

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

1

Syllabus Content:
4.3.1 Programming paradigms

 Show understanding of what is meant by a programming paradigm

 Show understanding of the characteristics of a number of programming paradigms (low-

level, imperative (procedural), object-oriented, declarative) – low-level programming

 Demonstrate an ability to write low-level code that uses various address modes:

o immediate, direct, indirect, indexed and relative (see Section 1.4.3 and Section 3.6.2)

o imperative programming- see details in Section 2.3 (procedural programming)

 Object-oriented programming (OOP)

o demonstrate an ability to solve a problem by designing appropriate classes

o demonstrate an ability to write code that demonstrates the use of classes,

inheritance, polymorphism and containment (aggregation)

 declarative programming

o demonstrate an ability to solve a problem by writing appropriate facts and rules

based on supplied information

o demonstrate an ability to write code that can satisfy a goal using facts and rules

Programming paradigms

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

2

Programming paradigm:

A programming paradigm is a set of programming concepts and is a fundamental style

of programming. Each paradigm will support a different way of thinking and problem

solving. Paradigms are supported by programming language features. Some

programming languages support more than one paradigm. There are many different

paradigms, not all mutually exclusive. Here are just a few different paradigms.

Low-level programming paradigm

 The features of Low-level programming languages give us the ability to manipulate

the contents of memory addresses and registers directly and exploit the architecture

of a given processor.

 We solve problems in a very different way when we use the low-level programming

paradigm than if we use a high-level paradigm.

 Note that each different type of processor has its own programming language. There

are 'families' of processors that are designed with similar architectures and therefore

use similar programming languages.

 For example, the Intel processor family (present in many PC-type computers) uses

the x86 instruction set.

Imperative programming paradigm

 Imperative programming involves writing a program as a sequence of explicit steps

that are executed by the processor. Most of the programs use imperative

programming (Chapters 11 to 15 and Chapters 23 to 26).

 An imperative program tells the computer how to get a desired result, in contrast to

declarative programming where a program describes what the desired result should

be.

 Note that the procedural programming paradigm belongs to the imperative

programming paradigm. There are many imperative programming languages,

Pascal, C and Basic to name just a few.

 Object-oriented programming paradigm

 The object-oriented paradigm is based on objects interacting with one another.

These objects are data structures with associated methods.

 Many programming languages that were originally imperative have been developed

further to support the object-oriented paradigm.

 Examples include Pascal (under the name Delphi or Object Pascal) and Visual Basic

(the .NET version being the first fully object-oriented version). Newer languages,

such as Python and Java, were designed to be object-oriented from the beginning

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

3

Object Oriented Programming

Class

Central to the concept of Object Orientated Programming is the idea of 'Class'.

Picture an object in your mind, such a car - no particular car, but just the idea of a car.

In order to have a mental image of it, you inevitably have to consider the features that

uniquely identify it as a car.

Object Oriented Programming - modeling some system or process by using objects or

classes.

Concept of OOP

Previous chapters covered programming using the procedural aspect of our
programming languages. Procedural programming groups related programming
statements into subroutines. Related data items are grouped together into record data
structures. To use a record variable, we first define a record type. Then we declare
variables of that record type.

OOP goes one step further and groups together the record data structure and the
subroutines that operate on the data items in this data structure. Such a group is called
an 'object'.
The feature of data being combined with the subroutines acting on the data is known as
encapsulation.
To use an object, we first define an object type. An object type is called a class.

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

4

: combining data and subroutines into a class Encapsulation

: a type that combines a record with the methods that operate on the properties in Class

the record

Example of using a record

A car manufacturer and seller wants to store details about cars. These details can be

stored in a record structure

TYPE CarRecord
 DECLARE VehicleID : STRING
 DECLARE Registration : STRING
 DECLARE DateOfRegistration: DATE
 DECLARE EngineSize : INTEGER
 DECLARE PurchasePrice : CURRENCY
END TYPE

We can write program code to access and assign values to the fields of this record. For

example:

PROCEDURE UpdateRegistration(BYREF ThisCar : CarRecord, BYVAL

NewRegistration)

ThisCar.Registration NewRegistration

END PROCEDURE

We can call this procedure from anywhere in our program. This seems a well-regulated

way of operating on the data record. However, we can also access the record fields

directly from anywhere within the scope of ThisCar:

ThisCar.EngineSize 2500

Classes in OOP

The idea behind classes in OOP is that attributes can only be accessed through

methods written as part of the class definition and validation can be part of these

methods. The direct path to the data is unavailable. Attributes are referred to as

'private'. The methods to access the data are made available to programmers, so these

are 'public'. Classes are templates for objects. When a class type has been defined it

can be used to create one or more objects of this class type.

