine("No data in list")
 End If
 Do While CurrentNodePtr <> NULLPOINTER ' while not end of list

 Console.WriteLine(CurrentNodePtr & " " & List(CurrentNodePtr).Data)
' follow the pointer to the next node
 CurrentNodePtr = List(CurrentNodePtr).Pointer
 Loop
 End Sub

VB Program for Linked Lists

Module Module1
 ' NullPointer should be set to -1 if using array element with index 0
 Const NULLPOINTER = -1 ' Declare record type to store data and pointer
 Structure ListNode
 Dim Data As String
 Dim Pointer As Integer
 End Structure

 Dim List(7) As ListNode
 Dim StartPointer As Integer

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

24

 Dim FreeListPtr As Integer

 Sub InitialiseList()
 StartPointer = NULLPOINTER ' set start pointer
 FreeListPtr = 0 ' set starting position of free list
 For Index = 0 To 7 'link all nodes to make free list
 List(Index).Pointer = Index + 1
 Next
 List(7).Pointer = NULLPOINTER 'last node of free list
 End Sub

 Function FindNode(ByVal DataItem) As Integer ' returns pointer to node
 Dim CurrentNodePtr As Integer
 CurrentNodePtr = StartPointer ' start at beginning of list
 Try
 Do While CurrentNodePtr <> NULLPOINTER And List(CurrentNodePtr).Data <>
DataItem ' not end of list,item(Not found)
 ' follow the pointer to the next node
 CurrentNodePtr = List(CurrentNodePtr).Pointer
 Loop
 Catch ex As Exception
 Console.WriteLine("data not found")
 End Try
 Return (CurrentNodePtr) ' returns NullPointer if item not found
 End Function

 Sub DeleteNode(ByVal DataItem)
 Dim ThisNodePtr, PreviousNodePtr As Integer
 ThisNodePtr = StartPointer
 Try ' start at beginning of list

 Do While ThisNodePtr <> NULLPOINTER And List(ThisNodePtr).Data <> DataItem
' while not end of list and item not found

 PreviousNodePtr = ThisNodePtr ' remember this node

 ' follow the pointer to the next node
 ThisNodePtr = List(ThisNodePtr).Pointer
 Loop
 Catch ex As Exception
 Console.WriteLine("data does not exist in list")
 End Try
 If ThisNodePtr <> NULLPOINTER Then ' node exists in list

 If ThisNodePtr = StartPointer Then ' first node to be deleted

 StartPointer = List(StartPointer).Pointer
 Else : List(PreviousNodePtr).Pointer = List(ThisNodePtr).Pointer
 End If
 List(ThisNodePtr).Pointer = FreeListPtr
 FreeListPtr = ThisNodePtr
 End If
 End Sub

 Sub InsertNode(ByVal NewItem)

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

25

 Dim ThisNodePtr, NewNodePtr, PreviousNodePtr As Integer
 If FreeListPtr <> NULLPOINTER Then ' there is space in the array
 ' take node from free list and store data
item
 NewNodePtr = FreeListPtr
 List(NewNodePtr).Data = NewItem
 FreeListPtr = List(FreeListPtr).Pointer ' find insertion point
 PreviousNodePtr = NULLPOINTER
 ThisNodePtr = StartPointer ' start at beginning of list
 Try
 Do While (ThisNodePtr <> NULLPOINTER) And (List(ThisNodePtr).Data <
NewItem) ' while not end of list
 PreviousNodePtr = ThisNodePtr ' remember this node
 ' follow the pointer to the next node
 ThisNodePtr = List(ThisNodePtr).Pointer
 Loop
 Catch ex As Exception
 End Try
 If PreviousNodePtr = NULLPOINTER Then ' insert new node at start of list

 List(NewNodePtr).Pointer = StartPointer
 StartPointer = NewNodePtr

 Else : List(NewNodePtr).Pointer = List(PreviousNodePtr).Pointer
 ' insert new node between previous node and this node
 List(PreviousNodePtr).Pointer = NewNodePtr
 End If
 Else : Console.WriteLine("no space for more data")
 End If
 End Sub

