

4.3) Bit Manipulation Computer Science 9618

with Majid Tahir

1
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

Syllabus Content
4.3 Bit Manipulation

 Show understanding of and perform binary shifts
Notes and guidance

 logical, arithmetic and cyclic, Left shift, right shift

 Show understanding of how bit manipulation can be used to monitor / control a device

 Carry out bit manipulation operations. Test and set a bit (using bit masking)

Binary Shifts:

Table below shows the logical shifts that you are expected to use in Assembly Language:

4.3) Bit Manipulation Computer Science 9618

with Majid Tahir

2
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

Logical Vs. Arithmetic Shift
Logical Shift and Arithmetic Shift are bit manipulation operations (bitwise
operations).

Logical Shift

 A Left Logical Shift of one position moves each bit to the left by one. The vacant
least significant bit (LSB) is filled with zero and the most significant bit (MSB) is
discarded.

 A Right Logical Shift of one position moves each bit to the right by one. The least
significant bit is discarded and the vacant MSB is filled with zero.

Fig. 1 Logical Shift by one bit

4.3) Bit Manipulation Computer Science 9618

with Majid Tahir

3
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

Arithmetic Shift

 A Left Arithmetic Shift of one position moves each bit to the left by one. The
vacant least significant bit (LSB) is filled with zero and the most significant bit
(MSB) is discarded. It is identical to Left Logical Shift.

 A Right Arithmetic Shift of one position moves each bit to the right by one.
The least significant bit is discarded and the vacant MSB is filled with the value of
the previous (now shifted one position to the right) MSB.

Fig. 1 Left and Right Arithmetic Shift by One Bit

Arithmetic Shift operations can be used for dividing or multiplying an integer variable.

Multiplication by left shift:

The result of a Left Shift operation is a multiplication by 2n , where n is the number of
shifted bit positions.

Masking:

Masking means to keep/change/remove a desired part of information.

A bitmask is a way of accessing a particular bit. The bitmask is a number which has 0 in all bits

that we don’t care about, and a 1 for the bit(s) that we want to examine. By ANDing the bitmask

with the original number, we can “extract” the bit(s) – if that bit was 0, then the new number will

be completely zero; if the bit was 1, then the new number will be non-zero.

4.3) Bit Manipulation Computer Science 9618

with Majid Tahir

4
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

Consider these Masks:

Another part of the monitoring and control program would be checking whether any of the four

flags were set. The machine code for running such a program could use individual bits to

represent each flag. The way that flags could be set and read are illustrated by the following

assembly language code fragments in which the three least significant bits (positions 0, 1 and 2)

of the byte are used as flags:

4.3) Bit Manipulation Computer Science 9618

with Majid Tahir

5
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

Masking:

A mask defines which bits you want to keep, and which bits you want to clear.

Masking is the act of applying a mask to a value. This is accomplished by doing:

 Bitwise ANDing in order to extract a subset of the bits in the value

 Bitwise ORing in order to set a subset of the bits in the value

 Bitwise XORing in order to toggle a subset of the bits in the value

Below is an example of extracting a subset of the bits in the value:

Below is an example of extracting a subset of the bits in the value:

Mask: 00001111b
Value: 01010101b

Applying the mask to the value means that we want to clear the first (higher) 4 bits, and keep
the last (lower) 4 bits. Thus we have extracted the lower 4 bits. The result is:

Mask: 00001111b
Value: 01010101b
Result: 00000101b

Masking is implemented using AND in above example.

References:

 Cambridge International AS & A level by David Watson & Helen Williams

 Computer Science Course book by Sylvia Langfield & Dave Duddell

 https://www.finoit.com/blog/top-15-sensor-types-used-iot/

 https://stackoverflow.com/questions/10493411/what-is-bit-masking

 https://open4tech.com/logical-vs-arithmetic-

shift/#:~:text=A%20Left%20Arithmetic%20Shift%20of,to%20the%20right

%20by%20one.

https://www.finoit.com/blog/top-15-sensor-types-used-iot/
https://stackoverflow.com/questions/10493411/what-is-bit-masking
https://open4tech.com/logical-vs-arithmetic-shift/#:~:text=A%20Left%20Arithmetic%20Shift%20of,to%20the%20right%20by%20one
https://open4tech.com/logical-vs-arithmetic-shift/#:~:text=A%20Left%20Arithmetic%20Shift%20of,to%20the%20right%20by%20one
https://open4tech.com/logical-vs-arithmetic-shift/#:~:text=A%20Left%20Arithmetic%20Shift%20of,to%20the%20right%20by%20one

4.3) Bit Manipulation Computer Science 9618

with Majid Tahir

6
majidtahir61@gmail.com Contact: 03004003666 Website: www.majidtahir.com

