

P4 Sec 4.1.4) Recursion, Algorithms & VB Code Computer Science 9608

with Majid Tahir

1

Syllabus Content:

4.1.4 Recursion
 show understanding of the essential features of recursion

 show understanding of how recursion is expressed in a programming language

 trace recursive algorithms

 write recursive algorithms

 show understanding of when the use of recursion is beneficial

 show awareness of what a compiler has to do to implement recursion in a programming
language

Recursion

A very efficient way of programming is to make the same function work over and over again in

order to complete a task.

One way of doing this is to use 'Recursion'.

Recursion is where a function or sub-routine calls itself as part of the overall

process. Some kind of limit is built in to the function so that recursion ends when

a certain condition is met.

A classic computer programming problem that make clever use of recursion is to find the

factorial of a number. i.e. 4 factorial is 4! = 4 x 3 x 2 x 1

Example

Find factorial 3!. The mathematical symbol for factorial is exclamation mark '!'

A function to find the factorial of a number is shown below

fct(n) {

if (n==0) {

 fct = 1

} else {

 fct = n * fct(n-1)

 }

}

Notice that the function 'fct' above is calling itself within the code. Also notice that each time the

function is called, a test is being carried out (if n==0) to see if the recursion should end.

To start it off the following statement is written

p = fct(3)

P4 Sec 4.1.4) Recursion, Algorithms & VB Code Computer Science 9608

with Majid Tahir

2

Step by step, this is what happens. Recursion winds and then unwinds.

P4 Sec 4.1.4) Recursion, Algorithms & VB Code Computer Science 9608

with Majid Tahir

3

The factorial function is called with argument 3

 3 is passed as an argument to the factorial function 'fct'
 the test (if n==0) is false and so the else statement is executed
 the statement fct = n * fct(n-1) becomes
 fct = 3 * fct(2)
 In order to resolve this another call is made to factorial with argument 2 this time
 RECURSION happens i.e. the function is calling itself as fct(2)
 2 is passed as an argument to the factorial function 'fct'
 the test (if n==0) is false and so the else statement is executed
 the statement fct = n * fct(2-1) becomes
 fct = 2 * fctl(1)
 In order to resolve this another call is made to factorial with argument 1 this time
 RECURSION happens i.e. the function is calling itself as fct(1)
 1 is passed as an argument to the factorial function 'fct'
 the test (if n==0) is false and so the else statement is executed
 the statement fct = n * factorial(1-1) becomes
 fct = 1 * fct(0)
 In order to resolve this another call is made to factorial with argument 0 this time
 RECURSION happens i.e. the function is calling itself as fctl(0)
 the test (if n==0) is TRUE and so the value 1 is returned to the calling function
 now each function call returns a value to the previous one, until the first function called

returns a value to 'p'.

Programming a recursive subroutine

We can program the function factorial iteratively using a loop:

FUNCTION Fictorial : INTEGER: RETURS INTEGER
 Result 1
 FOR i 1 to n
 Result Result * i
 NEXT
 RETURN Result

END FUNCTION

Or

FUNCTION Fictorial (n : INTEGER) RETURS INTEGER
 IF n = 0
 THEN
 Result 1
 ELSE
 Result n * Fictorial (n-1)

 END IF
 RETURN Result

END FUNCTION

P4 Sec 4.1.4) Recursion, Algorithms & VB Code Computer Science 9608

with Majid Tahir

4

Programming a recursive subroutine in VB

Following is an example that calculates factorial for a given number using a recursive function:

Module Module1
 Function factorial(ByVal num As Integer) As Integer ' local variable declaration
 Dim result As Integer
 If (num = 0) Then
 Return 1
 Else
 result = factorial(num - 1) * num
 Return result
 End If
 End Function
 Sub Main() 'calling the factorial method

 Dim value As Integer
 Console.WriteLine("Please enter a value for its Factorial")
 value = Console.ReadLine()
 Console.WriteLine("Factorial of " & value & "= " & factorial(value))
 Console.WriteLine("Factorial of 8 is : {0}", factorial(8)) 'Calling Factorial
function with direct value
 Console.ReadLine()
 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

P4 Sec 4.1.4) Recursion, Algorithms & VB Code Computer Science 9608

with Majid Tahir

5

Advantage of recursion

 Very efficient use of code

Disadvantage of recursion

 A faulty recursive function would never end and would rapidly run out of memory or
result in a stack overflow thus causing the computer to freeze.

 Can be difficult to debug as it can fail many levels deep in the recursion

 Makes heavy use of the stack, which is a very limited resource compared to normal

memory.

: You would process the list starting at the head or tail and Recursion When to Use

then recursively traverse the list using the pointers. A tree is another case where recursion is

often used Recursions are used when you satisfy of these conditions:

 You have a problem which is naturally recursive.

 The task must be indefinitely repetitive.

 At every round the same decision set must be applicable

 You can guarantee that you won't overflow the stack.

Function of compiler to implement recursion:

To understand this you just need to understand how a compiler interpret a function.
The compiler does not need to know whether the function is recursive or not. It just make CPU
jump to the address of function entry and keep on executing instructions.

And that's why we can use that function even if its definition is not finished. The compiler just
need to know a start address, or a symbol, and then it would know where to jump. The body of
the function could be generated later.

However, you might want to know the Tail Recursion, that is a special case commonly in
functional programming languages. The "tail recursion" means the recursive function call is the
last statement in function definition.

When calling a function, the compiler need to push context and parameters into stack, and then
recover the context and get return values from it. Thus, if your function calls itself and then itself
..., the stack would be too deep until the memory runs out. But if the function call is the last
statement in function definition, then there would be no necessary to save context in the stack,
and we can just overwrite it. Thus, the stack would not overflow even if the function calls itself
infinitely.

 References:

Computer Science AS & A Level Coursebook by Sylvia Langfield & Dave Duddell

http://teach-ict.com/as_as_computing/ocr/H447/F453/3_3_6/defining_syntax/miniweb/pg22.htm
https://stackoverflow.com/questions/40796473/how-do-compilers-understand-recursion

http://teach-ict.com/as_as_computing/ocr/H447/F453/3_3_6/defining_syntax/miniweb/pg22.htm
https://stackoverflow.com/questions/40796473/how-do-compilers-understand-recursion