 Sub OutputAllNodes()
 Dim CurrentNodePtr As Integer
 CurrentNodePtr = StartPointer ' start at beginning of list
 If StartPointer = NULLPOINTER Then
 Console.WriteLine("No data in list")
 End If
 Do While CurrentNodePtr <> NULLPOINTER ' while not end of list

 Console.WriteLine(CurrentNodePtr & " " & List(CurrentNodePtr).Data)
' follow the pointer to the next node
 CurrentNodePtr = List(CurrentNodePtr).Pointer
 Loop
 End Sub

 Function GetOption()
 Dim Choice As Char
 Console.WriteLine("1: insert a value")
 Console.WriteLine("2: delete a value")
 Console.WriteLine("3: find a value")
 Console.WriteLine("4: output list")
 Console.WriteLine("5: end program")
 Console.Write("Enter your choice: ")
 Choice = Console.ReadLine()
 Return (Choice)
 End Function

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

26

 Sub Main()
 Dim Choice As Char
 Dim Data As String
 Dim CurrentNodePtr As Integer

 InitialiseList()
 Choice = GetOption()
 Do While Choice <> "5"
 Select Case Choice
 Case "1"
 Console.Write("Enter the value: ")
 Data = Console.ReadLine()
 InsertNode(Data)
 OutputAllNodes()
 Case "2"
 Console.Write("Enter the value: ")
 Data = Console.ReadLine()
 DeleteNode(Data)
 OutputAllNodes()
 Case "3"
 Console.Write("Enter the value: ")
 Data = Console.ReadLine()
 CurrentNodePtr = FindNode(Data)
 Case "4"
 OutputAllNodes()
 Console.WriteLine(StartPointer & " " & FreeListPtr)
 For i = 0 To 7
 Console.WriteLine(i & " " & List(i).Data & " " &
List(i).Pointer)
 Next
 End Select
 Choice = GetOption()
 Loop
 End Sub
End Module

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

27

 Trees Data Structure:

In the real world, we draw tree structures to represent hierarchies. For example, we can draw a
family tree showing ancestors and their children. A binary tree is different to a family tree
because each node can have at most two 'children'.

In computer science binary trees are used for different purposes.
In this chapter, you will use an ordered binary tree ADT as a binary search tree.

 Tree Vocabulary:

The TREE is a general data structure that describes the relationship between data items or
'nodes'.
The parent node of a binary tree has only two child nodes.

 Each data item within a tree is called a node
 The highest data item in tree is called root or root node
 Below the root lie a number of other nodes. The root

is the parent of nodes immediately linked to it and
these are children of parent node.

 If node share common parent, they are sibling nodes

just like a family

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

28

Adding Nodes to a Tree:

Nodes are added to an ordered binary tree in a specific way:

 Start at the root node as the current node.

 Repeat
o If the data value is greater than the current node's data value, follow the

right branch.
o If the data value is smaller than the current node's data value, follow the

left branch.

 Until the current node has no branch to follow.

Add the new node in this position.
For example, if we want to add a new node with data value D to the binary tree in Figure
we execute the following steps:

1. Start at the root node.

2. D is smaller than F, so turn left.

3. D is greater than C, so turn right.

4. D is smaller than E, so turn left.

5. There is no branch going left from E, so we add D as a left child from E.

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

29

Create a new binary tree
CONSTANT NullPointer = 0 //NullPointer should be set to -1 if u sing a r ray element with
index O

//Declare record type to store data and pointers
TYPE TreeNode

DECLARE Data : STRING
DECLARE LeftPointer : INTEGER
DECLARE RightPointer : INTEGER

END TYPE
DECLARE RootPointer : INTEGER
DECLARE FreePtr : INTEGER
DECLARE Tree[l : 7] OF TreeNode

PROCEDURE InitialiseTree
RootPointer NullPointer //set start pointer
FreePtr 1 //set starting position of free list
FOR Index 1 TO 6 //link all nodes to make free list

Tree [Index].LeftPointer Index + 1
END FOR
Tree [7].LeftPointer NullPointer //last node of free list

END PROCEDURE

Insert a new node into a binary tree

PROCEDURE InsertNode(Newitem)
IF FreePtr <> NullPointer
THEN //there is space in the array