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

5

: the data items of a class Attributes

: the subroutines of a class Methods

: an instance of a class Object

The first stage of writing an object-oriented program to solve a problem is to design the

classes. This is part of object-oriented design. From this design, a pr9gram can be

written using an object-oriented programming (OOP) language.

The programming languages the syllabus prescribes can be used for OOP: Python 3,

VB.NET and Delphi/ObjectPascal.

Class parts

The parts that make up a class is shown below

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

6

Advantages of OOP over procedural languages

 The advantage of OOP is that it produces robust code.

 The attributes can only be manipulated using methods provided by the class

definition.

 This means the attributes are protected from accidental changes.

 Classes provided in module libraries are thoroughly tested. If you use tried and

tested building blocks to construct your program, you are less likely to introduce

bugs than when you write code from scratch.

Designing classes and objects

When designing a class:

 We need to think about the attributes we want to store.

 We also need to think about the methods we need to access the data and

assign values to the data of an object.

 A data type is a blueprint when declaring a variable of that data type.

 A class definition is a blueprint when declaring an object of that class.

Attributes

The Car class has a number of attributes that can be altered.

 In the above example, the attributes are "colour", "model", "brand", "speed" and

"direction".

 If the value of an attribute can be altered, then it is stored as a variable.

 If you don't want to allow the value to be altered, then it is stored as a constant.

 Attributes are normally 'private' which means only methods within the class can

alter their value.

 It is possible to have 'public' attributes i.e. variables that can be altered directly

by external code, but that kind of loses the point of object orientated

programming.

 Instantiation

Creating a new object is known as . 'instantiation'

 Any data that is held about an object must be accessible, otherwise there is no

point in storing it.

 We therefore need methods to access each one of these attributes.

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

7

Constructor:

A constructor instantiates the object and assigns initial values to the attributes.

Constructor: a special type of method that is called to create a new object and initialise

its attributes

 A class can have many methods i.e. functions, that use the methods' attributes.

 The most important of these methods is the constructor.

 This is the method that creates an instance of the class i.e. it creates an object.

 When an object is to be created, the contructor is called.

Getters:

These methods are usually referred to as getters.

 They get an attribute of the object.

 When we first set up an object of a particular class, we use a constructor.

Setters:

Any properties that might be updated after instantiation will need subroutines to update

their values.

 These are referred to as setters.

 Some properties get set only at instantiation. These don't need setters.

 This makes an object more robust, because you cannot change properties that

were not designed to be changed.

WORKED EXAMPLE:

Consider the car data from above section

When a car is manufactured it is given a unique vehicle ID that will remain the same

throughout the car's existence. The engine size of the car is fixed at the time of

manufacture. The registration ID will be given to the car when the car is sold.

In our program, when a car is manufactured, we want to create a new car object. We

need to instantiate it using the constructor. Any attributes that are already known at the

time of instantiation can be set with the constructor. In our example, vehicle ID and

Engine size can be set by the constructor. The other attributes are assigned values at

the time of purchase and registration. So we need setters for them. The identifier table

for the car class is shown in Table below:

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

8

We can represent this information as a class diagram in Figure

Car Class Diagram

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

9

Writing object-oriented code

Declaring a class in:

 Attributes should always be declared as 'Private'.

 This means they can only be accessed through the class methods.

 Methods can be called from the main program, so they have to be declared as
'Public'.

 There are other modifiers (such as 'Protected'), but they are beyond the scope

of this book.

 The syntax for declaring classes is quite different for the different programming
languages.

 We will look at the three chosen languages. You are expected to write programs
in one of these.

TASK27.01

 Copy the car class definition into your program editor and write a simple
program to test that each method works.

 A business wants to store data about companies they supply. The data to be
stored includes: company name, email address, date of last contact.

o Design a class Company and draw a class diagram.

o Write program code to declare the class. Company name and email
address are to be set by the constructor and will never be changed.

o Instantiate one object of this class and test your class code works.

 Declaring a class in Visual Basic:
Module Module1
 Class Car
 ' Each attribute must be preceded by PRIVATE
 Private VehicleID As String
 Private Registration As String = " " 'String will be in “ “
 Private DateOfRegistration As Date = #1/1/1900# 'Date between # #
 Private EngineSize As Integer
 Private PurchasePrice As Decimal = 0.0

 'Every public method header must start with Public

'The constructor always has identifier New

 Public Sub New(ByVal n As String, ByVal e As String)
 VehicleID = n
 EngineSize = e
 End Sub

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

10

 Public Sub SetPurchasePrice(ByVal p As Decimal)
 PurchasePrice = p
 End Sub

 Public Sub SetRegistration(ByVal r As String)
 Registration = r
 End Sub

 Public Sub SetDateOfRegistration(ByVal d As Date)
 DateOfRegistration = d
 End Sub

 Public Function GetVehicleID() As String
 Return(VehicleID)
 End Function

 Public Function GetRegistration() As String
 Return (Registration)
 End Function

 Public Function GetDateOfRegistration() As Date
 Return (DateOfRegistration)
 End Function

 Public Function GetEngineSize() As Integer
 Return (EngineSize)
 End Function

 Public Function GetPurchasePrice() As Decimal
 Return (PurchasePrice)
 End Function
End Class

Sub Main()

 Dim ThisCar As New Car("ABC1234", 2500)
 ThisCar.SetPurchasePrice(12000)
 Console.WriteLine(ThisCar.GetVehicleID())
 Console.ReadLine()

 ThisCar = Nothing ' garbage collection

 End Sub

End Module

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

11

TASK27.01

 A business wants to store data about companies they supply. The data to be
stored includes: company name, email address, date of last contact.

o Design a class Company and draw a class diagram.

o Write program code to declare the class. Company name and email
address are to be set by the constructor and will never be changed.

o Instantiate one object of this class and test your class code works.

Module Module1
 Class Company
 Private CompanyName As String
 Private EmailAddress As String
 Private DateOfLastContact As Date

 Public Sub New(ByVal n, ByVal e) 'constructor
 CompanyName = n
 EmailAddress = e
 DateOfLastContact = #1/1/1900#
 End Sub

 Public Sub SetDateOfLastContact(ByVal d)
 DateOfLastContact = d
 End Sub

 Public Function GetCompanyName()
 Return (CompanyName)
 End Function

 Public Function GetEmailAddress()
 Return (EmailAddress)
 End Function

 Public Function GetDateOfLastContact()
 Return (DateOfLastContact)
 End Function
 End Class

 Sub Main()

Dim ThisCompany As New Company("SLimited", "abc@slimited.cie")

 ThisCompany.SetDateOfLastContact(#1/2/2016#)
 Console.WriteLine(ThisCompany.GetDateOfLastContact())

 Console.ReadLine()
 End Sub

End Module

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

12

Instantiating a class

To use an object of a class type in a program the object must first be instantiated. This
means the memory space must be reserved to store the attributes.
The following code instantiates an object Thiscar of class car.

Using a method

To call a method in program code, the object identifier is followed by the method

identifier and the parameter list.

The following code sets the purchase price for an object ThisCar of class Car.

The following code gets and prints the vehicle ID for an object ThisCar of class Car.

Inheritance

The advantage of OOP is that we can design a class (a base class or a superclass)
and then derive further classes (subclasses) from this base class.

This means that we write the code for the base class only once and the subclasses
make use of the attributes and methods of the base class, as well as having their own
attributes and methods.

This is known as inheritance and can be represented by an inheritance diagram

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

13

 all attributes and methods of the base class are copied to the subclass Inheritance:

WORKED EXAMPLE

Implementing a library system
Consider the following problem:

 A college library has items for loan.

 The items are currently books and CDs.

 Items can be borrowed for three weeks.

 If a book is on loan, it can be requested by another borrower.
Table below shows the information to be stored.

The information to be stored about books and CDs needs further analysis. Note that we
could have a variable Title, which stores the book title or the CD title, depending on
which type of library item we are working with. There are further similarities (shown in
above table).

There are some items of data that are different for books and CDs. Books can be
requested by a borrower. For CDs, the genre is to be stored.

We can define a class Libraryitem and derive a Book class and a CD class from it. We

can draw the inheritance diagrams for the Libraryitem, Book and CD classes as in

Figure below

Inheritance diagram for Library Item, Book and CD classes

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

14

Analysing the attributes and methods required for all library items and those only

required for books and only for CDs, we arrive at the class diagram in Figure below

A base class that is never used to create objects directly is known as an abstract class.
Libraryitem is an abstract class.