//take node from free list, store data item and set null pointers
NewNodePtr FreePtr
FreePtr Tree[FreePtr].LeftPointer
Tree[NewNodePtr].Data Newitem
Tree[NewNodePtr].LeftPointer NullPointer
Tree [NewNodePtr].RightPointer NullPointer

//check if empty tree
IF RootPointer = NullPointer
THEN //insert new node at root

RootPointer NewNodePtr
ELSE //find insertion point

ThisNodePtr <- RootPointer //start at the root of the tree
 WHILE ThisNodePtr <> NullPointer //while not a leaf node

PreviousNodePtr ThisNodePtr //remember this node
IF Tree[ThisNodePtr].Data > Newitem

THEN //follow left pointer
TurnedLeft TRUE
ThisNodePtr Tree[ThisNodePtr].LeftPointer

ELSE //follow right pointer
TurnedLeft FALSE
ThisNodePtr Tree [ThisNodePtr].RightPointer

ENDIF
 ENDWHILE

IF TurnedLeft = TRUE
THEN
Tree [PreviousNodePtr].Left Pointer NewNodePtr

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

30

ELSE
Tree[PreviousNodePtr].RightPointer NewNodePtr

ENDIF
ENDIF

ENDIF

END PROCEDURE

Finding a node in a binary tree

FUNCTION FindNode(Searchitem) RETURNS INTEGER //returns pointer to node
ThisNodePtr RootPointer //start at the root of the tree
WHILE ThisNodePtr <> NullPointer //while a pointer to follow

AND Tree[ThisNodePtr].Data <> Searchitem //and search item not found
IF Tree[ThisNodePtr].Data > Searchitem

THEN //follow left pointer
ThisNodePtr Tree [ThisNodePtr] .LeftPointer
ELSE //follow right pointer
ThisNodePtr Tree [ThisNodePtr].RightPointer

ENDIF
ENDWHILE
RETURN ThisNodePtr //will return null pointer if search item not found

END FUNCTION

 Implementing a binary tree in VB

Module Module1
 ' NullPointer should be set to -1 if using array element with index 0
 Const NULLPOINTER = -1
 ' Declare record type to store data and pointer
 Structure TreeNode
 Dim Data As String
 Dim LeftPointer, RightPointer As Integer
 End Structure

 Dim Tree(7) As TreeNode
 Dim RootPointer As Integer
 Dim FreePtr As Integer

 Sub InitialiseTree()
 RootPointer = NULLPOINTER ' set start pointer
 FreePtr = 0 ' set starting position of free list
 For Index = 0 To 7 'link all nodes to make free list

 Tree(Index).LeftPointer = Index + 1
 Tree(Index).RightPointer = NULLPOINTER
 Tree(Index).Data = ""
 Next
 Tree(7).LeftPointer = NULLPOINTER 'last node of free list
 End Sub

 Function FindNode(ByVal SearchItem) As Integer

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

31

 Dim ThisNodePtr As Integer
 ThisNodePtr = RootPointer
 Try

 Do While ThisNodePtr <> NULLPOINTER And Tree(ThisNodePtr).Data <>
SearchItem

 If Tree(ThisNodePtr).Data > SearchItem Then

 ThisNodePtr = Tree(ThisNodePtr).LeftPointer
 Else : ThisNodePtr = Tree(ThisNodePtr).RightPointer
 End If
 Loop
 Catch ex As Exception
 End Try
 Return ThisNodePtr
 End Function

 Sub InsertNode(ByVal NewItem)
 Dim NewNodePtr, ThisNodePtr, PreviousNodePtr As Integer
 Dim TurnedLeft As Boolean
 If FreePtr <> NULLPOINTER Then ' there is space in the array
 ' take node from free list and store data item
 NewNodePtr = FreePtr
 Tree(NewNodePtr).Data = NewItem
 FreePtr = Tree(FreePtr).LeftPointer
 Tree(NewNodePtr).LeftPointer = NULLPOINTER ' check if empty
tree
 If RootPointer = NULLPOINTER Then
 RootPointer = NewNodePtr
 Else ' find insertion point
 ThisNodePtr = RootPointer
 Do While ThisNodePtr <> NULLPOINTER

 PreviousNodePtr = ThisNodePtr
 If Tree(ThisNodePtr).Data > NewItem Then
 TurnedLeft = True
 ThisNodePtr = Tree(ThisNodePtr).LeftPointer
 Else
 TurnedLeft = False
 ThisNodePtr = Tree(ThisNodePtr).RightPointer
 End If
 Loop
 If TurnedLeft Then
 Tree(PreviousNodePtr).LeftPointer = NewNodePtr
 Else : Tree(PreviousNodePtr).RightPointer = NewNodePtr
 End If
 End If
 Else Console.WriteLine("no spce for more data")
 End If
 End Sub

 Sub TraverseTree(ByVal RootPointer)

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

32

 If RootPointer <> NULLPOINTER Then
 TraverseTree(Tree(RootPointer).LeftPointer)
 Console.WriteLine(Tree(RootPointer).Data)
 TraverseTree(Tree(RootPointer).RightPointer)
 End If
 End Sub

 Function GetOption()
 Dim Choice As Char
 Console.WriteLine("1: add data")
 Console.WriteLine("2: find data")
 Console.WriteLine("3: traverse tree")
 Console.WriteLine("4: end program")
 Console.Write("Enter your choice: ")
 Choice = Console.ReadLine()
 Return (Choice)
 End Function

 Sub Main()
 Dim Choice As Char
 Dim Data As String
 Dim ThisNodePtr As Integer
 InitialiseTree()
 Choice = GetOption()
 Do While Choice <> "4"
 Select Case Choice
 Case "1"
 Console.Write("Enter the value: ")
 Data = Console.ReadLine()
 InsertNode(Data)
 TraverseTree(RootPointer)
 Case "2"
 Console.Write("Enter search value: ")
 Data = Console.ReadLine()
 ThisNodePtr = FindNode(Data)
 If ThisNodePtr = NULLPOINTER Then
 Console.WriteLine("Value not found")
 Else
 Console.WriteLine("value found at: " & ThisNodePtr)
 End If
 Console.WriteLine(RootPointer & " " & FreePtr)
 For i = 0 To 7

 Console.WriteLine(i & " " & Tree(i).LeftPointer & " " &
Tree(i).Data & " " & Tree(i).RightPointer)
 Next
 Case "3"
 TraverseTree(RootPointer)
 End Select
 Choice = GetOption()
 Loop
 End Sub
End Module

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

33

Hash tables

If we want to store records in an array and have direct access to records, we can use
the concept of a hash table.

The idea behind a hash table is that we calculate an address (the array index) from the
key value of the record and store the record at this address.

When we search for a record, we calculate the address from the key and go to the
calculated address to find the record. Calculating an address from a key is called
'hashing'.

Finding a hashing function that will give a unique address from a unique key value is
very difficult.
If two different key values hash to the same address this is called a 'collision'. There
are different ways to handle collisions:

 chaining: create a linked list for collisions with start pointer.at the hashed address
using overflow areas: all collisions are stored in a separate overflow area, known
as 'closed hashing'

 using neighbouring slots: perform a linear search from the hashed address to find
an empty slot, known as 'open hashing'

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

34

We will now develop algorithms to insert a record into a hash table and to search for a record in

the hash table using its record key.

 The hash table is a 1D array HashTable[0 : Max] OF Record.

 The records stored in the hash table have a unique key stored in field Key.

Insert a record into a hash table

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

35

Find a record in a hash table

Dictionaries:

A real-world dictionary is a collection of key-value pairs. The key is the term you use to look up
the required value. For example, if you use an English- French dictionary to look up the English
word 'book', you will find the French equivalent word 'livre'. A real-world dictionary is organised
in alphabetical order of keys.

An ADT dictionary in computer science is implemented using a hash table, so that a value can
be looked up using a direct-access method.

Python has a built-in ADT dictionary. The hashing function is determined by Python. For VB and
Pascal, we need to implement our own.

Here are some examples of Python dictionaries:

EnglishFrench = {} # empty dictionary EnglishFrench["book"] = "liv re" # add a key-value pair to
the dictionary EnglishFrench["pen"] = "stylo"

print (EnglishFrench ["book"]) # acc ess a value in the dictionary
alternative method of setting up a dictionary ComputingTerms = {"Boolean" : "can be TRUE or
FALSE", "Bit"
print(ComputingTerms ["Bit "])
"0 or 1"}

There are many built-in functions for Python dictionaries. These are beyond the scope of this
book. However, we need to understand how dictionaries are implemented. The following
pseudocode shows how to create a new dictionary.