Abstract class: a base class that is never used to create objects directly

 Declaring a base class and derived classes (subclasses) in VB.NET

The code below shows how a base class and its subclasses are declared in VB.NET.

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

15

Class LibraryItem
 Private Title As String
 Private Author_Artist As String
 Private ItemID As Integer
 Private OnLoan As Boolean = False
 Private DueDate As Date = Today

 Sub Create(ByVal t As String, ByVal a As String, ByVal i As Integer)
 Title = t
 Author_Artist = a
 ItemID = i
 End Sub

 Public Function
 GetTitle() As String.Return (Title)
 End Function

 ' other Get methods go here

 Public Sub Borrowing()
 OnLoan = True
 DueDate = DateAdd(DateInterval.Day, 21, Today()) '3 wee ks from today
 End Sub

 Public Sub Returning()
 OnLoan = False
 End Sub

 Sub PrintDetails()
 Console.WriteLine(Title & 11 ; 11 & ItemID & 11 ; 11 & OnLoan & 11 ; 11 & DueDate)
 End Sub
End Class

Class Book 'A subclass definition
Inherits LibraryItem 'The Inherits statement is first statementof subClass definition
Private Isrequested As Boolean = False

 Public Function GetisRequested() As Boolean
 Return (Isrequested)

 End Function
 Public Sub SetisRequested()

 Isrequested = True
 End Sub
End Class

Class CD
Inherits LibraryItem 'The Inherits statement is first statementof subClass definition
 Private Genre As String
 Public Function GetGenre() As String
 Return (Genre)
 End Function
 Public Sub SetGenre(ByVal g As String)
 Genre = g
 End Sub
End Class

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

16

 Instantiating a subclass

Creating an object of a subclass is done in the same way as with any class (See Section 27.03).

 Using a method

Using an object created from a subclass is exactly the same as an object created from
any class.

TASK 27.02

Copy the class definitions for Libraryitem, Book and CD into your program editor. Write the
additional get methods. Write a simple program to test that each method work

Module Module1
 Class LibraryItem
 Private Title As String
 Private Author_Artist As String
 Private ItemID As Integer
 Private OnLoan As Boolean = False
 Private DueDate As Date = Today

 Sub Create(ByVal t As String, ByVal a As String, ByVal i As Integer)
 Title = t
 Author_Artist = a
 ItemID = i
 End Sub
 Public Function GetTitle() As String
 Return (Title)
 End Function
 Public Function GetAuthor_Artist() As String
 Return (Author_Artist)
 End Function
 Public Function GetItemID() As Integer
 Return (ItemID)
 End Function
 Public Function GetOnLoan() As Boolean
 Return (OnLoan)
 End Function
 Public Function GetDueDate() As Date
 Return (DueDate)
 End Function
 Public Sub Borrowing()
 OnLoan = True
 DueDate = DateAdd(DateInterval.Day, 21, Today()) '3 weeks from today
 End Sub

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

17

 Public Sub Returning()
 OnLoan = False
 End Sub

 Public Sub PrintDetails()
 Console.Write(Title & "; " & ItemID & "; " & OnLoan & "; ")
 Console.WriteLine(DueDate)
 End Sub
 End Class

 Class Book
 Inherits LibraryItem
 Private IsRequested As Boolean = False

 Public Function GetIsRequested() As Boolean
 Return (IsRequested)
 End Function

 Public Sub SetIsRequested()
 IsRequested = True
 End Sub
 End Class

 Class CD
 Inherits LibraryItem
 Private Genre As String = ""

 Public Function GetGenre() As String
 Return (Genre)
 End Function

 Public Sub SetGenre(ByVal g As String)
 Genre = g
 End Sub
 End Class

 Sub Main()
 Dim ThisBook As New Book()
 Dim ThisCD As New CD()

 ThisBook.Create("Computing", "Sylvia", 1234)
 ThisCD.Create("Let it be", "Beatles", 2345)
 ThisBook.PrintDetails()
 ThisCD.PrintDetails()

 Console.ReadLine()

 End Sub
End Module

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

18

TASK27.03
Write code to define a Borrower class as shown in the class diagram in Figure 27.05

The constructor should initialise ItemsOnLoan too. UpdateitemsOnLoa·no should increment
ItemsOnLoan by an integer passed as parameter.
Write a simple program to test the methods