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

36

Dictionary. This collection allows fast key lookups. A generic type, it can use any types for its
keys and values. Its syntax is at first confusing.

Many functions. Compared to alternatives, a Dictionary is easy to use and effective. It has
many functions (like ContainsKey and TryGetValue) that do lookups.

Add example. This subroutine requires 2 arguments. The first is the key of the element to add.
And the second is the value that key should have.

Note:Internally, Add computes the key's hash code value. It then stores the data in the hash

bucket.

And:Because of this step, adding to Dictionary collections is often slower than adding to other
collections like List.

VB.NET program that uses Dictionary Of String

Module Module1
 Sub Main()
 ' Create a Dictionary.
 Dim dictionary As New Dictionary(Of String, Integer)
 ' Add four entries.
 dictionary.Add("Dot", 20)
 dictionary.Add("Net", 1)
 dictionary.Add("Perls", 10)
 dictionary.Add("Visual", -1)
 End Sub
End Module

Add, error. If you add keys to the Dictionary and one is already present, you will get an
exception. We often must check with ContainsKey that the key is not present.

Alternatively:You can catch possible exceptions with Try and Catch. This often causes a
performance loss.

VB.NET program that uses Add, causes error

Module Module1

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

37

 Sub Main()
 Dim lookup As Dictionary(Of String, Integer) =
 New Dictionary(Of String, Integer)
 lookup.Add("cat", 10)
 ' This causes an error.
 lookup.Add("cat", 100)
 End Sub
End Module

Output

Unhandled Exception: System.ArgumentException:

 An item with the same key has already been added.

 at System.ThrowHelper.ThrowArgumentException...

ContainsKey. This function returns a Boolean value, which means you can use it in an If

conditional statement. One common use of ContainsKey is to prevent exceptions before calling
Add.

Also:Another use is simply to see if the key exists in the hash table, before you take further

action.

Tip:You can store the result of ContainsKey in a Dim Boolean, and

test that variable with the = and <> binary operators.

VB.NET program that uses ContainsKey

Module Module1
 Sub Main()
 ' Declare new Dictionary with String keys.
 Dim dictionary As New Dictionary(Of String, Integer)

 ' Add two keys.
 dictionary.Add("carrot", 7)
 dictionary.Add("perl", 15)

 ' See if this key exists.
 If dictionary.ContainsKey("carrot") Then
 ' Write value of the key.
 Dim num As Integer = dictionary.Item("carrot")
 Console.WriteLine(num)
 End If

 ' See if this key also exists (it doesn't).
 If dictionary.ContainsKey("python") Then
 Console.WriteLine(False)
 End If
 End Sub
End Module

References:
Computer Science AS & A Level Coursebook by Sylvia Langfield & Dave Duddell

P4 Sec 4.1.1, 4.1.2, 4.1.3) Abstraction, Algorithms and ADT’s Computer Science 9608

with Majid Tahir

38

https://www.geeksforgeeks.org/abstract-data-types/
https://www.geeksforgeeks.org/linked-list-set-2-inserting-a-node/
http://btechsmartclass.com/DS/U2_T7.html
http://www.teach-
ict.com/as_as_computing/ocr/H447/F453/3_3_5/data_structures/miniweb/pg15.htm
https://www.geeksforgeeks.org/binary-tree-set-1-introduction/
https://www.thecrazyprogrammer.com/2017/08/difference-between-tree-and-graph.html
https://www.codeproject.com/Articles/4647/A-simple-binary-tree-implementation-with-VB-NET

https://www.geeksforgeeks.org/abstract-data-types/
https://www.geeksforgeeks.org/linked-list-set-2-inserting-a-node/
http://btechsmartclass.com/DS/U2_T7.html
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_5/data_structures/miniweb/pg15.htm
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_5/data_structures/miniweb/pg15.htm
https://www.geeksforgeeks.org/binary-tree-set-1-introduction/
https://www.thecrazyprogrammer.com/2017/08/difference-between-tree-and-graph.html
https://www.codeproject.com/Articles/4647/A-simple-binary-tree-implementation-with-VB-NET