Module Module1
 Class Borrower
 Private BorrowerName As String
 Private EmailAddress As String
 Private BorrowerID As Integer
 Private ItemsOnLoan As Integer
 Public Sub Create(ByVal n As String, ByVal e As String, ByVal b As Integer)
 BorrowerName = n
 EmailAddress = e
 BorrowerID = b
 ItemsOnLoan = 0
 End Sub

 Public Function GetBorrowerName() As String
 GetBorrowerName = BorrowerName
 End Function

 Public Function GetEmailAddress() As String
 GetEmailAddress = EmailAddress
 End Function

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

19

 Public Function GetBorrowerID() As Integer
 GetBorrowerID = BorrowerID
 End Function
 Public Function GetItemsOnLoan() As Integer
 GetItemsOnLoan = ItemsOnLoan
 End Function
 Public Sub UpdateItemsOnLoan(ByVal n As Integer)
 ItemsOnLoan += n
 End Sub
 Public Sub PrintDetails()
 Console.WriteLine("Borrower : " & BorrowerName)
 Console.WriteLine("ID : " & BorrowerID)
 Console.WriteLine("email : " & EmailAddress)
 Console.WriteLine("Items on loan: " & ItemsOnLoan)
 End Sub
 End Class

 Sub Main()
 Dim NewBorrower As New Borrower()
 NewBorrower.Create("Sylvia", "adc@cie", 123)
 NewBorrower.UpdateItemsOnLoan(3)
 NewBorrower.PrintDetails()
 NewBorrower.UpdateItemsOnLoan(-1)
 NewBorrower.PrintDetails()
 Console.ReadLine()
 End Sub
End Module

Polymorphism

 The constructor method of the base class is redefined in the subclasses.

 The constructor for the Book class calls the constructor of the Libraryitem class

and also initialises the IsRequested attribute.

 The constructor for the CD class calls the constructor of the Libraryitem class

and also initialises the Genre attribute.

 The PrintDetails method is currently only defined in the base class.

 This means we can only get information on the attributes that are part of the base

class.

 To include the additional attributes from the subclass, we need to declare the

method again.

 Although the method in the subclass will have the same identifier as in the base

class, the method will actually behave differently.

 This is known as polymorphism.

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

20

Garbage collection

When objects are created they occupy memory. When they are no longer needed, they
should be made to release that memory, so it can be re-used. If objects do not let go of
memory, we eventually end up with no free memory when we try and run a program.
This is known as 'memory leakage'.

How do our programming languages handle this?

In VB.NET we used Class Car earlier

When we want to reclaim memory we use following code for Garbage collection:

ThisCar = Nothing ' garbage collection

 Exception handling

Run-time errors can occur for many reasons.

 Some examples are division by zero, invalid array index or trying to open a non-
existent file.

 Run-time errors are called 'exceptions'.

 They can be handled (resolved) with an error subroutine (known as an
'exception handler'), rather than let the program crash.

Using pseudocode, the error-handling structure is:

TRY
 <statementsA>
EXCEPT
 <statementsB>
END TRY

Any run-time error that occurs during the execution of <statementsA> is caught and
handled by executing <statementsB>. There can be more than one EXCEPT block,
each handling a different type of exception. Sometimes a FINALLY block follows the
exception handlers. The statements in this block will be executed regardless of whether
there was an exception or not.
VB.NET is designed to treat exceptions as abnormal and unpredictable erroneous
situations. You may find you need to include exception handling in the code for Worked

Example 26.02. Otherwise the end of file is encountered and the program crashes.

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

21

 TASK 26.03

Add exception-handling code to your programs for Task 26.01 or Task 26.02. Test your

code handles exceptions without the program crashing

Solution code is written below:

Module Module1
 Class Borrower
 Private BorrowerName As String
 Private EmailAddress As String
 Private BorrowerID As Integer
 Private ItemsOnLoan As Integer
 Public Sub Create(ByVal n As String, ByVal e As String, ByVal b As Integer)
 BorrowerName = n
 EmailAddress = e
 BorrowerID = b
 ItemsOnLoan = 0
 End Sub
 Public Function GetBorrowerName() As String
 GetBorrowerName = BorrowerName
 End Function
 Public Function GetEmailAddress() As String
 GetEmailAddress = EmailAddress
 End Function
 Public Function GetBorrowerID() As Integer
 GetBorrowerID = BorrowerID
 End Function
 Public Function GetItemsOnLoan() As Integer
 GetItemsOnLoan = ItemsOnLoan
 End Function
 Public Sub UpdateItemsOnLoan(ByVal n As Integer)
 ItemsOnLoan += n
 End Sub
 Public Sub PrintDetails()
 Console.WriteLine("Borrower : " & BorrowerName)
 Console.WriteLine("ID : " & BorrowerID)
 Console.WriteLine("email : " & EmailAddress)
 Console.WriteLine("Items on loan: " & ItemsOnLoan)
 End Sub
 End Class

 Sub Main()
 Dim NewBorrower As New Borrower()
 NewBorrower.Create("Sylvia", "adc@cie", 123)
 NewBorrower.UpdateItemsOnLoan(3)
 NewBorrower.PrintDetails()
 NewBorrower.UpdateItemsOnLoan(-1)
 NewBorrower.PrintDetails()
 Console.ReadLine()
 End Sub
End Module

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

22

.

Containment {aggregation}

 Containment means that one class contains other classes.
 For example, a car is made up of different parts and each part will be an object based on

a class.
 The wheels are objects of a different class to the engine object.
 The engine is also made up of different parts.
 Together, all these parts make up one big object.

Containment Diagram

Containment: a relationship in which one class has a component that is of another class type.

WORKED EXAMPLE:

Using containment A college runs courses of up to 50 lessons. A course may end with
an· assessment. Object-oriented programming is to be used to set up courses. The
classes required are shown in figure:

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

23

WORKED EXAMPLE solution VB.NET :

Module Module1 'CONTAINMENT
 Class Assessment
 Private AssessmentTitle As String
 Private MaxMarks As Integer

 Public Sub Create(ByVal t As String, ByVal m As Integer)
 AssessmentTitle = t
 MaxMarks = m
 End Sub

 Public Sub OutputAssessmentDetails()
 Console.Write(AssessmentTitle & "Marks: " & MaxMarks)
 End Sub
 End Class

 Class Lesson
 Private LessonTitle As String
 Private DurationMinutes As Integer
 Private RequiresLab As Boolean

 Public Sub Create(ByVal t As String, ByVal d As Integer, ByVal r As Boolean)
 LessonTitle = t
 DurationMinutes = d
 RequiresLab = r
 End Sub

 Public Sub OutputLessonDetails()
 Console.WriteLine(LessonTitle & " " & DurationMinutes)
 End Sub
 End Class

 Class Course
 Private CourseTitle As String
 Private MaxStudents As Integer
 Private NumberOfLessons As Integer = 0
 Private CourseLesson(50) As Lesson
 Private CourseAssessment As Assessment

 Public Sub Create(ByVal t As String, ByVal m As Integer)
 CourseTitle = t
 MaxStudents = m
 End Sub

 Sub AddLesson(ByVal t As String, ByVal d As Integer, ByVal r As Boolean)
 NumberOfLessons = NumberOfLessons + 1
 CourseLesson(NumberOfLessons) = New Lesson
 CourseLesson(NumberOfLessons).Create(t, d, r)
 End Sub

 Public Sub AddAssessment(ByVal t As String, ByVal m As Integer)
 CourseAssessment = New Assessment
 CourseAssessment.Create(t, m)
 End Sub

http://www.majidtahir.com/

4.3 (Programming Paradigms & Object-Oriented-

Programming)

Computer Science 9608

with Majid Tahir

24

 Public Sub OutputCourseDetails()
 Console.Write(CourseTitle)
 Console.WriteLine("Maximum number of students: " & MaxStudents)
 For i = 1 To NumberOfLessons
 CourseLesson(i).OutputLessonDetails()
 Next
 End Sub
 End Class

 Sub Main()
 Dim MyCourse As New Course
 MyCourse.Create("Computing", 10) ' sets up a new course
 MyCourse.AddAssessment("Programming", 100) ' adds an assessment
 ' add 3 lessons
 MyCourse.AddLesson("Problem Solving", 60, False)
 MyCourse.AddLesson("Programming", 120, True)
 MyCourse.AddLesson("Theory", 60, False)

 'check it all works
 MyCourse.OutputCourseDetails()
 Console.ReadLine()
 End Sub
End Module

Refrecences:

 Cambridge AS & A level Coursebook

 Cambridge AS & A level Teacher’s Resource

 AS & A level Computer Science by HODDER EDUCATION

http://www.majidtahir.com/

